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INTRODUCTION 
 

Age is the largest risk factor for developing sarcopenia - 

a loss of skeletal muscle mass and function [1]. 

Individuals over the age of 50 typically lose ~1% of 

muscle mass per year [2, 3]. Currently, physical activity 

appears to be the only therapy for sarcopenia, but its 

effectiveness declines with advanced age [4, 5], and is 
only moderately successful. Loss of muscle mass can 

further cause frailty, and increase the likelihood of falls 

and fractures [6]. The major mechanisms that drive age-

related loss of muscle mass and function are unclear - 

although inflammation, impaired muscle regeneration 

due to loss of stem cells (satellite cells), loss of motor 

neurons and mitochondrial dysfunction have all been 

implicated [7]. Throughout this manuscript, we use the 

term “sarcopenia” and “frail” interchangeably, implying 

individuals who are demonstrably functionally impaired 

relative to age-matched controls. 

 

To better understand potential mechanisms driving 

sarcopenia and frailty in old age, several studies have 

examined changes in skeletal muscle gene expression 

with age. Differential expression with age has been 
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ABSTRACT 
 

Aging is accompanied by a loss of muscle mass and function, termed sarcopenia, which causes numerous 
morbidities and economic burdens in human populations. Mechanisms implicated in age-related sarcopenia or 
frailty include inflammation, muscle stem cell depletion, mitochondrial dysfunction, and loss of motor neurons, 
but whether there are key drivers of sarcopenia are not yet known. To gain deeper insights into age-related 
muscle loss, we performed transcriptome profiling on lower limb muscle biopsies from 72 young, elderly, and 
frail human subjects using bulk RNA-seq (N = 72) and single-nuclei RNA-seq (N = 17). This combined approach 
revealed changes in gene expression that occur with age and frailty in multiple cell types comprising mature 
skeletal muscle. Notably, we found increased expression of the genes MYH8 and PDK4, and decreased 
expression of the gene IGFN1, in aged muscle. We validated several key genes changes in fixed human muscle 
tissue using digital spatial profiling. We also identified a small population of nuclei that express CDKN1A, 
present only in aged samples, consistent with p21cip1-driven senescence in this subpopulation. Overall, our 
findings identify unique cellular subpopulations in aged and sarcopenic skeletal muscle, which will facilitate the 
development of new therapeutic strategies to combat age-related frailty. 
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reported for genes encoding proteins that participate 

in mitochondrial function, muscle structure and 

inflammation (e.g., mitochondrial ribosomal proteins, 

myosin heavy chain and IL-6, respectively). Many such 

studies used bulk RNA sequencing and modest sample 

sizes [8, 9]. Changes in muscle fiber types, notably a 

reduction in type 2 fibers, is also a characteristic of aged 

skeletal muscle [10]. Several aspects of the type 2 fiber 

gene expression profile can be reversed by exercise 

which confers functional improvement [11, 12]. 

 

At the cellular level, senescence is a cell fate that 

typically entails cell cycle arrest and a complex 

senescence-associated secretory phenotype (SASP) that 

can be induced by myriad stresses, including activated 

oncogenes, DNA damage, reactive oxygen species 

(ROS) and certain genotoxic chemotherapeutics [13]. 

Senescent cells increase with age in many tissues [14], 

and have been hypothesized to contribute to sarcopenia 

[15]. In addition, the SASP includes many pro-

inflammatory factors that can cause chronic inflam- 

mation and alter tissue microenvironments to fuel the 

development of age-related diseases [16]. Several 

markers of senescent cells have been identified in 

various tissues and include the cyclin-dependent kinase 

(CDK) inhibitors p16INK4a (CDKN2A) and p21cip1 

(CDKN1A), which orchestrate proliferative arrest. 

However, there are no universally agreed upon drivers 

or biomarkers of senescence in any tissue, and 

senescent cells are generally present at very low 

numbers (<1–5%) [17]. A large-scale effort is underway 

to map senescent cells and define markers for multiple 

human and mouse tissues with age 

(https://sennetconsortium.org). 

 

Single-cell analyses are improving our understanding of 

pathophysiology, including age-related diseases, by 

deconvolving the heterogeneity in cellular composition 

at the tissue level [18]. Muscle “single cell” analyses 

have been particularly challenging to perform due to the 

nature of the myofiber: a syncytium containing 

thousands of myonuclei. Several pioneering studies 

using single cell technologies have been recently 

performed, to gain better insight into biology of 

stemness, development, and aging [19–25]. The tissue 

organization of muscle practically prevents the 

preparation of “single cells” from muscle using 

conventional single cell workflows. Alternatively, 

nuclei from frozen tissue can be used to generate 

transcriptomic data [26–28]. This approach enables 

expression profiling of nuclei from muscle, despite its 

syncytial structure. Myonuclei within any muscle fiber 

express genes specific for different work capacities. 
Further, myofibers are broadly classified into two main 

types: type I (slow) and type II (fast) fibers. In addition 

to specific fiber types, skeletal muscle contains 

numerous other support cells, including endothelial 

cells, satellite cells, fibro-adipogenic precursor cells and 

infiltrating immune cells [25, 29, 30]. Bulk RNA-seq 

approaches can only provide a combined and 

aggregated view of the gene expression changes across 

all fiber and cell types. 
 

Here, we contrast bulk RNA profiling of 72 biopsies 

from the lower limb muscles of young, old, and older 

frail human subjects, together with single nuclei 

sequencing (snuc-Seq) of 17 independent young and 

old muscle samples. Using the new technology of 

digital spatial profiling, which reports gene expression 

values at the genome wide level within the context of 

tissue microarchitecture [31], we also validate and 

localize several genes within individual fibers of young 

versus older subjects. This combined approach 

provides a more complete insight into the heterogeneity 

of both cell composition and gene expression in aged 

individuals of differing functional capacities, and is 

generally applicable to other tissues. The methodology 

is also particularly useful for enumerating changes in 

cell frequency with age, a fundamental outcome of 

aging. Finally, we identified unique populations of 

cells in aged versus frail muscle, including senescent 

cell types. Our results uncover potential new targets for 

therapies to treat age-related muscle loss and 

sarcopenia. 

