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ABSTRACT

Observability can determine which recorded variables of a given system are optimal for discriminating its different states. Quantifying
observability requires knowledge of the equations governing the dynamics. These equations are often unknown when experimental data are
considered. Consequently, we propose an approach for numerically assessing observability using Delay Differential Analysis (DDA). Given a
time series, DDA uses a delay differential equation for approximating the measured data. The lower the least squares error between the pre-
dicted and recorded data, the higher the observability. We thus rank the variables of several chaotic systems according to their corresponding
least square error to assess observability. The performance of our approach is evaluated by comparison with the ranking provided by the sym-
bolic observability coefficients as well as with two other data-based approaches using reservoir computing and singular value decomposition
of the reconstructed space. We investigate the robustness of our approach against noise contamination.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0015533

A popular approach for studying nonlinear dynamical systems
from a recorded time series is to reconstruct the original system
using delay or derivative coordinates. It is known that the choice
of the measured variable can affect the quality of attractor recon-
struction. Unlike in linear systems for which the state space is
observable or not from the measurements, nonlinear systems are
more or less observable from measurements depending on the
state space location. Moreover, the observability strongly depends
on the measured variables. It is, therefore, useful to assess the
observability provided by a variable using a real number within
the unit interval between two extreme values: 0 for nonobservable
and 1 for full observability. Analytical techniques for determin-
ing observability require knowledge of the underlying equations,
which are typically unknown when an experimental system is
investigated. This is often the case for social and biological net-
works. It is thus of primary importance to assess observability
directly from recorded time series. In this paper, we show how
Delay Differential Analysis (DDA) can assess observability from

time series. The performance of this approach is evaluated by
comparing our results obtained for simulated chaotic systems
with the symbolic observability coefficients obtained from the
governing equations.

I. INTRODUCTION

Studying dynamical systems from real world data can be dif-
ficult as they are often high-dimensional and nonlinear; moreover,
it is typically not possible to measure all the variables spanning the
associated state space.1–7 In theory, it is possible to reconstruct the
non-measured variables by using delay or differential embeddings
from a single measurement.8 However, when performing state-space
reconstruction, the dimension required to obtain a diffeomorphi-
cal equivalence—required for correctly distinguishing the different
states of the system—with the original state space may depend on
the measured variable(s).9 Indeed, a d-dimensional system can be
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optimally reconstructed from a given variable with a d-dimensional
embedding, but a higher-dimensional space may be required when
another variable is measured. For instance, the Rössler attractor
is easily reproduced with a three-dimensional global model from
variable y, but a four-dimensional model9 or a quite sophisticated
procedure10 is needed when variable z is measured. It was shown
that data analysis often (if not always) depends on the observability
provided by the measured variable.11–13

In the 1960s, the concept of observability and its mathematical
dual, controllability, was introduced by Rudolf Kálmán in control
theory for linear systems.14 These concepts were later extended for
nonlinear systems in the 1970s from the perspective of differen-
tial geometry.15 Observability assesses whether different states of the
original system can be distinguished from the measured variable.
A system is said to be fully observable from some measurement if
the rank of the observability matrix is equal to the dimension of the
system.16,17 With such an approach, the answer is either fully observ-
able or nonobservable. This approach is sufficient for linear systems
because the observability matrix does not depend on the location in
the state space.

This is not true for nonlinear systems, and observability coef-
ficients were introduced to overcome this discrepancy answer.9,18

Observability coefficients are real numbers within the unit interval
between two extreme values: 0 for nonobservable and 1 for fully
observable. These coefficients are estimated at every point of the
trajectory produced by the governing equations in the state space
and then averaged along that trajectory.9,18 It is also possible to con-
struct symbolic observability coefficients from the Jacobian matrix
of the system studied.19,20 In this way, observability takes a graded
value according to the probability with which the attractor inter-
sects the singular observability manifold,21 that is, the subset of the
original space for which the determinant of the observability matrix
is zero. The great advantage of these coefficients is that they allow
comparing the observability provided by variables from different
systems and they can be computed for high-dimensional systems.7

It is then possible to rank the variables according to the observabil-
ity of the original state space they provide. The dependency of the
observability on the measured variable is due to the way variables
are coupled in the original system.22 Symmetries are often sources
of difficulty for assessing observability, particularly because recon-
structing the original symmetry is not possible from a single variable
if the symmetry differs from an inversion.23,24

The weakness of these analytical approaches is that the govern-
ing equations must be known and it is not possible to assess observ-
ability from experimental data. A first attempt to overcome this was
based on a singular value decomposition of some matrices built from
local data.25 Results were encouraging, but some slight discrepan-
cies with analytical results were noticed. Another approach, based
on a model built directly from the data using reservoir computing,
was also proposed.26 In both cases, some discrepancies with the sym-
bolic observability coefficients were observed. It therefore, remains
challenging to develop a reliable technique that always matches with
theoretical results. In this work, we propose a measure for assessing
observability from recorded data by using DDA and compare our
results and those obtained—when available in the literature—with
the two techniques discussed above with the symbolic observabil-
ity coefficients computed for several well-studied chaotic systems.

