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Abstract

Statistical Modeling and Analysis for Biomedical Applications

by

Christine Ho

Doctor of Philosophy in Statistics

University of California, Berkeley

Associate Professor Haiyan Huang, Chair

This dissertation discusses approaches to two different applied statistical challenges aris-
ing from the fields of genomics and biomedical research. The first takes advantage of the
richness of whole genome sequencing data, which can uncover both regions of chromosomal
aberration and highly specific information on point mutations. We propose a method to
reconstruct parts of a tumor’s history of chromosomal aberration using only data from a
single time-point. We provide an application of the method, which was the first of its kind,
to data from eight patients with squamous cell skin cancer, in which we were able to find
that knockout of the tumor suppressor gene TP53 occur early in that cancer type.

While the first chapter highlights what’s possible with a deep analysis of data from a single
patient, the second chapter of this dissertation looks at the opposite situation, aggregating
data from several patients to identify gene expression signals for disease phenotypes. In this
chapter, we provide a method for hierarchical multilabel classification from several separate
classifiers for each node in the hierarchy. The first calls produced by our method improve
upon the state-of-the-art, resulting in better performance in the early part of the precision-
recall curve. We apply the method to disease classifiers constructed from public microarray
data, and whose relationships to each other are given in a known medical hierarchy.
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Wild Geese

You do not have to be good.
You do not have to walk on your knees

for a hundred miles through the desert repenting.
You only have to let the soft animal of your body love what it loves.

Tell me about despair, yours, and I will tell you mine.
Meanwhile the world goes on.

Meanwhile the sun and the clear pebbles of the rain
are moving across the landscapes,

over the prairies and the deep trees,
the mountains and the rivers.

Meanwhile the wild geese, high in the clean blue air,
are heading home again.

Whoever you are, no matter how lonely,
the world offers itself to your imagination,

calls to you like the wild geese, harsh and exciting
over and over announcing your place

in the family of things.

- Mary Oliver
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Chapter 1

Introduction

This dissertation is split into two chapters, discussing two projects with applications to
genomics and the biomedical sciences. In many ways, these projects represent two ends of a
spectrum: the first project is about deeply mining sequencing data from a single timepoint in
a tumor to piece together clues about its history. Based on the simple idea of using a region’s
mutation rate as a timestamp, the main challenges in statistical modeling were describing
and accounting for the several sources of variability in sequencing experiments. On the
other hand, the second project pulls away from a single patient view and is instead about
extracting signal from data from hundreds of patients: in the application of our focus, we
describe a hierarchical classifier for approximately 100 diseases based on public microarray
gene expression data collected from 200 patients. The hierarchical structure comes from the
relationships between the disease labels, where some disease labels are specific instances of a
broader term. In this setting, the primary challenge is arriving at a hierarchically consistent
class assignment based on the output of 100 separately trained classifiers for each disease,
each with different performance characteristics.

The statistical methods proposed in these projects are unified by the common theme of
ranking, whether that means estimating ranks as for the first project or standardizing incom-
parable data so that they can be ranked in the second project. In the first chapter, we are
concerned with estimating a temporal ranking well in order to reconstruct tumor mutation
history. The second chapter has a more methodological focus, and is centered around an al-
gorithm for ranking classifier outputs to produce label assignments in hierarchical multilabel
classification.

In the two sections that follow, we provide a high-level overview of the contents of each
chapter. We avoid delving into the specifics of the data type, biological context, or mathe-
matics in this overview, and refer the reader to the respective chapters for these details.
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1.1 Temporal ordering of chromosomal aberrations in

cancer using sequencing data

In this chapter, we use sequencing data on point mutations in regions of chromosomal aberra-
tion to reconstruct the temporal order in which the aberrations occurred. If we assume that
the point mutations are acquired at a constant rate throughout the history of the tumor, we
can establish a model linking the types of mutations in a region to its relative place in time
in the history of the tumor: in very simple terms, this follows from reasoning that a region
with more mutations than another would have required more time to accumulate them.

A model for temporal ordering is only possible because chromosomal aberrations affect
point mutations by altering their allele frequency, or the fraction of copies that they appear
on. The allele frequency provides key information on the mutation, like whether the point
mutation occurred before or after the first event in the chromosomal aberration. Point
mutations can thus be grouped by allele frequency, and regions of chromosomal aberration
can be temporally ranked by careful accounting of its point mutations.

We develop a model relating the types of point mutations in a region to their relative
time in tumor history, given that we can precisely identify the kind of aberration that has
taken place. In practice, these mutations cannot be observed entirely: their allele frequencies
are estimated from sequencing data, thus the “group” that each mutation belongs to must
also be inferred.

A statistical challenge is modeling and accounting for this sequencing variability. We
model the point mutation data, with different distributions that depend on the true allele
frequency or group membership of the mutation, which we set as a latent variable. In
practice, these allele frequencies are sensitive to tumor sample contamination by normal
cells. Thus, we also model and provide an estimator for the degree of contamination, which
we use to adjust the distributions of the point mutation data accordingly.

Although our method permits estimating the sequence of events in a region, typically it is
only the time of the first event that is of greatest biological interest. Even so, the complexity
of the data makes it difficult to obtain analytical results on the performance of the estimator
we propose. We turn to simulations of Purdom et al. [2013], which shed light on the bias
and variance of our estimates. We evaluate the coverage of bootstrap confidence intervals
constructed for the estimates on the same metrics.

Since the method first appeared in Durinck et al. [2011] for the analysis of copy-neutral
loss of heterozygosity (CNLOH) events in skin cancer samples, an extension and variant of
the technique appeared in Greenman et al. [2012], which we refer to as partial maximum
likelihood (MLE). Likewise, an extension of the CNLOH timing method to other regions
was introduced in Purdom et al. [2013], to which we contributed. The simulations discussed
compare the partial MLE technique against the full MLE technique, as well as a Bayesian
estimation approach intended to mitigate the instability of our estimates for parameters at
the boundary.

The chapter concludes with a discussion of the method applied to skin cancer in Durinck
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et al. [2011], and an attempt to empirically validate the assumption of constant mutation
rate, upon which our notion of mutation rate-based timing rests. Though we do not discuss
it in the chapter, the method has also been applied to ovarian cancer in Purdom et al. [2013]
and primary breast cancer (cell lines) in Greenman et al. [2012].

1.2 Hierarchical multilabel classification with local

precision rates

In this chapter, we start with labels that are related to each other by a directed acyclic
graph or tree. We assume that we have trained a classifier for each of these labels, and the
classifiers produce a monotonic score as output. When the classifiers are each run separately,
they may produce assignments that are not consistent with the hierarchy.

A hierarchical classifier built upon several classifiers for each label is typically called a
local classifier (as opposed to a flat or global classifier) [Silla Jr and Freitas, 2011]. In this
setting, the most common way to reconcile the decisions of these classifiers is to perform
a Bayesian error correction, that is, finding the assignment that maximizes P (Q|Q̂), where
Q and Q̂ represent the true and estimated class labels, respectively. However, the state of
the art in hierarchical classification with multiple labels is global classification, wherein the
labels are learned jointly during training. The most common approach in this case is based
on decision trees.

We propose a method motivated by the challenges encountered with Bayesian error cor-
rection in the setting of disease diagnosis with public gene expression microarray data [Huang
et al., 2010]. In this application, public gene expression data collected from close to 200 pa-
tients were used to train about 100 classifiers for different diseases. The diseases were related
by the hierarchy given in the Unified Medical Language System.

In the non-hierarchical setting, Jiang et al. [2014] found that being able to account for
differences in classifier quality explicitly improved the precision-recall curve. Their method
involves using a new statistic, the local precision rate, in lieu of the classifier score. The
local precision rate is a transformation of the classifier score, and estimating it also requires
estimating the precision function for each classifier. Although their method is not intended
for hierarchical data, their demonstrate improved overall precision-recall (pooling all assign-
ments from all patients together) on the disease diagnosis data set.

We extend the results of Jiang et al. [2014] to the hierarchical setting, and find a precision-
recall improvement over the Bayesian method of Huang et al. [2010] and the original method
of Jiang et al. [2014] from aligning the assignments with the hierarchical. Simulations show
that our method has comparable performance to state-of-the-art global classifiers in the early
part of the precision-recall curve.

The proposed method consists of an algorithm for sorting the local precision rates that
leaves the hierarchical relationships intact. The method is motivated by the theoretical
optimality of the algorithm in a limited setting; when the assumptions for optimality are
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not met, the method performs as well as the original non-hierarchical method of Jiang et al.
[2014]. We also compare several methods for estimating the local precision rate and advise
on the best method to use under varying levels of class imbalance and data size.
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Chapter 2

Temporal ordering of chromosomal
aberrations using point mutation data
from sequencing

2.1 Introduction

Cancer is a disease characterized by tumors that develop as a result of dysfunction in the
cells’ regulatory processes. Depending on the type of cancer, a typical tumor contains tens
to thousands of somatic and germline genomic abnormalities, such as chromosome-level
changes in copy number, structural rearrangements (e.g., translocations, inversions, fusions),
or single nucleotide mutations [Collisson et al., 2012]. Driver mutations are a subset of
somatic mutations causally implicated in tumor progression, and thus preferentially selected
for during oncogenesis. This term distinguishes them from “passenger” mutations which
have no meaningful causal link [Hanahan and Weinberg, 2011]. Identifying driver mutations
and the genes they tend to occur on is important for understanding cancer etiology and
developing targeted treatments. For example, if a specialist can identify that a patient has
a driver mutation on an oncogene, which is a gene known to have enhanced activity in
tumors, then treatment targeted at inhibiting that gene could kill tumor cells that require
its activation to survive and propagate [Vogelstein and Kinzler, 2004].

Because driver mutations are required for tumor progression, they are expected to be sig-
nificantly represented in cancer. Therefore, efforts to identify driver mutations have centered
around finding patterns of recurrence across patients. The advent of sequencing technology
has allowed researchers to identify genes with a significantly elevated rate of somatic point
mutations. Since 2006, the Sanger Institute has maintained a Catalogue of Somatic Mu-
tations in Cancer (COSMIC) with the central aim of reporting their frequency, so as to
distinguish possible driver mutations from ‘passengers’ [Forbes et al., 2006]. In another
collaborative effort, The Cancer Genome Atlas (TCGA) project continues to collect sev-
eral types of data on patients for use in integrative analyses, including identifying frequent
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or significantly mutated genes [McLendon et al., 2008, Network et al., 2011]. Before the
adoption of sequencing technology in cancer genomics, researchers were limited to examin-
ing somatic changes via microarray experiments or older techniques like fluorescence in situ
hybridization (FISH). Nowadays, most methodological research is intended for data from
sequencing experiments, but methods for microarray still remains an active area of research
today [Brodeur et al., 1982, Huang et al., 2012, Newton et al., 1994, 1998, Newton and Lee,
2000, Taylor et al., 2008].

Through these approaches, researchers have identified several genes and chromosomal
changes associated with cancer, but for many, their specific roles in tumor progression remain
unclear. The order in which tumors acquire their changes can shed light on how they
participate in oncogenesis: early mutation suggests that the gene helps initiate tumor growth,
whereas a later mutation suggests its role is to sustain tumor progression. Additionally,
knowing which driver mutations occur early is appealing from a clinical standpoint: the
affected genes can be targeted for early treatment or used as markers for preventative care.

Previous approaches for determining the temporal ordering of mutations have either
involved tracking a single patient over time [Frumkin et al., 2008, Nishizaki et al., 1997,
Sasatomi et al., 2002], taking multiple samples from a single tumor [Campbell et al., 2008,
Gerlinger et al., 2012, Navin and Hicks, 2010, Siegmund et al., 2009], or pooling data from
several patients at stages of cancer for a cross-sectional approach [Attolini et al., 2010, Fearon
et al., 1990, Desper et al., 2000, Simon et al., 2000, Newton, 2012, Beerenwinkel et al., 2005,
2006, Rahnenführer et al., 2005, Gerstung et al., 2009, Hjelm et al., 2006, Liu et al., 2009,
Bilke et al., 2005].

The cross-sectional approach is the most common because it is the most feasible: iden-
tifying patients with early-stage cancer is not always easy, and following a single patient
over time can be impractical; instead, it is more common to have samples of several dif-
ferent patients, which collectively represent different stages in cancer. The methodology
for estimating a common temporal ordering based on this data type has been developed
extensively since the first implementations by Vogelstein et al. [1988], Fearon et al. [1990],
and Kinzler and Vogelstein [1996]. These earliest implementations sought a single, linear
path to tumor progression. The next major development was the oncogenetic tree model of
Desper et al. [2000], which cast the problem in a probabilistic framework and allowed for
greater flexibility. These models were developed to describe the sequence of alterations in
tumorigenesis without forcing tumors to fall into mutually exclusive categories, which occurs
when estimating a common linear progression path. Extensions and generalizations of these
models appear in Simon et al. [2000], Newton and Lee [2000], Beerenwinkel et al. [2005],
Gerstung et al. [2009], Liu et al. [2009]. Attolini et al. [2010] takes a different approach with
cross-sectional data: their algorithm RESIC models the accumulation of abnormalities in
tumors via a probabilistic model of cellular growth and the fitness of mutations.

Cross-sectional approaches have the drawback that the mutation history cannot be di-
rectly observed, only inferred. Since pathways with multiple orderings can result in the same
observed frequencies by stage, these inferred histories can be incorrect. In fact, Sprouffske
et al. [2011] performed a simulation study to investigate this problem: they looked at the
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reliability of tumor progression estimates based on cross-sectional data and found that the
variability of tumor progression pathways produced misleading results.

An additional layer of nuance is that a gene’s role can vary based on cancer type: for
example, in breast, ovarian, and esophageal cancers, TP53 mutations have generally been
thought to be early events [Bashashati et al., 2013, Shah et al., 2012, Weaver et al., 2014], but
the opposite situation is true for clear cell renal cell carcinoma McGranahan and Swanton
[2015]. Even within a single cancer type, research continues to reveal that there is a great
deal of diversity in tumor progression pathways [de Bruin et al., 2014], underscoring a need
for more precise or patient-specific methods.

The work presented here was the first to leverage the richness of genomic sequencing
data to reconstruct the history of certain chromosomal aberrations from a tumor sample at
a single time point. Specifically, it was the first to produce a patient-specific view of tumor
evolution without requiring longitudinal data. Our method was first applied for the limited
case of copy-neutral loss-of-heterozygosity (CNLOH) in Durinck et al. [2011] to squamous
cell carcinoma samples to determine the timing of a loss-of-function mutation on TP53.
Greenman et al. [2012] and Purdom et al. [2013] generalized a version of the method to
chromosomal gains, and in Nik-Zainal et al. [2012] applied the technique to 21 breast cancer
samples.

2.1.1 Advances since Durinck et al. [2011] and Purdom et al.
[2013]

Since the publication of our method in Durinck et al. [2011] and Purdom et al. [2013], research
on tumor evolution and the related subject of intra-tumor heterogeneity has grown. Intra-
tumor heterogeneity refers to the presence of multiple cell populations with the tumor. At
the time that Durinck et al. [2011] was published, one prevailing belief was that tumors were
comprised primarily of one cell population, called the dominant clone, which had growth
advantages over other lesser clonal populations. Our work in Durinck et al. [2011] attempts
to order the mutations within the dominant clone using only information from the dominant
clone itself. However, shortly after the publication of our work, research interest grew in using
the subclonal populations to help infer the order in which the dominant clone had acquired
mutations, since the subclonal populations were believed to have shared some of the same
evolutionary path as the dominant clone. Additionally, researchers sought to characterize the
degree of clonality present in tumours as well as whether the characteristics of the dominant
clone were actually predictive of the properties of heterogeneous tumors [Marusyk et al.,
2012]. An overview of heterogeneity in cancer genomes can be found in Yates and Campbell
[2012]; a more recent review of heterogeneity in tumor evolution can be found in Alizadeh
et al. [2015].

Methods for studying tumor evolution accounting for intra-tumour heterogeneity have
been developed for three main data types [Davis and Navin, 2016]: first, there is multi-
region sequencing, where multiple samples are taken from several spatially distinct regions
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of a single tumour [de Bruin et al., 2014, Schwarz et al., 2014, 2015]. Bitphylogeny by Yuan
et al. [2015] provides a method for reconstructing the phylogenetic tree from these kinds
of studies, but can also accommodate other data types. The second method of inquiry is
deep-sequencing, which involves sequencing a tumour sample at extremely high depth and
computationally deconvoluting clonal populations by clustering mutation allele frequencies
[Ding et al., 2012, Egan et al., 2012, Shah et al., 2012, Schuh et al., 2012, Beà et al., 2013,
Landau et al., 2013, Bolli et al., 2014]. A well-known example of a computational method
for analyzing this data type is PyClone [Roth et al., 2014], which uses a Bayesian clustering
method to group deeply sequenced mutations.

The most direct evidence of tumor heterogeneity comes from the third data type, single-
cell sequencing, in which each sample is comprised solely of DNA from a single cell, as the
name suggests. This stands in contrast to the conventional sequencing employed in multi-
region sequencing and deep-sequencing studies, where each sample is complex mixtures of
different tumor cells. However, because the source of DNA is limited to a single cell, single-
cell sequencing has high error rates and other limitations on what markers and genes can
be queried [Qiao et al., 2014]. Presently, conventional sequencing still remains the most
accessible and common data type for experiments. That said, much of the work on inferring
tumor evolutionary history from cross-sectional data has been readily adapted for data from
single-cell sequencing experiments: instead of looking across several patients for common
mutational patterns, these models now yield the most probable and parsimonious tumor
mutational history by analyzing the shared mutations among cells representing a tumor’s
different clonal populations. For example, SCITE (Single Cell Inference of Tumor Evolution)
[Davis and Navin, 2016] and OncoNEM [Ross and Markowetz, 2016] are two methods for
analyzing single-cell sequencing data from multiple cells within a tumor to infer the most
likely evolutionary path, and are closely related to the phylogenetic or oncogenetic tree
models mentioned earlier.

Finally, we mention SubcloneSeeker, developed by [Qiao et al., 2014], as an example of a
method that reconstructs subclone structures and evolutionary histories through an integra-
tive analysis of bulk somatic mutation data; it is distinctive in that it permits many types
of somatic variant data, e.g., SNVs, copy number variation from sequencing or microarray.

Again, our work focuses on the narrow case of ranking mutations within a dominant
clone. With the exception of the deep-sequencing methods, all of the methods mentioned
above require multiple samples from a single patient. Our method is thus most contextually
similar to deep-sequencing approaches in that it attempts to reconstruct an evolutionary
history through deeply mining data from a single sample composed of a mixture of tumor
cells. However, rather than looking to subclonal mutation frequencies to piece together the
tumor’s evolutionary past, we examine the copy number variations in the dominant clone
to produce a putative timeline for chromosomal aberrations. As a result, the granularity of
deep-sequencing approaches may be at the point mutation or gene level, whereas we only
reconstruct large-scale chromosomal aberrations.

In what follows, we will begin by explaining the experimental data types used in the
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full analysis of Durinck et al. [2011]. We will explain sequencing with greater detail since
our method is based on modeling data from sequencing. While our method can be applied
generally to CNLOH and chromosomal gains in principle, we will explain analytically and
practically which chromosomal aberrations cannot be timed based on point mutation data.
We then restrict our focus to the timing of a subset of events, and compare the accuracy of
three methods based on the simulations of Purdom et al. [2013]: our method, the method
of Greenman et al. [2012], and a Bayesian variant of our method. Finally, we review the
original application of the method in Durinck et al. [2011] to squamous cell carcinoma.

2.2 Experimental data

In this section, we provide a brief overview of the experimental methods or techniques in
cancer genomics used to study chromosomal aberrations and somatic point mutations, the
two types of events that are the focus of this work. Before we do that, we review terminology
used to discuss chromosomal aberrations and point mutations.

2.2.0.1 Preliminaries

Chromosomal aberrations refer to large-scale changes to regions of a chromosome, e.g. the
deletion or duplication of several megabases at a time. These events often result in a change
to the copy number of a region, or the number of copies of the region present. For example,
if the entire p-arm of chromosome 6 has been duplicated twice, there will be three copies
of this region. The copy number of the 6p arm would therefore be three. Copy number is
always a nonnegative integer.

At the single nucleotide level, a variant refers to a position of the genome where one
or both alleles do not match those of the reference human genome. Some variation occurs
naturally in the population and is not a result of oncogenetic processes; these variants are
referred to as single nucleotide polymorphisms (SNPs). When one allele does not match the
reference, the variant is heterozygous, since it present on only one of two copies. When both
alleles do not match the reference, the variant is homozygous. The same terminology also
works for somatic single nucleotide changes, which are commonly known as point mutations
or simply mutations for short, if there is no ambiguity. However, because chromosomal
aberrations can interact with variation at the single nucleotide level, we will introduce allele
frequency as a better way to describe the number of copies with the variant.

The allele frequency of a variant is the number of copies with the variant allele divided by
the total number of copies of that locus. For example, the allele frequency of a heterozygous
SNP is 0.5 because there are two copies of region the SNP appears on, but only one of the
copies has the variant allele at the SNP location. In a duplication event which results in four
total copies of a region, five allele frequencies for a variant are possible: trivially, an allele
frequency of 0 is possible, which means that the variant does not appear; the variant could
be present on 1 to 5 total copies. In the final case where it is present on all 5 copies, we say
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that the variant is homozygous. More generally, in a region with S copies, the possible set
of allele frequencies are always {0, 1/S, 2/S, . . . , S/S}.

In a given region, somatic mutations are assumed to occur at random on any of the
copies. Therefore, these somatic mutations will have allele frequency 1/S without additional
changes induced by a chromosomal aberration. Chromosomal aberrations interact with point
mutations by changing the number of copies that the variant appears on: for example, if the
copy harboring the mutation were duplicated twice, then its allele frequency would change
from 1/S to 3/(S + 2), since the variant would now be present on three copies out of a total
S + 2.

2.2.1 Cytogenic techniques

Several experimental techniques are used for identifying chromosomal regions of somatic gain
or loss. Comparative genomic hybridization (CGH) is one method, but the original technique
involved hybridizing DNA to reference metaphase chromosomes [Kallioniemi et al., 1992] and
the coarse resolution of the resultant data limited its usefulness [Shinawi and Cheung, 2008].
Since the invention of microarray technology, two techniques have emerged that offer finer
resolution and are still widely used today: array CGH for copy number analysis of tumors;
and single nucleotide polymorphism (SNP) arrays, which can identify allelic imbalance in
addition to copy number.

2.2.1.1 CGH and SNP array

In array CGH, equal amounts of DNA extracted from the tumor and the reference (normal)
sample are dyed with fluorescence of two complementary colors (usually red and green). The
DNA is then competitively hybridized to a set of location-specific probes on a microarray.
The probe intensities of each color are measured as the quantitative output from these
experiments: more precisely, for the tumor and reference dye colors respectively, we have
θT,j and θR,j–nonnegative, continuous measurements of light intensity at probe locus j. The

log ratio of the two, log
θT,j
θR,j

is proportional to the ratio of the copy numbers for tumor and

reference and is commonly referred to as logR. In practice, the intensity measurements are
normalized before the log ratio is taken–statistical methods for processing the raw data from
these arrays are beyond the scope of this discussion, and we refer the reader to Carvalho
et al. [2007] for more detail on this topic. The underlying true copy numbers are integer-
valued, therefore the ratio of tumor to reference copy number is theoretically discrete as
well. However, the estimated log ratio is a noisy surrogate for the truth and is continuous
and nonnegative. Intuitively, the ratio is close to zero when the tumor has the same copy
number as the reference; and greater than one when there is a gain in the tumor. Because
copy number variation also occurs naturally in the genome, cancer studies use neighboring
normal tissue as the reference sample when possible to capture only somatic copy number
alterations [Redon et al., 2006].
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As the name suggests, SNP arrays have probes that can interrogate up to one million
SNPs, i.e. sites of biallelic variation, depending on the array; there are two probes per SNP
site–one per allele, so that genotype can be obtained in addition to copy number. SNP arrays
are not a comparative hybridization technique, so determining somatic changes requires
running both tumor and normal samples to array and normalizing the data from the tumor
against the normal. As a result, in a paired tumor/normal experiment, we have for each
probe locus j four intensity measurements – θT,j,A, θT,j,B, θR,j,A, and θR,j,B – corresponding
to two pairs of measurements for the SNP alleles A and B in the tumor and normal sample,
respectively. As before, the intensities are usually normalized before being used, and logR
can be calculated as an estimate of the copy number ratio of tumor to normal. In this case,
R is the total normalized intensity ratio for tumor vs. normal: logR = log(

θT,j,A+θT,j,B
θR,j,A+θR,j,B

)

[Staaf et al., 2008, Wang et al., 2007]. This log R is analogous to the log R from array
CGH, and can be seen as a noisy surrogate for the true copy number. As a result, the SNP
array data suffers from the same problem as array CGH in that the distribution of logR is
continuous instead of discrete, and therefore requires additional analysis to produce discrete
copy number calls.