 

RESULTS 
 

Cohort description and clinical characteristics 
 

We isolated 20–50 mg biopsies from the vastus lateralis 

of 72 adult men [11, 32], including 19 young subjects 

(avg. age = 20 years) and 53 older subjects (avg. age = 75 

years). The older subjects were subsequently classified 

into non-sarcopenic (N = 29) and sarcopenic (N = 24) 

subjects based on a variety of functional criteria. Given 

that there is at present no consensus on the definition of 

Sarcopenia, we used criteria that are most often used to 

assess populations thought to be sarcopenic [33] (see 

Supplementary Materials). These criteria included both 

functional and strength assessments. On average, older 

non-frail subjects had lower short physical performance 

battery (SPPB) test scores (p < .05), longer ‘Timed up 

and Go’ performances scores (p < .05), lower grip 

strengths (p < .05), Biodex determined isometric knee 

extension torque (p < .05) and leg press scores (p < .05) 

relative to younger subjects. Sarcopenic or frail older 

subjects had even more impaired SPPB scores (p < .05), 

longer ‘Timed up and Go’ performances (p < .05), lower 

grip strengths (p < .05), isometric knee extension torque 
(p < .05) and leg press scores (p < .05) relative to older 

non-frail subjects (Supplementary Figure 1, 

Supplementary Table 1). 

https://sennetconsortium.org/
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Changes in bulk gene expression with age and frailty 

in human muscle 

 

After quality control and processing using a standard 

RNA-seq pipeline (see Supplementary Materials), we 

performed bulk RNA sequencing on biopsies from all 

72 subjects. We then performed principal component 

analysis (PCA) on the resultant gene expression datasets 

(Figure 1A). These analyses showed that gene 

expression at the bulk RNA level was largely distinct 

 

 
 

Figure 1. Bulk RNA-seq identifies major gene expression changes in muscle with age. (A) Principal component analysis (PCA) of 

bulk young, old and frail skeletal muscle. (left) Young (less than 20 years old) in blue, old (more than 65 years old) in red. (right) Young 
(blue), old (red), frail subjects (green). (B) Volcano plot of expression changes in old vs. young muscle. Labelled top 30 by abs (logFC) ×  
-loglO (p-value). (C) Log (CPM) of MYH8, COL19Al, MTRNL8, CDKNlA, CDKN2B, AREG in young (green), old (blue) and frail subjects (red). 
Boxplot shows 25% percentile, 75% percentile and median. Stars were added when significant compared to young healthy (q < .01). (D) 
Number of DEGs per comparison. (E) Pathway analysis of dysregulated genes with age using KEGG, GO database (GSEA). 
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between younger versus older subjects (Figure 1A, 

Supplementary Table 1). We found 1442 differentially 

expressed genes (DEGs) between young versus 

sarcopenic, 613 between young versus old, and only 26 

between old versus sarcopenic (Figure 1D). Samples 

from the older age group were marked by a statistically 

significant upregulation in the expression of several 

genes, including MYH8, COL19A1, EDA2R, CDKN1A 

and CDKN2B (Figure 1B, 1C). Conversely, expression 

of the following genes was lower with age: IGFN1, 

MTND3P10, ATRNL1 and PVALB. Pathway analysis of 

the bulk data revealed several upregulated pathways of 

immune response, and bacterial response and 

downregulation of mitochondrial respiration (Figure 

1E). Sarcopenic and old muscle had similar signatures, 

compared to young muscle (Supplementary Figure 2A) 

(R2 = 0.9), but MYH8 was higher in the samples from 

sarcopenic compared to non-sarcopenic (Q < .05). 

 

To determine whether the aging signature we observed 

in human skeletal muscle was conserved across 

mammalian species, we compared our results to a 

published multi-tissue rat aging gene expression study 

[34]. Genes commonly upregulated in aged human and 

rat muscle included CDKN1A, EDA2R, MUSK and 

CDKN2B (Supplementary Figure 2B). Comparing our 

muscle aging signatures with a published plasma 

proteome aging signature [35], we determined that 

CXCL11, EDA2R, MUSK and CXCL9 were commonly 

upregulated with age (Supplementary Figure 2C). We 

also compared the genes that we found different 

between non-sarcopenic and sarcopenic subjects to a 

published signature of sarcopenia from subjects of 

Chinese descent in Singapore [36], but we did not 

observe any overlap (data not shown). These findings 

suggest frailty markers may differ depending on 

ethnicity and tissue type. 

 

Genes associated with functional performance and 

age 

 

We next asked whether these changes in gene 

expression were associated with clinical measures of 

function. Because age highly influenced most of the 

clinical metrics, we restricted this analysis to older 

subjects. Maintenance of muscle strength is generally 

considered more relevant to overall health at older ages 

[37]. For each clinical metric, we classified the subjects 

as good performers (greater than the mean) or poor 

performers (lower than the mean). Leg press was the 

clinical metric associated with the most changes in gene 

expression, and grip strength was associated with the 

least changes. RPL10P9 was upregulated in good 
performers of SPPB and ‘Timed up and Go’, whereas 

PNPLA3 was downregulated in good performers of 

isometric knee extension torque and leg press 

(Supplementary Table 2). Several genes were associated 

with both aging and muscle function. Indeed, one of the 

top downregulated genes with age - IGFN1 -- was also 

upregulated in good performers of ‘Timed up and Go’. 

Similarly, COL19A1, one of the top upregulated genes 

with age, was downregulated in those with strong knee 

extensors (high isometric knee extension torque) 

(Supplementary Table 2). These associations with both 

age and muscle function at older ages suggest a 

functional role for these genes in muscle decline, and 

therefore may serve as proxies for muscle function in 

the elderly. 

 

Single-nuclei sequencing reveals 7 clusters of unique 

cell types 

 

To determine how cell composition changes with age in 

muscle, we analyzed 17 independent biopsies from the 

vastus lateralis of younger and older individuals (6 

young, 11 old) using snuc-Seq. Single nuclei 

sequencing has several advantages in the context of 

tissues comprised of multiple cell types and syncitia. 

Many single cell sequencing experiments rely on 

complex enzymatic digestion procedures to isolate cells 

of interest from the tissue. Such procedures can alter 

gene expression. Thus, tissue snap frozen at the time of 

isolation may best preserve the “in vivo” status of gene 

or protein expression. Here, we also employed a 

dedicated instrument for rapid extraction of nuclei from 

snap frozen fresh muscle tissue (Singulator, S2 

Genomics) to rapidly isolate nuclei from the biopsies, 

thereby minimizing potential changes in gene 

expression resulting from conventional nuclei extraction 

procedures [38]. We then carried out snuc-Seq using a 

10× workflow to interrogate individual cell types in 

skeletal muscle. 

 

Following quality control, pre-processing, and 

alignment, we generated 143,051 transcriptomes from 

individual nuclei (93,406 old, 49,645 young). After 

normalization and clustering, we did not observe any 

batch effect between the samples (Supplementary 

Figure 3). Uniform Manifold Approximation and 

Projection (UMAP) analyses revealed 7 distinct 

clusters, each corresponding to a unique cell type. We 

assigned cell identity to specific clusters using known 

markers for type II fibers, type I fibers, fibro-adipogenic 

progenitors (FAPs), satellite cells (SCs), smooth muscle 

cells (SMC), endothelial cells (EC) and immune cells 

(macrophages, T/NK cells) (Figure 2A, Supplementary 

Figure 4, Supplementary Table 3). 

 

After normalizing to total myonuclei (type I + II), we 
then calculated the proportion of type I (slow) and type 

II (fast) fibers per subject that varied among the samples 

(Table 1). In an alternative normalization procedure, we 
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determined the proportion of fiber types based on nuclei 

from all other cell types (Table 1). Regardless of 

normalization procedure, quantitation of fiber types 

within individuals agreed with values reported in the 

literature using histological staining (Table 1) [39]. 