Here, DDA is based on a delay differential equation that approxi-
mates the dynamics underlying the measured time series. Contrary
to what is done with global modeling27 or reservoir computing,28

there is no need for an accurate model. Previous work showed a
rough model with a very limited number of terms (typically three) is
sufficient to detect dynamical changes or classify various dynamical
regimes.29–31

The subsequent part of this paper is organized as follows.
Section II A is a brief introduction to the computation of symbolic
observability coefficients. Section II B provides an introduction to
DDA and explains how it can be used for ranking variables accord-
ing to the observability of the state space they provide. Section III
introduces the investigated chaotic systems and provides the corre-
sponding symbolic observability coefficients. Section IV is the main
section of this paper: it discusses the performance of DDA for assess-
ing observability of the chaotic systems and compares it with those
of the two other data-based techniques. Section V provides some
conclusions.

II. THEORETICAL BACKGROUND

A. Symbolic observability coefficients

Let us consider a d-dimensional dynamical system represented
by the state vector x ∈ R

d whose components are given by

ẋi = fi(x1, x2, x3, . . . , xd), i = 1, 2, 3, . . . , d, (1)

where fi is the ith component of the vector field f. Let us intro-
duce the measurement function h(x) : R

d 7→ R
m of m variables

chosen among the d ones spanning the original state space. It is
then required to reconstruct a space R

dr (dr ≥ d) from the m mea-
sured variables. One has to choose dr − m derivatives of these m
measured variables to get a dr-dimensional vector X spanning the
reconstructed space. Commonly, observability is assessed by using
dr = d.16,17 In the present work, we are only working with scalar time
series (m = 1). The change of the coordinate between the original
state space and the reconstructed one is thus the map,

8 : R
d(x) 7→ R

d(X). (2)

When the derivative coordinates are used for spanning the recon-
structed space, the map can be analytically computed.32 The observ-
ability of a system from a variable is defined as follows.16,33 For
the sake of simplicity, let us limit ourselves to the case m = 1 (a
generalization to the other cases is straightforward).

Definition 1. The dynamical system (1) is said to be state
observable at time tf if every initial state x(0) can be uniquely
determined from the knowledge of the vector s(τ ), 0 ≤ τ ≤ tf.

To test whether a system is observable or not is to construct the
observability matrix,15 which is defined as the Jacobian matrix of the
Lie derivatives of h(x). Differentiating h(x) yields

d

dt
h(x) =

∂h(x)

∂x
ẋ =

∂h(x)

∂x
f(x) = Lfh(x),

whereLfh(x) is the Lie derivative of h(x) along the vector field f. The
kth order Lie derivative is given by

L
k
f h(x) =

∂Lk−1
f h(x)

∂x
f(x),
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being the zero order Lie derivative the measured variable itself,
L0

f h(x) = h(x). Therefore, the observability matrix O ∈ R
d×d is

written as

O(x) =











dh(x)

dLfh(x)

...
dLd−1

f h(x)











, (3)

where d ≡ ∂

∂x
.

Theorem 1. The dynamical system (1) is said to be state
observable if and only if the observability matrix has full rank, that
is, rank (O) = d.

The observability matrix O is equal to the Jacobian matrix
of the change of coordinates 8 : x → X when derivative coordi-
nates are used.32 In this approach, the observability is either full or
zero. The term structural was introduced when the results do not
depend on parameter values.34 Computing the rank of the observ-
ability matrix is independent of parameter values and, consequently,
is an example of structural observability.35 Computing observability
with graphs1,34,36 is also a structural approach. We term observability
assessed from recorded data—necessarily dependent on the param-
eter values used for simulating the trajectory of the system—as
dynamical observability.35 This type of approach returns a real num-
ber within the unit interval: variables can be ranked between the two
extreme cases, 1.0 (0.0) for a full (null) observability. There is a third
type of observability, symbolic observability, which does not depend
on parameter values but allows ranking the variables.20 All types of
observability are not sensitive to symmetry-related problems. This
is due to the fact that observability is a local property, while sym-
metry is a global one. Consequently, symmetry may degrade the
assessment of observability.24

The procedure to compute symbolic observability coefficients
is implemented in three steps as follows.7,20 First, the Jacobian matrix
J of the system (1), composed of elements Jij, is transformed into

the symbolic Jacobian matrix J̃ by replacing each constant element
Jij by 1, each polynomial element Jij by 1̄, and each rational element

Jij by ¯̄1 when the jth variable is present in the denominator or by
1̄ otherwise. Rational terms in the governing equations (1) are dis-
tinguished from polynomial terms since the formers reduce more
strongly the observability than the latter.20

Then, the symbolic observability matrix Õ is constructed. The
first row of Õ is defined by the derivative of the measurement func-
tion dh(x); that is, Õ1j = 1 if j = i and 0 otherwise when the ith

variable is measured. The second row is the ith row of J̃ . The kth
row is obtained as follows. First, each element of the ith row of
J̃ is multiplied by the corresponding ith component of the vec-

tor v = (Õ`1, . . . , Õ`d)
T
, where ` = k − 1 refers to the (k − 1)th row

of the symbolic observability matrix Õ. The rules to perform the
symbolic product J̃ij ⊗ vi are such that20

∣

∣

∣

∣

∣

∣

∣

∣

0 ⊗ a = 0,
1 ⊗ a = a,

1̄ ⊗ a = a for a = 1̄, ¯̄1,
¯̄1 ⊗ a = ¯̄1 for a 6= 0.

(4)

Second, the matrix J̃ ′ is reduced into a row where each element
Õkj =

∑

i J̃′ij according to the addition law,20

∣

∣

∣

∣

∣

∣

∣

∣

0 ⊕ a = a,
1 ⊕ a = a for a 6= 0,
1̄ ⊕ a = a for a 6= 0, 1,
¯̄1 ⊕ a = ¯̄1.