In addition to copy number information, SNP arrays provide information on the frequency
of each allele queried by a probe. We will refer to the alleles generically as A and B, but
they actually correspond to the two nucleotides known to occur at that locus. The frequency
of allele A is the fraction of copies with the A allele. Without loss of generality, an estimate
for the A allele frequency at probe locus j can be obtained by taking

θT,j,A
θT,j,A+θT,j,B

[Staaf

et al., 2008, Wang et al., 2007]. We illustrate the concept with two examples, one for a site
with polymorphism, and another for a site without polymorphism. Samples usually will not
have variation at all of the sites targeted by a SNP array. A sample with a polymorphism
at locus j and no other chromosomal abnormalities in the region will be diploid with true
alleles AB and true A and B allele frequencies of 0.5, since each allele appears on only one
of the two copies. If the sample were to gain a copy of the chromosome with the A allele,
then the true alleles would become AAB, resulting the A and B allele frequencies 2

3
and 1

3
,

respectively. Without loss of generality, both the normal and the tumor will have only the
A allele in a location without polymorphism, resulting in an A allele frequencies of 1 and B
allele frequency of 0.

Like other estimates based on probe intensity, allele frequency estimates are continuous
on [0, 1] although their true values are discrete. Additionally, without family data, it is
unknown which allele is from the maternal or paternal copy; thus, in analyzing SNP data,
the A and B alleles are exchangeable and, in regions of imbalance, the allele with the higher
frequency is called the “major” allele while the other is called the “minor” allele. For the
same reason, in exploratory plots of B allele frequency (BAF) by location, the designation
of A or B allele is arbitrary [Zhang, 2010].

A key advantage to having allele frequency measurements is that they make it possible
to detect regions of copy-neutral loss of heterozygosity (CNLOH). In this kind of aberration,
the maternal or paternal copy is duplicated with simultaneous loss of the other copy, as
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Figure 2.1: A diagram of a copy-neutral loss of heterozygosity (CNLOH) event affecting the
entire chromosome. A SNP is shown in the p-arm of a generic chromosome, with allele A
marked in green and B in blue. The chromosome copy with allele A is duplicated, while the
copy with B is simultaneously deleted. This results in two copies of the allele A in the final
result, with no net change to the copy number.

illustrated in Figure 2.1. As a result, the tumor carries two copies of the maternal or
paternal copy rather than one of each. Several studies have suggested the importance of
these events in cancer after identifying recurrent CNLOH involving known tumor suppressor
genes [Purdie et al., 2007, Ross et al., 2007, Heinrichs and Look, 2007, Mao et al., 2007].
This event cannot be detected by CGH array because both tumor and normal still have the
same number of copies–hence the designation CNLOH to distinguish it from LOH caused by
deletion of a copy. Although CNLOH regions have diploid copy number, any polymorphic
sites in the normal would appear as homozygous in the tumor as a result of the duplication,
as shown in Figure 2.1. These events can therefore by identified by looking for regions with
logR indicating no aberration in copy number but BAF corresponding to allele frequencies
of 1 and 0.

2.2.1.2 Challenges in the analysis of CGH or SNP array data

Segmentation algorithms have been developed for processing SNP or CGH array data to
identify breakpoints of regions of copy number or allelic aberration. The probe intensities
are typically modeled as having a Gaussian distribution where the mean of the distribu-
tion depends on the region’s true copy number. The problem can then be cast as one of
changepoint detection, where the challenge is to determine positions where the mean of the
distribution changes, i.e. changepoints. The most well-known approach is circular binary
segmentation, which was first applied to the context of array data in [Olshen et al., 2004].
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Many algorithms are different variations on this method: for a high-level overview, we refer
the reader to Zhang [2010].

Many factors affect the accuracy of copy number and allele frequency estimated from ar-
ray data: purity of the tumor DNA sample (i.e., the degree to which the sample contains only
tumor cells of one type), the laboratory preparation, and biases inherent to the experimental
platform itself (i.e., manufacturing differences) [Pinkel and Albertson, 2005]. As mentioned
earlier, normalization of the raw intensities is usually performed as a pre-processing step to
reduce unwanted variation due to the platform and laboratory preparation.

Heterogeneity in the tumor sample arises as a result of contamination with neighboring
normal cells or the presence of subclonal cells that share some but not all of the mutations
as the dominant tumor clone. If a region’s copy number varies over the cells that comprise
the sample, its log intensity measurement will reflect the average copy number across all
cells. As a result, if the contaminated cells do not possess the same abnormality as the
dominant clone, the effect on the region is dilution of the copy number toward 2 and the
allele frequency toward 0.5. For example, if half of the cells have diploid copy number in a
region but the other half has lost a copy from an LOH event, the true total copy number is
2(0.5)+1(0.5) = 1.5. The overall effect on the copy number and allele frequency estimates are
a narrower range of values, which makes it harder for segmentation algorithms to determine
breakpoints, and even harder to estimate the true integer-valued copy number or discrete
allele frequency.

Heterogeneity affects the entire sample and is impossible to correct without additional
information or manual inspection to determine the degree of contamination. In many cases,
contamination by normal cells is usually seen as unwanted variation, whereas the presence
of subclonal populations in the tumor is not. It can be difficult to tease apart whether the
signal dilution came from a genuine tumor subclones or the inclusion of neighboring normal
tissue depending on the degree of subclonality or contamination, although it is theoretically
possible to use the differential behavior of normal and subclonal cells–the effect of normal
would be consistent across the entire genome, but the subclonal cells may affect only certain
regions where they differ from tumor [Pinkel and Albertson, 2005, Zhang, 2010]. In practice,
subtle changes like those implied by subclonal populations are difficult to distinguish from
natural measurement variation. With heavy amounts of contamination, it is often necessary
to combine array CGH or SNP array data with other sources of information (e.g., sequencing)
to make definitive calls.

To illustrate the effect of tumor sample contamination, Figure 2.2 shows a chromosome
with an LOH region after the centromere at 40 megabases and heavy signal dilution from
contamination. This is noticeable from how the LOH is barely perceptible in the top plot with
copy number estimates from SNP array. The fourth plot shows the SNP B allele frequency
of tumor normalized against the normal sample, from which it is clear that the region after
the centromere at 40 has allelic imbalance. Neither algorithms nor manual inspection can
determine confidently what aberration had taken place based on these two plots from the
SNP array data alone. However, a plot estimated mutation allele frequencies from sequencing
shows the presence of only one allele frequency, a trait unique to regions of LOH. One can
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see that the allele frequencies in this plot are also affected by normal contamination, which
we explain further in the next section on sequencing data, Section 2.2.2.

Because integer-valued copy number must be inferred from array and these inferences are
made more difficult by the presence of any contamination, researchers may seek alternative
means of validating their findings. One possible means of validation is to use other cytogenic
methods like fluorescence in situ hybridization (FISH). There are multiple techniques based
around FISH, but they all involve dyeing targeted regions of a chromosome with different
colors of fluorescence–from there, a technician views the chromosomes under a microscope
and determines the copy number alteration that has taken place by visual inspection. By
counting, they can also estimate the proportion of tumor cells possessing that alteration.
Alternatively, 24-color FISH can produce a color-coded map of the genome for detecting
chromosomal rearrangements, some of which cannot be caught by array [Bishop, 2010]. One
example is a balanced translocation, which occurs when regions of two different chromosomes
are swapped; this event does not change the copy number or produce allelic imbalance, so it
would not be detected by the array methods, but is easily seen with imaging. A schematic
representation of array CGH and spectral karyotyping (which produces similar output to
FISH) taken from Bishop [2010] is shown in figure 2.3, and shows the difference in output
the two kinds of experiments more clearly. The primary drawback to using FISH to validate
array findings is how labor intensive the process is, as it requires manual inspection and is
intended for interrogating specific, small regions of the genome at a time [Bishop, 2010].

2.2.2 Whole genome sequencing

2.2.2.1 Next generation sequencing

Sequencing produces data at the finest resolution possible: allelic information for each base
along the genome. After The Human Genome Project kicked off in 1990, it took a little
over a decade to assemble the first nearly complete sequence of the human genome [Venter
et al., 2001]. Since that breakthrough nearly fifteen years ago, great leaps have been made in
sequencing technology to more efficiently generate high quality data at lower costs–namely,
the advent of massively parallel DNA sequencing or next generation sequencing has reduced
the cost of sequencing experiments by over two orders of magnitude since 2005 [Shendure and
Ji, 2008]. This push has further been driven by the desire for individual genome sequencing
for use in personalized medicine [Ginsburg and Willard, 2009, Metzker, 2010]. Scientists have
found widespread application for next generation sequencing, from investigating protein-
DNA interactions, studying gene expression, genotyping SNPs, discovering copy number
aberrations, to identifying somatic mutations in cancer. In this section, we provide an
overview of next generation sequencing as it pertains to understanding somatic changes in
cancer, the focus of our method. At a high-level, we will review the sequencing process and
methods for analyzing the raw data output–alignment to the reference, mutation calling,
and even copy number analysis.

The name “next generation sequencing” distinguishes it from conventional sequencing
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Figure 2.2: The first four plots show processed SNP array estimates vs. position on chromo-
some 10 from matched tumor and normal samples for patient V07: the first contains copy
number estimates; second, B allele frequency for the normal sample; third, B allele frequency
for the tumor sample; and finally the allele frequency for tumor normalized against the nor-
mal sample to make clear regions of allelic imbalance with respect to the normal. Red color
is used to highlight SNPs homozygous in the normal. The final plot shows allele frequencies
for SNPs (slate blue) and mutations (orange) obtained from sequencing data.
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Figure 2.3: A schematic representation of the output from array CGH and FISH experiments.
In FISH, chromosomes are dyed different colors, making it is possible to detect balanced
translocations like the one between the 1p and 6q by looking for color rearrangements. As
this does not result in a copy number change, it is not picked up by the CGH experiment.
However, the CGH experiment does pick up the deletion on 3p. If a SNP array would be
able to detect allelic imbalances and therefore CNLOH, which neither FISH nor CGH can
detect. This figure originally appeared as Figure 8 in Bishop [2010].

methods that rely on the biochemistry developed by Frederick Sanger in the 1970’s. Both
conventional and next generation sequencing workflows require chopping genomic DNA into
smaller fragments called reads, amplifying these fragments, and then resolving the resultant
bases. The primary distinction between Sanger and next generation sequencing methods
is the degree of parallelization: in Sanger sequencing, the bases of each read are resolved
using capillary electrophoresis, so the amount of parallelization is limited by the number
of independent capillaries that can practically be run simultaneously–typically only in the
hundreds. On the other hand, in next generation sequencing, bases are resolved by per-
forming several cycles of imaging or other detection method simultaneously across an array
onto which different fragments have been bound and are separated spatially. This means
parallelization is only limited by the number of fragments that can be accommodated on
the array; in practice, these cyclic-array methods can produce millions of reads in one run
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[Shendure et al., 2004, Shendure and Ji, 2008, Metzker, 2010]. Next- or second-generation
methods have presently found widespread use in the scientific community, but for complete-
ness we note the recent development of “third generation sequencing” technologies that allow
sequencing of single molecules in real time, such as that developed by Pacific Biosciences.
This is beyond the scope of this dissertation and we refer the reader to the overview by
Schadt et al. [2010] for more details.

The technologies that fall under the umbrella of next-generation sequencing (e.g., 454
pyrosequencing, Illumina Solexa, Applied Biosystems SOLiD, Ion Torrent) differ in the type
of PCR performed during library prep and how actual sequencing is done afterward. For
instance, on each cycle, the Ion Torrent system identifies bases by detecting changes in
pH; whereas for Illumina Solexa sequencers, bases are detected by imaging, with the four
nucleotides emitting different colors. There are advantages and disadvantages unique to
each platform: for instance, 454 pyrosequencing accommodates longer reads than the other
methods mentioned, but because of its sequencing biochemistry, its dominant error type is
insertion/deletion of bases in the final sequence, due to its inability to accurately resolve the
number of repeated bases in reads with homopolymers, i.e. runs of a single nucleotide such
as AAA or GGG [Shendure and Ji, 2008]. On the other hand, while Illumina sequencers
do not have an insertion/deletion problem, they have a documented bias against GC rich
regions [Nakamura et al., 2011]. A vast body of research focuses on the idiosyncrasies of
each platform and how they should be handled in different applications; this is beyond the
scope of this dissertation, and we refer the reader to Shendure et al. [2004], Shendure and Ji
[2008] for specifics on the differences between platforms.

Experimenters can choose reads of two different types, and these types impact the kind
of information that can be learned from the experiment: 1) single-end reads or 2) paired-
end or mate-pair reads. In single-end sequencing, each fragment of DNA produced during
library preparation corresponds to a read, and these are sequenced in the 3’ to 5’ direction.
In paired-end sequencing, fragments are larger and two reads are produced from sequencing
each end; the middle portion is not sequenced. This yields as final output one read in the
3’ to 5’ and another in the 5’ to 3’ direction for each DNA fragment, where the distance
between the reads is approximately known from being fixed beforehand in the design of the
experiment. Mate-pair sequencing results in the same output as paired-end sequencing, but
the gap distance between the reads is typically much larger (e.g., on the order of kilobases
rather than hundreds of bases). The naming difference is due to different underlying library
preparation processes: whereas paired-end reads are produced by sequencing both ends of a
single fragment, the longer gap distance between mate-pair reads requires fragments to be
circularized before being sequenced. What paired-end or mate-pair reads offer above single-
end reads is the ability to detect structural variants and better alignment ability in repetitive
regions. As an example of the former, if one end maps uniquely to a region in chromosome
9 and the other maps uniquely to a region in chromosome 20, then this indicates that a
rearrangement of those two chromosomes has occurred. Likewise, having one end that maps
uniquely to a region of a chromosome can resolve the position of a second end that falls in
a highly repetitive region, since the known gap distance between them limits the places the
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second end could map to.

2.2.2.2 Processing pipeline for studying mutations with next generation
sequencing data

A sequencing experiment yields as raw output a file with base calls for every read produced
and usually additional metadata for each read, like a score for the quality of each base call.
These reads must be aligned either de novo or against a known reference, the latter being
the most common choice in situations where a reference exists–having a known reference
means that the experiment can be designed to produce shorter reads at a high throughput,
which is generally cheaper and easier to do than obtaining fewer but longer reads. Several
algorithms have been developed for the alignment of next-generation sequencing reads to a
reference; to name a few: Bowtie [Langmead et al., 2009], BWA [Li and Durbin, 2009], MAQ
[Li et al., 2008a], Novoalign (http://novoalign.com), and SOAP [Li et al., 2008b]. Yet more
exist for other specialized purposes. Alignment continues to be an active area of research as
new sequencing technology is constantly being developed and consequently different kinds
of sequencing data are produced.

Generally, for studying mutations and chromosomal aberrations in cancer, longer reads
like those offered by 454 pyrosequencing are not required at the outset because reads can be
mapped against a known human reference, as opposed to, say, the use case of performing de
novo assembly for mapping the genome of a new organism, for which longer reads provide
better alignment confidence. Paired-end or mate-pair sequencing of the entire genome is
frequently done in cancer studies as a way to detect somatic chromosomal rearrangements,
but it is also common to investigate any breakpoints found via single-end sequencing further
with targeted sequencing of select regions, e.g. Sanger sequencing; the same is true for
validating interesting mutations initially detected by single-end sequencing. In the case
of somatic mutations, researchers are often interested primarily in mutations that occur
in coding regions of the genome, a.k.a the exome; mutations in these regions can directly
alter the proteins that are encoded and thereby disrupt proper gene function or expression.
Therefore, some studies, including the one in which we applied our method [Durinck et al.,
2011], will run targeted sequencing of just the exome, which comprises only 2% of the genome.
Restricting the region sequenced to the exome offers the benefits of lower cost and greater
coverage of the targeted regions.

2.2.2.3 Read depth, estimated allele frequency, and an overview of the effect
of normal contamination

From this point, we assume that a sequencing experiment has been run and the reads have
been aligned to the human reference. Then, for each base along the regions sequenced,
we have its read depth, the total number of reads that overlap that base. If the cancer is
not highly mutated, then most bases in the reads match those of the reference. However,
in a position with a somatic mutation or a SNP, reads will show bases different from the
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reference. Typically, unless there are sequencing errors or contamination with a third allele
(e.g., from a subclonal population), the majority of reads for a location will show at most
two nucleotides–those of the reference and the variant, if any. If mi is the read depth at
location i and Xi is the number of reads showing the variant, then the variant read allele
frequency is defined as Xi/mi. The reference allele frequency is defined analogously. These
can be seen as estimates of the true frequencies of the alleles in that location. As mentioned
in Section 2.2.1 on cytogenic techniques, true allele frequencies are discrete. Precisely, if a
region has S copies, the only possible true variant allele frequencies are 0/S, 1/S, . . . , S/S.
However, allele frequencies from reads are more accurately modeled as continuous-valued
when the average read coverage for each base is sufficiently high. Note that although 0/S is
a valid allele frequency for a mutation, we are unable to identify mutations with this allele
frequency using sequencing data since a 0/S allele frequency implies that both alleles match
the reference and thus would be indistinguishable from an unmutated position.

Several algorithms have been developed to analyze sequencing read depths and allele
frequencies from matched tumor and normal samples and produce a list of potential somatic
and non-somatic variants. The resultant list provides information on each allele and the reads
supporting them. Roughly speaking, to obtain somatic mutations, one can disregard variants
that correspond to known SNPs catalogued in COSMIC, and also select only those locations
where an allele is homozygous in the normal but not in the tumor. The latter criterion is at
the center of methodological research on variant calling: probabilistic methods, for instance,
estimate the probability that a locus is mutated and those locations with probabilities above
some threshold are labeled mutations. As with all of the other workflows described for
genome sequencing, there is a great deal of nuance in implementation, the details of which
are beyond the scope of this dissertation. We cite the papers describing two commonly used
variant callers for additional references on the topic: the MuTect algorithm offered in the
Broad Institute’s Genome Analysis Tool Kit (GATK) [DePristo et al., 2011, Auwera et al.,
2013] and the variant-caller offered in the SAMtools toolkit [Li, 2011].

Tumor samples extracted from tissue rather than a pure source of DNA such as a cell line
usually contain noticeable contamination from normal DNA. These samples may also contain
contamination with subclonal cells, but the effect of subclonal contamination is complex and
can be difficult to detect if most of the majority of mutations in the subclones also appear
in the dominant clone and/or the subclonal cells comprise only a small percentage of the
sample. In loci where the subclone differs from the dominant clone, either of these situations
would likely result in the loci being filtered out in the mutation-calling step as sequencing
error. Positions where the tumor is mutated but the subclone is not cannot be distinguished
from natural variation in reference allele coverage or normal contamination. The same is
true of a position where both tumor and subclone share the same mutation.

Genuine sequencing error incorrectly swaps a reference and variant allele, and in general
affects only a small number of mutations (1-2% of mutations). This particular error becomes
a problem only in situations where a single read base swap could result in classification to
a different allele frequency. This occurs when both the overall read coverage and the true
variant allele frequency are low. Most mutation calling algorithms set a minimum threshold
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on read coverage for a position to be called a mutation, which essentially filters out these
positions. In addition to genuine sequencing error, some situations, like the subclone scenario
alluded to in the previous paragraph, can result in outcomes that are difficult to distinguish
from the other kind of sequencing error that results in a small number of reads from a third
allele. These reads are usually filtered out even earlier during the alignment step. As a result,
positions with sequencing error or situations that produce similar outcomes to sequencing
error largely do not make it into the final set for analysis.

On the other hand, the effect of normal contamination on sequencing data affects every
mutation in the same way, which makes it easier to model and quantify. Specifically, for
positions where the alleles in the tumor sample match the normal such as SNPs or unmutated
bases, the resultant allele frequencies are unbiased estimates of the true allele frequency. For
mutated positions in the tumor, the normal sample contributes more reference alleles than
would be the case if the sample were pure. Because the estimated allele frequency is the
proportion of variant alleles out of sequenced alleles, this increases the denominator and
pushes the value toward 0.

This is illustrated further in Figure 2.4, which shows the estimated allele frequencies for
variants on three chromosomes plotted by position. It is useful to think about the effect
of normal contamination on SNPs and mutations separately because, unlike the latter, the
former is present in the normal cells. In diploid regions, the estimated allele frequencies
of SNPs are centered around 0.5, the true allele frequency, which agrees with how these
positions are the same in both the tumor and the normal. However, the estimated allele
frequencies for mutations are centered at a value less than 0.5, reflecting how the normal
sample contributes additional reads from the reference allele. In regions where the tumor
sample has CNLOH, the effect of the normal on SNPs and mutations is more nuanced, and
it is useful to break down the four possibilities for reads for each variant: the variant allele
from tumor, variant allele from normal, reference allele from tumor, and reference allele
from normal. SNPs in tumor CNLOH regions are still heterozygous in the normal but in
the tumor, they are now either homozygous in the variant or the reference. The only source
of reference for a SNP homozygous in the variant in the tumor is from one chromosome
copy in the normal cells. The converse is true for a SNP homozygous in the reference in the
tumor. As the plot shows, a SNP homozygous in the variant in tumor tends to have higher
estimated allele frequency than mutations homozygous in the variant in the CNLOH region:
this is because homozygous mutations are “contaminated” by twice as many reference reads
as homozygous SNPs, since both copies of the normal harbor the reference.
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Figure 2.4: Three plots showing estimated allele frequency by position. Regions of the x-axis
highlighted in pink indicate CNLOH. Mutations are indicated with colored points, whereas
SNPs appear in the background in semi-transparent grey. Specifically, mutations in CNLOH
regions are colored red or blue depending on whether they are likely to be homozygous or
heterozygous, respectively. Mutations in the neighboring diploid regions are colored yellow.
The first two plots show data from the same sample, but the third comes from a different
sample. On the right of each scatterplot is a histogram of the allele frequencies for the
CNLOH region. This figure originally appeared as Supplementary Figure 2 in Durinck et al.
[2011].
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2.3 Method for estimating temporal ordering

We assume that the tumors under study are comprised of a dominant clone and normal
contamination, so that there is negligible contamination with divergent subclonal cells. Our
model will also still work well for a tumor sample that possesses a small percentage of
subclonal cells that share the vast majority of mutations with the dominant clone.

We take as our starting point a list of somatic mutations obtained from processing
matched tumor and normal sequencing data through an alignment and mutation-calling
algorithm. As such, we assume that we have counts for both the reference and variant allele
for each mutation and that those counts are correct. In other words, we do not account for
sequencing error in our model. We will continue to use the notation of Section 2.2.2.3 to
describe the sequencing data: we will let Xi represent the reads of the variant allele, mi the
total read depth, and Pi = Xi/mi.

We also assume that we are able to determine regions of the genome that either have
chromosomal copy-number changes or copy-neutral changes resulting in allelic imbalance. As
mentioned previously, these calls can be obtained from either using segmentation algorithms
or manually inspecting both sequencing and array data.

We assume that each chromosomal aberration occurs as a series of K events to produce
the final copy number S. These events split the lifetime of the tumor into K + 1 “stages”:
the 0th stage, the time before the first event; the 1st stage, the time between the first and
second event; and so forth, ending with the Kth stage, the time after the Kth event. We
further assume that point mutations accumulate at random on the genome at a constant
rate, so that the proportion of mutations originating at each stage is a direct measure of the
fraction of time spent in each stage.

In the following section, we provide a model for the relationship between the time spent
in each stage and the number of mutations having each allele frequency. In this discussion,
we assume that the tumor sample is free from contamination by normal cells, so that the
allele frequencies are simply fractions of the number of copies present. We also assume that
the true allele frequencies of each mutation can be determined, but in practice this must be
estimated from the sequencing data. We account for both sample impurity and sequencing
variability in the model later on in Section 2.3.4.