Similarly, we calculated the proportions of each major 

cell type between younger and older subjects. There 

was no significant difference in enumeration of nuclei 

associated with fiber types with age, FAPs, or 

macrophages. However, satellite cells, endothelial cells 

and smooth muscle cells were all significantly reduced 

with age (Table 1). Nuclei identified as derived from 

SCs in younger subjects comprised 5% of the nuclei 

population, consistent with prior reports, while older 

subjects had only 2% SC’s, consistent with reports of 

loss of this muscle specific stem cell with age [40–42]. 

Overall, these findings are consistent with previous 

muscle single nuclei studies in rodents and humans [19, 

21, 22, 24, 43] not focused on aging. The fast (MYH1/2) 

and slow (MYH7) myonuclei populations were present 

in our study, but MYH4 was not a marker in our dataset. 

FAPs, SATs, ECs, SMCs, T/NK and macrophages were 

similarly present in our dataset. We did not find a 

population of tenocytes (SCX), or myotendinous cells 

(COL22A1), previously reported by Dos Santos et al. 

[21]. Similarly, we did not find a population 

corresponding to the neuro-muscular junction (NMJ) 

(CHRNE, MUSK) in our dataset [44]. Functional 

denervation of individual motor units has been proposed 

as a cause for sarcopenia in rats [45]. Further, serum 

levels of C-terminal agrin were reported to be 

associated with sarcopenia, and as an indicator of 

 

 
 

Figure 2. Single-nuclei sequencing reveals 7 clusters of unique cell types, and differential gene expression with age. (A) 
Uniform Manifold Approximation and Projection (UMAP) of 5′ single nuclei sequencing of human muscle. All samples are shown, after data 
normalization and Louvain clustering. (B) Top 20 differentially expressed genes (DEG), in old vs. young samples. All cells from all cell types 
are used in this test. Wilcoxon test, top 20 DEGs by logFC. (C) Expression of PDK4 and IGFNl in young and old samples. 
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Table 1A. Normalized by total myonuclei (type I and II). 
 Old N = 11 Young N = 6 P 

Slow skeletal fibers 0.44 (0.16) 0.34 (0.13) 0.2 

Fast Skeletal fibers 0.56 (0.16) 0.66 (0.13) 0.2 

FAPs 0.13 (0.08) 0.15 (0.08) 0.732 

EC 0.04 (0.02) 0.10 (0.03) 0.005 

Macrophages (T/N.K cells) 0.05 (0.04) 0.06 (0.03) 0.877 

SCs 0.02 (0.01) 0.05 (0.03) 0.034 

Smooth.MC 0.02 (0.01) 0.06 (0.02) 0.001 

 

Table 1B. Normalized by total nuclei. 

 Old N = 11 Young N = 6 P 

Slow skeletal fibers  0.34 (0.12) 0.24 (0.08) 0.057 

Fast skeletal fibers 0.45 (0.15) 0.47 (0.11) 0.757 

FAPs 0.10 (0.05) 0.10 (0.05) 0.956 

EC 0.03 (0.01) 0.07 (0.02) 0.002 

Macrophages (T/N.K cells) 0.04 (0.03) 0.04 (0.02) 0.912 

SCs 0.02 (0.01) 0.04 (0.02) 0.033 

Smooth.MC 0.02 (0.01) 0.04 (0.01) 0.002 

 

instability and loss of the NMJ [46]. We tested this 

hypothesis by assessing the levels of agrin in the serum 

from individuals in our cohort, but we could not identify 

a statistically significant difference between young 

versus older subjects. 

 

PDK4 is upregulated and IGFN1 is downregulated 

with age in all cell types 

 

We next examined broad changes between young and 

old samples by pooling all cell types. Notable were an 

upregulation of PDK4 and downregulation of IGFN1 

expression. IGFN1 was expressed in 49% of young 

sample nuclei, compared to 5% of old sample nuclei. 

PDK4 was expressed in 15% of young nuclei, and 43% 

of old sample nuclei (Figure 2B, 2C). We next 

compared the aging signatures obtained from our bulk 

study to this pooled single nucleus aging signature. 

Both bulk and single nuclei shared several commonly 

dysregulated genes, with marked IGFN1 down-

regulation and UNC13C upregulation, using both 

methods (Supplementary Figure 2D). 

 

We next examined cell-type specific changes with age. 

We identified 1,343 significant differentially expressed 

genes (DEGs), at a false discovery rate (FDR) of 1%. 

Some of these changes were common to many cell 

types, including those with altered PDK4 and IGFN1 

expression, but most were cell type specific. Of note, 
the transcriptomes that changed the most with age were 

from fast skeletal muscle fibers (Figure 3A). HLA 

genes (HLA-A, HLA-B, HLA-C, B2M) were upregulated 

in FAPs, immune cells and Fast Skeletal muscle. 

Mitochondrial genes (MT-ATP8, MT-CO3, MT-CYB) 

were upregulated in smooth muscle, satellite cells, and 

endothelial cells. PDK4, APOD, TXNIP were 

upregulated in most cell types. IGNF1, MTRNR2L12, 

MYLK4, NR4A1 declined in expression with age in most 

cell types. (Figure 3B, Supplementary Table 2) It is well 

recognized that different muscle fiber types change 

dynamically with age. Among recognized fiber type 

markers [47, 48], MYH1 (fast type 2×), MYH2 (fast type 

2A), MYH7 (slow type I fibers) and MYH7B (slow type 

I fibers) were present in our dataset, and MYH2 

expression significantly declined with age, consistent 

with previously reported type II fiber atrophy [49]. 

 

We then performed a pathway analysis of the age-

related changes within each cell type (Figure 4A, 4B). 

Several pathways related to mRNA translation were 

upregulated with age in SMCs, SCs and fast SMC 

(Figure 4A). Antigen presentation, gamma interferon 

responses and complement cascades were upregulated 

in immune cells (Figure 4A). Muscle contraction 

pathways were upregulated in slow SMCs (Figure 4A). 

Conversely, pathways related to collagen and 

extracellular matrix (ECM) declined with age in ECs, 

SCs, FAPs and SMCs (Figure 4B). Glucose metabolism 

was downregulated in SMCs (Figure 4B). Table 2 

shows a summary of differentially modulated genes 

involved in these pathways. Mitochondrial counts are 

frequently used as a proxy for quality control in single 
nuclei library preparation [50]. Therefore, we also 

tested the percentage of counts coming from the 

mitochondrial genome in young and old samples. For 

young samples 0.47% (0.27%–0.89%) of counts 
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belonged to the mitochondrial genome, for old samples 

this number was 0.71% (0.37%–1.3%) (p < 2.2e10-16, 

Wilcoxon). This finding suggests a small but significant 

increase in mitochondrial counts from young to old 

samples, potentially implying more cell death, or 

“leakiness” in our aged biopsies. 