(5)

The last step is associated with the computation of the sym-
bolic observability coefficients. The determinant of Õ is computed
according to the symbolic product rule defined in (4) and expressed

as products and addends of the symbolic terms 1, 1̄, and ¯̄1, whose
number of occurrences are N1, N1̄, and N ¯̄1, respectively. It is con-
venient to impose that if N1̄ = 0 and N ¯̄1 6= 0, then N1̄ = N ¯̄1. The
symbolic observability coefficient is thus defined as

η =
1

D
N1 +

1

D2
N1̄ +

1

D3
N ¯̄1, (6)

with D = N1 + N1̄ + N ¯̄1. This coefficient is in the unit interval,
η = 1 for a variable providing full observability of the original state
space. An observability is said to be good when η ≥ 0.75.37

B. Delay Differential Analysis

Let us assume that a time series {X1} is recorded in a
d-dimensional system. From this time series, it is possible to obtain
a global model reproducing the underlying dynamics. There are typ-
ically two main approaches working with either derivative or delay
coordinates.27,38 When derivatives are used, it is possible to construct
a d-dimensional differential model,



















Ẋ1 = X2,
Ẋ2 = X3,
...
Ẋd = F (X1, X2, . . . , Xd) ,

(7)

where Xi is the (i − 1)th derivative of the measured variable X1.39

The function F can be numerically estimated by using a least-squares
technique with a structure selection.40,41 F can be polynomial39,41 or
rational.42,43 This model requires d-ordinary differential equations
whose variables are the d successive derivatives of X1: this model
works in a differentiable embedding.

Second, it is possible to construct a model whose equations
have the form of a difference equation,

X(k + 1) = F
(

Xτj
(k)

)

=

N
∑

i=0

ai ϕi, (8)

where ϕi is a monomial of delay coordinates Xτj
(k) = X(k − τj) with

τj = nδt (n ∈ N
+) being a time delay expressed in terms of the sam-

pling time δt with which the scalar time series {X1(k)} is recorded: k
is the discrete time. Such a model has an auto-regressive form, and
typically, the number N of terms is between 10 and 20. The space in
which this model is working is thus spanned by delay coordinates:
its dimension is very often significantly larger than the dimension
d, the embedding dimension,44 or even than the Takens criterion.8

An optimal form of the difference equation (8) is developed under
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the form of a nonlinear autoregressive-moving average (NARMA)
model.45

Recently, a third type of model was investigated under the
name of reservoir computing.46 This approach considers an oversized
model with a functional structure based on a network whose nodes
are characterized by some simple function. For instance, the Lorenz
attractor was accurately reproduced with an Erdös–Rényi network
of 300 nodes with a mean degree δ = 6, each node being made of
a difference equation.28 The model so-obtained corresponds to an
accurate global model of the dynamics. Notably, this model was con-
structed from the measurements of all the variables of the Lorenz
system. The main advantage of such a large model is its flexibil-
ity, that is, its ability to capture various dynamical regimes, but it
has the disadvantage that the space in which it is working is not
clearly defined and has a very large dimension (dr > 300 in the work
discussed above).

The DDA approach uses a kind of a mixed model between the
differential model (7) and the difference equation (8), the left mem-
ber of the latter being replaced with the left member of the former.
It is, therefore, based on the delay differential equation,

Ẋ = FX =

N
∑

i=1

ai ϕi(Xτj
), (9)

where X = X1 designates the measured variable and Xτj
some delay

coordinates. The purpose is not to construct a global model repro-
ducing accurately the dynamics but only an approximated model
for detecting dynamical changes (nonstationarity) or classifying dif-
ferent dynamical regimes.29,30,47 We, therefore, use a rough model
with very few terms (N ≤ 3). Such sparsity in the model prevents
overparametrization, that is, spurious dynamics induced by overly
complex models.48 Indeed, delay differential equations are known to
already produce complex dynamics with only two terms.49,50 Many
characteristics of the measured dynamics can be captured with two
or three terms and appropriate time delays.31 Based on previous
works,29–31,47 it is assumed that these characteristics are sufficient
to distinguish different dynamical regimes. This DDA model (9)
is a differential equation whose state space is spanned by delay
coordinates Xτj

.
Model (9) has two sets of parameters, the fixed parameters

τj (set during the structure selection) and the free parameters ai

(estimated independently from each data window). The structure of
model (9) as well as the delays are determined for each time series.
Then, the free coefficients ai are determined for each window of the
recorded time series. The data in each window {X1} are normalized
to have a zero mean and unit variance to remove amplitude infor-
mation before estimating the free parameters ai by using a singular
value decomposition (SVD). The least-squares error

ρX =

√

√

√

√

1

K

K
∑

k=1

(

Ẋ(k) − FX(k)
)2

(10)

between the derivatives returned by the DDA model and the
derivatives computed from the measured time series quantifies
the ability of the model to capture the underlying dynamics. It
is known that there is a relationship between the model quality
and observability.9,11,24 The signal derivative Ẋ1 is computed using

a five-point center derivative.51 In this work, structure selection
[i.e., choosing the model form of Eq. (9] and the fixed parameters
τj) was performed via an exhaustive search over all possible three-
term models (three monomials: N = 3) with two delays such that
τj ∈ [m + 1; 60]δt, where m = 5 is equal to the number of points for
estimating the derivative and δt is the sampling time. Function F is
made of three monomials selected from the possible candidates,