2.3.1 A model for the ideal setting: pure tumor sample and
known allele frequencies

Let the components of the vector π = (π0, . . . , πK) give the probability that a mutation
in that region originates in each stage. The goal of our method is to estimate π from the
observed allele frequencies of the mutations.

In a particular region with a K chromosomal aberration resulting in S copies, we observe
N point mutations, which we assume have only been mutated once in the history of the
tumor so that a position is not being mutated repeatedly over time. We denote their true
allele frequencies by pi, i = 1, . . . , N . As explained in Section 2.2.2.3, mutations where
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all copies with the variant allele have been deleted have variant allele frequency 0, so we
cannot distinguish them from unmutated positions. Therefore the N observed mutations
only include those with true allele frequency pi > 0. For now, to simplify explanations of
allele frequency in the model, we will assume that the tumor sample does not contain any
normal contamination; but we will adjust our model to accommodate contamination later
in Section 2.3.3.2. In this setting, detectable mutations can be present on between 1 to all
S final copies, resulting in the set of possible allele frequencies 1/S, . . . , S/S. Therefore,
pi ∈ {1/S, . . . , S/S} for all i in the pure tumor case.

The true mutation allele frequency pi is completely determined by what stage the mu-
tation occurred in and what copy the mutation was on. Since the mutations occur at
random, we can model the number of mutations possessing each allele frequency as a
multinomial random variable with the probability parameter q = (q1, q2, . . . , qS)T , where
qj = P (pi = j/S|pi > 0), i.e. the probability that an arbitrary observable mutation in the
region has the allele frequency j/S.

If we know the region’s event history well enough to identify the number of copies present
at each stage of the event, we can write an expression that relates q to π, the parameter of
interest. From there, it can be shown that under certain conditions on the event history, we
can obtain a plug-in estimator for π in terms of an estimator of q. Precisely, we break down
the probability qj = P (pi = j/S|pi > 0) by stage, so that we have

qj =
K∑
k=0

P (pi = j/S and mutation i originated in stage k|pi > 0)

=
K∑
k=0

P (pi = j/S | mutation i originated in stage k, pi > 0)

× P (mutation i originated in stage k | pi > 0)

Let Sk denote the number of copies present at stage k, and let Sjk be the number of
these copies that lead to a final true allele frequency of j/S in the tumor. We assume
that each of these Sk copies is equally likely to receive a point mutation at stage k, so
P (pi = j/S | mutation i originated in stage k, pi > 0) = Sjk/Sk. The chance that a muta-
tion originates in stage k depends directly on πk and the number of copies present in that
stage - intuitively, a stage with twice as many copies as another would have around twice
the number of mutations. An application of Bayes’ rule yields

P (mutation i originated in stage k|Pi > 0) =
Skπk∑K
k=0 Skπk

.

Letting cπ =
∑K

k=0 Skπk denote the normalizing constant in the expression above and
putting these pieces together, we arrive at
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qj =
1

cπ

K∑
k=0

(
Sjk
Sk
× Skπk

)
(2.1)

=
1

cπ

K∑
k=0

Sjkπk (2.2)

This lends itself to a simple matrix representation: let A be the S×(K+1) matrix where
Ajk = Sjk as defined above, i.e. the number of copies at stage k ∈ {0, . . . , K} with true
allele frequency j/S, j ∈ {1, . . . , S}.

Then, the previous sum can be expressed as the linear relation q = Aπ/cπ. From this
expression, it is evident that if q is known, a plug-in estimator for π is possible only if
the matrix A is invertible. Events may result in only a subset of the possible K + 1 allele
frequencies. In this case, the rows corresponding to those allele frequencies will have all
zeroes and can be removed from the matrix.

As an example to clarify these terms, consider the first event history in Figure 2.5: the
maternal (M) copy is duplicated twice, followed by a duplication of the paternal (P) copy,
resulting in three M copies and two P copies for an overall copy number of S = 5. The
three duplications split the event into 3 + 1 = 4 stages, corresponding to k = 0, the stage
before any duplication has occurred; k = 1, stage after the first duplication; k = 2, stage
after the second duplication; and k = 3, the stage after the third duplication, a.k.a the final,
post-event stage. Since Sk corresponds to the number of copies present at each stage, we
have S0 = 2, S1 = 3, S2 = 4, and S3 = 5. Then the normalization constant cπ in the relation
q = Aπ/cπ becomes cπ =

∑K
k=0 Skπk = 2π0+3π1+4π2+5π3. With five total copies, the allele

frequencies 1/5, 2/5, . . . , 5/5 are possible. The term S13 represents the number of copies in
stage 3 that have a final allele frequency of 1/5. Note that any mutation acquired in stage
k = 3 has final allele frequency 1/5, because there are no further duplications. Therefore,
S13 = 5 since there are 5 copies in k = 3. As another example, we find the nonzero values of
Sj2. Mutations in stage k = 2 occur before the final duplication of the event, which involves
the P copy. A mutation acquired on any of the three M copies would have allele frequency
1/5 in the final stage because none of the M copies are duplicated. However, a mutation
on the P copy would have allele frequency 2/5 in the final stage because the duplication
would make it present in two final copies. Therefore, S22 = 1 for the single P copy and
S12 = 3 for the three M copies in stage k = 2, and no other allele frequencies are possible–
mutations acquired in this stage cannot be present on more than two copies because only one
duplication event remains after this stage. Using the same reasoning to obtain A = [Sjk], we
arrive at the matrix shown in Figure 2.5 for this event history. In Figure 2.5, rows for every
possible allele frequency were included for completeness, even if the event history does not
produce mutations with those allele frequencies (e.g., 4/5 or 5/5).

The vector q is not known, but can be estimated from the data. We describe our method
for doing so in Section 2.3.4. The following sections delve deeper into various components
of the model, leading up to the section on estimating π. They are organized as follows:
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First, we highlight practical and theoretical considerations in model identifiability. Sec-
tion 2.3.2 looks at which event histories are detectable from the data and can be timed. We
divide the section into two parts: identifiability of the A matrix and identifiability of π. On
the topic of the A matrix, our discussion addresses the questions “What kind of A matrices
correspond to events that can be identified with data?” and “What histories result in unique
A matrices?” Our discussion on the identifiability of π is centered around identifying event
histories that result in invertible A, and therefore have estimable timing vectors. By the
end, we restrict our attention to CNLOH events and a specific case of sequential gain, for
which we can analytically show results in an identifiable event history.

Then, we turn our attention to addressing sequencing variability in the data: sample
impurity and not knowing the allele frequency of the mutations. Sample impurity changes
the expected allele frequencies from their pure values of 1/S, 2/S, . . . , S/S. First, we model
the effect of normal contamination on the allele frequencies and provide an estimator for the
degree of normal contamination based on point mutation data in regions without chromoso-
mal aberration. Then, we explain how we correct the pure tumor sample allele frequencies
when normal contamination is present.

Finally, in Section 2.3.4, we provide a model for the sequencing data from each mutation,
taking into account sample impurity. To handle the fact that the true allele frequencies of
mutations and therefore q are not known, we model the true mutation allele frequencies as
latent variables in our model. From here, we are able to describe our estimation technique,
which we refer to as full maximum likelihood (MLE) to distinguish it from the partial MLE
technique of Greenman et al. [2012].

2.3.2 Identifiability

2.3.2.1 Determining the form of A

To write the matrix A, we must know the number of copies in each stage resulting in each
allele frequency, which in turn requires knowledge of precisely how each gain occurred.

To illustrate by starting with the simplest case, events with only one stage (K = 1)
have three possibilities–deletion of a copy, gain of a copy, or a CNLOH–which result in A
matrices with different allele frequencies from each other. For example, the allele frequencies
2
3

and 1
3

are unique to the single copy gain; 1
2

is unique to the CNLOH; and the deletion is
characterized by having only one allele frequency, 1.

However, in events with more than one stage (K > 1), two different event progressions
can result in the same A matrix. To illustrate, consider a K = 3 stage event that results in
three copies of the maternal (M) copy and two of the paternal (P) copy. This requires that
the M copy be duplicated twice, and the P copy once. This can happen in three ways, up to
symmetry on the M copy: the duplication on the P copy could occur in stage k = 1, k = 2,
or k = 3, as illustrated in Figure 2.5. For the two cases where the P duplication does not
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Figure 2.5: The three possible event histories for a K = 3 stage event resulting in two
maternal (M) copies and two paternal (P) copies. Written to the right of each copy in each
stage is the final observed allele frequency of a mutation occurring on that copy; nothing is
written if the final observed allele frequency is 1/5. Below each event history, the resultant
A matrix is given, where the rows and columns have been labeled with the allele frequencies
and stages they correspond to, respectively. Rows for every possible allele frequency were
included for completeness, even if the event history does not produce mutations with those
allele frequencies (e.g., 4/5 or 5/5). For the first two events where the M copy is duplicated
first, the A matrices are the same. The A matrix is different for the case where the P copy
is duplicated first.

occur first (k = 1) the final A matrices are the same and equal to

A =


0 1 3 5
1 2 1 0
1 0 0 0
0 0 0 0
0 0 0 0


where as in Figure 2.5 the rows correspond to the allele frequencies 1

5
, . . . , 4

5
, 1 (the 0 allele

frequency has been omitted) and the columns to stages 0, 1, 2, and 3. Rows for 4/5 and 1
were included for completeness although no mutations result in these allele frequencies. This
example demonstrates that the A matrix is not unique to the event history.

Another possibility is that two event histories result in the same set of allele frequencies,
but at different relative proportions. Mathematically, this means that the two events have
A matrices with the same all-zero rows. Then, when comparing among a set of histories of
interest, it is possible for the A matrices to be identifiable in the sense that there is a unique
matrix for each history, but still present a challenge to practitioners trying to pinpoint which
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particular history using the data. The same three-gain example of Figure 2.5 can be used to
illustrate a trivial example of this: suppose now that a practitioner is trying to determine
whether the stage 1 duplication occurred on the P copy or M copy. Letting the rows and
columns indicate the same stages and allele frequencies, the resultant A matrix when the P
duplication occurs in stage 1 is given by

A =


0 2 3 5
1 0 1 0
1 1 0 0
0 0 0 0
0 0 0 0


The resultant q vector for a first-stage P duplication is proportional to (2π1 + 3π2 +

5π3, π0 + π2, π0 + π1, 0, 0) up to normalization to make the vector sum to 1. Likewise, for
non-first stage P duplication, the resultant q is proportional to (π1 + 3π2 + 5π3, π0 + 2π1 +
π2, π0, 0, 0). Setting the components of both q vectors equal, we can see that if no time were
spent in stage 1, i.e. π1 = 0, both events would produce the same relative proportions of allele
frequencies. This is a trivial case because π1 = 0 means that the two event histories collapse
into a single history where the P duplication and the M duplication occur simultaneously,
but it is mathematically possible when K < S − 1 to find a set of π vectors that would
produce the same q with two different A matrices. Notwithstanding, this result shows that
the ability to tell the two events apart rests on observing mutations in the stage after the
first duplication. If the tumor spent very little time in this stage (π1 small), it would be
difficult for a practitioner to determine whether the P or M duplication occurred first.

Methods have been developed to use whole-genome sequencing reads spanning break-
points to help reconstruct more of the event history [Greenman et al., 2012]. Even so, not all
regions with gain will have a unique construction. With exome sequencing, which only spans
around 2% of the genome, the event histories of many gain regions will not be distinguishable.

2.3.2.2 Identifiability of π: invertibility of A

Even if we can precisely determine the copy changes that occur at each stage in an event, π
could still be unidentifiable. Because of the relation q = Aπ/cπ, π is only identifiable when
A is invertible. A minimal requirement for invertibility is that A be square, which means
that an event that occurs in K steps must result in K + 1 observed allele frequencies. This
automatically excludes events with deletions because they result in less than K + 1 copies
in the final state, so it is impossible to have K + 1 observed allele frequencies. As a result,
a requirement for identifiability of π is that the event be comprised only of gains.

One exception is the K = 1 case of CNLOH, where the deletion is assumed to occur
simultaneously with a gain, resulting in two observable allele frequencies. We work out
CNLOH case to illustrate how π can be written in terms of q. Without loss of generality,
we assume the maternal (M) copy is duplicated, with simultaneous loss of the paternal
(P) copy. Any mutations present on the M copy before the duplication appear on two
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copies in the final state and therefore have an allele frequency of 1, whereas mutations on
the P copy prior to deletion would be unobservable with allele frequency 0. Mutations
occurring after the duplication event could occur on either copy, and therefore would have
allele frequency 1/2. The normalizing constant cπ is

∑1
k=0 Skπk = S0π0 +S1π1, where S0 and

S1 are the number of copies present in stage 0 and 1 that produce mutations with nonzero
allele frequencies, respectively. Although there are two copies present in stage 0, only one
produces mutations with a nonzero allele frequency in the final state. Therefore, S0 = 1
rather than 2, and cπ = π0+2π1. This produces the two linear equations q1/2 = 2π1/(π0+2π1)
and q1 = π0/(π0 + 2π1). Together, these facts result in the system of equations(

q1/2

q1

)
=

(
0 2
1 0

)(
π0/(π0 + 2π1)
π1/(π0 + 2π1).

)
Solving for π in terms of q, we have π0 = q1/2/(2q1 +q1/2) and π1 = 2q1/(2q1 +q1/2). From

here, it is clear to see that plugging in empirical estimates for q1/2 and q1 would provide an
estimate of π0 and π1.

Restricting our focus now to gain events, we can demonstrate that in the case of sequen-
tially accumulated gains where each stage is the addition of only one copy, only one event
history results in an invertible A: this is the event history where all of the gains occur on a
single line of descent. This results in a simple form for A and its inverse. This also implies
that the minor copy number, i.e. the smaller of the maternal or paternal copy numbers, must
be 1. The converse is not true: a minor copy of 1 is not sufficient to guarantee identifiability.

We illustrate the math for the simplest sequentially accumulated gain, a single gain
(K = 1), to make the abstraction in the proof that follows more accessible. Without loss
of generality, we assume the gain occurs on the maternal (M) copy rather than the paternal
(P) copy. The major copy number is then the maternal copy number, 2, and the minor
copy number is the paternal copy number, 1. This trivially fits the sequential gain scenario
mentioned in the previous paragraph.

If a mutation occurred on the M copy before the gain, it would be present on two of three
copies in the final state, therefore resulting in allele frequency 2/3. Any other mutation would
have allele frequency 1/3 because it would be present on only one of the three final copies.
Thus, the A matrix is 2 × 2 and has rows corresponding to 1/3 and 2/3. Since all copies
persist to the final tumor state, S0 and S1 in the normalizing constant cπ = S0π0 + S1π1 are
simply the numbers of copies in stage 0 and 1, respectively. Together, these facts result in
the following relationship: (

q1/3

q2/3

)
=

(
1 3
1 0

)(
π0/(2π0 + 3π1)
π1/(2π0 + 3π1)

)
Equivalently, we can say that q1/3 = (π0 + 3π1)/(2π0 + 3π1) and q2/3 = π0/(2π0 + 3π1).

Solving for π0 and π1, we obtain π0 = 3q2/3/(q1/3 +2q2/3) and π1 = (q1/3−q2/3)/(q1/3 +2q2/3).
Panels (a) and (b) of Figure 2.6 give some examples of events in the three-gain setting:

panel (a) shows the identifiable sequential gain case, whereas panel (b) shows an uniden-
tifiable case of three gains with a minor copy of 1. The time spent in each stage, π, is
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unidentifiable in the latter case because only three allele frequencies are observed in the final
tumor stage–1/5, 2/5, and 4/5–but there are four stages.

We note that the condition that the gains occur in a sequential, one-at-a-time way could
be limiting in practice: at each stage, it is biologically possible for multiple copies to be
duplicated simultaneously. In this case, there does not appear to be an obvious case that
guarantees identifiability of π. Purdom et al. [2013] simulated events where a random set of
the copies at each stage were chosen to be duplicated, and checked if the resultant A matrices
were invertible. Only a small proportion of the simulated histories resulted in invertible A
matrices. However, this simulation examined the set of possible gain events, assuming that
all copies were equally likely to be duplicated; biologically, some gain events may be more
likely than others.

We now formalize the claim that sequential gain with minor copy number of 1 results in
an identifiable π, and present the proof.

Lemma 1. For a given copy number of S = K + 2, the only identifiable matrix A in the
setting of sequential gain is given by a matrix of the form

A =



0 0 0 · · · 0 0 1
0 0 0 · · · 0 1 0
0 0 0 · · · 1 0 0
... · · ·
0 1 0 · · · 0 0 0
1 0 0 · · · 0 0 0


+ e1(1, 2, . . . , S − 1)T

where e1 is the unit vector.
In this case, A−1 has a simple form and gives simple relationships between q and π:

A−1 =



0 0 0 · · · 0 0 1
0 0 0 · · · 0 1 0
0 0 0 · · · 1 0 0
... · · ·
0 1 0 · · · 0 0 0
1 0 0 · · · 0 0 0


− 1

S
e1(S − 1, . . . , 2, 1)T

Then we have that

qj =

{
πS−j−1/cπ j = 2, . . . , S − 1

(πK +
∑

k(k + 1)πk)/cπ j = 1

πk =

{
qS−k−1/d(q) k = 0, . . . , K − 1

q1 − 1 +
∑

j
j
S
qj k = K

where d(q) =
∑

j
j
S
qj and cπ =

∑K
k=0 Skπk.
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Proof. For this proof, the term allele frequency refers to the true allele frequency and
not the estimated allele frequency. This is also evident from the context, but is mentioned
here again for clarity.

Since we are assuming sequential gain, i.e. a single gain of the region at each stage, we
begin with S0 = 2 copies and have Sk = 2+k copies for stages 1, 2, . . . , K−1. At the event’s
end, we have S = SK = K+ 2 copies total. This event has K+ 1 possible allele frequencies–

1
K+2

, . . . , K+1
K+2

. The allele frequency K+2
K+2

is omitted, as this allele frequency implies that the
mutation is present on all copies, which is impossible without a deletion at some stage to
eliminate the reference allele. Thus, the matrix A is square with dimension (K+1)×(K+1).
For A to be invertible, a necessary condition is that each allele frequency must be achieved,
i.e. that no row in A is all zero. We demonstrate that the only possible event history is the
one that corresponds to the A matrix given in the lemma statement.

Mutations acquired at each stage must attain the maximum allele frequency possible in
order for A to be invertible, otherwise we would have K + 1 distinct stages but less than
K + 1 allele frequencies in the final tumor state, meaning that at least two stages would
share an allele frequency and be unidentifiable from each other.

The key insight is that at stage k, there are only K − k gains remaining. Therefore, a
mutation acquired in stage k can be on at most K − k + 1 copies in the final tumor state.
Equivalently, a mutation with allele frequency j/(K + 2) must have been acquired in stage
K − j + 1 or earlier.

In order for a mutation acquired in stage k to be present in the maximum possible number
of copies K−k+1, it must be the case that each stage after k involves a gain on a descendant
of the same copy in stage k.

By recursion, this implies that the only history for a sequential gain that produces an
invertible A is given by the one above: for a mutation to be present in K + 1 copies, it must
be acquired in stage 0 and K gain events that follow must be on descendants of the original
copy carrying the mutation. Then, in stage 1, one of the two extant copies of the original
carrying the stage 0 mutation must be gained. In stage 2, for the mutations in stage 1 to
propagate, one of the two copies carrying both the stage 1 and stage 0 mutations must be
gained, and so forth.

Equivalently, under this event timeline, mutations in stage 0 have two possible allele
frequencies in the final tumor state: they were either on the copy which persisted to the end
of the event, resulting in allele frequency K+1

K+2
, or they were on the other copy, which was not

duplicated at all, resulting in an allele frequency of 1
K+2

. By the same reasoning, mutations

in stage k have the possible allele frequencies K−k+1
K+2

and 1
K+2

.
This implies that A1,1 = 1 and AK+1,1 = 1, while Aj,1 = 0 for all other j; and columns

corresponding to other stages of this event timeline would appear as in the matrix A given
in the lemma statement. �



CHAPTER 2. TEMPORAL ORDERING OF CHROMOSOMAL ABERRATIONS
USING POINT MUTATION DATA FROM SEQUENCING 31

Figure 2.6: Three possible histories that result in a copy number of S = 5: the top repre-
senting the starting point with one copy each from maternal (M) and paternal (P). At each
time point k there is a gain, until the tumor is removed after k = 3. The only identifiable
history is (a) because all of its gains occur on one lineage. This figure originally appeared
as Figure 1 in Purdom et al. [2013].

2.3.3 Modeling sequencing variability

2.3.3.1 Accounting for sample impurity

As we described in Section 2.2.2.3, real sequencing experiments on tumor samples are usually
contaminated with DNA from neighboring normal cells or subclonal tumor populations. In
describing our problem setting in Section 2.3.1, we mention that we ignore the effect of
divergent subclonal cells and sequencing error, so we focus only on normal contamination.

For a particular mutation in the tumor, contamination by cells that do not have the same
mutation results in an increase in the number of reference allele reads. The true variant allele
frequencies are therefore diluted toward 0 from what they would have been in a pure tumor
sample. We further make simplifying assumptions to limit the contamination to behave
only in this predictable way, i.e. only by increasing the fraction of reference alleles over a
location: we assume that at a location with a mutation in the tumor, the normal cells do
not have the mutation at the same location and instead they are diploid in the reference.
In practice, other outcomes are possible–for example the normal cells could have abnormal
copy number. The latter is difficult to distinguish from sequencing error during mutation-
calling unless it occurs sufficiently frequently and at high enough read coverage. The former
would also require sufficient read coverage and mutations to detect, as this would manifest
as the tumor showing uneven amounts of contamination in different regions. However, on
the whole, these assumptions have not proven too limiting in practice: the other outcomes
mentioned result in effects that would be too small or difficult to estimate with respect to
the normal variation in read coverage.

To be precise, let wN represent the fraction of the sample contaminated with normal
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or subclonal cells. We no longer see the pure tumor allele frequency j/S, but the allele

frequency for a mixture of two cell populations, ρj = j(1−wN )
S(1−wN )+2wN

. In the pure tumor,
representing 1−wN of the sample, cells contribute S copies, of which j carry the mutation;
in the contaminated portion comprising wN of the sample, cells contribute 2 copies, none of
which carry the mutation.

Given an estimate of wN , we can estimate the observed true allele frequency with the
plug-in estimator ρ̂j = j(1−ŵN )

S(1−ŵN )+2ŵN
. In this next section, we provide a model for read

coverage and use it to derive the estimator for wN used in Durinck et al. [2011].

2.3.3.2 Estimating sample impurity

In Durinck et al. [2011], wN was estimated from a Poisson model for the reads covering
mutated locations, where the parameters of the Poisson modeled what proportion of reads
came from the dominant tumor clone or the contaminating cells. Because read coverage
increases with chromosomal copy number, we parameterized the model with a different
mean for each continuous region of the genome with the same chromosomal copy number
and allelic ratio–the same regions one finds from analyzing arrayCGH or other chromosomal
copy number data.

Precisely, the read count covering a mutation at location i was modeled as

mi ∼ Poi(λreg[w
(i)
ref,T + w

(i)
var,T + wN + ε

(i)
N ]),

where we constrain w
(i)
ref,T + w

(i)
var,T + wN + ε

(i)
N = 1 and

∑
i ε

(i)
N = 0. This last condition

on ε
(i)
N ensures that wN is identifiable. Here, λreg represents the average read count over

location i, and the expression in brackets splits the reads into three distinct sources: reads
of tumor origin showing the reference (w

(i)
ref,T ), reads of tumor origin showing the variant

(w
(i)
var,T ), and reads from normal or subclonal cells showing the reference (wN + ε

(i)
N ). Note

that although wN represents the sample-wide average amount of contamination, wN + ε
(i)
N

represents the mutation-specific amount of contamination. This modeling choice was made
since the amount of contamination per mutation changes depending on how many of the
subclonal cells share the mutation with the dominant clone.

The key observation is that in unaltered regions of the tumor, i.e. diploid with one
copy each of the maternal and paternal, all point mutations are heterozygous, so wiref,T =

wivar,T
def
= wiT for all locations i with point mutation. Under this model, the MLE for λreg is

trivially mi, since we observe only one Poisson instance for each location i. Likewise, Xi is
the MLE estimate for λregw

(i)
var,T . By the relation λreg(wN + ε

(i)
N ) = λreg(1 − 2w

(i)
T ), and the

fact that
∑

i ε
(i)
N = 0, we have that an estimator for wN

∑
i λreg is Nm̄ − 2NX̄. Solving for

wN and plugging in m̄ again as an estimator for λreg, we arrive at ŵN = 1− 2 X̄
m̄

.