Identification of a small population of 

CDKN1A/MYH8/COL19A1/LRRK2/EDA2R+ cells in 

aged muscle consistent with senescence 

 

To investigate how muscle cell composition changes 

with age, we determined the frequencies of different 

 

 
 

Figure 3. Common and cell-type specific gene expression changes with age. Significant differentially expressed genes (DEG) in old 

versus young samples. A Wilcoxon test was performed for each gene in each cell type between samples, with a logFold-Change (logFC) 
threshold of .25, and False-Discovery Rate (FDR) <1%. Red is upregulated with age, blue is downregulated. (A) All DEGs are shown by cell 
type. (B) Top 20 DEGs are shown by cell type, ranked by absolute logFC. 

 

 
 

Figure 4. mRNA translation, gamma interferon and complement cascade are upregulated in selective cell types with aging. 
Pathway analysis of top 100 up-regulated and top 100 down-regulated genes with age in each cell type. GO, KEGG, Reactome pathways were 
queried. Over-representation was assessed using a hyper-geometric test at FDR 1%. (A) Upregulated with age. (B) Downregulated with age. 
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Table 2. Summary of pathways dysregulated with age, including implicated genes. 

Summary (Up) Summary (Down) 

Translation: Collagen/ECM: 

RPLP0/RPL10/RPL37A/RPS16/RPL13A/RPL21/… COL3A1/COL5A3/COL6A2/COL4A1/COL15A1/COL1A2/… 

Antigen presentation/Interferon gamma: Glucose metabolism: 

HLA-A/HLA-B/B2M/HLA-C/HLA-DRB1/HLA-DRA/HLA-F/… TPI1/GPI/ENO3/FBP2/GOT1 

Complement cascade:  

C1S/C3/C1R  

Muscle contraction:  

MYL2/TCAP/TNNC2/TNNT1/TNNC1/ACTN2/TNNI1  

 

subtypes within each sample. Our approach bypasses 

laborious counting of histological sections to enumerate 

distinct cell types, and enzymatic digestions followed 

by isolation of cells with known specific markers using 

flow cytometry. It also has the capability to define novel 

cell subtypes that may drive pathology. 

 

We first examined FAPs cells identified by snuc-Seq 

profiling. One cluster was largely PDGFRA+, but in the 

other we observed expression of the muscle contraction 

gene Tryadin (TRDN) and skeletal muscle ryanodine 

receptor (RYR1) gene. Tryadin and RYR1 are known to 

interact, and are involved in muscle contraction [51]. 

We speculate that these nuclei are derived from cells 

attached to or contaminated by muscle fiber markers, 

since these markers have not yet been reported in FAPs. 

However, the frequency of neither subtype changed 

with age (Supplementary Figure 5A). We also identified 

infiltrating immune cells, including T/natural killer 

(NK) cells, macrophages and mast cells. There were no 

changes with age in the frequency of these immune 

cells (Supplementary Figure 5B). For CD34+ nuclei, we 

identified two main cell types. One cluster expressed 

PDGFRB, and was consistent with vascular smooth 

muscle cells. There was no change in the frequency of 

these cells with age (Supplementary Figure 5C). 

Consistent with prior reports, we observed an ~ 20–40% 

decrease in satellite cell frequency with age when 

normalized to total myonuclei (type I + II fibers) 

(Table 1). However, within SCs, which were Pax7+, we 

observed several distinct subclusters, possibly defining 

functional subgroups for this cell type. One subcluster 

expressed LGR5 and MYH7B, which in a recent report 

represents a subset of activated SCs that contribute to 

muscle regeneration [52] (Supplementary Figure 6). 

Lastly, we tested whether the transcriptomes derived 

from fast skeletal muscle fibers revealed more than one 

subtype. All clusters were present in equal proportions 

between young versus old samples, with one exception. 

This unique cluster contained CDKN1A/MYH8/ 
COL19A1/LRRK2/EDA2R+ cells and was present only 

in samples from older adults (Figure 5). Interestingly 4 

of these genes (CDKN1A, MYH8, COL19A1, EDA2R) 

were also among the top upregulated genes with aging 

in the bulk RNASeq study. A recent single nuclei 

study in mice also identified a subset of senescent 

myonuclei expressing CDKN1A and EDA2R in old 

muscle [53], implying this subpopulation is conserved 

between mice and humans. Type II fibers are known  

to atrophy with age [49], but the role of these specific 

genes in age-related atrophy remains to be determined. 

 

Spatial transcriptomics captures aging muscle fiber 

reorganization, and validates RNA sequencing 

 

As an alternative approach to validate our snuc-Seq 

results, we performed spatial transcriptomic profiling of 

multiple paraffin embedded human skeletal muscle 

biopsies (4 young and 3 old subject samples) using a 

GeoMx Digital Spatial Profiler (DSP, nanoString 

Figures 4, 5). Typically, muscle is embedded for 

histology in a cross-sectional fashion, showing 

multiple characteristics of fiber structure (e.g., fiber 

cross-sectional area). However, in this orientation, 

samples are incompatible with DSP technology 

applied to single fibers due to limitations on probe 

capture from minimum surface area/region of interest. 

Therefore, we embedded fibers in a longitudinal 

profile, permitting investigations by DSP for single 

fibers, as this approach increased the available area 

interrogated per individual fiber relative to cross-

sectionally embedded samples. Tissue sections were 

stained with the nuclear marker DAPI to mark nuclei, 

and with the muscle specific marker Desmin (Figure 

6A). Regions of interest (ROIs) were chosen 

preferentially within longitudinal sections, enabling 

profiling to be performed within distinct individual 

muscle fibers. Whole transcriptome spatial profiling 

was carried out in 80 total ROIs (40 young, 40 old 

(Figure 6B)). Comparisons of gene expression between 

young versus old revealed 1041 significantly 

differentially expressed genes (DEGs), of which 530 

were upregulated and 511 downregulated. Top 
upregulated genes include slow skeletal type troponin 

TNNT1 and the myosin heavy chain MYH7, whereas 

MYH2 and fast skeletal type troponin TNNT3 were 
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downregulated (Figure 6C). This finding indicates 

selective atrophy from fast (type 2) to slow (type 1) 

twitch fibers, confirming previous findings [54–56], and 

validates spatial profiling as a tool to investigate age-

related loss of function. We also identified an 

upregulation of ITK, a positive regulator of the SASP 

factor IL-8 [57, 58]. Together with an upregulation of 

proinflammatory cytokine IL1B, a SASP enriched 

cellular milieu can be inferred, implying senescence is 

an active component of aging skeletal muscle. 

Of the total 1041 genes, 225 were also validated as 

DEGs in the bulk RNAseq data. Of these 225, 11 genes 

are further shared with pseudo bulk-derived DEGs from 

the single nuclei RNA data: NT5C2, SAMD4A, LGR5 

(upregulated), FBP2, NDRG2, IGFN1, COX6A2,  

TPI1, ALDOA, TNNC2, MYH2 (downregulated). 