ϕi ∈
{

Xτ1 , Xτ2 , X2
τ1

, Xτ1 Xτ2 , X2
τ2

, X3
τ1

, X2
τ1

Xτ2 , Xτ1 X2
τ2

, X3
τ2

}

. (11)

Monomials and delays are selected in an exhaustive search over all
possible model forms, i.e., 44, and delay combinations under the
restrictions specified above. Each model is thus characterized by the
set of “fixed” parameters (τ1, τ2), the corresponding monomials ϕi,
and the free parameters ai, which are estimated for each time win-
dow of the measured data. In this work, the time window is the entire
time series. The structure providing the model with the lowest ρX is
retained to assess observability according to the model error ρX.

As used with reservoir computing,26 the error ρX between the
model and the measured data provides a measure of how the system
dynamics may be reconstructed from these data. Indeed, to obtain
a reliable deterministic model, it is necessary to distinguish every
different state of the system for retrieving the underlying causality.
Since the error is used as a relative measure, it is only needed to
have a sufficiently flexible functional form for the model as observed
with reservoir computing or with a delay differential equation. Con-
sequently, the smaller the error ρX, the higher the observability
provided by the variable X. This results from previous works where
it was shown that the complexity of the model to approximate was
correlated to the observability: the better the observability provided
by the measured variable, the simpler the model to approximate.11,24

The error ρX from the best DDA model is computed with an increas-
ing noise amplitude. For each three-dimensional system and each
signal-to-noise ratio (no noise, 20, 10, and 0 dB: where 0 dB indicates
that the variance of the noise matches the variance of the signal), the
error ρX was computed over several hundred pseudoperiods for each
time series.

III. DYNAMICAL SYSTEMS AND OBSERVABILITY

COEFFICIENTS

A. Low-dimensional systems

The governing equations of the systems here investigated are
reported in Table I. The symbolic observability coefficients (SOCs)
and the model error ρX are reported for each variable of every system
in Table I. Parameter values are reported in Table II.

The Rössler 76,52 Lorenz 84,55 Cord,56 Hindmarsh–Rose57 (HR),
and Fisher58 systems have no symmetry. The Hindmarsh–Rose
system is known to be problematic when variable x or z is mea-
sured, for two different reasons.64 When variable z is measured, the
observability matrix

Oz =





0 0 1
rs 0 −r

rs (xχ − r) rs r(r − s)



 , (12)

where χ = 2b − 3ax becomes singular when r is too small (Det
Oz = r2s2): the observability can be null for r = 0 and full for r 6= 0

Chaos 30, 103113 (2020); doi: 10.1063/5.0015533 30, 103113-4

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

TABLE I. Governing equations of each system for which the symbolic observability

coefficients (SOCs) η
s3 and ρX between the DDA model and the measured data with

no noise contamination are reported. The SOC for variable x of the Hindmarsh–Rose

(HR) system is corrected as discussed in the main text. For the Chua system,

f(x) = bx + 1
2
(a − b)(|x + 1| − |x − 1|).

System Equations SOC Error

Rössler 7652 ẋ = −y − z 0.84 0.037
ẏ = x + ay 1.0 0.022

ż = b + z(x − c) 0.56 0.106
Rössler 7753 ẋ = −ax − y(1 − x2) 0.56 0.0009

ẏ = µ(bx + y − cz) 0.84 0.0005
ż = µ(x + cy − dz) 0.68 0.0007

Lorenz 6354 ẋ = σ(y − x) 0.78 0.02
ẏ = Rx − y − xz 0.36 0.039
ż = −bz + xy 0.36 0.071

Lorenz 8455 ẋ = −y2 − z2 − ax + aF 0.36 0.061
ẏ = xy − bxz − y + G 0.36 0.205

ż = bxy + xz − z 0.36 0.204
Cord56 ẋ = −y − z − ax + aF 0.68 0.108

ẏ = xy − bxz − y + G 0.36 0.198
ż = bxy + xz − z 0.36 0.232

HR57 ẋ = y − ax3 + bx2 + I − z 0.68 0.025
ẏ = c − dx2 − y 0.56 0.023

ż = r[s(x − xR) − z] 1.00 0.002
Fisher58 ẋ = y 1.00 0.003

ẏ = −ax − by − z 0.84 0.004
ż = b + x − |x| 0.56 0.027

Chua59 ẋ = α(−x + y − f(x)) 1.00 0.05
ẏ = x − y + z 0.84 0.068

ż = −βy 1.00 0.066
Duffing60,61 ẋ = y 1.00 0.022

ẏ = −µy + x − x3 + u 0.86 0.08
u̇ = v 0.00 0.00

v̇ = −ω2u 0.00 0.00
Rössler 7962 ẋ = −y − z 0.75 0.005

ẏ = x + ay + w 0.83 0.001
ż = b + xz 0.44 0.079

ẇ = −cz + dw 0.63 0.006
Hénon–Heiles63 ẋ = u 0.64 0.0005

ẏ = v 0.64 0.0004
u̇ = −x − 2xy 0.44 0.0009

v̇ = −y − y2 − x2 0.44 0.0008

(this is also true for s, but s is commonly significantly different from
0). When variable x is measured, although the observability matrix
Ox is never singular (Det Ox = r − 1; r 6= 1), the plane projection
of the differential embedding induced by variable x does not reveal
the chaotic nature of the underlying dynamics, contrary to what
is clearly provided by variable z (Fig. 1). As discussed by Aguirre
et al.,64 the observability matrix

Ox =





1 0 0
χx 1 1
Ox

31 χx − 1 −χx + r



 , (13)

TABLE II. Parameter values of the investigated systems.