Intuitively, X̄
m̄

combines the read counts in the region to obtain a pooled allele frequency.
Without contamination, variant reads are expected to be 1

2
of all reads covering mutations in

these unaltered regions. Then, the quantity 1
2
− X̄

m̄
measures how far the observed proportion
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of variant reads deviates from expected. The estimator ŵN is this expression multiplied by
a factor of 2 since the variant allele accounts for only one of two copies in these unaltered
regions.

2.3.4 Estimating π after accounting for sequencing variability

2.3.4.1 Accounting for sequencing variability

Earlier in Section 2.3.1 we laid out the problem setting and the data expected for our model
and we provided a link between mutation allele frequency and the event timing vector π,
but we delayed discussing the issue of how to determine the allele frequency of a mutation
from sequencing data. In practice, the true allele frequencies must be estimated from the
data. We now introduce a model for the variant reads for a mutation, which establishes a
link between the observed sequencing data and the vector q.

For simplicity, we begin with the case where the sample does not contain normal con-
tamination, so that the true allele frequencies pi fall in the set {1/S, 2/S, . . . , S/S}. We
model the variant reads for each mutation Xi as Binomial(mi, pi), where mi is the overall
read depth mi at locus i. This model essentially says that the chance that a read harbors
the mutation is proportional to the the number of copies the mutation is on, i.e. that each
copy is equally likely to be sequenced. In other words, we have that P (Xi = xi|pi = j/S) =
(j/S)xi(1− j/S)mi−xi from our Binomial model, and P (pi = j/S | pi > 0) = qj by definition
of q.

To account for the fact that the tumor sample is a mix of the dominant clone and normal
cells, we adjust the pure tumor allele frequencies of 1/S, . . . , S/S to the mixed-sample allele

frequencies of ρ1, . . . , ρS, where ρj = j(1−wN )
S(1−wN )+2wN

and wN is the known proportion of normal

cells in the sample, as explained in Section 2.3.3.2. If this proportion is not known (as was the
case in Durinck et al. [2011]), then it can be estimated from the sequencing data as described

in Section 2.3.3.2, and the estimated mixed-sample allele frequencies ρ̂j = j(1−ŵN )
S(1−p̂N )+2ŵN

can

be used instead. This gives us the model for variant allele coverage P (Xi = xi|pi = ρj) =
ρxij (1 − ρj)

mi−xi . No adjustment is needed for the q vector. The components of q simply
correspond to different set of (adjusted) allele frequencies: now qj = P (pi = ρj | pi > 0)
instead of P (pi = j/S | pi > 0).

The true allele frequency pi of each mutation is not known. We model it as a latent
variable, which results in a Binomial mixture model for the variant reads Xi. Precisely,
Xi|pi > 0

∑S
j=1 ZjBinom(mi, ρj), where Zj = I{mutation i has true allele frequency ρj}.

This model results in the following expression for the log likelihood for Xi.
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logP (Xi|Xi > 0, q) = log

(∑S
j=1 P (Xi|pi = ρj)qj

P (Xi > 0|q)

)

= log

(∑S
j=1 P (Xi|pi = ρj)qj

1−
∑S

j=1(1− ρj)miqj

)

= log

(∑S
j=1 ρ

xi
j (1− ρj)mi−xiqj

1−
∑S

j=1(1− ρj)miqj

)

From here, we can use maximum likelihood techniques to both infer q and the true allele
frequencies for each mutation. As we explain in the next section, with an identifiable A
matrix, this will also allow us to infer π.

2.3.4.2 Full maximum likelihood

In what follows, we assume that A corresponds to an event timeline with identifiable π, i.e.
A has rank K + 1. In section 2.3.1, we noted that allele frequencies which were not possible
for an event history would appear in A as a row of all zeroes and could therefore be removed
from the matrix. However, to simplify notation here by keeping the dimensions of A fixed,
we assume that A has dimension S × (K + 1), so that there is a row corresponding to each
of the pure tumor allele frequencies of 1/S, 2/S, . . . , S/S, i.e. all of the pure tumor allele
frequencies possible with S final copies.

As before, we have q = Aπ/cπ where cπ =
∑

k Skπk is a normalizing constant that ensures
q sums to 1. Because A has rank K+1, we can find a matrix A+ such that A+q = π/cπ. For
example, if by SVD A = UDV T , then we can take A+ = V D−1

1 UT where D1 is the diagonal
matrix that makes up the first K + 1 rows of D and likewise for U1 and U .

Because π must sum to 1, we have 1Tπ = 1. Multiplying both sides of A+q = π/cπ by
1T , we can express the constant cπ in terms of A+ and q: 1TA+q = 1Tπ/cπ = 1/cπ. This

allows us to write π in terms of just A+ and q as well: π = A+q
1TA+q

.

If q̂ is the MLE for q, we have by the invariance property of MLEs that π̂ = A+q̂
1TA+q̂

is the
MLE for π; therefore, it is sufficient to find the maximum likelihood estimate for q.

Rather than directly maximizing the likelihood via a constrained optimization, we chose
to maximize it using the Expectation-Maximization (EM) algorithm, treating the true allele
frequencies for each mutation, pi, are considered the latent or missing variables. Using the
EM algorithm allowed us to use the same framework for implementing our method (full
MLE) and the partial MLE method of Greenman et al. [2012] discussed in the next section.
There is no other advantage to using the EM algorithm in this context, since the M-step
already involves a constrained optimization so that the q vector produces valid probabilities.
We expect that the results from either approach would be similar.
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In our implementation, the E-step is given by

Q(q|q(t)) = Epi|Xi,q(t) [logL(q;X, p)] = E

{
log

(∏
i=1

Pq(Xi, pi)

Pq(Xi > 0)

)
|Xi, q

(t)

}

= E

{∑
i

log[P (Xi|pi)Pq(pi)]|Xi, q
(t)

}
−
∑
i

log(1−
∑
j

(1− ρj)miqj)

=
∑
i

∑
j

P (pi = ρj|Xi, q
(t)) log qj −

∑
i

log(1−
∑
j

(1− ρj)(mi)qj) + constant

=
∑
j

Yj log qj −
∑
i

log(1−
∑
j

(1− ρj)(mi)qj) + constant

where Yj =
∑
i

P (pi = ρj|Xi, q
(t)).

The M-step then consists of maximizing Q(q|q(t)) above with respect to q over the set
Ω = {q : A+q � 0, 1T q = 1} because q represents a vector of probabilities and therefore must
be non-negative and sum to 1. We parameterize the likelihood in terms of qS = 1−

∑S−1
j=1 qj

so that the likelihood is proportional up to a constant to
∑S−1

j Yj log qj+Ys log(1−
∑S−1

j=1 qj).
In terms of the vector q−S = (q1, . . . , qS−1) the constraint A+q � 0 is given as

A+

(
IS−1

−1S−1

)
q−S + A+eS � 0

where eS = (0, . . . , 0, 1)T , Im is the m×m identity matrix and 1m is the m-length vector
of ones. In the case of sequential gains, the constraint on qj could be written more simply
as
∑

j ρjqj ≥ 1− q1.
We implemented the M-step using the constOptim function in R which allows for con-

straints on a parameter θ in the form of Uθ− c � 0. In our setting, the full set of constraints
results in

U =

A
+

(
IS−1

−1S−1

)
−IS−1

IS−1

 , and c =

−A+eS
1S−1

0S−1

 .

In Durinck et al. [2011], we used a semiparametric bootstrap to construct a confidence
interval for π. The total number of mutations N and each mutation’s read depth were held
fixed, and the true allele frequencies and variant read counts were generated according to
the multinomial mixture model with parameter q̂.

2.3.4.3 Partial maximum likelihood: Greenman et al. [2012]

Greenman et al. [2012] also proposed the basic relation q ∼ Aπ of Section 2.3.1, but they
did not account for sequencing variability in their model. Instead, they treat the maximum
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likelihood assignments of mutations to their allele frequencies as the truth when performing
ordering.

Their method can be framed as a modification of the E-step in our full maximum likeli-
hood approach, which is why we refer to it as “partial” maximum likelihood. Our method
uses a probabilistic assignment of mutations to allele frequencies based on the data Xi and
the current choice of q(t). This is a well-known property of the EM algorithm with exponen-
tial families. If pi were known, Q(q|q(t)) would have the same form except Yj would use the
true allele frequency assignments, i.e. Yj =

∑
i I(pi = ρj), and there would only be a single

M-step since there would be no latent variables to estimate, and therefore no need to iterate.
The method of Greenman et al. [2012] is a hybrid approach: they use an allele frequency

assignment that is estimated but treated as the truth, so Yj =
∑

i I(p̂i = ρj), where p̂i is the
MLE classification of the allele at location i. In other words, Greenman et al. [2012] assigns
each mutation to its maximum likelihood allele frequency, and then uses the resultant counts
to obtain q and estimate π.

Rather than using probabilistic assignments as in our full MLE approach, the partial
MLE approach fails to account for the variability in estimating the allele frequencies because
they treat the MLE assignments as ground truth in determining π. Intuitively, this makes a
difference in edge cases where there is insufficient read support for a mutation to confidently
determine its allele frequency among the other possibilities–cases where the maximum like-
lihood assignment could be incorrect. This could happen for a number of reasons: 1) there
could simply be low read coverage; or there are several close possible allele frequencies be-
cause of 2) high copy number or 3) heavy normal contamination, or both. The results shown
later in Section 2.4 confirm this intuition. For high sequencing depth, the maximum likeli-
hood assignment tends to identify the correct allele frequencies and there is little difference
between our method and that of Greenman et al. [2012]; but for lower levels of sequencing,
explicitly accounting for the sequencing variability brings improved stability.

2.3.4.4 Bayesian estimation approach to mitigate instability when π0 is small

We are often interested in finding the region with the smallest π0, i.e. the region whose copy
number change occurred first. However, the smaller the π0, the less time that the region
had to accumulate mutations prior to the first change. Since the robustness of the full MLE
method depends on the number of mutations corresponding to each stage, estimates of π0

are more unstable for earlier events.
One way to mitigate this instability is to try a Bayesian approach, placing a prior on the

π vector. This introduces bias to the π0 estimate but could result in decreased variance by
“borrowing” information from stages with more mutations.

Purdom et al. [2013] explored placing a uniform prior on π, or equivalently, a Dirichlet(α)
with αi = 1 for each i = 1, . . . , K. Because the Dirichlet distribution is not a conjugate prior
for the distribution of Xi, Purdom et al. [2013] sampled from the posterior distribution of
π using sampling important resampling (SIR) to calculate the posterior mean and credible
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intervals. We derive the log posterior distribution of π and explain the implementation in
greater detail below.

For a region with N mutations and their variant read depths given by the usual notation
X = (X1, . . . , XN), we can write the posterior distribution of π as

f(π|X,α) =
P (X|π, α)f(π|α)

P (X|α)
(2.3)

where f(π|α) = 1
B(α)

∏K
k=0 π

αk−1
k , the density for a Dirichlet(α) distribution. P (X|π, α)

can be expanded as
∏N

i=1 P (Xi|πi, α) since each mutation is independent. Since Xi depends
on allele frequency, we condition on the true allele frequency ρj and use the fact that qj =
(Aπ)j
cπ

in order to obtain the following expression for P (Xi|π, α) in terms of π:

P (Xi|π, α) =
S∑
j=1

P (Xi|ρj, π, α)qj =
S∑
j=1

P (Xi|ρj, π, α)
(Aπ)j
cπ

. (2.4)

Substituting into equation 2.4 and setting αi = α constant for all i, we obtain the
following expression for the log posterior distribution of π.

log(f(π|X,α)) = C + (α− 1)
K∑
k=0

log(πk) +
N∑
i=1

log

(
S∑
j=1

P (Xi|ρj, π, α)
(Aπ)j
cπ

)
(2.5)

where C = P (X|α)
B(α)

is a constant that does not depend on π.

For the Bayesian estimation, we perform the change of variable h : (π0, . . . , πK−1, πK)→
(θ0, . . . , θK−1), where θj = log(

πj
πK

), where j = 0, . . . , K − 1. Rather than estimating π with

the constraint
∑K−1

i=0 πi ≤ 1, this allows us to work with θ ∈ RK . In working with the
summations below, it will be convenient to define θK = 0 so eθK = 1.

Then, this results in the change of variable

πj =
πj
πK

πK =
eθj∑K
k=0 e

θk

for j = 1, . . . , K, and the Jacobian becomes

|J(θ)| = |dπ0π1 . . . πK−1

dθ0θ1 . . . θK−1

| =
K−1∏
j=0

eθj(1 +
∑K−1

k=0 e
θk − eθj)

(
∑K

k=0 e
θk)2

=
K−1∏
j=0

eθj(
∑K

k 6=j e
θk)

(
∑K

k=0 e
θk)2

.

For sequential gain, we begin with S0 = 2 copies and increase by one at each stage, so
S1 = 3, . . . , SK = 2 +K. In this case, the normalizing constant cπ simplifies to
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cπ =
K∑
k=0

(2 + k)πk =

∑K
k=0(2 + k)eθk∑K

k=0 e
θk

.

The log posterior distribution of π can now be expressed in terms of θ as follows.

log(f(π|X,α)) = C + (α− 1)
K∑
k=0

log(πk) +
N∑
i=1

log

(
S∑
j=1

P (Xi|ρj, π, α)
(Aπ)j
cπ

)
+ log |J(θ)|

= C + (α− 1)
K−1∑
k=0

(θk − log(
K∑
l=0

eθl))

+
N∑
i=1

log

(
S∑
j=1

P (Xi|ρj, π, α)
(Aeθ)j∑K

l=0(2 + l)eθl

)

+
K−1∑
k=0

(
θk + log(

∑
l 6=k

eθl)− 2 log(
K∑
l=0

eθl)

)

= C + α
K−1∑
k=0

θk −K(α + 1) log(
K∑
l=0

eθl)

+
N∑
i=1

log

(
S∑
j=1

P (Xi|ρj, π, α)
(Aeθ)j∑K

l=0(2 + l)eθl

)
+

K∑
k=0

log(
∑
l 6=k

eθl)

= C + α
K−1∑
k=0

θk −K(α + 1) log(
K∑
l=0

eθl)−N log(
K∑
l=0

(2 + l)eθl)

+
N∑
i=1

log

(
S∑
j=1

P (Xi|ρj, π, α)(Aeθ)j

)
+

K∑
k=0

log(
∑
l 6=k

eθl)

= C + α
K−1∑
k=0

θk −K(α + 1) log(
K∑
l=0

eθl)−N log(
K∑
l=0

(2 + l)eθl)

+
N∑
i=1

log

(
K∑
m=0

eθm [
S∑
j=1

P (Xi|ρj, π, α)Aj(m+1)]

)
+

K∑
k=0

log(
∑
l 6=k

eθl)

Because the constant C is not explicitly calculable, Purdom et al. [2013] sampled from
the posterior distribution of θ in order to estimate the posterior mean and posterior credible
intervals. They used sampling importance resampling to sample from the posterior distribu-
tion, with the proposal distribution given by the multivariable t density with four degrees of
freedom, the mean equal to the posterior mode, and the variance matrix given by the delta
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method approximation, V = (−h′′(θ̂))−1) where h is the posterior distribution. They used
the basic implementation given in the LearnBayes package in R available on CRAN.

Because terms like
∑K

l=0 e
θl can be unstable when θ is large, i.e. when π is near the

boundary of the simplex, Purdom et al. [2013] stabilized the estimates by applying the
standard technique of letting m = maxi(θi) on θi > 1020: recall that for any constants c,
ai (i = 1, . . . , K), we have the approximation

log(c+
K∑
i=1

aie
θi) ≈ log(

K∑
i=1

aie
θi) = log(

K∑
i=1

ai
em

em
eθi) = m+ log(

K∑
i=1

aie
θi−m).

2.4 Simulation data results

We focus on the estimation of π0, which indicates when the first change to the region occurred,
which was the moment of greatest biological interest in Durinck et al. [2011]. Purdom et al.
[2013] simulated mutation data for different histories under the model described above. The
purpose of these simulations was to determine how estimates of π0, the time of the first
event, are affected by the total number of mutations in a region (N); the sequencing read
coverage, and the true magnitude of π0 itself. Bootstrap confidence intervals for each π0

estimate in the same manner done for Durinck et al. [2011] to determine the accuracy of the
desired coverage probability.

The simulation data was generated as follows: for several combinations of A and π, the
probabilities of each allele frequency were computed by q = Aπ/cπ. These probabilities
were used to generate allele frequencies for a set of N mutations from a multinomial distri-
bution. Precisely, mutations have allele frequencies p = (p1, . . . , pN) ∼ Multinomial(N, q),
i = 1, . . . , N . Each mutation was set to have the same read depth m, so variant read counts
were generated from a Binomial(m, ρi) distribution. In the simulations, the total number
of mutations N took values in 10, 25, 50, 75, and 125; while the mutation read depth took
values 10, 30, or 75. These read depths correspond to low, moderate, and high coverage
in practice–it is not common for sequencing experiments to have average read coverage far
surpassing 75x. Multiple settings for N were chosen to encompass several plausible scenarios
in cancer: low values of N could be the result of a low overall mutation rate or a short region
of chromosomal aberration; high values of N are possible in the converse situation, long
regions of chromosomal aberration in highly mutated cancers such as those of the skin.

Figures 2.7 and 2.4 show boxplots of π̂0 with true π0 ≤ 0.10 under several settings
of N and read depth for event types CNLOH, single gain, and two sequential gains; the
same for true π0 ≥ 0.10 appear in Figures 2.9 and 2.10. For convenience, one setting of
the vector π was chosen for each setting of π0 in the plots for two sequential gains after
additional simulations showed that the results did not appear to depend on the values of the
other components in the π vector. Regardless of event type, estimating very small π0, e.g.
π0 = 0.01, is challenging even at high read coverage per mutation. In general, the full MLE
method tends to underestimate π0 when there are insufficient mutations. Even in the simple
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cases of one-stage events, 200 or 300 mutations are required to produce unbiased estimates of
π0 = 0.01. This occurs because for all three event types, a single allele frequency is identified
with and only with mutations occurring in stage 0; thus, when π0 is this small, this allele
will have a low probability of occurrence as given in q. Unsurprisingly, if no mutations are
observed for the allele frequency corresponding to π0, then π̂0 will be 0, which explains the
tendency of the boxplots of Figures 2.7 and 2.4 to have median 0 when π0 and N are low
enough to make the chance of observing a mutation at the π0 allele frequency low as well.

These simulations show that for small π0, the more pressing difficulty is observing enough
mutations to estimate q well rather than determining the correct allele frequencies of those
observed. Having high read coverage helps with the latter but not the former; only having
more mutations can mitigate the former. Further, although the two gain case results in the
possible allele frequencies of 1/4, 2/4, and 3/4, which have less separation between them than
those for CNLOH (1/2 and 1) or single gain (1/3 and 2/3), the simulations in Figures 2.7,
2.4, 2.9, and 2.10 were done without normal contamination to further compress the range of
allele frequencies. Doing so would have made identification of the correct allele frequency per
mutation more difficult, thereby making the role of read depth more apparent–essentially,
the allele frequencies for the event types shown are still too separated for read depth to make
a meaningful difference. We find evidence for this in looking at the simulations for moderate
values of π0, where the same trend persists: estimation of π0 is generally unbiased for all
settings of N tried (consistently so for N ≥ 50), with less variance for larger N . The role of
read depth here is again minimal, which can be observed in Figures 2.9 and 2.10 by seeing
that the white boxplots for each setting of N are comparable to the gray ones. It still stands
that identification of the allele frequencies is a smaller issue than not having enough data.

While only a two-stage sequential gain (K = 2) is shown in these boxplots, these results
would extend to gains of higher stages because additional copies would only serve to exacer-
bate the imbalance in q. In a sequential gain, mutations acquired in every stage contribute
to the allele frequency corresponding to 1/S in the pure tumor, resulting in a relatively large
value of q1. In fact, it is possible to show that q1 is guaranteed to be the most likely allele
frequency in this case. The q probabilities are already imbalanced regardless of the value of
π, thus an imbalance in π worsens the imbalance in q. This means that certain categories of
mutations very difficult to observe, and also that estimates of π in this setting are unstable.
Although the results shown in the boxplots of Figures 2.9 and 2.10 focus on estimating π0,
we note that observing and identifying mutations for all possible allele frequencies becomes
more difficult in events with more stages. Estimating q with confidence requires that we
have sufficient mutations for each possible allele frequency. Also, an increase in the number
of observable allele frequencies means read coverage would play a more important role in
estimation.

Purdom et al. [2013] examined the coverage accuracy of the semiparametric bootstrap
confidence intervals for π in Figures 2.11. In theoretically well-behaved situations, a 95%
confidence interval by definition would cover the true parameter 95% of the time on average.
To examine whether this would hold true for the bootstrap confidence intervals constructed
for π0, Purdom et al. [2013] constructed confidence intervals for each π̂0 based on taking
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B = 500 bootstrap samples each. They examined the K = 1 event types single gain and
CNLOH with π0 = 0.01, 0.05, 0.10, 0.30, and 0.50. The percentage of confidence intervals
covering each possible value of π0 was plotted in Figure 2.11 using a blue-to-red color scale,
where red indicated ≥ 95% coverage. Figure 2.11 shows only the results for data simulated
with 30x read depth and no normal contamination, other simulation settings were tried and
produced similar results. It was found that the true coverage probabilities of the confidence
intervals are less than 95%, and that the confidence intervals tend to be biased toward lower
values of π0, with less bias for larger values of N .

2.4.1 Full MLE vs. partial MLE of Greenman et al. [2012]

As explained in Section 2.3.4.3, we expect the greatest difference between the partial MLE
of Greenman et al. [2012] and our full MLE to occur when there is the most uncertainty in
classifying mutations to a particular allele frequency: this occurs when the mutation read
coverage is low or the possible allele frequencies are close together, which can happen as a
result of having several possible allele frequencies (i.e., high copy number in the final state)
or high levels of normal contamination to compress the allele frequency range. To study the
differential behavior of these methods carefully, Purdom et al. [2013] simulated data for each
combination of these scenarios: small (0.10) vs. moderate (0.50) values of π0; sequential
gain in K = 1, 2 and 4 stages; 0% vs. 30$ normal contamination; and moderate (30x) vs.
high (75x) read depth. The simulations for K > 1 encompass several possible π vectors
with small and moderate π0. For all of the simulations, the number of mutations was fixed
at a high value of N = 125 so that the effect of the factors of interest could be isolated.
The results from these simulations are shown in Figures 2.12 (single gain or K = 1), 2.13
(K = 2), and 2.14 (K = 4).

Figure 2.12 shows that the partial MLE method overestimates π0 even in the simplest
idealistic case of single gain with moderate read depth (30x) and no normal contamination.
The bias is worse when π0 is small. With sufficiently high read coverage, the bias disappears
even with the addition of some normal contamination. The need for higher read coverage to
mitigate the effect of normal contamination is true in general, and is observed as well in the
simulations for K = 2 and K = 4.

As expected, increasing the complexity of the event by increasing the number of stages
exaggerates the bias observed in the simple setting. The general trend is for the partial MLE
to overestimate small values of π0 and underestimate large values, but the specific nature of
the bias does depend on the other values in the π vector.

For example, in the π0 = 0.10 examples for K = 2 shown in Figure 2.13, partial MLE ac-
tually underestimates the π0 when π = (0.1, 0.1, 0.8) but overestimates for π = (0.1, 0.5, 0.4)
and π = (0.1, 0.8, 0.1). Intuitively, data generated from these last two π vectors are expected
to have more mutations from k = 1. Recall that for the sequential gain setting, the allele
frequency for the stage k = 0 event is the highest, corresponding to (S − 1)/S in the pure
tumor, and the allele frequencies uniquely corresponding to subsequent stages cascade from
there: (S − 2)/S, (S − 3)/S, . . . , 1/S. Thus, the allele frequencies from stage k = 0 and
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Figure 2.7: Boxplots of estimates of π0 for settings where π0 ≤ 0.1 and K = 1. The first row
of plots correspond to three settings of π0–0.01, 0.05, and 0.10–for CNLOH events and the
second row to single gain. The horizontal lines indicate the true value of π0. The white boxes
correspond to a mutation read depth of 30x; grey to 75x. Each box represents a different
setting of N , the total number of mutations in the region. No normal contamination is
simulated. Note that the y-axis limits are different for each plot. This figure originally
appeared as Supplementary Figure 2 in Purdom et al. [2013].