Pathway analysis revealed inhibition of oxidative 

phosphorylation, glycolysis, gluconeogenesis, and 

NRF2 signaling. While Sirtuin signaling was activated 

overall, only SIRT6 was differentially regulated, and in 

 

 
 

Figure 5. Identification of a small population of senescent cells in the fast skeletal muscle. (A) Subtypes of fast-skeletal muscle 

cells (UMAP, all samples). (B) Cluster 5 is circled, with expression of LRRK2, CDKN1A, MYH8, COL19A1 and TNNT3. (C) Difference in 
proportions between young and old for all subtypes. Significance of the t-test between young and old is shown at the top of 5C. 
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a negative direction as previously reported in other 

aging studies [59–61]. Toll-like receptor signaling was 

also activated in sarcopenic patients, an aging response 

also seen in macrophage STAT1 phosphorylation 

impairment and decreased PI3-kinase activity in 

myeloid dendritic cells [62, 63]. The ERK/MAPK 

pathway is also activated in aged ROIs in our skeletal 

muscle and has previously been linked to several 

hallmarks of aging including DNA damage, oxidative 

stress, and RAS signaling [64, 65]. 

 

DDX5 was identified as the top inhibited regulator in 

aged samples. In a 2019 study from Fan et al. [66], 

DDX5 was shown to be required for maintaining 

vascular smooth muscle cell homeostasis and 

quiescence. This RNA helicase may thus play an 

important role in the maintenance of healthy muscular 

vasculature, making it a potential therapeutic target in 

sarcopenic or frail patients. 

Confirming gene expression signatures from aged 

skeletal muscle in cultured senescent myoblasts 

 

We wished to validate our findings regarding senescent 

cells arising with age in skeletal muscle. Therefore we 

tested the hypothesis that induced senescence in a 

muscle cell culture model would recapitulate some of 

the gene signatures we identified in CDKN1A-

expressing populations of nuclei detected in old muscle 

samples. We induced senescence in cultured primary 

human skeletal muscle myoblast cells (HSMMs), 

comprised of both myogenic progenitor cells and 

myotubes, using the genotoxic agent doxorubicin, an 

increasingly used senescence inducer [67–69]. After 7 

days post doxorubicin exposure, we determined 

expression of the following genes: CDKN1A, MYH8, 
COL19A1, LRRK2, EDA2R and PDK4 in senescent 

versus non-senescent cells by quantitative PCR (qPCR). 

In both cell types, all target genes were significantly 

 

 
 

Figure 6. Reorganization of muscle fibers with age revealed by spatial transcriptomics. (A) Young muscle fibers, several ROls are 

shown in yellow delineating individual sections of distinct fibers. Desmin (blue), Syto83 (green), aSMA (yellow), CD68 (red). (B) Differentially 
expressed genes in old versus young spatial profiled muscle. (C) log (counts) of top differentially expressed genes. 
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upregulated in the senescent compared to non-senescent 

cells (Figure 7). These results suggest that cultured 

senescent cells derived from muscle exhibit some of the 

same markers we identified in nuclei derived from 

muscle biopsies of older frail individuals. We recently 

reported the small heat shock protein CRYAB as a 

critical mediator of senescence in multiple cell types 

from both mouse and human tissues including muscle 

[68]. CRYAB has been previously reported to increase 

with age, and specifically aggregate within human 

skeletal muscle [70]. We therefore measured CRYAB 

gene expression in individual nuclei via snuc-Seq, and 

determined small but significant increases in CRYAB 

gene expression in multiple cell types isolated from 

young versus old skeletal muscle (Supplementary 

Figure 7), consistent with both our cultured myoblast 

gene expression studies, and increased senescence with 

age within subpopulations of cell types comprising 

skeletal muscle. 

 

DISCUSSION 
 

In this study, we determined changes in gene 

expression due to aging and frailty in multiple distinct 

cell types derived from human skeletal muscle. We 

analyzed and verified senescent gene expression 

signatures derived from bulk RNA-seq and a cell type-

specific approach using single nuclei sequencing, 

digital spatial profiling, and cultured human skeletal 

muscle myoblasts. 

 

At the bulk RNA-seq level, the top markers that 

increased with age and frailty were MYH8, COL19A1 

and CDKN1A, in agreement with previous studies 

showing increased expression of CDKN1A (p21) and 

MYH8 in muscle biopsies from older individuals [12, 

71]. MYH8 encodes the developmental protein myosin-

heavy chain 8 (MYH8) [48]. It is transiently expressed 

during embryonic development, but expression declines 

shortly after birth. It is also necessary for muscle 

regeneration after injury [72]. The age-related rise in 

MYH8 expression, given its reported association with 

development and injury repair, suggests that aged 

muscle tissue chronically attempts to repair age-related 

damage. Further, a mutation in MYH8 is associated with 

severe congenital muscle contractile disorders (distal 

arthrogryposis syndromes) [48]. Thus, nuclei expressing 

MYH8 in aged skeletal muscle may indicate a response 

to age-related macromolecular damage or may represent 

a unique marker of muscle dysfunction. Interestingly, 

one prior report determined that HIV patients showed 

signs of premature muscle aging with similar gene 

expression signatures [71]. We determined that several 

markers previously reported to be upregulated in both 

 

 
 

Figure 7. Validation of senescent markers in cultured human muscle cells. Quantitative PCR (qPCR) of CDKN1A, MYH8, COL19A1, 

LRRK2, EDA2R and PDK4 after 7 days of incubation in senescent vs. non-senescent cells. Senescence was induced using Doxorubicin in a cell 
line of Myogenic Progenitor cells (un-differentiated cells, left) and Myotubes (differentiated HSMMs, right). Expression is shown relative to 
Actin. 3 replicates in each condition/gene. 
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rat and human muscle with age were also senescent 

markers: cyclin-dependent kinase inhibitors CDKN2B 

(p15Ink4b) and CDKN1A (p21), and the p53-dependent 

ectodysplasin A2 receptor (EDA2R) [73, 74]. 

 

At the single nuclei level, we report broad upregulation 

of PDK4 and downregulation of IGNF1 expression in 

muscle from older individuals. IGFN1 encodes the 

immunoglobulin like and fibronectin type III domain-

containing protein (IGFN1), and is required for 

myoblast fusion and differentiation [75]. PDK4 encodes 

pyruvate dehydrogenase kinase 4 and is overexpressed 

in skeletal muscle in patients with type 2 diabetes, 

fasting, and immediately post exercise [76–79]. We also 

detected an upregulation of several HLA genes (HLA-A, 

HLA-B, HLA-C), including the HLA gene B2M, a 

putative pro-aging factor in plasma that could be 

detrimental for cognition [80]. This finding is 

compatible with increased gamma interferon signaling 

with age [81], and supports the long standing hypothesis 

that inflammation is a significant component of aging 

[82] and muscle dysfunction [83]. Interestingly, 

CDKN2A (p16Ink4a), a classical senescence marker was 

not observed to be upregulated with age in bulk or 

single nuclei results. CDKN2A is alternatively spliced 

and is best detected from 10× single cell libraries using 

5’ library preparation, to increase the likelihood of 

detecting the alternatively spliced p16Ink4a transcript. 