Rössler 76 a = 0.52 b = 2 c = 4
Rössler 77 a = 0.03 b = 0.3 c = 2 d = 0.5

µ = 0.1
Lorenz 63 σ = 10 b = 8/3 R = 28
Lorenz 84 a = 0.28 b = 4 F = 8 G = 1
Cord a = 0.28 b = 4 F = 8 G = 1
HR a = 1 b = 3 c = 1 d = 5

I = 3.29 xR =
8

5
r = 0.003 s = 4

Fisher a = 0.3 b = 0.097

Chua α = 9 β =
100

7
a = −

8

7
b = − 5

7
Duffing µ = 0.3 ω = 1.2

x0 = 1 y0 = 0
u0 = 0.5 v0 = 0

Rössler 79 a = 0.25 b = 3 c = 0.5 d = 0.05

where

Ox
31 = χ 2x2 − rs − 2bx + 2(b − 3a) ×

[(

I + x2(b − ax) + y − z
)]

,
(14)

has a determinant DetOx whose polynomial nature is canceled by
the contributions of O32 and O33, but this is not structurally stable.
Any perturbation in one of these two elements would lead to a deter-
minant vanishing for a subset of the state space. This is not detected
by the symbolic observability coefficients. If we keep the polynomial
nature of elements O32 and O33, the symbolic observability matrix
would be

Ox =





1 0 0
1̄ 1 1
1̄ 1̄ 1̄



 . (15)

The corresponding corrected symbolic observability coefficient is
thus η′

x3 = 0.68. The corrected ranking of variables is, therefore,
z B x B y. This ranking will be used in the subsequent analysis.

The other systems have symmetry properties as follows. The
Lorenz 63 system54 is equivariant under a Rz rotation symmetry
around the z-axis.65,66 Variables x and y are mapped into their oppo-
site (−x and −y, respectively), while variable z is invariant under
the rotation symmetry. At least two variables must be measured to
correctly reconstruct the rotation symmetry.23 The Rössler 77,53 the
Chua circuit,59 and the driven Duffing systems60,61 are equivariant
under an inversion symmetry. Such a symmetry can be recov-
ered from a single variable and, consequently, should not blur the
observability analysis. The driven Duffing system is in fact a four-
dimensional system, a conservative harmonic oscillator driving the
dissipative Duffing oscillator: it is thus a semi-dissipative (or semi-
conservative) system.61 When variable u (or v) is recorded, a periodic
orbit is obtained, while variable x (or y) provides a chaotic state
portrait. Since a chaotic driving signal necessarily implies a chaotic
response, it is obvious that u drives x and not the opposite. It can,
therefore, be concluded, without further analysis, that the system
is not observable from u (or v). Thus, we only have to determine
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FIG. 1. Differential embedding induced by each of the three variables of the Hindmarsh–Rose system.

the observability from variables x and y, respectively. The Fisher
system and the Chua circuit have a piecewise nonlinearity. They
will be useful to test whether DDA is robust against discontinuous
nonlinearity.

All these systems but three—the Lorenz 84, the Cord, and
the Hénon–Heiles63 systems—have at least one variable providing
a good observability (η > 0.75) of the original state space. The
Hénon–Heiles system is conservative, and one may guess that the
observability problem will be more sensitive since the invariant
domain of the state space has a dimension close to 3 and not 2 as
for all the other systems that are strongly dissipative.

B. A higher-dimensional system

The Lorenz 63 system results from a Galerkin expansion of the
Navier–Stokes equations for Rayleigh–Bénard convection.67 It is also
possible to have a higher-dimensional expansion in retaining more
Fourier components. One of them lead to the 9D Lorenz system,68



































































ẋ1 = −σ(b1x1 + b2x7) + x4(b4x4 − x2) + b3x3x5,

ẋ2 = −σx2 + x1x4 − x2x5 + x4x5 −
σx9

2
,

ẋ3 = σ(b2x8 − b1x3) + x2x4 − b4x
2
2 − b3x1x5,

ẋ4 = −σx4 − x2x3 − x2x5 + x4x5 +
σx9

2
,

ẋ5 = −σb5x5 +
x2

2

2
−

x2
4

2
,

ẋ6 = −b6x6 + x2x9 − x4x9,
ẋ7 = −b1x7 − Rx1 + 2x5x8 − x4x9,
ẋ8 = −b1x8 + Rx3 − 2x5x7 + x2x9,
ẋ9 = −x9 + (R + 2x6)(x4 − x2) + x4x7 − x2x8,

(16)

where


























b1 = 4
1 + a2

1 + 2a2
, b2 =

1 + 2a2

2(1 + a2)
,

b3 = 2
1 − a2

1 + a2
, b4 =

a2

1 + a2
,

b5 =
8a2

1 + 2a2
, b6 =

4

1 + 2a2
.