CHAPTER 2. TEMPORAL ORDERING OF CHROMOSOMAL ABERRATIONS
USING POINT MUTATION DATA FROM SEQUENCING 43

k = 1 are the most similar to each other, and having more mutations observed from stages
adjacent to the one of interest (here k = 0) means greater chances of misclassification. For
the π vectors (0.1, 0.5, 0.4) and (0.1, 0.8, 0.1), more mutations from stage k = 1 are expected
than from k = 0, so the misclassifications will generally be of the type where a mutation
from k = 1 is labeled k = 0, leading to an overestimate of the mutations belonging to k = 0,
and therefore an overestimate of π0.

In Figure 2.14, which examines the case of K = 4 sequential gains, we see how extreme
the bias can get for the partial MLE. The second row represents an idealized situation of
a pure tumor sample sequenced at high depth (75x). The value of π0 was allowed to vary
and the remaining probability was divided equally among the other components of π. The
absolute difference from the true value of π0 and the median estimate of π0 increases as π0

increases, reaching the largest amount of bias at π0 = 0.99, meaning that the event occurred
very late in the lifespan of the tumor. In fact, all of the partial MLE estimates in this setting
were below the true value of π0. The discussion so far has focused on how the partial MLE
methods performs worse with normal contamination and on complex events because these
increase the misclassification rate of mutations to allele frequencies. However, the difference
between partial and full MLE methods depends on the complexity of the event in another
way: in the partial MLE method, the estimated q changes in discrete increments because
assignments of mutations to allele frequencies are taken as truth; in the full MLE method, q
can change in a continuous manner because probabilistic assignments are used instead. For
more complex events, small variations in the estimation of q result in larger perturbations of
the estimated vector π. This can be seen in Figure 2.15, which shows the size of the gradient
of π with respect to q. As a result, estimates from the partial MLE method are inherently
more unstable than those from the full MLE method, and this problem is magnified as the
complexity of the event increases.

2.4.2 Full MLE vs. Bayesian estimation

From a frequentist perspective, Bayesian estimates can result in less overall mean squared
error (MSE) by trading an increase in bias for a decrease in variability. In simulations,
Purdom et al. [2013] computed the relative MSE for each of the methods being compared
(full MLE, partial MLE, and Bayesian method) for various settings of π0. Relative MSE is
the MSE scaled by the value of π0(1− π0) to reflect the size of the MSE relative to the size
of π0. The results from the simulations are plotted in Figures 2.16 (CNLOH), 2.17 (single
gain), 2.18 (sequential gain in K = 2 and K = 4 stages). Additionally, the coverage of the
full MLE bootstrap confidence intervals was compared to the Bayesian credible intervals,
and blue-to-red color-scale plots with the same legend and markings as Figure 2.11 were
generated for CNLOH and single gain in Figure 2.19.

The performance of the Bayesian method against the full MLE is similar for all sequential
gains, including the K = 1 stage single gain, but the behavior on CNLOH is very different,
as we explain next.
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In the case of sequential gain, the Bayesian estimates are similar to those from full MLE
for all values of π0. The original intention of the Bayesian estimation was to reduce estima-
tion error for small values of π0, where it was hoped that introducing a prior and thereby
“borrowing information” from mutations from other stages would mitigate the problem of
insufficient data from stage k = 0. The expectation was that the Bayesian estimates would
shrink the estimates of π0 closer to 0.5 as a result. While the shrinkage is observed in the
simulation results, the Bayesian estimates actually have higher overall error than the full
MLE for small values of π0. Of the three methods, the full MLE offers the smallest relative
MSE for small values of π0.

Although the Bayesian estimates for sequential gain have higher error than those from
full MLE, the credible intervals have better coverage than the bootstrap confidence intervals
of the full MLE method for mid-range values of π0. At either extreme–either very low or
high π0–neither method performs particularly well.

The opposite is true for CNLOH, where the Bayesian estimates do have smaller error than
the full MLE method, as intended. The full MLE method still outperforms partial MLE.
However, at around π0 = 1, the relative MSE for the full MLE and the Bayesian estimates
are equal, and thereafter the relative MSE for the Bayesian estimates are solidly higher. For
π0 > 1, the Bayesian estimates are severely biased downward, with relative MSE peaking
at around π = 0.5; on the other hand, estimates from the full MLE method are improved
as π0 increases. As a result, even though the Bayesian method offers improvements for
π0 < 0.10, overall the full MLE method has less error across the range of π0 values. In the
region π0 < 0.10 where the Bayesian estimation outperforms full MLE, the Bayesian credible
intervals have a better coverage probability than the full MLE bootstrap confidence intervals
and are less biased. This is a significant improvement over the full MLE confidence intervals
for π0 < 0.10, which tend to either produce very small or zero-width intervals.
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Figure 2.8: Boxplots of estimates of π0 for settings where π0 ≤ 0.1 and K = 2, i.e. two
gains. The plots correspond to three settings of π0–0.01, 0.05, and 0.10. For each π0 a
variety of values were compared for the remaining parts of the vector π, but results were
similar, particularly for N ≥ 50; the particular π shown was chosen for convenience. The
horizontal lines indicate the true value of π0. The white boxes correspond to a mutation read
depth of 30x; grey to 75x. Each box represents a different setting of N , the total number
of mutations in the region. No normal contamination is simulated. Note that the y-axis
limits are different for each plot. This figure originally appeared as Supplementary Figure 3
in Purdom et al. [2013].
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Figure 2.9: Boxplots of estimates of π0 for settings where π0 ≥ 0.1 and K = 1. The first
row of plots correspond to three settings of π0–0.1, 0.3, and 0.5–for CNLOH events and the
second row to single gain. The horizontal lines indicate the true value of π0. The white boxes
correspond to a mutation read depth of 30x; grey to 75x. Each box represents a different
setting of N , the total number of mutations in the region. No normal contamination is
simulated. Note that the y-axis limits are different for each plot. This figure originally
appeared as Supplementary Figure 4 in Purdom et al. [2013].
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Figure 2.10: Boxplots of estimates of π0 for settings where π0 ≤ 0.1 and K = 2, i.e. two
gains. The plots correspond to three settings of π0–0.10, 0.30, and 0.50. For each π0 a
variety of values were compared for the remaining parts of the vector π, but results were
similar, particularly for N ≥ 50; the particular π shown was chosen for convenience. The
horizontal lines indicate the true value of π0. The white boxes correspond to an a mutation
read depth of 30x; grey to 75x. Each box represents a different setting of N , the total
number of mutations in the region. No normal contamination is simulated. Note that the
y-axis limits are different for each plot. This figure originally appeared as Supplementary
Figure 5 in Purdom et al. [2013].
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Figure 2.11: Coverage of 95% bootstrap confidence intervals on simulated data with a read
depth of 30x and no normal contamination. For each simulation, a bootstrap confidence
interval (B = 500) was constructed. The percentage of confidence intervals covering each
value of π0 is plotted using a blue to red color scale. Red indicates a coverage probability
of ≥ 95%, and magenta 90%− 95%. The true values of π0 are indicated with black points.
If a star appears underneath a plot, then the true value of π0 has at least 95% coverage
probability. This figure originally appeared as Supplementary Figure 6 in Purdom et al.
[2013].
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Figure 2.12: Boxplots of π̂0 from the full and partial MLE methods based on simulated data
for single gain π0 = 0.1 and π0 = 0.5. In (a), reads were simulated with a depth of 30x and
no normal contamination. In (b), reads were simulated with a depth of 75x and 30% normal
contamination. For all simulations, N = 125. This figure originally appeared as Figure 2 in
Purdom et al. [2013].
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Figure 2.13: Boxplots of π̂0 from the full and partial MLE methods based on simulated
data for two sequential gains (K = 2). In (a), reads were simulated with a depth of 30x
and no normal contamination. In (b), reads were simulated with a depth of 75x and 30%
normal contamination. For all simulations, N = 125. This figure originally appeared as
Supplementary Figure 7 in Purdom et al. [2013].
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Figure 2.14: Boxplots of π̂0 from the full and partial MLE methods based on simulated data
for four sequential gains (K = 4). In (a), reads were simulated with a depth of 30x and
no normal contamination. In (b) and (c), reads were simulated at a depth of 75x, with (b)
containing no normal contamination and (c) 30% normal contamination. For all simulations,
N = 125. This figure originally appeared as Supplementary Figure 8 in Purdom et al. [2013].
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Figure 2.15: Size of the gradient of π0 with respect to q, plotted against the largest component
of q corresponding to pure tumor allele frequency 1/S, where S is the number of copies in
the final state, as usual. The size of the gradient for events with one stage (K = 1) fall on
a curve because the π vector is one dimensional. For K > 1, the size of the gradient can
take a range of values, and is thus represented by polygons. The larger the magnitude of
the gradient, the more rapidly the value of π changes as q changes. This figure originally
appeared as Supplementary Figure 9 in Purdom et al. [2013].
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Figure 2.16: Comparison of Bayesian and full MLE estimates for CNLOH. Panel (a) shows
the relative MSE for all three methods being compared. Panel (b) compares the bootstrap
confidence intervals from the full method against the credible intervals obtained from the
Bayesian method for two settings of small π0 (π0 = 0.01 and π0 = 0.05), where the Bayesian
estimates are not extremely biased. The color scale is the same used in Figure 2.11. The
solid points in each bar indicate the true value of π0. This figure originally appeared as
Figure 3 in Purdom et al. [2013].
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Figure 2.17: Comparison of Bayesian and full MLE estimates for single gain. Panel (a) shows
the relative MSE for all three methods being compared. Panel (b) compares the bootstrap
confidence intervals from the full method against the credible intervals obtained from the
Bayesian method for two settings of small π0 (π0 = 0.01 and π0 = 0.05). Additional credible
interval plots can be found in Figure 2.19. The color scale is the same used in Figure 2.11.
The solid points in each bar indicate the true value of π0. This figure originally appeared as
Supplementary Figure 10 in Purdom et al. [2013].
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Figure 2.18: Comparison of Bayesian and full MLE estimates for sequential gain in (a)
K = 2 and (b) K = 4 stages. This figure originally appeared as Supplementary Figure 11
in Purdom et al. [2013].
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Figure 2.19: Comparison of Bayesian credible intervals and full MLE confidence intervals
for CNLOH (a) and single gain (b). The color scale is the same used in Figure 2.11. The
solid points in each bar indicate the true value of π0. This figure originally appeared as
Supplementary Figure 12 in Purdom et al. [2013].
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2.5 Application to skin cancer

Primary cutaneous squamous cell carcinomas (cSCC) are among the most common human
malignancies, with over 150 new cases out of every 100,000 Caucasians each year [Madan
et al., 2010]. These tumors appear on the body and with a demographic proportional to
sensitivity to sunlight exposure, and harbor mutations characteristic of UV radiation damage
[Ziegler et al., 1994]. Another distinguishing feature of the UV radiation damage character-
istic to cancers of the skin is that it usually results in over hundreds of thousands of point
mutations across the genome, accumulated over the patient’s lifespan. The model of Durinck
et al. [2011] was originally developed to take advantage of this staggeringly high mutation
density to produce insights into the tumor’s history. We describe the application of our
model to this cancer type in the sections that follow.

2.5.1 Data collection and preprocessing

For Durinck et al. [2011], eight matched tumor and normal samples from patients with
cutaneous squamous cell carcinoma were obtained as part of a skin cancer study at the
University of California, San Francisco. Roughly 40 megabases of coding region (exome)
were isolated from each sample using oligonucleotide-based hybrid capture and sequenced
using the Illumina sequencing-by-synthesis platform.

Point mutation calls were obtained as follows: reads were aligned to a human reference
using BWA [Li and Durbin, 2009]. Duplicate reads were removed and read base quality
scores recalibrated using Picard and GATK software, respectively [McKenna et al., 2010].
Mutations were then called from the reads using an early version of MuTect [Cibulskis et al.,
2013], an algorithm which essentially identifies suspected mutations by looking for loci with
sufficient support for non-reference alleles–as a minimum requirement on read coverage, only
locations covered by at least 14 reads in the tumor sample and 10 reads in the normal
sample were kept. Then, true somatic mutations were filtered from normal genetic variation:
candidates that appeared in The Single Nucleotide Polymorphism Database, a.k.a. dbSNP
[Sherry et al., 2001] were removed from the data set unless they were also present in COSMIC,
a catalogue of somatic mutations in cancer. Although the name suggests only SNPs, the
public archive dbSNP catalogs neutral polymorphisms more generally (i.e., not just single
nucleotide) for several species (including human). The database is hosted by the NCBI and
all of its entries are the result of submissions by members of the research community.

Allele-specific copy number analysis was performed on Affymetrix Genome-Wide Human
SNP Array 6.0 chips. Major allele frequencies, minor allele frequencies, and copy num-
ber estimates were obtained by processing the tumor and normal pairs of SNP arrays via
the CRMA v2 method provided in the R package aroma.affymetrix ; the resultant allele
fractions were normalized using TumorBoost [Bengtsson et al., 2008, 2010]. To determine
regions of uniform copy number, a circular binary segmentation algorithm was applied us-
ing aroma.affymetrix, and the results were then checked by manually cross-examining plots
of tumor-to-normal intensity ratios, normalized SNP allele B fractions, and mutation allele



CHAPTER 2. TEMPORAL ORDERING OF CHROMOSOMAL ABERRATIONS
USING POINT MUTATION DATA FROM SEQUENCING 58

frequency from sequencing data. Only unambiguous cases of CNLOH and copy gain events
where we agreed with the algorithm results were used.

2.5.2 CNLOH with TP53 knockout occurs before others

In Durinck et al. [2011], we only estimated the temporal ordering of CNLOH events using
the MLE method, although the analysis was performed on both CNLOH and single copy
gain events using the MLE, partial MLE, and Bayesian methods in Purdom et al. [2013].
The results from Durinck et al. [2011] are shown in Figure 2.20, and the expanded results
from Purdom et al. [2013] are shown in Figure 2.21.

Seven of the eight samples analyzed had at least one CNLOH event, and of those, four
samples showed TP53 mutation in addition to CNLOH, resulting in double knock-out of
the wild-type allele in the locus of the mutation. In total, we found 486 nonsynonymous
mutations that were sequenced deeply enough to determine copy number (> 50 independent
reads was the threshold used in Durinck et al. [2011]) and that fell at least once in a region of
CNLOH. Figure 2.20 shows the estimates of π0 obtained for each CNLOH event in the eight
samples and their corresponding semiparametric bootstrap confidence intervals. CNLOH
events that cover the TP53 gene are highlighted in red. For all four samples with TP53
CNLOH, we can observe that the magnitude of π̂0 is low, indicating that TP53 CNLOH
occurs early in the history of the sample. In addition, for two samples–M01 and V07–we can
say with 95% confidence that π0 for the TP53 CNLOH is smaller than for other events, i.e.
that under our model assumptions, the TP53 event was the first CNLOH to occur for that
sample.

Based on our understanding of these estimates under simulation, we note that the value
of π̂0 for M01 TP53 CNLOH could be an underestimate, since we observed under simulations
for similarly small values of true π0, there was a consistent tendency to underestimate unless
the mutation counts were very high. This would make it difficult to determine whether the
TP53 CNLOH or the Chr 2 event on M01 occurred first. The same could be said for the
V07 TP53 CNLOH, but the next event has such as high value of π0, it’s unlikely that there
is a different true underlying ordering after accounting for potential bias in the π̂0. If the
true π0 value for M45 and M19 is close to the estimate, then they lie within a region of π0

where the full MLE method tends to produce unbiased estimates.
Figure 2.21 also shows estimates and confidence intervals for π̂0, but with the inclusion

of single copy gain events. Results from the two other methods discussed–partial MLE
and Bayesian–were included for completeness, though of the three methods evaluated under
simulation, the full MLE produced the most reliable results across the widest range of π0

values. Two samples M45 and M19 that were called to have TP53 CNLOH in Durinck
et al. [2011] were not included in the figure because they had too few events that could be
confidently called, due to the having too few events to begin with, the sample having a high
amount of normal contamination, or a combination of both. For the two samples which had
both TP53 CNLOH and other CNLOH events to compare against, we were able to identify
single gains to add to the ranking: in both samples, TP53 CNLOH could still be called as the
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earliest timed chromosomal aberration with 95% confidence. These results held regardless
of the method used–MLE, partial MLE, or Bayesian. Figure 2.21 also includes temporal
rankings for sample S128, which was sequenced after Durinck et al. [2011] was published but
does not have a CNLOH over TP53.

2.5.3 Biological interpretation and significance of the TP53
finding

TP53 is often mutated in precursor lesions, which are growths that have not yet progressed
to cancer. Prevailing models of tumor progression propose that inactivation of p53 is a late
requirement, and postulate that the loss has a twofold function: it enables unlimited cycles of
cell division by overcoming the senescence programs activated by other driver oncogenes, and
also enables survival through telomere-crisis, a process characterized by genomic instability
through the acquisition of chromosomal rearrangements and mutations [Fearon et al., 1990,
Hruban et al., 2000, Chin et al., 1999]. Further, because p53 loss occurs frequently and
is more commonly found in invasive disease, typical cross-sectional analyses of mutation
frequency by stage usually interpret that it occurs late. However, some experimental evidence
appears to contradict the temporal placement of p53 loss as a late event, showing that this
mutation actually plays a dominant functional role in the development of phenotypes like
tumor formation [Olive et al., 2004, Milner and Medcalf, 1991].

Our findings align with a progression model in which TP53 loss occurs early in tumori-
genesis. This does not contradict the findings of cross-sectional mutation frequency by stage
studies that place activation of key oncogenes prior to TP53 loss. An alternate model that
would result in the same mutation frequencies found in the cross-sectional studies involves
a temporal requirement that TP53 mutation precede driver oncogene mutation in precursor
lesions that progress to cancer. In this model, precursor lesions that activate oncogenes first
do not progress, but would still be detected in mutation frequency by stage surveys.

Extrapolating the average mutation rate observed in CNLOH regions before TP53 loss to
the entire exome, we estimate that a patient would have acquired only about 100 total point
mutations prior to TP53 loss. This indicates that the genome prior to TP53 loss is remarkably
stable and capable of repairing itself. This finding also agrees with the common clinical
observation of benign clonal patches of keratinocytes with heterozygous TP53 mutations
[Jonason et al., 1996, Ren et al., 1997]: these patches are essentially “waiting” for the trigger
of a second p53 allele loss, thereby disrupting the cell’s normal repair processes and enabling
a mass proliferation of mutations–based on the cSCCs we analyzed, the final mutation rate
could reach approximately 50 per megabase or 150,000 per genome. Because DNA repair
remains at least partially active, we believe that this vast mutation burden could be explained
by the collaborative effects of ongoing DNA damage coupled with disabled DNA damage-
induced cell death.
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Figure 2.20: Plots of π̂0 and their corresponding bootstrap confidence intervals from the full
MLE method for eight squamous cell carcinoma samples analyzed in Durinck et al. [2011].
Highlighted in red are CNLOH events that induce double-knockout of a wildtype allele on
the TP53 gene, a well-known tumour suppressor gene implicated in several cancers. The
number of mutations N for each region is indicated at the top of the plot.

Figure 2.21: Extended version of the results in Figure 2.20, which appeared in Purdom et al.
[2013]. The methodology was extended for sequential gain events, which allows several more
events to be timed. In addition, two variations on the timing methodology–the partial MLE
method of Greenman et al. [2012] and Bayesian estimation–were implemented as well. This
figure originally appeared as Supplementary Figure 13 in Purdom et al. [2013].
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2.5.4 Checking the constant mutation rate assumption

Our model uses the number of mutations acquired since aberration as a measure of time
elapsed; this is only valid when the mutation rate during tumor development is constant. One
way we attempted to check this assumption on real data was by comparing the heterozygous
mutation rate in regions with and without CNLOH: if the mutation rate were constant,
then late CNLOH events should have far less heterozygous mutations than regions without
aberration, because those that were acquired before the event would have been knocked
out. Likewise, a CNLOH event that occurs early is essentially accumulating mutations at
the start of tumor development, and should have a heterozygous mutation rate similar to
regions without aberration.

Sample M01 was chosen to look at more deeply because it had a representative mix of
CNLOH events–early, medium, and late. Coding regions of the genome were then divided
into bins of 0.18 megabases: each bin contains several concatenated exonic regions within
one chromosome, and the width of the bin is the sum of the widths of these exonic regions.
This corresponded to bins with median genomic width of between 6.1 MB (25th percentile)
to 18.4 MB (75th percentile). For each bin, the heterozygous mutation rate, given by the
number of mutations divided by the size of the bin, was computed; here size of the bin is
taken to mean length of coding sequence, and not the genomic width. The typical number
of mutations were bin were between 5 (25th percentile) to 10 (75th percentile).

Because mutations in skin cancer differentially affect some nucleotides more than others,
we did look into whether we would need to make an adjustment for GC content of the bin.
However, we found that with bins of this size, the GC content of the bin was not correlated at
all with the mutation rate. Therefore, the mutation-rate computation was not GC-adjusted.

Each bin is represented by a point in Figure 2.22, which shows the mutation rate as a
function of position in the genome. Bins that overlap the CNLOH regions identified for M01
are indicated by special plotting characters, and the colors grey and white are used to denote
heterozygous vs. total (heterozygous and homozygous) mutation rate. Outside of the CN-
LOH events shown, only regions without chromosomal aberration were plotted; hence the
lack of points from chromosome 7, 9, or 11, which showed chromosome-wide deletions/gains.
Therefore, the x-axis in Figure 2.22 corresponds loosely to the genomic position of the bin,
up to omission of aberrant regions and the variability in the genomic width of each bin.

As expected, the total mutation rate is not significantly different from the mutation rate
for regions without aberration. However, for the event that had the latest timing, CNLOH
on chromosome 14, we see that its rate of heterozygous mutations is visibly lower than what
would be expected, whereas its total mutation rate is in line with that of a normal region.

These observations are consistent with what one would expect if there were a constant
mutation rate and serve as indirect evidence for that assumption. Directly validating the
assumption of a constant mutation rate would require collecting data at multiple time points
from the same site on a tumor as it acquires more mutations, which could be impractical for
ethical, cost, and patient compliance reasons.
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Figure 2.22: Mutation rates in bins of approximately 0.18 Mb of coding sequence without
chromosomal aberration are plotted against genomic position for sample M01. Each point
corresponds to one bin. The same is plotted for the CNLOH regions of the sample, indicated
by different plotting shapes. The color of the shape indicates whether all or just heterozygous
mutations were being counted in the mutation rate calculation. The black horizontal line
corresponds to the median mutation rate across regions without aberration. This figure
originally appeared as Supplementary Figure 3 in Durinck et al. [2011].
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2.6 Discussion and conclusions

In this chapter, we presented a method for temporally ordering certain copy number aber-
rations given allele frequency data from sequencing experiments on cancer. Specifically, we
demonstrated that we could temporally order CNLOH events and sequential gain events. We
discussed the simulation results of Purdom et al. [2013], where this method was evaluated
against that of a similar competing approach by Greenman et al. [2012], which we called
the partial MLE. Purdom et al. [2013] also introduced a Bayesian estimation technique to
mitigate the instability of π̂0 for extreme-valued π0, and we discussed their simulation results
comparing this approach to the original full MLE method.

Overall, it was found that the true value of π and the number of mutations in the region
have the largest impact on the ability to estimate π. For practitioners interested in using
this method, the takeaway is that it is better to have more mutations at lower read depth
rather the converse. However, the number of mutations in a region is out of the control of
the practitioner, and is determined by the cancer type under study. We conclude therefore
that this method will work best for highly mutated cancers such as skin.

Of the methods compared, the full MLE method produced the most reliable estimates
across the widest range of π0 values, which is typically the component of π of greatest
biological interest. The Bayesian estimation technique improved the estimates of CNLOH
for small π0 and confidence interval coverage probabilities in many settings, but overall did
not perform better than the full MLE–in fact, on CNLOH, the Bayesian estimates severely
underestimated the true value of π0. Because the partial MLE of Greenman et al. [2012] does
not take into account sequencing variability, Purdom et al. [2013] was able to demonstrate
through simulation several situations in which this would negative impact the accuracy of
their results. Namely, partial MLE fares worse than full MLE as the amount of normal
contamination or the complexity of the event increases.