Even though we used the 5’ library approach, we still 

did not detect increased levels of p16Ink4a with age. 

 

Gene expression of MYH2 (a type II fiber-specific gene) 

declined with age consistent with prior data [10]. We 

also quantitated a global decrease in the proportion of 

satellite cells in aged muscle, consistent with a loss of 

muscle satellite cells, which is well established in the 

literature [41, 49, 84]. Further, we identified a small 

population of CDKN1A/MYH8/COL19A1/LRRK2+ 

nuclei present only in muscle from older individuals. 

The expression profile of this population is consistent 

with that of senescent myonuclei, and may thus be 

targeted by senolytic compounds to improve muscle 

function [85]. We also confirmed several previously 

reported major aging pathways that are dysregulated in 

aged muscle. Collagen pathways declined with age, 

consistent with prior reports of decreased collagen 

production being a major phenotype of aging [86]. 

Translation pathways also increased with age. 

Interestingly, mTOR, a gene strongly implicated in 

mediating degenerative changes with age, also regulates 

mRNA translation [87]. Hence, our results also 

reinforce existing literature implicating fibrosis and 

mTOR dysregulation in aging skeletal muscle [88, 89]. 
 

Recent studies have explored changes in aging muscle 

at the single cell level. One study found a chronically 

inflamed state in aged muscle, using a new spatial 

method called CODEX [90]. Another study focused on 

senescent cells in old mouse muscle, identified a 

population of p21-expressing myonuclei exhibiting 

senescent phenotypes, consistent with our results [53]. 

Lastly, a study probing intercostal muscle from young 

and old humans, using single cell and single nuclei 

RNA-seq, found inflammation, fiber typing changes  

and microenvironment alterations, to be distinct 

mechanisms driving muscle aging [91]. 

 

We determined an association between differential 

gene expression at the bulk RNA level and clinical 

phenotypes. For example, increased IGFN1 

expression was associated with improved performance 

(‘Timed up and Go’). Accordingly, we hypothesize 

that IGFN1 has a beneficial role in aged muscle. In 

further support of this hypothesis, IGFN1 mRNA was 

shown to increase in elderly muscle after an exercise 

training regimen [92]. In contrast, low levels of 

COL19A1 (Collagen XIX Alpha 1) expression were 

also associated with improved performance in the 

isometric knee extension torque (‘Biodex’), which 

may indicate that increased COL19A1 expression 

relative to young individuals is detrimental to muscle 

function. High COL19A1 expression also correlates 

with poor prognosis in Amyotrophic Lateral Sclerosis 

(ALS) [93]. The fact that some transcripts, regardless 

of age, are associated with muscle performance could 

indicate that maintaining these genes at their 

appropriate level may help counteract muscle 

functional decline with age. 

 

Mature differentiated muscle is challenging to study 

because muscle fibers are difficult to isolate, and many 

nuclei operate in concert along the fiber with yet to be 

elucidated zones of influence. One approach is to 

dissect out individual muscle fibers and characterize 

them individually [25]. An alternative approach is to 

use single nuclei sequencing to capture gene expression 

from all nuclei in the fibers and all cells captured from a 

fresh muscle biopsy. In some cases, results from single 

nuclei can be concordant with bulk gene expression 

[26]. The newly emerging technique of digital spatial 

profiling, for identifying gene expression within fixed 

or frozen tissue, offers great potential for localizing 

differentially expressed genes and proteins in the 

context of tissue micro-architecture. Here we applied 

this technique to young and old tissue sections of fixed 

skeletal muscle and confirmed a number of 

differentially expressed genes with in-situ localization 

to the messages present within individual muscle fibers. 

In addition, using our overall workflow, we were able to 
enumerate changes in frequency of all cell types with 

age, providing a new gold standard methodology for 

understanding cell composition changes with age. 
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Our study provides several insights into human skeletal 

muscle aging. It revealed remarkable heterogeneity in 

gene expression patterns in this tissue, both within 

individual fibers and between fibers and other cell types 

comprising skeletal muscle. It also provides insights into 

mechanisms of muscle aging and frailty. We confirmed 

several of these markers of cellular senescence in 

cultured human senescent cells, validating our hypothesis 

that senescence is indeed contributing to the decline in 

function of aged human skeletal muscle. Using the array 

of technologies we describe here, we show that higher 

inflammation by pathway analysis, stem cell exhaustion 

shown by decrease in satellite cells, shifts in fiber typing, 

and increased markers of senescence all play a role in 

muscle aging and frailty. 

 

MATERIALS AND METHODS 
 

Subject recruitment 

 

We recruited adults between the ages of 18–30 and 65–

85 years old. Individuals were recruited from the 

community using advertisements in newspapers, at 

grocery stores, community centers and McMaster 

University. In addition, participants met with the study 

coordinators and had the trial explained to them. 

 

Inclusion criteria 

 

We recruited relatively inactive younger men and 

women (<1 hour of formal exercise/week) who were in 

the overweight category (body mass index or BMI 25–

29.9 kg/m2). The non-sarcopenic older male participants 

had a BMI of <30 kg/m2, muscle mass index of >7.23 

kg/m2, and a 4-meter walk test of >0.8 m/s. Subjects in 

the older adult sarcopenia group had a BMI of <30 

kg/m2, a muscle mass index of 8.51–10.75 kg/m2, and a 

4-meter walk test of <0.8 m/s. 

 

Exclusion criteria 

 

Medical conditions that precluded participation were 

diabetes mellitus (requiring more than one anti-diabetic 

drug), recent myocardial infarction (<6 months ago), 

hypertension (requiring more than two medications), 

congestive heart failure (requiring more than one 

medication), previous stroke with residual hemiparesis, 

renal disease (creatinine >140), liver disease, 

musculoskeletal injury affecting exercise tolerance, 

musculoskeletal disorder (other than age-related SM 

wasting), severe osteoporosis, severe osteoarthritis, 

severe peripheral neuropathy, chronic obstructive 

pulmonary disease (FVC or FEV1 <70% of age-

predicted mean value), asthma (requiring more than two 

medications), gastrointestinal disease, infectious disease, 

inability to consent, lactose intolerance/dairy protein 

allergy, and the use of medications affecting protein 

metabolism (for example, corticosteroids). Lifestyle-

associated behaviors that precluded enrollment were 

smoking, veganism, recent weight loss or gain (<3-

month period prior to the study), PA levels exceeding 

the minimal recommendations (150 min/week), and 

intake of supplements that affect musculoskeletal 

metabolism (e.g., whey, casein, calcium, creatine 

monohydrate, vitamin D, and omega-3 fatty acids). 