(17)

This 9D Lorenz system is equivariant.69 Depending on the R-values,
the attractor produced may be asymmetric [Fig. 2(a)] or symmetric

[Fig. 2(b)]. The symbolic observability coefficients are










ηx9
1

= ηx9
3

= ηx9
7

= ηx9
8

= 0.04,

ηx9
2

= ηx9
4

= 0.03,

ηx9
5

= ηx9
6

= ηx9
9

= 0,
(18)

leading to

x1 = x3 = x7 = x8 B x2 = x4 B x5 = x6 = x9.

Notice that every variable offers an extremely poor observability
of the original state space. It was shown that at least five variables
need to be measured for having a good observability (η > 0.75) of
the original state space.7 Moreover, for a sufficiently large R-value
(R = 45), the behavior is hyperchaotic. One of the characteristics
of this highly developed behavior is that there are two different
time scales. We will, therefore, investigate whether the observabil-
ity assessed with DDA is dependent on parameter values, that is, on
bifurcation affecting the symmetry properties (order-4 or order-2
asymmetric chaos, symmetric chaos, and hyperchaos).

IV. DDA RANKING

The structure of the best DDA models FX under no noise is
reported in Table V of the Appendix along with the corresponding
time delays retained for identifying the free parameters. As exam-
ples, ρX for some systems with increasing noise is shown in Fig. 3.
For no noise, ρX is reported in Table I.

The rankings for variables according to increasing symbolic
observability coefficients (SOCs), decreasing ρX for DDA, and, when
available in the literature, for decreasing reservoir computing (RC)
and singular value decomposition observability (SVDO) are sum-
marized in Table III for all low-dimensional systems (d ≤ 4). The
results for the Rössler 76, Rössler 77, Fisher, driven Duffing, and
Rössler 7962 systems are in a perfect agreement with the SOC. The
discontinuity of the Fisher system does not perturb the analysis. The
hyperchaotic nature of the Rössler 79 system was not problematic
for correctly assessing observability.

The Lorenz 63, Lorenz 84, Cord, and Hindmarsh–Rose sys-
tems show close agreement between DDA and SOC. For the Lorenz
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FIG. 2. Chaotic attractor produced by the 9D Lorenz system (18). (a) R = 14.22,
(b) R = 14.30, (c) R = 15.10, and (d) R = 45.00. Other parameter values:
a = 0.5 and σ = 0.5. When there are co-existing attractors, they are plotted in
different colors in the plane projections of the state space.

63 system, variable x was correctly detected as providing the best
observability, but variable z was found to offer worse observabil-
ity than variable y, a feature that is not predicted by the SOC due
to a problem inherent to the symmetry involved. For the Lorenz
84 system, all variables have equally low SOCs, however, for DDA
variable x shows greater observability. For the Cord system, while
no single variable provides good observability for the original state
space, DDA correctly ranks x as providing the best observability.
However, DDA ranks z as providing worse observability than vari-
able y, while SOC ranks them with equivalent observability. For the
Hindmarsh–Rose system, variable z provides full observability and
is associated with the lowest ρX. However, there is some discrepancy
between DDA and SOC since, as assessed with DDA, y provides a
slightly higher observability than x. Results for the Hénon–Heiles
system are quite equivalent to the SOC. Variables x and y are more
observable than u and v; however, y(v) is more observable than x(u)

instead of showing equivalent observability.
For the Chua circuit, the variable x contains a piecewise non-

linearity and has full observability, and DDA correctly ranks x as
the most observable. DDA also ranks variable y with the worst
observability, which is in agreement with SOC. However, variable
z has only slightly better observability than y, whereas it should be
equivalent to x.

When compared to the two other data-based techniques, DDA
performs better than RC for the Rössler 76, Rössler 79, and the
Lorenz 63 systems but not for the Chua circuit. Compared to the
SVDO, the DDA approach provides similar results for all systems
investigated by these two techniques. DDA outperforms SVDO for
the hyperchaotic Rossler 79 system in correctly identifying the vari-
able y as providing the best observability, a feature missed by the
SVDO, whereas the SVDO approach outperforms DDA for the
Lorenz 84 and Hindmarsh-Rose systems.

For most of the systems, these results are robust against noise
contamination, at least up to a signal-to-noise ratio greater than
10 dB: below this ratio, results can be blurred and observability can
no longer be reliably assessed using DDA. A similar robustness was
observed with SVDO. It was not investigated with RC.

Note that another interesting data-based technique for assess-
ing observability was proposed by Parlitz et al.70 It was only tested
with the Rössler 76 system (and the Hénon map, not investigated
here). It would be interesting to further investigate its performance,
but this is out of the scope of this paper.

The results for the 9D Lorenz system are not so clear. The
first reason is that this system is nearly unobservable from a single
variable. The SOC is nearly saturated (close to 0) with nonlinear ele-
ments as revealed by the symbolic Jacobian matrix of the 9D Lorenz
system (16), namely,

J
sym =





























1 1̄ 1̄ 1̄ 1̄ 0 1 0 0
1̄ 1̄ 0 1̄ 1̄ 0 0 0 1
1̄ 1̄ 1 1̄ 1̄ 0 0 1 0
0 1̄ 1̄ 1̄ 1̄ 0 0 0 1
0 1̄ 0 1̄ 1̄ 0 0 0 0
0 1̄ 0 1̄ 0 1 0 0 1̄
1 0 0 1̄ 1̄ 0 1 1̄ 1̄
0 1̄ 1 0 1̄ 0 1̄ 1 0
0 1̄ 1̄ 0 1̄ 1̄ 1̄ 1̄ 1





























, (19)
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FIG. 3. Error ρX vs a decreasing signal-to-noise ratio for some of the different systems investigated in this paper. (a) The Rössler 76 system, (b) the Lorenz 63 system,
(c) the Cord system, (d) the Hindmarsh–Rose system, (e) the Hénon–Heiles system, and (f) the Chua system.

which illustrates that most of the couplings between variables are
nonlinear. Considering only the observability provided by a single
variable is here investigated and that the SOCs are all close to 0, one
may conclude that the 9D Lorenz system is not observable from a
single variable.