We reviewed the application of the full MLE method to squamous cell carcinoma in
Durinck et al. [2011], wherein it was used to show that TP53 double knockout occurred
early in tumorigenesis. This was one of a few studies to report this finding, as the common
wisdom at the time was that TP53 double knockout was a late event. Further, in a sample
that had a mix of early, medium, and late CNLOH events, we were able to find some indirect
empirical justification for the assumption of a constant mutation rate. The validity of the
temporal ordering model rests upon this assumption.

Since Durinck et al. [2011], the method has been applied to a limited number of other
cancer types, due to the fact that cancer type it was original developed for represented a
special case where the mutation rate was incredibly high relative to other cancer types. We
refer the reader to Purdom et al. [2013] for results from applying the method to sequencing
data from whole genome sequencing of ovarian serous cystadenocarcinomas (matched blood
and tumor samples) from five patients generated as part of The Cancer Genome Atlas pilot
project [Network et al., 2011]. We also refer the reader to Greenman et al. [2012] and Nik-
Zainal et al. [2012] where the partial MLE method was applied to breast cancer. Their results
include an additional layer of depth since they employed paired-end sequencing, so they were
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able to obtain more precise information on the nature of the chromosomal rearrangements
that occurred.

Again, the primary limitations to the method being adopted more broadly are principally
the need for regions of aberration to have a high mutation rate in order to obtain meaningful
confidence intervals, and secondly the restrictions on the kinds of events that we can time.
We had attempted to replicate our TP53 analysis on colorectal and lung squamous cell
carcinoma, two cancer types with relatively high mutation rates, but found it challenging to
find TP53 knockout that co-occurred with CNLOH on the region–in part, this is because it
can be difficult to identify the exact nature of the chromosomal aberration from sequencing
data alone, especially with normal contamination and few mutations.

To illustrate the mutation rate point more concretely, Figure 2.23, which originally ap-
peared in Lawrence et al. [2013], shows the somatic mutation rate for 27 different cancer
types summarized from a data set of over 3,000 matched tumor-normal samples. The plot
shows that hematological and pediatric cancers incur the lowest mutation rates, whereas
tumors induced by carcinogens like tobacco smoke or UV light have the highest. Across the
set of 27 cancer types and even within a single tumor type, the mutation rates can differ by
1000-fold.

With projects like the TCGA [Network et al., 2011] and the International Cancer Genome
Consortium [Zhang et al., 2011] underway, we can expect the amount of cancer genome data
available to researchers to grow dramatically. Already, the TCGA implements standardized
workflows so that the same type of data is available for each of its samples. In that vein, one
can imagine being able to apply this method broadly to all of the cancer types that meet
a minimum mutation rate threshold. Part of the challenge in contextualizing findings like
those of Durinck et al. [2011] is understanding how they generalize to the population, since
many of these cancer studies examine less than 10 samples at a time.

As a result, a future direction for the work presented in this chapter could be developing
additional methodology for summarizing the temporal ordering across multiple samples.
Because regions of chromosomal aberration can vary greatly in length and have many kinds
of mutations, one of the first challenges is to define the granularity of the ranking. If the
granularity is small, e.g. timing mutation at the gene-level, then it would be challenging to
acquire enough data to draw meaningful conclusions.

Some work has already been done toward using large-scale genomic datasets such as those
offered by the TCGA to infer tumor evolutionary pathways. As a recent example, Constan-
tinescu et al. [2015] presents a waiting-time model for inferring mutually exclusive groups
of genes which are altered in tumor evolution, which thereby allows inference of mutually
exclusive evolutionary pathways. The main idea is that tumor evolution is constrained by
partial orders of gene or pathway alterations, and these groups and their dependencies can
be inferred jointly from large-scale data sets of mutational profiles.

In another direction, we note that our method has been developed to estimate π in
general, though we focused in our applications–both simulated and on real data–on the
timing of the first event in a chromosomal aberration, π0. This was the event of greatest
biological interest in Durinck et al. [2011] and Greenman et al. [2012]. However, as in the
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Figure 2.23: Somatic mutation rates observed in exomes from 3,083 tumor-normal pairs
across 27 cancer types, most of which were sequenced and processed at the Broad Institute.
Each dot corresponds to the mutation rate for a single tumor-normal pair. The data originally
appeared as Figure 1 in Lawrence et al. [2013].

case of oncogenes, it may not be the case that genes are activated or suppressed after the
first stage of a multi-stage event. Therefore, developing a better understanding of the full
sequence of events that comprise one aberration could provide a more nuanced look at the
relationship between the activity of cancer-implicated genes and copy number.
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Chapter 3

Hierarchical multilabel classification
with local precision rates

3.1 Introduction

Hierarchical multilabel classification (HMC) refers to the classification problem in which
instances can be assigned labels to multiple classes, and these classes follow a tree or directed
acyclic graph (DAG) structure. The assignments can also follow multiple paths along the tree
or DAG. In computational biology, HMC methods have been used primarily to categorize
genes along the Gene Ontology (GO) directed acyclic graph or proteins along the MIPS
FunCat rooted tree [Alves et al., 2010, Barutcuoglu et al., 2006, Blockeel et al., 2006, Clare,
2003, Kiritchenko et al., 2005, Valentini, 2009, 2011]. In computer science, HMC methods
are commonly used to assign documents or music to categories that follow a hierarchical
structure [Rousu et al., 2006, Kiritchenko et al., 2006, Mayne and Perry, 2009]. While
functional genomics and text analysis represent the two most popular applications of HMC
methods, hierarchical structures are common in other areas of research. For example, Huang
et al. [2010] developed a classifier for disease diagnosis based on a patient’s microarray gene
expression profile: the disease labels were mined from the Unified Medical Language System
(UMLS), a biomedical vocabulary organized as a directed acyclic graph.

Silla Jr and Freitas [2011] provide an overview of hierarchical multilabel classification
(HMC) methods across several domains. Broadly, HMC methods fall into three categories:
flat, local, and global classification. Most of these methods have come from the field of
computer science, where local classification methods prevail. We review these three types of
HMC methods below.

Flat classifiers perform classification at the leaf node level and force ancestors of positively
called leaf nodes to also be positive; as such, flat classifiers do not take advantage of the full
data set. Flat classification is equivalent to performing multilabel classification on the set of
leaf nodes.

Local classification is a two-stage process: first classifiers are trained for each node or
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group of nodes in the graph, then an adjustment is made so that the decisions produced by
these classifiers respect the hierarchy. The simplest of these adjustments is a top-down pro-
cedure (Koller and Sahami [1997], Wu et al. [2005]): classification is performed sequentially
and lower level decisions are only produced if their ancestors are classed as positive. This
method suffers from a blocking problem: mistakes made at the top of the graph percolate
to all of the descendants, so they can affect the performance of the classifier drastically. Sun
and Lim [2001] proposed several other heuristics to eliminate the blocking problem, but none
of these are motivated by statistical theory.

A more model-based approach is finding the maximum a posteriori classification via
a Bayesian adjustment. Barutcuoglu et al. [2006] estimated P (Q1, . . . , Qp|S1, . . . , Sp), i.e.
the probability of each graph outcome given the classifier scores from training a support
vector machine for each node in the hierarchy. This method avoids the blocking issue of the
first method and gives an optimal label assignment in some sense. The approach of Rousu
et al. [2006] for text analysis involved training an extension of Maximum Margin Markov
Network to perform joint multilabel classification, and performing a Bayesian correction via
gradient descent to obtain labels consistent with the hierarchy. The primary drawback of
these methods is that they do not scale well with the size of the graph and could incur
numeric underflow issues because it requires estimating the joint density of the classifier
scores for each node in the graph. One can reduce the complexity of estimation by using the
generated labels, a binary classifier output, rather than the continuous scores but this has
the downside of discarding what information is available in the magnitude of the classifier
scores.

Unlike local classifiers, global classifiers jointly make decisions for the graph rather than
on a node by node basis. Global classification does not require a second stage because
the decisions produced inherently respect the hierarchy. The current state of the art in
HMC is a global classifier called predictive clustering trees (PCTs), introduced in Vens et al.
[2008]. Like CART, this algorithm finds optimal node splits to produce decisions. A more
detailed explanation is given in section 3.4.1. Just as with the Bayesian adjustment for
local classification, global classification methods do not scale well with the size of the graph
because they require searching over the space of possible decision rules. However, Vens et al.
[2008] argued that global classification should be more efficient because they require fewer
decision rules overall than local classification methods.

The computational biology and medical imaging fields have begun to adopt global classi-
fication methods over local ones, whereas literature from computer science still seems domi-
nated by local classification methods. Although global classifiers theoretically promise better
performance and efficiency, in practice they can be difficult to train, and by nature do not
scale well. Local classifiers are still used widely because they are flexible and are intuitive
to construct.

In the following sections, we extend the work of Jiang et al. [2014] into a local classification
method that eliminates the per-classifier tuning step required to produce initial calls before
a second-stage adjustment as in Huang et al. [2010]. For the multilabel case without any
hierarchy constraint, Jiang et al. [2014] developed methodology that uses the local precision
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rate (LPR) to make classification decisions overall rather than node by node. For the HMC
problem, we provide an algorithm to sort the LPRs that respects the hierarchical structure.
Theoretically, decisions made by the LPR method maximize the expected pooled precision
and recall, and the optimal performance of this method was demonstrated in Jiang et al.
[2014] on simulated and real data settings. For the HMC problem, simply applying a cutoff
to the estimated LPRs could produce calls inconsistent with the hierarchy. In this chapter,
we introduce a sorting algorithm that, under certain conditions, can maximize the expected
area under the hit curve for early calls, a related but weaker criterion than precision-recall.

Our method of sorting LPRs performs well compared to the global methods in the early
part of the precision-recall curve, while retaining the efficiency and flexibility of a local
classification method. This method is advantageous in that it can easily accommodate the
addition of new nodes in the hierarchy: it is not necessary to retrain the entire classifier, as
one would need to do with a global method. We are aware of only one other HMC method
based on sorting classifier scores for each node, developed in Bi and Kwok [2011]; we discuss
this in greater detail in Section 3.6.

In this next section, we review the LPR and compare methods for estimating it. Then, we
introduce the sorting algorithm for LPRs to perform hierarchical multilabel classification.
We evaluate its performance on simulated data and the disease diagnosis data of Huang
et al. [2010]. In Section 3.6, we draw connections between this work, related methods, and
statistical inference. We also highlight open problems for future research.

3.2 The local precision rate for multilabel

classification

3.2.1 Problem setting and notation

For consistency, we use the same notation as Jiang et al. [2014]. Assume that classifiers have
been learned for K labels connected in an acyclic graph and that there are M instances to be
classified. We impose no requirements on class membership outside of being hierarchically
consistent: an instance could belong to none of the classes, and those that do belong to a
class are not required to have leaf-level membership.

We assume that each label’s classifier was trained on M̃ instances and produces a score
sk,m (m = 1, . . .M , k = 1 . . . , K) that can be thresholded to produce label assignments:
without loss of generality we take larger scores to indicate the positive class, i.e. all instances
with sk,m > λk are said to have label k. For example, if a logistic regression is used for
predicting label k, a standard choice for sk,m is the estimated posterior probability that
instance m belongs to label k.

Our classification framework begins with the scores for each instance, for which we assume
the following generative model. If Qk,m is a binary indicator for whether instance m truly has
label k, Qk,m = 1 with probability πk. We require that label membership implies membership
in all of its ancestors: P (QPar(k),m = 1|Qk,m = 1) = 1, where Par(k) is the parent of label k.
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Also, we assume conditional independence of labels at the same hierarchical level: if labels
k and j share a parent i, Qk,m and Qj,m are independent conditional on the parent status
Qi,m.

Given a threshold λk, the chance that the instance does not belong to the label k is
given by Fk(λk) = P (sk,m ≤ λk), the cumulative distribution function (cdf) for the scores of
classifier k. This CDF can be expressed as a mixture of the score distributions for the two
classes: Fk = πkF1,k + (1− πk)F0,k, where F1,k is the CDF for those having the label k, and
F0,k is the CDF for those without. Analogously, the respective density functions are denoted
by f1,k and f0,k, and the mixture density by fk.

3.2.2 Definition and optimality result

Jiang et al. [2014] developed the local precision rate with the intention of maximizing preci-
sion with respect to recall in the multilabel setting. Specifically, they maximized an expected
population version of the micro-averaged precision and recall rate given by Pillai et al. [2013].

The micro-averaged precision rate has the form
∑
k TPk∑

k TPk+FPk
, where TPk and FPk are the

number of true and false positives for label k, respectively.
We can write expressions for the expected pooled precision and recall rate as follows.

First, we can write the expected precision of the classifier for class k with threshold λk as

Gk(λk) = P (Qk,. = 1|sk,. > λk) =
πk(1− F1,k(λk))

1− Fk(λk)
. (3.1)

From rearranging we also have that the joint probability P (sk,. > s and Qk,. = 1) is
(1− Fk(s))Gk(Fk(s)).

Then, we can pool decisions across all K labels using the thresholds λ1, . . . , λk to obtain
the expected pooled precision rate (ppr).

ppr =

∑
k(1− Fk(λk))Gk(λk)∑

k 1− Fk(λk)
(3.2)

The denominator represents the a priori expected number of times a given instance will
be assigned to a label if the decision thresholds λ1, . . . , λk are used. The pooled recall rate
(prr) has the same form, except with

∑
kQk,. as the denominator instead.

Jiang et al. [2014] observed that to maximize the expected pooled precision with respect to
pooled recall, it was enough to maximize

∑
k(1−Fk(λk))Gk(λk) while holding

∑
k 1−Fk(λk)

fixed since
∑

kQk,. was a constant. The local precision rate (LPR) was then defined as

LPRk(s) = − d

dFk(s)
{(1− Fk(s))Gk(s)} = Gk(s)− (1− Fk(s))

dGk(s)

dFk(s)
(3.3)

In their main theoretical result Theorem 2.1, they showed that if the LPR for each class
is monotonic, then ranking the KM LPRs calculated for each instance/class combination
and thresholding the result produces a classification that maximizes the expected pooled
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precision with respect to a fixed recall rate. The monotonicity requirement is equivalent to
having monotonicity in the likelihood of the positive class, and it is satisfied when higher
classifier scores correspond to a greater likelihood of being from the positive class–this rules
out poorly behaved classifiers, for example a multimodal case where the positive class scores
lie in the range [0, 0.3) ∪ (0.7, 1], and the negative class scores in [0.3, 0.7].

3.2.3 Connection to local true discovery rate

After substituting expressions for the derivatives dGk(s)
dFk(s)

= dGk(s)
ds

ds
dFk(s)

, the LPR can be shown
to be equivalent to the local true discovery rate, ltdr.

LPRk(s) = Gk(s)− (1− Fk(s))
dGk(s)

dFk(s)
(3.4)

= Gk(s)− (1− Fk(s))
[

πkf1,k(s)

(1− Fk(s))fk(s)
+
πk(1− F1,k(s))

(1− Fk(s))2

]
(3.5)

= Gk(s)−
πkf1,k(s)

fk(s)
−Gk(s) (3.6)

=
πkf1,k(s)

fk(s)
= ltdr (3.7)

The local false discovery rate, lfdr = 1− ltdr is its more well known relative; it has been
studied extensively for Bayesian large-scale inference. This connection between a statistic
used for hypothesis testing and the LPR, which was developed for classification, suggests
the possibility that methodological developments on the LPR in classification could have
meaningful implications for statistical inference. We elaborate on this connection in Section
3.6.

3.2.4 Methods for estimating LPR

The optimality result in Jiang et al. [2014] was derived using true LPR values, which are
generally unknown in practice. The authors discussed two methods for estimating the LPR.
In the first method, estimates for f0,k, fk, and πk are plugged in after expressing LPRk(s)
as the local true discovery rate. In the second method, a local quadratic kernel smoother is
used to simultaneously estimate Gk(s) and G′k(s) in the definition of LPR.

Theoretically, Jiang et al. [2014] showed that under certain conditions, the first method
converges to the true result faster than the second. However, in simulation studies the
second method performed better than the first. The difference is due to the difficulty in
estimating the densities f0,k and fk on real data: any situation which would make kernel
density estimation difficult would result in poor estimates of ltdr. For example, if the data
are observed densely in one or two short intervals and sparsely elsewhere, the kernel density
estimate of fk would have bumps in the sparse regions, making ltdr unreliable. Further,
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because f0,k and fk are estimated separately, they have different levels of bias and variance;
in particular f0,k has larger variance (since it is only estimated from the negative class cases.
In comparison, the functions Gk(u) and G′k(u) are estimated jointly in the second method
and Gk(u) is always densely observed, as its domain is score percentiles rather than the
scores themselves.

For both estimation methods, it is possible to obtain LPR estimates that are negative.
Users must adopt a heuristic to handle these cases.

Lee [2013] suggested an alternative based on the second method that averages the es-
timates obtained via a weighted spline fit on bagged samples of the data. The addition
of weights and bagging were introduced in order to estimate the precision function more
robustly in regions supported by less data.

3.2.5 Comparison of estimation methods using simulated data

Although Lee [2013] used this estimation method on real data, he did not compare his method
against that of Jiang et al. [2014] in a controlled setting. We examined the performance of the
spline method of Lee [2013] and the second method of Jiang et al. [2014] under simulation.

Figure 3.1: Class distributions used in simulations comparing the LPR estimation methods
of Jiang et al. [2014] and Lee [2013].

The same five combinations of positive/negative class distributions as the simulations in
Jiang et al. [2014] were used, with two additional settings. All of the data were generated from
Beta distributions. Figure 3.1 shows the parameters used for each simulation setting. These
settings were chosen to represent a wide range of score distributions from classifiers, however
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they all satisfy the monotonicity criterion given in Jiang et al. [2014] so that the asymptotc
normality of the LPR holds and can be estimated well. This criterion essentially states
that the likelihood of the positive class f1,k(s)/f0,k(s) must increase and exceed 1 as s tends
to 1. Settings 1 and 2 represent situations where either the positive or negative class score
distribution is not concentrated around 0 or 1 as one would expect for posterior probabilities.
Setting 3 explores the case when the classifier is able to detect the positive class reasonably
well, but is no better than guessing at random on the negative class (uniform distribution).
Settings 4 and 5 represent common score distributions for well trained classifiers, where the
scores for the two classes are separated well–setting 5 has greater separation than setting 4.
Settings 6 and 7 did not appear in Jiang et al. [2014] and are variations of settings 4 and 5
for when the classifiers are not as well trained.

For the second method of Jiang et al. [2014], quadratic polynomial smoothing was done
with the R package locpoly. LPR estimates that fell outside of the range [0, 1] were clipped.

Although bagging was proposed in Lee [2013] for the spline method, we also tried it with
the kernel method. In particular, B bags of size M , i.e. the same size as the training sample,
were taken and a spline or kernel smoother was fit to each bag. In our usage, the smoothing
parameter for the spline fit was estimated via 5-fold cross validation; however, Lee [2013]
modified the 5-fold cross validation procedure to produce larger smoothing parameters, which
he found performed better in practice. Following Lee [2013], the weights in the spline fit
were inversely proportional to the amount of data available to estimate Gk(s): for example,
the weight used at λ is |{sm,k ≥ λ}|−1. Then, to estimate a new data point, the average of
the B predictions from the bagged spline fits was taken.

Overall, we evaluated four methods: the kernel method, the kernel method with bagging,
the spline method, and the spline method with bagging. In our simulations, we followed Lee
[2013] and took 100 bags of the training sample.

As in Jiang et al. [2014], we examined performance with training sample sizes n = 100,
200, and 500 and positive class frequencies π = 0.05, 0.10, and 0.20. For the training set,
π is exact: for example, when n = 100 and π = 0.05, exactly 5 positive cases and 95
negative cases were generated as a training sample. Each test set had n = 1500 cases and
the number of positive instances was randomly generated from Binom(1500, π). The training
set’s number of positive cases were held fixed to ensure consistency in training setting from
simulation to simulation, whereas the test set’s positive instances were allowed to vary to
mimic a real life setting. The test set’s size was set to be large so that an accurate estimate
of our performance metric, the area under the precision-recall curve (AUPRC), could be
obtained. Each simulation setting was replicated 25 times and the average and SD AUPRC
were computed. These results are given in Tables 3.1 to 3.7.

Unsurprisingly, the AUPRC improves with an increase in either the number of positive
cases or the total training set size. The quadratic kernel smoother consistently outperforms
the spline method though this difference narrows as n increases for all simulation settings.
Bagging modestly improves performance for both methods, but the gain is not significant
and might not be worth the additional computing resources. At the best estimation setting
tried (n = 500 and π = 0.20), the average gap in performance between kernel and spline
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was largest for settings 3, 7, 1, 6, 2, 4, and finally 5. This roughly aligns with the degree
of overlap between the two class distributions: if two classes are separated well, then there
is little difference in performance between the two methods. In particular, both methods
achieved nearly perfect classification on setting 5, which corresponds to the setting with the
greatest degree of separation between the two classes; this was true even in the case of the
least available data (n = 100, π = 0.05). On the other hand, the settings with the greatest
overlap between the two classes–settings 3 and 7–also had the worst AUPRCs: at best, the
AUPRC was approximately 0.45 for setting 3 and 0.35 for setting 7. This is low relative to
the AUPRCs of around 0.9 or higher seen for the other settings.

Based on these results, we would recommend using the kernel method of Jiang et al.
[2014] for estimating LPR on smaller data sets, and leave bagging as optional depending on
the computing resources available. If the training sample size is large, however, there will
be little difference in performance between the kernel and spline methods. At large enough
training sample sizes, this becomes a meaningful difference: for example, the implementation
of spline estimation in R (built-in with the stats package) is much faster than the kernel
smoother (locpoly package). In that case, using the spline method without bagging may
be the more appropriate choice.