 

Subject classification 

 

Subjects were classified into young adults, non-

sarcopenic old adults and sarcopenic old adults 

according to the criteria in Supplementary Table 2. 

 

Biopsy collection 

 

Participants arrived in the morning in a fasted state (10–

12 hr) and rested in the supine position for 10 minutes. A 

muscle biopsy was then taken from the vastus lateralis 

using local anesthetic as previously described [32]. 

 

RNA extractions from muscle biopsies for bulk 

analysis 

 

Muscle biopsies were homogenized using a mortar and 

pestle with liquid nitrogen. RNA was extracted from the 

powdered samples using the RNeasy Fibrous Tissue 

Mini Kit (Qiagen) and the QIAcube automatic 

processor (Qiagen). Integrity and concentration of the 

RNA was assessed using the Tapestation 4200 (Agilent 

Technologies), with the cut-off for acceptable integrity 

being an RNA integrity number (RIN) >7. Batch-tag-

seq libraries were then produced from the RNA and run 

on the HiSeq 4000 by the DNA Technologies Core at 

U.C. Davis. 

 

Single nuclei RNA extraction and processing 

 

Nuclei were isolated from the biopsies using the 

Singulator instrument (S2 Genomics). The instrument 

was primed with cold nuclei isolation and storage 

buffers (S2 Genomics) and the biopsy was loaded into 

the cartridge and covered with the 19.7 mm grinding 

cap. The “Nuclei_All_Tissues” protocol was used to 

isolate nuclei, after which the nuclei were centrifuged 

for 5 minutes and resuspended in buffer. The nuclei 

were counted using a Countess II Automated Cell 

Counter (Invitrogen), centrifuged again for 5 minutes, 

and resuspended at the proper concentration for use in 

the Chromium Single Cell 5’ Library and Gel Bead Kit 

v1 (10× Genomics). Samples were processed using the 
Chromium Single Cell A Chip Kit and Chromium 

Controller (10× Genomics). Quality control was 

performed on the Tapestation 4200 (Agilent 
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Technologies). Libraries were sequenced in one lane of 

a NovaSeqS4 by the U.C. Davis Genomics Core. 

 

Bulk RNAseq data analysis 

 

Reads were aligned to the human genome using the 

STAR aligner and GRCh38 as the reference genome. 

Counts were computed using the featureCounts function 

in the subread software. Genes with a total count of less 

than 10 were removed from the analysis. PCA of 

differentially expressed genes were derived by the 

DESeq2 library in the R software, with absolute log 

Fold Change (logFC) >1.5 and False-Discovery Rate 

(FDR) <5%. Supplementary Table 3 shows QC details 

for libraries prepared for each sample. As a convention, 

anytime we refer to “A vs. B”, genes with a positive 

fold-change are upregulated in “B”. 

 

Single-nuclei 5’ RNAseq data analysis 

 

Reads were mapped to the human genome using Cell 

Ranger (10× Genomics), and the GRCh38 genome 

reference. Cells were removed if they expressed <200 

unique genes. Genes not detected in any cell were 

removed from subsequent analysis. One sample was 

discarded due to low quality. Samples in this study 

averaged less than 1% mitochondrial counts per sample, 

but counts were higher in the old samples (p < 10^–16). 

Read count normalization, variable feature detection 

(nfeatures = 2000), scaling, UMAP (ndim = 10), and 

differential expression were computed as described in the 

Seurat package [94]. Clustering was performed by the 

Louvain algorithm (resolution = 0.2). No batch effect was 

observed. Cell types were characterized by a combination 

of known markers and de novo cluster markers (Table 1). 
 

Pathway analysis 
 

To derive the pathways containing differentially 

regulated genes, we performed a hyper-geometric test to 

assess over-representation. We used the clusterProfiler 

R package on the database Gene-Ontology (GO), Kyoto 

Encyclopedia of Genes and Genomes (KEGG). Gene 

set enrichment analysis was performed [95], using log 

Fold-Change as ranking metric. 
 

Spatial transcriptomics 

 

Paraffin embedded human skeletal muscle biopsies 

(4 young, 3 old) were profiled using the GeoMx Digital 

Spatial Profiler (nanoString), as previously described 

[96]. The standard GeoMx workflow was employed 

[96] 5 µm tissue sections were cut from the fresh-frozen 

tissues, and mounted on superfrost + glass slides and 

used within a week of cutting. Sections were then fixed 

in 10% NBF for overnight, then antigen retrieval 

followed by a proteinase K digestion to make available 

RNA within the tissue (1 mg/ml). GeoMx Hu WT 

probes (>18,000 protein coding genes) were then 

incubated overnight in a humidified chamber at 37°C to 

allow probes to anneal to expressed genes in the tissue. 

Morphology markers were then applied to the tissue for 

1 hour in a humidity chamber; we used a directly 

conjugated antibody (FITC-525 nM) against desmin 

(for fiber detection), and for nuclei we used Syto83 

(Cy3/568 nMM). Slides containing probes and 

morphology markers were then loaded into the DSP, 

and polygonal regions of interest within individual 

fibers were then drawn on each sample, with up to 4 

tissue sections/slide, for a total of eighty ROI’s across 

the 7 samples. ROI counts were normalized by area. 

Then, PCA, differential gene expression testing was 

performed using a linear model on each gene, 

comparing ROIs from young and old. 
 

Cell culture 

 

Human skeletal muscle myoblasts (HSMMs; Lonza) 

were maintained at 37°C, 3% O2 and 5% CO2 in skeletal 

muscle growth media (SkGM2; Lonza). Differentiation 

was induced by replacing SkGM2 media with DMEM 

supplemented with 2% horse serum. For senescence 

induction, cells were treated with 50 nM (differentiated 

cells) or 250 nM (un-differentiated cells) of doxorubicin 

(Doxo) for 24 hours and then cultured for 7 days. 

 

qRT-PCR 

 

Total RNA was isolated from HSMMs 7 days after 

Doxorubicin treatment using the RNeasy mini kit 

(Qiagen), and reverse-transcribed using the PrimeScript 

RT reagent kit (TAKARA Bio Inc.). Expression levels 

of the genes of interest were measured by real-time 

quantitative PCR using a CFX-384 instrument 

(BioRad). The sequences of the primer pairs are 

indicated as shown below. The amount of mRNA was 

normalized to that of β-ACTIN mRNA. 