Results provided by DDA are shown in Fig. 2 where it is
seen that variables cannot be easily ranked, particularly when R is
increased. Results are summarized in Table IV as follows. For each
R-value, the rankings of the variables are reported—from 1 for the
variable offering the best observability to 9 for the one providing

TABLE III. Ranking variables according to the observability as assessed by the symbolic observability coefficients (SOCs), DDA analysis, reservoir computing (RC), and singular

value decomposition observability (SVDO). A perfect agreement with the SOC is indicated by a •. When the variable providing the best observability is correctly detected or

when = is replaced with ≈ or B, a ◦ is reported.

System SOC DDA RC SVDO

Rössler 76 y B x B z • x B y B z •

Rössler 77 y B z B x • . . . . . .
Lorenz 63 x B y = z ◦ y B x B z ◦

Lorenz 84 x = y = z ◦ . . . •

Cord x B y = z ◦ . . . ◦

Hindmarsh–Rose z B x B y ◦ . . . •

Fisher x B y B z • . . . . . .
Chua x = z B y ◦ • ◦

Duffing x B y B u = v • . . . . . .
Rössler 79 y B x B w B z • x B y B z B w x B y B w B z
Hénon–Heiles x = y B u = v ◦ ◦ . . .

Chaos 30, 103113 (2020); doi: 10.1063/5.0015533 30, 103113-8

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

TABLE IV. Observability of the 9D Lorenz system as assessed with the symbolic

observability coefficients (SOCs) and DDA.

R x1 x2 x3 x4 x5 x6 x7 x8 x9

SOC . . . 1 2 1 2 3 3 1 1 3
DDA 14.22 7 4 1 5 2 8 3 6 9

14.30 3 7 2 6 1 8 5 4 9
15.10 5 2 6 3 1 9 8 7 4
45.00 8 5 7 6 1 4 3 2 9

the poorest observability—and compared to the ranking provided
by the SOC. The results vary with the R-value but do not follow a
clear trend. Variable x5 with a null observability as assessed by the
SOC (and analytically) is found to provide the best observability as
assessed by DDA. Nevertheless, this is in agreement with the suc-
cessful three-dimensional global model obtained from this variable
for R = 14.22;68 that is, at least for this R-value, the dynamics can be
correctly reconstructed for recovering the underlying determinism.

It should be pointed out that looking for full observability (i.e.,
being able to “reconstruct” each of the non-measured variables) is
not the same thing as looking for an embedding, especially for large
d-dimensional systems producing an attractor that can be embed-
ded within a space whose dimension dR is lower than the dimension
d of the original state space. Full observability ensures the existence
of an embedding, and the opposite is not necessarily true. Here,
DDA selects the variable that provides the best reconstructed space.
If compared with the results provided by the SOC with multivari-
ate measurements,7 variables x2, x4, x5, and x6 are always among
the six variables selected for providing a full observability. DDA
returns three of them as providing the best observability, x2, x4, and
x5 (Table IV). Variable x6, the single one that is invariant under
the symmetry of this system, is identified as a variable providing
a poor observability. Once again, symmetry induces difficulties for
assessing observability.

V. CONCLUSION

The ability to infer the state of a system from a scalar output
depends on the system variable that is measured. We have intro-
duced a numerical approach using the error between a DDA model
and measured data to assess the observability provided by the mea-
sured variables in several chaotic systems. The smaller the model
error, the better the observability provided. We compared these
measures with symbolic observability coefficients, which are deter-
mined directly from the system’s equations. Our measure overall
reliably ranks variables according to the observability they pro-
vide about the original state space. The largest discrepancy was
obtained for a large-dimensional (9D Lorenz) system. The assess-
ment of observability is quite robust against noise contamination in
the majority of the systems here considered.

There are two situations in which our approaches may face
some complications. The first one is a common one. Inconsisten-
cies in assessing observability are known for systems with symmetry
properties, particularly with variables left invariant. The second one
is also a typical one: when the dimension of the system increases, the

observability of the state space provided by a single variable becomes
very poor and assessing observability is delicate. Our approach
is thus very reliable for low-dimensional systems without sym-
metry properties, even with a signal-to-noise ratio as commonly
encountered in experiments.

As in most of the other techniques, variables of different sys-
tems cannot be compared to each other. This is a common limitation
in assessing observability that is only overcome by using an ana-
lytical approach, such as by computing explicitly the observability
matrix or by using the symbolic observability coefficients. A kind of
normalization should be considered to have, for instance, the error
ρy of variable y of the Rössler 76 system (which has full observability)
smaller than for variable y of the Rössler 77 system. This problem
is more challenging than it may appear. It was, for instance, never
solved for the observability coefficients computed along a trajectory
using a relationship extracted from the system’s equations or using
SVD applied to a reconstructed space.
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APPENDIX: FUNCTIONAL FORMS OF DDA MODELS

The functional forms of the DDA models for each variable of
the systems investigated are shown in Table V.