Table 3.1: Estimation method comparison for setting 1: scores from the negative class follow
a B(0.5, 5) distribution, and the positive class a B(10, 10) distribution.

n π
Kernel Spline

No bagging With bagging No bagging With bagging

100
0.05 0.648 (0.052) 0.662 (0.053) 0.552 (0.099) 0.606 (0.090)
0.10 0.798 (0.058) 0.803 (0.050) 0.715 (0.068) 0.750 (0.083)
0.20 0.904 (0.023) 0.908 (0.015) 0.859 (0.043) 0.868 (0.044)

200
0.05 0.668 (0.066) 0.675 (0.062) 0.561 (0.117) 0.560 (0.093)
0.10 0.816 (0.036) 0.821 (0.046) 0.740 (0.060) 0.768 (0.040)
0.20 0.893 (0.026) 0.913 (0.020) 0.844 (0.034) 0.872 (0.025)

500
0.05 0.675 (0.063) 0.697 (0.052) 0.606 (0.078) 0.635 (0.074)
0.10 0.813 (0.035) 0.821 (0.037) 0.765 (0.039) 0.787 (0.035)
0.20 0.903 (0.022) 0.913 (0.014) 0.869 (0.025) 0.878 (0.021)
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Table 3.2: Estimation method comparison for setting 2: scores from the negative class follow
a B(5, 5) distribution, and the positive class a B(4, 0.5) distribution.

n π
Kernel Spline

No bagging With bagging No bagging With bagging

100
0.05 0.817 (0.033) 0.829 (0.047) 0.753 (0.053) 0.768 (0.073)
0.10 0.871 (0.024) 0.890 (0.022) 0.798 (0.070) 0.829 (0.065)
0.20 0.913 (0.012) 0.918 (0.012) 0.843 (0.056) 0.870 (0.059)

200
0.05 0.842 (0.038) 0.851 (0.031) 0.786 (0.048) 0.799 (0.054)
0.10 0.885 (0.021) 0.876 (0.016) 0.816 (0.050) 0.833 (0.051)
0.20 0.917 (0.012) 0.921 (0.015) 0.861 (0.035) 0.892 (0.022)

500
0.05 0.838 (0.038) 0.841 (0.039) 0.792 (0.054) 0.810 (0.045)
0.10 0.890 (0.025) 0.878 (0.021) 0.856 (0.033) 0.839 (0.032)
0.20 0.916 (0.014) 0.919 (0.010) 0.883 (0.015) 0.898 (0.014)

Table 3.3: Estimation method comparison for setting 3: scores from the negative class follow
a B(1, 1) distribution, and the positive class a B(4, 0.9) distribution.

n π
Kernel Spline

No bagging With bagging No bagging With bagging

100
0.05 0.135 (0.031) 0.127 (0.042) 0.099 (0.031) 0.093 (0.031)
0.10 0.245 (0.046) 0.238 (0.049) 0.201 (0.035) 0.190 (0.036)
0.20 0.430 (0.047) 0.438 (0.044) 0.358 (0.051) 0.380 (0.048)

200
0.05 0.129 (0.036) 0.159 (0.033) 0.100 (0.038) 0.116 (0.027)
0.10 0.249 (0.044) 0.268 (0.034) 0.197 (0.035) 0.211 (0.034)
0.20 0.452 (0.037) 0.446 (0.042) 0.369 (0.040) 0.385 (0.038)

500
0.05 0.153 (0.032) 0.152 (0.033) 0.105 (0.032) 0.105 (0.025)
0.10 0.278 (0.029) 0.279 (0.024) 0.220 (0.025) 0.232 (0.026)
0.20 0.466 (0.030) 0.449 (0.036) 0.395 (0.035) 0.390 (0.031)
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Table 3.4: Estimation method comparison for setting 4: scores from the negative class follow
a B(0.5, 5) distribution, and the positive class a B(4, 0.9) distribution.

n π
Kernel Spline

No bagging With bagging No bagging With bagging

100
0.05 0.963 (0.017) 0.955 (0.023) 0.935 (0.033) 0.898 (0.087)
0.10 0.980 (0.007) 0.976 (0.013) 0.933 (0.042) 0.937 (0.046)
0.20 0.991 (0.002) 0.990 (0.003) 0.965 (0.019) 0.968 (0.025)

200
0.05 0.967 (0.014) 0.968 (0.010) 0.929 (0.049) 0.945 (0.025)
0.10 0.982 (0.007) 0.983 (0.005) 0.950 (0.029) 0.961 (0.020)
0.20 0.992 (0.003) 0.991 (0.003) 0.964 (0.018) 0.964 (0.025)

500
0.05 0.972 (0.013) 0.968 (0.013) 0.942 (0.036) 0.946 (0.028)
0.10 0.984 (0.005) 0.983 (0.005) 0.960 (0.020) 0.960 (0.020)
0.20 0.991 (0.003) 0.992 (0.002) 0.980 (0.007) 0.975 (0.013)

Table 3.5: Estimation method comparison for setting 5: scores from the negative class follow
a B(0.5, 5) distribution, and the positive class a B(16, 0.1) distribution.

n π
Kernel Spline

No bagging With bagging No bagging With bagging

100
0.05 0.989 (0.014) 0.983 (0.027) 0.989 (0.014) 0.983 (0.027)
0.10 0.994 (0.007) 0.996 (0.005) 0.994 (0.007) 0.996 (0.005)
0.20 0.998 (0.003) 0.998 (0.003) 0.998 (0.003) 0.998 (0.003)

200
0.05 0.997 (0.003) 0.996 (0.006) 0.997 (0.003) 0.996 (0.006)
0.10 0.999 (0.001) 0.999 (0.001) 0.999 (0.001) 0.999 (0.001)
0.20 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

500
0.05 0.999 (0.002) 0.999 (0.003) 0.999 (0.002) 0.999 (0.003)
0.10 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
0.20 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
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Table 3.6: Estimation method comparison for setting 6: scores from the negative class follow
a B(2, 6) distribution, and the positive class a B(6, 2) distribution.

n π
Kernel Spline

No bagging With bagging No bagging With bagging

100
0.05 0.852 (0.049) 0.850 (0.048) 0.765 (0.095) 0.799 (0.087)
0.10 0.909 (0.019) 0.915 (0.020) 0.849 (0.066) 0.874 (0.050)
0.20 0.951 (0.011) 0.950 (0.010) 0.898 (0.045) 0.899 (0.039)

200
0.05 0.870 (0.032) 0.874 (0.031) 0.788 (0.085) 0.829 (0.048)
0.10 0.914 (0.015) 0.917 (0.014) 0.830 (0.057) 0.864 (0.044)
0.20 0.952 (0.011) 0.950 (0.009) 0.896 (0.035) 0.912 (0.024)

500
0.05 0.875 (0.029) 0.882 (0.021) 0.824 (0.039) 0.840 (0.030)
0.10 0.921 (0.014) 0.921 (0.015) 0.882 (0.019) 0.888 (0.028)
0.20 0.952 (0.009) 0.952 (0.008) 0.914 (0.023) 0.926 (0.015)

Table 3.7: Estimation method comparison for setting 7: scores from the negative class follow
a B(5, 6) distribution, and the positive class a B(6, 5) distribution.

n π
Kernel Spline

No bagging With bagging No bagging With bagging

100
0.05 0.080 (0.025) 0.075 (0.022) 0.068 (0.021) 0.060 (0.015)
0.10 0.155 (0.044) 0.160 (0.027) 0.126 (0.040) 0.136 (0.025)
0.20 0.308 (0.048) 0.300 (0.041) 0.267 (0.040) 0.258 (0.037)

200
0.05 0.089 (0.027) 0.077 (0.021) 0.063 (0.014) 0.063 (0.015)
0.10 0.169 (0.035) 0.173 (0.032) 0.131 (0.022) 0.143 (0.030)
0.20 0.316 (0.030) 0.320 (0.037) 0.256 (0.030) 0.269 (0.029)

500
0.05 0.104 (0.028) 0.093 (0.026) 0.075 (0.022) 0.069 (0.016)
0.10 0.197 (0.028) 0.191 (0.029) 0.149 (0.030) 0.144 (0.021)
0.20 0.336 (0.022) 0.330 (0.026) 0.273 (0.026) 0.274 (0.029)
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3.3 Extension for hierarchical multilabel classification

The method of Jiang et al. [2014] is appropriate for multilabel classification when the labels
do not have a hierarchical structure. In the hierarchical case, it is possible for the estimated
LPR of a label to be greater than that of its parent label, since it only depends on each
individual label classifier score. Regular sorting of LPRs can result in an instance being
assigned to a label but not its ancestors, violating the hierarchy constraint.

We propose a sorting algorithm based on maximizing the expected area under the hit
curve, a close relative to the ROC and precision-recall curves. The resultant sorting respects
the hierarchy constraints, and the users can threshold the list to produce label assignments,
e.g. taking the top k to be positive calls.

3.3.1 HierLPR

3.3.1.1 The hit curve

The hit curve plots the number of true positives against the number of positive calls. Figure
3.2 shows an example hit curve with 100 total instances, 50 of which are positive. A perfect
decision rule would label all 50 positive instances as positive, then the remainder as negatives.
The hit curve corresponding to the perfect decision rule would thus rise as y = x until x = 50,
then stay at y = 50 as there are no more positive instances left. Any hit curve is bounded
by this ideal case. Precisely, if there are a total of npos positive cases, the area under the

hit curve will always fall between
n2
pos

2
and

n2
pos

2
+ (n − npos)2. The lower bound is obtained

with the worst case decision rule, which calls all of the negative instances first. For example,
the simulated curve depicts a more realistic scenario, wherein the 21st to 25th positive calls
were in truth negatives; thus, the hit curve stays level at 20 true positives up until x = 25.

The connection between the hit curve and the ROC curve and precision-recall curve is
explained in detail in Su et al. [2013]. Hit curves have been explored in the information
retrieval community as a useful alternative to these two other evaluation tools, particularly
in situations where there is low positive class prevalence and the user is more interested
in the first classified instances or the initial part of the curve–for example, this occurs in
search engine page ranking where the top matches are the most important and the number of
relevant pages is tiny relative to the size of the World Wide Web. The major flaw of the ROC
curve in these situations is that its shape is prevalence independent [Davis and Goadrich,
2006, Hand, 2009]. The precision-recall curve accounts for prevalence, but Herskovic et al.
[2007] provided a simple example where the shape of the hit curve was more informative:
with only five positive cases out of 1000, the hit curve’s shape clearly highlighted the call
order of a method that had labeled 100 instances before the 5 true positives, whereas the
corresponding precision-recall curve was flat and uninformative. As an example of their use
in an applied setting, Bernstam et al. [2006] plotted hit curves to evaluate the effectiveness
of different MEDLINE search algorithms.
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Figure 3.2: The dashed line shows a simulated hit curve, and the solid line the ideal hit
curve. The ideal hit curve will follow the y = x line until it reaches the total number of
positive instances, and level off thereafter. This is equivalent to a decision rule that correctly
calls all of the positive instances first, then all of the negative instances.

3.3.1.2 Maximizing the expected area under the hit curve

We now provide an algorithm for maximizing an objective function that is equivalent to the
expected area under the hit curve under certain conditions. First, we derive the objective
function.

Suppose the classifier scores are sorted so that s(1), . . . , s(KM) represents the order in which
they are called positive, and Q(1), . . . , Q(KM) their true labels. Through a straightforward
application of the trapezoid rule on a stepwise function, we obtain that the sum of height
at each unit increment in the x-axis is the exact area under the hit curve up to a constant.
The constant is the addition of the fixed unknown amount P/2 to the exact area, where P
represents the true number of positive instances; this was done to arrive at the convenient
form of the objective function below. Since the x-axis represents the number of calls made,
the expression for area is equivalent to the sum of the number of true positives among the
top k calls, for every k. To indicate the kth node as a true positive, we write I{Q(k) =
1|s1, . . . , sn} since the sorting of the nodes depends on the value the classifier scores. This
yields the convenient expression
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n∑
i=1

i∑
k=1

I{Q(k) = 1|s1, s2, . . . , sn} =
n∑
i=1

(n− i+ 1)I{Q(i) = 1|s1, s2, . . . , sn} (3.8)

Taking expected values, we arrive at

n∑
i=1

(n−i+1)P (Q(i) = 1|s1, s2, . . . , sn) ≈
n∑
i=1

(n−i+1)P (Q(i) = 1|s(i)) =
n∑
i=1

(n−i+1)LPR(i)

(3.9)
The simplifying approximation relates the area under the hit curve to the local precision

rate, but it implies that the nodes are independent, which is clearly violated with a hierarchy.
However, this approximation will hold for top- or near top-level nodes with well trained
classifiers. In practice, this situation occurs commonly: since the top-level nodes represent
more general classes, they also tend to have well trained classifiers.

Initialize:
for i in LL−1 do

Create supernodes from Sub(i) with node i as the first in the list, then the
remaining nodes sorted by decreasing LPR

end
Set current level to L-2
while current level is not root do

for i in Lcurrent level do
Create a supernode from Sub(i) as follows.
Place node i at the top (due to hierarchy constraint.) Set
nodes remaining = Sub(i)

while |nodes remaining| > 0 do
Evaluate all LPR averages along each supernode from the step with
current level − 1 that has node i as parent, i.e. within each supernode
store the averages of the first value, first two values, etc.

The supernode corresponding to the highest average is placed next in the
ordering of Sub(i).

Remove the supernode from nodes remaining.
end

end

end
Algorithm 1: The HierLPR algorithm for a single instance on tree-structured data.
Algorithm 1 provides a sorting of a single instance along a tree that maximizes the

objective function given. We define a supernode here to mean an ordered set of nodes. This
algorithm extends easily for multiple instances by assembling the supernodes discovered in
the final merge step for each instance in decreasing mean LPR value.

We introduce some additional notation: Assume the tree has L levels. Let the nodes in
the subtree with root i be given by the set Sub(i), i.e. all nodes with i as an ancestor. The



CHAPTER 3. HIERARCHICAL MULTILABEL CLASSIFICATION WITH LOCAL
PRECISION RATES 80

algorithm starts from the bottom of the tree, ordering each subtree Sub(i) for i ∈ LL−1, the
second to last level. This is the initialization point rather than the last level, since the last
level consists only of leaf nodes.

3.3.1.3 Proof of optimality

We now demonstrate that the merging step in the algorithm above, where ordered subtrees
are collated to sort a larger subtree, produces a sorting that maximizes the objective function
while preserving the order of the original subtrees.

Base case. The simplest nontrivial case is a graph with two supernodes of size one, X(1)

and Y(1). In this case, it is clear that the objective function is maximized when the two are
sorted in decreasing order, and that the algorithm also produces this result.

Inductive step. Suppose there are two complete supernodes, one consisting of the nodes
X(1), X(2), . . . , X(n) and the other Y(1), Y(2), . . . , Y(m). We want to merge these supernodes into

a larger supernode, Z(1), . . . , Z(m+n) ordering them so that the objective function
∑m+n

i=1 (m+
n− i+ 1)Z(i) is maximized and the order of the nodes within the original two supernodes is
preserved, i.e. X(1) still appears before X(2) after merging.

Suppose that X(1), . . . , X(k) is the maximal supernode by the proposed algorithm, and let
a denote the average of these k values. We show that the value of the objective function for a
list where X(1), . . . , X(k) occupies the top k positions is greater than that of a list where this
is not the case. We will refer to this sorting with X(1), . . . , X(k) at the top as the proposed
sorting.

Consider an arbitrary sorting respecting the order constraint of the original supernodes.
Let i1 denote the position of X(1) in this list, i2, X(2), and so on. Note that ic+1 ≥ ic + 1.
Then, the difference in the value of the objective function between the proposed and arbitrary
sorting can be written as follows:
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proposed OF− arbitrary OF =

[
(i1 − 1)X(1) −

i1−1∑
k=1

Y(k)

]
+ . . .+

[
(in − n)X(n) −

in−n∑
k=1

Y(k)

]

= (i1 − 1)

[
X(1) −

1

i1 − 1

i1−1∑
k=1

Y(k)

]
+ . . .+ (in − n)

[
X(n) −

1

in − n

in−n∑
k=1

Y(k)

]

= (i1 − 1)

[(
X(1) − a

)
+

(
a− 1

i1 − 1

i1−1∑
k=1

Y(k)

)]
+ . . .

+ (in − n)

[(
X(n) − a

)
+

(
a− 1

in − n

in−n∑
k=1

Y(k)

)]
=
[
(i1 − 1)

(
X(1) − a

)
+ . . .+ (in − n)

(
X(n) − a

)]
+

[
(i1 − 1)

(
a− 1

i1 − 1

i1−1∑
k=1

Y(k)

)
+ (in − n)

(
a− 1

in − n

in−n∑
k=1

Y(k)

)]

Because X(1), . . . , X(k) is the maximal supernode, each term in the expression

(i1 − 1)

(
a− 1

i1 − 1

i1−1∑
k=1

Y(k)

)
+ . . .+ (in − n)

(
a− 1

in − n

in−n∑
k=1

Y(k)

)
(3.10)

must be nonnegative, and equality results only if there is a tie.
The first term on the right hand side must also be nonnegative. To see this, we can

rewrite the sum

(i1 − 1)
(
X(1) − a

)
+ . . .+ (in − n)

(
X(n) − a

)
(3.11)

as follows

(i1− 1)
n∑
k=1

(X(k)− a) + (i2− i1− 1)
n∑
k=2

(
X(k) − a

)
+ . . .+ (in− in−1− 1)(X(n)− a). (3.12)

The first sum
∑n

k=1(X(k) − a) = 0 since a is the average. The other sums being nonneg-
ative follows from the fact that a must be at least as large as the smaller averages in the
chain, i.e. a ≥ 1

j

∑j
i=1X(i) where 1 ≤ j ≤ k. In detail, we know that

X(j+1) + . . .+X(n) = na− [X(1) + . . .+X(j)], 1 ≤ j ≤ n− 1

≥ na− ka = (n− k)a, from the fact above

(X(j+1) − a) + . . .+ (X(n) − a) ≥ 0
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Therefore, each sum
∑n

k=j

(
X(k) − a

)
≥ 0, j = 1, . . . , n. It is clear that the expression

(i1− 1)
n∑
k=1

(X(k)− a) + (i2− i1− 1)
n∑
k=2

(
X(k) − a

)
+ . . .+ (in− in−1− 1)(X(n)− a) (3.13)

is exactly zero only when each X(j) = a.
This shows that the difference in the value of the objective function between the proposed

and an arbitrary sorting is nonnegative. Equality only results when both 1) every term in
the chain equals the average a, and 2) the supernodes in Y(j) in the expression above also
attain the maximum average value a. As a result, a merged list with X(1), . . . , X(k) at the
top produces an objective function at least as large as a list without this property.

The specific case in which equality results is rare in practice because several conditions
must be met, so it is almost always better to sort so that the entire supernode X(1), . . . , X(k)

appears before supernodes of lesser value.
This demonstrates that the sorting that maximizes the objective function is given by

finding maximal supernodes and sorting these by decreasing value. To see this, note that for
any arbitrary sorting of the nodes, it is possible to produce a series of permutations from the
arbitrary sorting to the proposed optimal sorting by following the sequential arrangement
into supernodes given by the proof. At each of these permutation steps toward the optimal
sorting, the sorting by supernode will have the larger objective function value.

3.3.1.4 A faster variation with extension to DAGs

The original algorithm begins from the leaf nodes and works upward, searching for the best
supernode at each step. This algorithm runs slowly because of the exhaustive search that
must be conducted at each iteration, which often involves recomputing averages. A simple
modification of this algorithm results in O(n log n) runtime, and in simulations yields the
same ordering as the original algorithm, with differences only on supernodes that share
the same value. It remains an open problem to demonstrate this equivalence theoretically.
The modified algorithm is given in Algorithm 2. Rather than starting from the leaf nodes,
supernodes are constructed outward from a starting point of the largest LPR in the graph.
This version of the algorithm is implemented in later sections.
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Result: A hierarchically consistent sorting of n LPR values
Par(Si) is the parent of supernode Si, and n(Si) is the number of nodes in Si. Ψ is a
vector for holding sorted LPR values.

Initialize with one node per LPR value, and each node as its own supernode, Ψ = []
(empty vector).

while |Ψ| < n do
Find i = argmaxi

1
n(Si)

∑
j∈Si LPRj

if Par(Si) ∈ Ψ then
Append the nodes in Si to Ψ.

else
Condense Si and Par(Si) into a supernode.

end

end
Algorithm 2: Modification of the original HierLPR algorithm for trees with faster runtime.

This faster sorting method is an extension of the Condensing Sort and Select Algorithm
(CSSA) of Baraniuk and Jones [1994], which we discuss in the next section. This variation
has also been applied previously to the HMC problem in Bi and Kwok [2011] using scores
from ridge regression, but our contribution provides a theoretically motivated justification
for sorting the LPR in particular. Although the algorithm given above is for tree-structured
data, it can be modified easily to accommodate DAGs [Bi and Kwok, 2011]. An extension
of the original HierLPR to DAG structures is still an open problem.

3.3.2 Relationship to Condensing Sort and Select Algorithm

The concept of evaluating average along a hierarchy to produce a sorting of the nodes that
is hierarchically consistent actually has its origins in Baraniuk and Jones [1994] with the
Condensing Sort and Select Algorithm. That algorithm was proposed as a solution to the
more general linear programming problem

max
Ψ

∑
k∈T

B(k)Ψ(k), B(k) ≥ 0 (3.14)

subject to (3.15)

Ψ(k) ≥ 0 ∀k (3.16)

Ψ(0) = d (3.17)

Ψ(k) is T -nonincreasing (3.18)∑
k∈T

Ψ(k) ≤ γ, γ > 0 (3.19)

Their proposed solution was the same as Algorithm 2, except their focus was on finding
the appropriate node weights Ψ for sorting L ≥ n nodes of a tree. They demonstrate in their
theoretical results that the solution must always place weights 0 or 1 on supernodes, up to
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end behavior. In the case when the next largest supernode would put the sorting at over L
nodes, the algorithm splits what remains of the total weight to be allocated, γ, among the
nodes in this last supernode. When taken to be a sorting of the full set of nodes (L = n),
avoiding this end behavior issue, CSSA becomes equivalent to Algorithm 2.

3.3.3 An overview of other performance metrics

In contrast to simple classification where measures like AUC, precision-recall, and F-measure
are widely used, standard metrics for evaluating the performance of HMC methods have not
yet been established. Development of metrics remains an active research topic today, with
papers like Cerri et al. [2015], Costa et al. [2007], and Kosmopoulos et al. [2015] outlining
the pros and cons of different measures for hierarchical classification.

HierLPR was developed as a method for maximizing a measure involving the hit curve,
which is closely related to precision. Our method is thus suited for problems where accuracy
in the initial set of positive calls is desirable, rather than capturing all of the true positives in
the dataset, i.e. recall. In our setting, the hit curve or precision are calculated by averaging
across instances, i.e. micro-averaging. It has been common to adapt flat classification
metrics like precision/recall to hierarchical problems by averaging in this way, though the
literature varies in whether averaging is done by instance (micro-averaged) or by class (macro-
averaging). For example, macro-averaged metrics are used in Valentini [2009, 2011].

The primary criticism of these micro- and macro-averaged metrics is that they do not take
the hierarchy into account: for example, an error made closer to the root in the hierarchy may
be considered more serious than one deeper down, since that represents failure to classify to
a broader category. As another example, assignment to a label that shares many ancestors
with the correct class may be considered a less serious mistake than assignment to one farther
away on the graph, since labels that are close to each other tend to be more similar to each
other. These two examples illustrate that there are many ways to assess the severity of an
error; the “right” kind of error to look at is largely dependent on the user’s end goal, which
explains in large part why a standard evaluation metric has not yet been agreed upon [Costa
et al., 2007].

Several research directions, including this dissertation, provide solutions for the optimiza-
tion of error metrics tailored for specific needs. For example, Bi and Kwok [2015] provide
an efficient greedy algorithm for minimizing an extension of Hamming loss to the hierarchi-
cal case. Ramı́rez-Corona et al. [2016] provide a local classification method based on path
evaluation that is particularly well-suited for deep and populated hierarchies. They propose
a new metric that avoids the bias that others have toward shallower, conservative calls, and
perform a method comparison with this measure to demonstrate the unique strength of their
proposed method.

A simple hierarchical extension of the micro- and macro-averaged precision and recall
takes distance into account [Sun and Lim, 2001], assigning greater penalty to assignments
farther from the correct class. Another common evaluation metric is the hierarchical loss or
H-loss of Cesa-Bianchi et al. [2006], which penalizes at the first misclassification along the
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hierarchy. Yet more commonly used are the hierarchical precision, recall, and F-measure
proposed by Kiritchenko et al. [2005]: these measures count the number of correctly pre-
dicted classes, together with correct predicted ancestor classes. We refer the reader to Cerri
et al. [2015] for an extensive analysis of these hierarchical evaluation measures and how
discriminating they are on various global and local methods. While the authors provide
a general recommendation for the hierarchical precision and recall measures of Kiritchenko
et al. [2005], their full discussion is much more nuanced, explaining how different performance
metrics favor different HMC methods.

3.4 Evaluating HierLPR performance via simulation

3.4.1 The state of the art: decision tree learners

Clare [2003] was the first to apply a decision tree-based method to a hierarchical multilabel
classification problem. Their method is an extension of C4.5, replacing the splitting criterion
of class entropy with the sum of entropies across all classes. They applied their method to the
problem of predicting protein function along the MIPS FunCat graph. Blockeel et al. [2002]
introduced ClusHMC, a decision tree learner for HMC with tree hierarchies based on the
Clus algorithm a.k.a. predictive clustering trees (PCTs). Blockeel et al. [2006] later improved
upon the method and Vens et al. [2008] extended it to apply to DAG-structured hierarchies.
Presently, ClusHMC and its variants remain the prevailing global classification method for
HMC [Cerri et al., 2015]. In a recent application, Dimitrovski et al. [2011] constructed
ensembles of ClusHMC with bagging and random forests for an image classification problem.
These variants of ClusHMC performed better than ClusHMC alone and several other HMC
methods assessed.

ClusHMC is similar to other decision tree learners: it iteratively finds splits that minimize
the group variances, subject to criteria that control the fineness of the splits. In the multilabel
case, each instance is represented as a K×1 binary vector, with 1 indicating class membership
and 0 otherwise. After creating the full decision tree, the mean vector at each leaf node gives
the proportion of class members. These proportions are used like posterior probabilities to
classify new instances. The splitting criteria suggested in Vens et al. [2008] checks that the
number of instances in a partition and the reduction in variance after splitting are above
preset minimums. For checking variance reduction, the usual F-statistic is used, comparing
the average variance post-partition with the variance before splitting.