 

Primers 

 

Gene Forward (5′–3′) Reverse (5′–3′) 

CDKN1A/P21 AGTGGAATTAGCCCTCAGCA CATGGTCCCTGGGTTCTTC 

COL19A1 CGGCTGATGCAGTTTCATTTG CCAGGTCTCCCATAAGCTTGG 

LRRK2 ACGCAGCGAGCATTGTACCTT GGCTTCATGGCATCAACTTCA 
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EDA2R TGGACAGGAGCTATCCAAGGA ACAGTCCCCACAGACAGCATT 

PDK4 CCCGCTGTCCATGAAGCAGC CCAATGTGGCTTGGGTTTCC 

MYH8 AATGCAAGTGCTATTCCAGAGG ACAGACAGCTTGTGTTCTTGTT 

β-ACTIN CGACAGGATGCAGAAGGAGA CGTCATACTCCTGCTTGCTG 

 

Data availability 

 

Bulk and single cell RNA-seq counts and raw data have 

been posted on Gene Expression Omnibus (GEO) 

GSE167186). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Materials and Methods 
 

Physical performance assessment 
 

Physical performance battery 

 

A total of four functional tasks was performed once 

using a stopwatch that records to an accuracy of 0.01 

second. For the 6-minute walk test, participants walked 

as fast as possible around a 20 m track for 6 minutes 

and distance measured to the closest meter. The 

standard 4-stair climb test involved participants 

climbing 4 stairs as fast as possible. The 5× sit-to-stand 

test involved participants performing a series of 

consecutive rising and sitting positions from a sturdy, 

armless plastic chair secured against a wall, with arms 

crossed at the chest. Finally, the chair rise-and-walk test 

involved starting from a seated position, standing and 

walking as quickly as possible in a predetermined 

straight line to a 9.14 m pylon, while going around the 

pylon, and returning to the original seated position. 

 

Leg press 1RM 

 

Assessment procedures for determining lower body 

strength using leg press exercise equipment (Cybex 

Eagle®, Medway, MA, USA) required participant to sit 

in the leg press machine with the right and left foot on 

the weight platform. The seat and back pad were 

adjusted so that feet were flat on the platform a hip-

width apart, toes slightly angled out and legs parallel to 

each other. The interviewer then instructed the 

participant to grasp the handles or sides of the seat and 

extend their legs leaving a slight bend in the knee. Next, 

the participant removed the racking mechanism from 

the platform and grasped the handles or seat again. The 

participant began with a selected weight that is within 

their perceived ability, ~ 60 to 80% of maximum 

capacity. The participant lowered the platform slowly 

and controlled towards the chest, keeping hips and 

buttocks on the seat and the back flat against the back 

pad. Once the thighs were parallel to the platform, the 

participant extended the legs, pushing the weight back 

to the start position as hard and fast as possible. The 

participant was instructed to not allow hips to shift to 

one side, buttocks to rise or knees to move inward or 

outward during this exercise. The interviewer also 

instructed the participant to keep heels flat and not 

allow the knees to go beyond the toes. Once the 

repetitions were completed, the participant replaced the 

racking mechanism and exited the leg press. These 

procedures were adapted from those described by the 

National Strength and Condition Association (2008) and 

American College of Sports Medicine (2013). 

 

Hand grip strength (MVIC) 

 

Hand grip strength was measured using an isometric 

dynamometer (JAMAR®, Sammons, Bolingbrook, IL, 

USA). The grip width was adjusted to hand size, with 

the arm flexed at 90°C. The participant performed three 

5 s efforts with a one min rest between trials. 

 

Knee extension (MVIC) 

 

Isometric knee extension was measured by mechanical 

dynamometry (Biodex System 3, Biodex Medical 

Systems, Shirley, NY, USA). Participants were 

positioned in the machine with the knee flexed at 90°C 

and performed 3 × 5 s maximal voluntary contractions 

with 30 s rests between each trial. 
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Supplementary Figures 
 

 
 

Supplementary Figure 1. Clinical characteristics of the bulk cohort. (A) Boxplots of samples classified as young healthy, old healthy, 

mild sarcopenic and severe sarcopenic using the criteria shown in B. (B) Functional classification criteria. 
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Supplementary Figure 2. (A) Frail vs. young; Old vs. young (R2 = 0.9). (B) Conserved aging signatures in rat and human. (C) Comparison of 
muscle and blood aging signature. (D) Comparison of bulk and single cell aging signatures. All significantly differentially expressed genes (p-
adj < .05) are shown. Labelled are top 20 genes with greatest logFC (X) × logFC (V). 
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Supplementary Figure 3. (A) UMAP of each separate sample. (B) Cell type proportions in each sample. 
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Supplementary Figure 4. Markers specific for multiple cell types in muscle. Top 5 markers for each cell type, colored by logFC. Cell 
type specific pathways. Top 50 DEG per cell type were fed to the GO, KEGG, Reactome databases. Over-representation was assessed using 
an hyper-geometric test at FDR 1%. 
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Supplementary Figure 5. (A–C) Subtypes of FAPs, immune cells, and endothelial cells. Subtypes of each cell type is shown (UMAP, all 
samples). Markers expressed in different subtypes. Difference in proportions between young and old for all subtypes. Significance of the  
t-test between young and old is shown at the top. 
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Supplementary Figure 6. Subtypes of SATs (UMAP, all samples). Markers expressed in different cell types. Difference in proportions 
between young and old for all subtypes. Significance of the t-test between young and old is shown at the top. 
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Supplementary Figure 7. CRYAB gene expression in single nuclei with age. A small but significant increase in CRYAB is seen within 
each cell type with age. Abbreviation: MC: muscle cells. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 3. 

 

Supplementary Table 1. Mean (standard deviation) values for clinical parameters in the bulk cohort. 

 Old healthy N = 29 Frail N = 24 Young N = 19 

Age 72.4 (7.07) 76.9 (7.44) 22.1 (2.95) 

6 min walk test (m/s) 1.10 (0.22) 0.97 (0.23) 1.19 (0.24) 

Peak Torque (Nm) 196 (41.4)  145 (30.7) 290 (69.6) 

Time Up and Go (sec) 7.56 (1.35) 8.80 (2.05) 6.08 (0.87) 

SPPB Total 11.1 (1.03) 9.61 (1.95) 12.0 (0.00) 

Grip Strengh 43.2 (8.54) 37.5 (8.85) 50.0 (9.89) 

Biodex 142 (31.0) 112 (28.9) 176 (35.5) 

 

Supplementary Table 2. Assessment of changes in bulk RNA-seq with clinical parameters. 

Parameter Up Down 

SPPB RPL10P9, CGA, MAP7D2  

Grip Strengh PPBP, SPAM1, SPATA17, LRRC65  

Time Up and Go RPL10P9, GRP20, PPFIA3, IGFN1, GAS2L2 MTRNRL8, MTND4P24 

6 min Walk Test MTCYBP35, PP2R2B, CDK18, S100A2, CAMD5  

Biodex GPR61, MAP7D2 
COL19A1, MYCL, LMO2, MPZL2, PNPLA3, 

SLC47A2 

Leg Press  PAX5, COL25A1, NPTX1, PNPLA3 

Analysis of old vs. frail samples only. Clinical factors were binarized to good and bad performers if they were above or below 
the median. DEGs between good and bad performers are shown for 6min walk test, SPPB, ‘Time up and Go’, grip strength, 
Biodex and leg press with P-value < 0.01, abs (logFC) >2 are shown. 

 

Supplementary Table 3. Bulk sequencing library characteristics for each sample. 

 

 