TABLE V. Functional forms of the DDAmodels for each variable of the systems inves-

tigated. The time delays are expressed in terms of δt, the sampling time at which

variable X is recorded.

a1 a2 a3 τ 1 τ 2

Rössler 76 Fx Xτ1 Xτ2 X3
τ1

6 δt 7 δt

Fy Xτ1 Xτ2 X3
τ1

6 δt 7 δt

Fz Xτ1 Xτ2 X3
τ1

6 δt 7 δt

Rössler 77 Fx Xτ1 Xτ2 X3
τ1

6 δt 7 δt

Fy Xτ1 Xτ2 X3
τ1

7 δt 6 δt

Fz Xτ1 Xτ2 X3
τ1

6 δt 7 δt

Lorenz 63 Fx Xτ1 Xτ2 X3
τ1

6 δt 7 δt

Fy Xτ1 X3
τ1

Xτ1X2
τ2

6 δt 19 δt

Fz Xτ1 X2
τ1

X2
τ2

18 δt 6 δt

Lorenz 84 Fx Xτ1 Xτ2 X2
τ1

7 δt 6 δt

Fy Xτ1 X3
τ1

Xτ1X2
τ2

6 δt 28 δt

Fz Xτ1 Xτ1Xτ2 Xτ1X2
τ2

6 δt 60 δt
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TABLE V. (Continued.)

a1 a2 a3 τ 1 τ 2

Cord Fx Xτ1 X3
τ1

X2
τ1

Xτ2 7 δt 51 δt

Fy Xτ1 Xτ1Xτ2 Xτ1X2
τ2

6 δt 18 δt

Fz Xτ1 Xτ2 X2
τ1

6 δt 7 δt

HR Fx Xτ1 Xτ1Xτ2 X3
τ2

6 δt 9 δt

Fy X2
τ1

X2
τ1

Xτ2 X3
τ2

25 δt 6 δt

Fz Xτ1 Xτ2 X2
τ1

6 δt 7 δt

Fisher Fx Xτ1 Xτ2 X2
τ1

7 δt 6 δt

Fy Xτ1 Xτ2 X2
τ1

6 δt 7 δt

Fz Xτ1 Xτ2 X2
τ1

7 δt 6 δt

Chua Fx Xτ1 Xτ2 X3
τ1

6 δt 7 δt

Fy Xτ1 Xτ2 X3
τ1

7 δt 6 δt

Fz Xτ1 Xτ2 X3
τ1

13 δt 32 δt

Duffing Fx Xτ1 Xτ2 X3
τ1

6 δt 7 δt

Fy Xτ1 Xτ2 X3
τ1

6 δt 7 δt

Fu Xτ1 Xτ2 X2
τ1

38 δt 37 δt

Fv Xτ1 Xτ2 X2
τ1

38 δt 37 δt

9D Lorenz F1,3,5 Xτ1 Xτ2 X2
τ1

7 δt 6 δt

R = 14.22 F4,7,8 Xτ1 Xτ2 X3
τ1

7 δt 6 δt

F6,9 Xτ1 Xτ2 X3
τ1

6 δt 7 δt

F2 Xτ1 Xτ1Xτ2 X2
τ2

47 δt 14 δt

9D Lorenz F1−5,7,8 Xτ1 Xτ2 X3
τ1

6 δt 7 δt

R = 14.30 F6,9 Xτ1 Xτ2 X3
τ1

7 δt 6 δt

9D Lorenz F1,3,7,8 Xτ1 Xτ2 X2
τ1

7 δt 6 δt

R = 15.10 F2,4,5,9 Xτ1 Xτ2 X3
τ1

6 δt 7 δt

F6 Xτ1 X2
τ1

X2
τ2

25 δt 6 δt

9D Lorenz F1 Xτ1 Xτ1Xτ2 X3
τ1

6 δt 11 δt

R = 45 F2 Xτ1 X3
τ1

Xτ1X2
τ2

6 δt 57 δt

F3 Xτ1 X3
τ1

X3
τ2

6 δt 7 δt

F4 Xτ1 X3
τ1

Xτ1X2
τ2

6 δt 44 δt

F5 X3
τ1

X2
τ1

Xτ2 X3
τ2

10 δt 6 δt

F6 X2
τ1

Xτ1Xτ2 X3
τ1

10 δt 23 δt

F7 Xτ1 Xτ1Xτ2 X3
τ2

6 δt 9 δt

F8 Xτ1 Xτ1Xτ2 X3
τ2

6 δt 10 δt

F9 Xτ1 X2
τ1

Xτ2 X3
τ2

6 δt 9 δt

Rössler 79 Fx Xτ1 Xτ2 X2
τ1

6 δt 7 δt

Fy Xτ1 Xτ2 X3
τ1

7 δt 6 δt

Fz Xτ1 Xτ2 X2
τ1

6 δt 7 δt

Fw Xτ1 Xτ2 X3
τ1

7 δt 6 δt

Hénon–Heiles Fx Xτ1 Xτ2 X3
τ1

6 δt 7 δt

Fy Xτ1 Xτ2 X2
τ1

6 δt 7 δt

Fu Xτ1 Xτ2 X3
τ1

6 δt 7 δt

Fv Xτ1 Xτ2 X3
τ1

7 δt 6 δt
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