In Vens et al. [2008], weighted Euclidean distance is chosen as the metric so similarity
between two nodes near the root level can be evaluated as more important than those farther
down. The variance of a node is defined as usual. To be precise mathematically, the weighted

Euclidean distance is given as d(v1, v2) =
√∑K

i=1wi(v1,i − v2,i)2 where wi ≥ 0, and vj,i refers

to the ith component of the vector vj. Then, for a set of vectors V , define the variance of

this set as V ar(V ) =
∑V
j=1 d(vj ,v̄)2

|V | , where v̄ is the usual mean vector for V .



CHAPTER 3. HIERARCHICAL MULTILABEL CLASSIFICATION WITH LOCAL
PRECISION RATES 86

3.4.2 Comparing HierLPR to decision tree learners

We examined the performance of HierLPR against PCTs on a range of simple trees where
the quality and hierarchical relationships of the nodes were varied. Intuitively, the quality of
a node refers to the ability of the classifier to distinguish between the positive and negative
classes. A bad quality node produces classifier scores that are not informative for distin-
guishing between the two classes, i.e. the score distributions for the two class are not well
separated; the opposite is true for a good quality node.

A total of eleven simulation settings were tested. The first nine settings involve hierarchi-
cal structures, depicted in Figures 3.3 and 3.4. Settings 1 through 7 are comprised of simple
three-node hierarchical structures with different mixes of good and bad quality nodes–some
settings are re-runs of the same hierarchical structure under different levels of dependence,
i.e. setting 2 and setting 4 share the same graph as setting 1 and 3, respectively. Settings
8 and 9 represent more complicated hierarchical structures on 25 nodes, the former with a
mix of node qualities and the latter with only good quality nodes. Settings 10 and 11 were
generated from a nonhierarchical setting consisting of three nodes. For setting 10, all three
nodes were of good quality; for setting 11, there was one node each of good, medium, and
bad quality.

For each simulation setting, 100 data sets were generated. Each simulation data set
consisted of 50,000 training instances and 10,000 test instances. Data from good quality
nodes were generated from a Beta(2, 6) negative class distribution and Beta(6, 2) positive
class distribution. For bad quality nodes, the distributions were Beta(5.5, 6) and Beta(6,
5.5) for negative and positive classes, respectively. Settings 8 through 11 involve a third
medium quality setting, which had the negative and positive class distributions Beta(4, 6)
and Beta(6, 4). For each data set from a hierarchical setting, the conditional probabilities
P (Qi = 1|Par(Qi) = 1) were randomly generated from a uniform distribution, with the
constraint that each data set had to have a minimum of 150 cases of the positive class in
the training set, which amounts to minimum prevalence of 0.3% for any class. Settings 2
and 4 re-runs of the same hierarchical structure as 1 and 3 but with conditional probabilities
fixed at 0.95 for each node, so that the effect of high dependence between nodes could be
examined.

For PCTs, we used ClusHMC and followed Dimitrovski et al. [2011] by constructing
bagged ensembles and used the original settings of Vens et al. [2008], weighting each node
equally when assessing distance, i.e. wi = 1 for all i. In addition to node weights, there are
two parameters to establish split criteria: the minimum number of instances after splitting
and a minimum percentage variance reduction. The minimum number of instances was set to
5 in keeping with Lee [2013], and the minimum variance reduction was tuned via 5-fold cross
validation from the options 0.60, 0.70, 0.80, 0.90, and 0.95. Following the implementation of
Lee [2013], a default of 100 PCTs were trained for each ClusHMC ensemble; each PCT was
the result of running ClusHMC on a resampling with replacement of the training data.

The average hit curve areas are shown in Table 3.8 for all eleven simulation settings.
We also plot the precision-recall curves, averaged over all 100 replications, for ClusHMC,
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Figure 3.3: Three-node graphs tested under simulation. Dark gray indicates that the node
had class distributions corresponding to a low quality classifier, whereas light grey indicates
high quality. Graph A corresponds to settings 1 and 2; B, setting 3 and 4; C, setting 5; D,
setting 6; and E, setting 7.

Figure 3.4: Graph structure with 25 nodes. The coloring indicates node quality for simulation
setting 8: light, medium, and dark grey correspond to high, medium, and low quality,
respectively. In simulation setting 9, all of the nodes have high quality class distributions.

HierLPR, and LPR on each setting. These are given in Figures 3.4.2 to 3.14.
For the hierarchical settings, HierLPR has better accuracy in its initial calls, as shown
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in the inset graphs in Figures 3.4.2 to ?? that plot recall up to 0.01 along the x-axis. Most
data sets had around 10,000 positive cases, so this corresponds to HierLPR having better
performance on the first 100 or so calls. On these data sets, ClusHMC outperforms HierLPR
eventually, although HierLPR tracks the performance of ClusHMC closely on settings with
good quality nodes at the top of the hierarchy like settings 1, 2, 5, and 7. The more bad
quality nodes occupy the top levels of the hierarchy, as tested in setting 6 and 8, the worse
HierLPR’s comparative performance–this occurs because the more low LPRs for positive
cases there are, the stronger the evidence required of descendent labels to propagate a positive
call upward. These results hold true under the more complex settings of 8 and 9. Increasing
the level of dependence between the nodes also does not change the results.

In the non-hierarchical settings 10 and 11, HierLPR outperforms ClusHMC. This makes
sense by design, since ClusHMC finds splits assuming dependence; when the nodes are
independent as in the non-hierarchical case, any rules or associations it finds are due to
random noise. On the other hand, HierLPR defaults in this setting to regular sorting, and
is equivalent to the method of Jiang et al. [2014]. ClusHMC’s performance suffers more
noticeably when nodes of poor quality are included, as can be seen in the result for setting
11.

The areas under the hit curve (AUHC) shown in Table 3.8 confirm these results. On
the hierarchical settings, HierLPR has similar performance to ClusHMC, but does slightly
worse. On the nonhierarchical settings, HierLPR outperforms ClusHMC slightly. In all of
the cases, the differences in performance are within an SD of each other, so none of these
methods stand out as clear winners for any setting. For example, one difference from the
analysis based on precision-recall is that HierLPR achieves the best AUHC on the setting
with two bad nodes at the top, but we believe this is likely due to random noise since the
difference in AUHC is small relative to the SD.

Altogether, our results suggest that HierLPR would perform best on mixed classifica-
tion problems where graphs are either shallow with top level classifiers of good quality or
standalone nodes. While global classification methods do better at leveraging information
within a connected graph, they would perform poorly in situations where the hierarchy given
contains a high proportion of standalone nodes.
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Table 3.8: The average area under the hit curve over 100 replications for ClusHMC, LPR,
and HierLPR under each simulation setting tested. The SD is given in parentheses. Each
value has been divided by 1 × 106, so a value of 1 in the table actually corresponds to an
area under the hit curve of 1× 106.

Area Under Hit Curve (×106)
Setting ClusHMC LPR HierLPR

1 188.366 (99.924) 187.604 (99.599) 188.044 (99.763)
2 188.392 (99.900) 187.625 (99.621) 188.023 (99.752)
3 88.537 (45.844) 86.231 (44.886) 87.852 (45.777)
4 185.612 (98.526) 179.760 (96.330) 184.712 (98.480)
5 186.837 (98.585) 182.248 (96.521) 185.234 (98.406)
6 165.624 (99.289) 164.439 (94.263) 170.938 (95.887)
7 100.709 (51.887) 98.290 (51.083) 99.446 (51.701)
8 11161.03 (3512.758) 10845.04 (3431.810) 10953.09 (3458.724)
9 11445.38 (3326.868) 11420.26 (3328.185) 11445.82 (3334.034)
10 323.374 (63.315) 324.770 (63.301) 324.770 (63.301)
11 303.221 (64.353) 308.272 (64.155) 308.272 (64.155)



CHAPTER 3. HIERARCHICAL MULTILABEL CLASSIFICATION WITH LOCAL
PRECISION RATES 90

Figure 3.5: Precision recall curves comparing ClusHMC, HierLPR, and LPR under simula-
tion setting 1.

Figure 3.6: Precision recall curves comparing ClusHMC, HierLPR, and LPR under simula-
tion setting 2.
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Figure 3.7: Precision recall curves comparing ClusHMC, HierLPR, and LPR under simula-
tion setting 3.

Figure 3.8: Precision recall curves comparing ClusHMC, HierLPR, and LPR under simula-
tion setting 4.
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Figure 3.9: Precision recall curves comparing ClusHMC, HierLPR, and LPR under simula-
tion setting 5.

Figure 3.10: Precision recall curves comparing ClusHMC, HierLPR, and LPR under simu-
lation setting 6.
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Figure 3.11: Precision recall curves comparing ClusHMC, HierLPR, and LPR under simu-
lation setting 7.
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Figure 3.12: Precision recall curves comparing ClusHMC, HierLPR, and LPR under simu-
lation setting 8.

Figure 3.13: Precision recall curves comparing ClusHMC, HierLPR, and LPR under simu-
lation setting 9.
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Figure 3.14: Precision recall curves comparing ClusHMC, HierLPR, and LPR under simu-
lation setting 10.

Figure 3.15: Precision recall curves comparing ClusHMC, HierLPR, and LPR under simu-
lation setting 11.
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3.5 An application to disease diagnosis with public

microarray expression data

Huang et al. [2010] developed a classifier for predicting disease along the UMLS directed
acyclic graph, trained on public microarray data sets from the National Center for Biotech-
nology Information (NCBI) Gene Expression Omnibus (GEO). As mentioned previous, the
authors used a two-step local classification technique: they trained classifiers for each label
in the UMLS graph, and corrected inconsistencies in the initial calls via a Bayesian ad-
justment. At its heart, the problem is hierarchical multilabel classification problem along
a directed acyclic graph, where instances are not required to have leaf-level memberships.
In the paragraphs below, we explain the problem setting in greater detail and compare the
performance of our algorithm on their data set.

3.5.1 Data collection and classifier training

GEO was originally founded in 2000 to systematically catalog the growing volume of data
produced in microarray gene expression studies. The large majority of data on GEO are these
studies, and they continue to be the most common kind of study submitted today [Barrett
et al., 2013]. The data in GEO represent research experiments submitted by scientists usually
in compliance with grant or journal guidelines requiring that the data be made available in
a public repository.

At the time of data retrieval, July 2008, GEO contained 421 human gene expression
studies on the three microarray platforms that were selected for analysis (Affymetrix HG-
U95A (GPL91), HG-U133A (GPL96), and HG-U133 Plus 2 (GPL570)). After filtering
studies that contained data for both the disease and non-disease (normal) state, 100 studies
yielding a total of 196 data sets remained. These were used for training the classifier in
Huang et al. [2010].

Although each experiment had been done on one of the three microarray platforms, stan-
dardization or normalization of the data was necessary for removing study-specific technical
effects. Because each data set contained replicated samples from a normal patient, the au-
thors employed the following nonparametric procedure: for a data set with d disease and n
normal replicates, the gene expression values were replaced with their ranks, and the loga-
rithm of the ratio of ranks was computed for each of the d × n disease/normal pairs. The
Pearson correlations between the log-rank-ratio vectors were used as raw data to train the
classifier. If a new query were to be given, its expression values would have to be standard-
ized against a known normal sample to produce a log-rank-ratio vector so that its Pearson
correlations against the log-rank-ratio vectors in the training set could be used as input to
the classifier. The Pearson correlations are called “similarity scores” as shorthand in the
article.

Labels for each data set were obtained by mapping text from descriptions on GEO to
concepts in the Unified Medical Language System (UMLS), an extensive vocabulary of con-
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cepts in the biomedical or health field organized as a directed acyclic graph. The mapping
resulted in a directed acyclic graph of 110 concepts matched to the 196 data sets with three
degrees of similarity: 0 to indicate no match; 1, a GEO submission match; and 2, a data set
match. These concepts, along with their GEO submission matches, are listed in Table S2 in
the supplementary information for Huang et al. [2010]. As an example, the study with GEO
identifier GDS2649 was matched to the unrelated concepts “female urogenital diseases” and
“infections.” Because of the hierarchical structure, it was also matched to a parent node of
“female urogenital diseases”, the broader label “female urogenital diseases and pregnancy
complications.”

Training a classifier for each label was a complex multi-step process, and is described
in detail in the Supplementary Information of Huang et al. [2010]. For each node, the
negative instances were taken to be the profiles in the 196 that did not have that label.
The principal modeling step involved expressing the posterior probability of belonging to a
label in terms of the log likelihood ratio and some probabilities that have straightforward
empirical estimates. The log likelihood ratio was then modeled with a log-linear regression.
A posterior probability estimate was then obtained for each of the 110 × 196 instances in the
data by leave-one-out cross-validation, i.e. estimating the ith posterior probability based on
the remaining 195 instances, and this was used as the first-stage classifier score. An initial
label assignment for the first-stage was then obtained by finding the optimal score cutoffs
for each classifier.

3.5.2 Characteristics of the disease diagnosis data and hierarchy

The full graph is given in Figures 3.16 and 3.17. The values inside the nodes indicate the
number of positive cases, and the percentages underneath give the maximum percentage of
cases shared with a parent. The colors indicate the quality of the nodes: the AUCs of each
classifier were computed and grouped into three categories, ranging from (0.9, 1] (white),
(0.7, 0.9] (light gray), and ≤ 0.7 (dark gray).

As the figure shows, the 110 nodes are grouped into 24 connected sets. In general, the
graph is shallow rather than deep: the maximum node depth is 6, though the median is 2.
However, only 10 nodes have more than one child. This occurs because 11 of the connected
sets are standalone nodes, while six are simple two-node trees. The two largest sets consist
of 28 and 30 nodes, respectively.

The graph nearly follows a tree structure. Most nodes have only one parent or are at the
root level. Only 15 nodes have 2 parents, and 2 nodes have the maximum of 3 parents.

Most nodes do not have a high positive case prevalence. The largest number of instances
belonging to a label is 62, or a 32.63% positive case prevalence. On average, the prevalence
is 5.89%, with a minimum number of 1.53%, corresponding to 3 cases for a label.

Data redundancy occurs as an artifact of the label mining: because the most specific
label for a data set was used for the hierarchy, sometimes no or few additional distinct cases
were processed for ancestor nodes. Twenty six nodes or 23.64% of all nodes share the same
data as their parents, so they have the same classifier, and therefore the same classifier scores
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Figure 3.16: Structure of the disease diagnosis data set, part 1 of 2. The colors correspond
to node quality: white indicates that a node’s base classifier has AUC between (0.9, 1];
light grey, (0.7, 0.9], dark grey, (0, 0.7]. The values inside the circles indicate the number of
positive cases, while the value underneath gives the maximum percentage of cases shared
with a parent node.
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Figure 3.17: Structure of the disease diagnosis data set, part 2 of 2. The colors correspond
to node quality: white indicates that a node’s base classifier has AUC between (0.9, 1];
light grey, (0.7, 0.9], dark grey, (0, 0.7]. The values inside the circles indicate the number of
positive cases, while the value underneath gives the maximum percentage of cases shared
with a parent node.

or LPRs as their parents. If we take the number of nodes that share more than half of their
data with their parent, this statistic rises to 50%. A consequence of this redundancy is that
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the graph is shallower than appears in the figure: for example, the first connected set in the
top left of Figure 3.17 appears to have six levels, but actually only has three because the
last three levels do not contain any new information.

3.5.3 Comparing HMC methods for disease diagnosis

We compared the performance of HierLPR against ClusHMC, the first- and second-stage
classifier calls of Huang et al. [2010], and the LPR multilabel method of Jiang et al. [2014].
ClusHMC was run on the first-stage local classifier scores and the same parameter tuning
options were used as in the simulations of Section 3.4.2. HierLPR was run with the same
estimated LPRs as the method of Jiang et al. [2014], so the only difference between the two
is the order in which the LPRs are sorted, and thus the order in which calls are made. The
resulting precision-recall curve is shown in Figure 3.18.

Figure 3.18: Precision recall curve for several classifiers run on the public microarray disease
data set of Huang et al. [2010].

HierLPR performs better than all of the other methods overall, although it performs sig-
nificantly better in the initial portion of the precision-recall curve, as we expected from both
our theoretical and simulation results. The precision-recall curve for HierLPR eventually
tracks the one for the LPR method: this is because of the shallow graph structure, which
makes the problem similar to the multilabel case. As discussed earlier in our analysis of
the simulation results, HierLPR achieves the best performance here because over 20% of the
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nodes are standalone, while the rest are in shallow hierarchical graphs. Further, the disease
diagnosis data contains a mix of nodes of different qualities. As we saw in the simulation
results earlier, the performance of ClusHMC on the nonhierarchical case is affected by the
quality of the nodes. A closer inspection of the call order of the positive cases from the
standalone labels is revealing: for HierLPR, these are some of the first instances to be called;
in contrast, ClusHMC calls most of them after over half of the other positive instances have
been called, illustrating the difficulty ClusHMC has in detecting these particular cases.

3.6 Discussion

3.6.1 Related methods

Rather than using LPRs, Bi and Kwok [2011] apply Algorithm 2 to the scores from ridge
regression using transformed labeled. They apply their method to the same gene and protein
function prediction data set as Clare [2003] and demonstrate improved precision-recall over
ClusHMC, but we were unable to follow their method nor reproduce their results, and there-
fore we did not include it in our classifier comparisons. Their method involves performing
kernel principal components analysis (PCA) on the labels as a pre-processing step. The
ridge regression scores must be transformed back to the original label space, but the paper
does not give details on how they do this since an exact back-projection is not possible with
kernel PCA. The paper also does not describe how they imputed the missing values in the
public data sets they used, nor do they make their data publicly available. Thus, even after
applying common techniques for missing value imputation and approximations for project-
ing back to the original label space, we were unable to reproduce the AUPRC values they
provided.

Although we could not compare against Bi and Kwok [2011], their method was the first to
apply the sorting of Algorithm 2 to the HMC problem. Like this work, they were motivated
by a need for a hierarchically consistent ordering of scores. However, our method provides
theoretical justification for using the local precision rate over any other classifier score.

Valentini [2009] and Valentini [2011] provide an alternative algorithm for making calls
beyond the common flat and sequential approaches given in Sun and Lim [2001]. Their
algorithm is motivated by the true path rule property of the Gene Ontology and their
specific application is gene function prediction on this taxonomy. Like our sorting method,
their algorithm takes the weighted average of local classifier scores starting from the leaf
level in the hierarchy, and is motivated in part by propagating evidence from child nodes up
the hierarchy. They do not compare their method against other HMC methods and in other
contexts.
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3.6.2 Connection to statistical inference

The key distinction between inference and classification is the presence of training data, which
allows users to estimate distributions that are assumed unknown in statistical inference. If
we choose to ignore the available class distribution information, one can reframe a two-
class classification problem as a hypothesis testing problem where the null corresponds to
membership in the positive class. The classifier score could be used as a statistic, although
this means that one would need to train the classifier on the available data and thereafter
assume that they cannot estimate the class distributions. This approach clearly fails to take
full advantage of the available data, but is meant to highlight the connection between these
two problems.

As mentioned in Section 3.2.3, the local precision rate is closely related to another statistic
used in Bayesian large-scale inference, the local false discovery rate. The local false discovery
rate was motivated by the insight that in large-scale inference, enough data is available to
estimate class distributions with some accuracy. As a result, it is possible to use pointwise
statistics based on f0(s)/f1(s), which may contain more information than their more popular
tail-probability counterparts.

Most of the literature on this statistic has come from Bradley Efron, who laid the ground-
work theory and provided interesting applications of the local false discovery rate in microar-
ray gene expression experiments in Efron [2005, 2007, 2012]. Cai and Sun [2012] proved an
optimality result similar to that of Jiang et al. [2014] for a multiple inference procedure for
grouped hypotheses that uses local false discovery rates: their procedure minimizes the false
nondiscovery rate subject to a constraint on the false discovery rate.

Research on hierarchical hypothesis testing is limited but growing. Yekutieli et al. [2006]
first defined different ways to evaluate FDR when testing hypotheses along a tree, and gave
a simple top-down algorithm for controlling these error types in Yekutieli [2008]. In that
work, the hypotheses at each level of the tree were assumed independent. More recently,
Benjamini and Bogomolov [2014]’s work on selective inference provided an algorithm for
testing on hypotheses arranged in families along a two-level tree where the parent and child
are permitted to be highly dependent, although in so doing they give up control on the global
FDR.

Beyond the connection with the local false discovery rate, remains to be seen whether
other concepts from classification with LPRs can also be applied to inference. Most of the
literature is concentrated on theoretical results that show that certain testing procedures
can effectively bound a measure of Type I error. One possibility is that sorting algorithms
with origins in computer science, like the one presented in this work, could have meaningful
applications as testing procedures.

3.6.3 Conclusions and open research directions

In this chapter, we present a method for performing hierarchical multilabel classification
using local precision rates that is particularly well suited for graphs that contain a mix of
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broad (rather than deep) hierarchies and standalone nodes. Our method was developed with
the intent of maximizing the expected area under the hit curve, a measure closely related
to precision that is used primarily in information retrieval, where the first few classifier calls
are typically the most important for users. The proposed method is a local classification
method, which means it is flexible: users have the option to build their own base classifiers;
it is also fast: the algorithm has an O(n log n) runtime and it is not necessary to retrain the
entire classifier when new nodes are added to the hierarchy.

A broad research direction is the extension of these ideas from classification to hypothesis
testing along hierarchies. In addition, some smaller theoretical aspects of the proposed
method have not been addressed. We presented two versions of our algorithm that gave the
same results in simulation up to the ordering of supernodes that have the same value, but
we have not yet demonstrated this equivalence theoretically. Likewise, the faster version of
the algorithm has an easy extension for DAG structures, but an extension for DAGs was not
developed for the original version from which the hit curve result was derived.
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Jares, Eva Giné, Magda Pinyol, Cristina Royo, Ferran Nadeu, et al. Landscape of somatic
mutations and clonal evolution in mantle cell lymphoma. Proceedings of the National
Academy of Sciences, 110(45):18250–18255, 2013.

Niko Beerenwinkel, Jörg Rahnenführer, Martin Däumer, Daniel Hoffmann, Rolf Kaiser,
Joachim Selbig, and Thomas Lengauer. Learning multiple evolutionary pathways from
cross-sectional data. Journal of computational biology, 12(6):584–598, 2005.

Niko Beerenwinkel, Nicholas Eriksson, and Bernd Sturmfels. Evolution on distributive lat-
tices. Journal of theoretical biology, 242(2):409–420, 2006.

Henrik Bengtsson, Ken Simpson, James Bullard, and Kasper Hansen. aroma. affymetrix: A
generic framework in r for analyzing small to very large affymetrix data sets in bounded
memory. Technical report, tech report, 2008.

Henrik Bengtsson, Pierre Neuvial, and Terence P Speed. Tumorboost: Normalization of
allele-specific tumor copy numbers from a single pair of tumor-normal genotyping mi-
croarrays. BMC bioinformatics, 11(1):1, 2010.

Yoav Benjamini and Marina Bogomolov. Selective inference on multiple families of hypothe-
ses. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(1):
297–318, 2014.

Elmer V. Bernstam, Jorge R. Herskovic, Yindalon Aphinyanaphongs, Constantin F. Aliferis,
Madurai G. Sriram, and William R. Hersh. Using citation data to improve retrieval from
medline. Journal of the American Medical Informatics Association, 13(1):96–105, 2006.
ISSN 1067-5027. doi: 10.1197/jamia.M1909.

Wei Bi and Jame T Kwok. Bayes-optimal hierarchical multilabel classification. IEEE Trans-
actions on Knowledge and Data Engineering, 27(11):2907–2918, 2015.

Wei Bi and James T Kwok. Multi-label classification on tree-and dag-structured hierarchies.
In Proceedings of the 28th International Conference on Machine Learning (ICML-11),
pages 17–24, 2011.

Sven Bilke, Qing-Rong Chen, Frank Westerman, Manfred Schwab, Daniel Catchpoole, and
Javed Khan. Inferring a tumor progression model for neuroblastoma from genomic data.
Journal of clinical oncology, 23(29):7322–7331, 2005.

Ryan Bishop. Applications of fluorescence in situ hybridization (fish) in detecting genetic
aberrations of medical significance. Bioscience Horizons, page hzq009, 2010.

Hendrik Blockeel, Maurice Bruynooghe, Saso Dzeroski, Jan Ramon, and Jan Struyf. Hi-
erarchical multi-classification. In Proceedings of the ACM SIGKDD 2002 workshop on
multi-relational data mining (MRDM 2002), pages 21–35, 2002.



BIBLIOGRAPHY 106

Hendrik Blockeel, Leander Schietgat, Jan Struyf, Sašo Džeroski, and Amanda Clare. Deci-
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