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, CONDITIONER FOR A HELICALLY TRANSPORTED
ELECTRON BEAM*

Changbiao Wang**
Lawrence Berkeley Laboratory

University of California
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ABSTRACT

The kinetic theory is developed to investigate a conditioner for a helically
transported electron be,am. Linear expressions for axial velocity spread are derived.
Numerical simulation is u_d to check the theoretical results and examine nonlinear

aspects of the conditioni_.l_ process. The results show that in the linear regime the
action of the beam condittoner on a pulsed beam mainly _pends on the phase at
which the beam enters the conditioner and depends orfly slightly on the operating
wavelength. In the nonlinear regime, however, the action of the conditioner
strongly depends on the operating wavelength and only slightly upon the entrance
phase. For a properly chosen operating wavelength, a little less than the electron's
relativistic cyclotron wavelength, the conditioner can decrease the axial velocity
spread of a pulsed beam ck_wnto less than one-third of its initial value.

INTRODUCTION

In a beam conditioner, proposed by Sessler, Whittum and Yu, la-3 a nearly
monoenergetic beam has the shape of the beam's phase volume so changed that its
axial velocity spread is improved. As a zesult, the -beamconditioner can greatly
reduce the spread in axial velocity of an electron beam, and hence it can be used,
with advantage, on almost all fast wave devices. It is therefore natura! that it has
arousedconsiderableattention.4,-5

There are different means for conditiolfi_rlgelectron beams. The longitudinal
electric field in a microwave cavity, as proposed by Sessler, ct al, can be. used to
condition electron beams, and this is an efficient method. However, for low energy
beams, transported by a helical magnetic field, some other mett_od of beam
conditioning is required. The transverse electric field in an RF cavity can,
conveniently, be used for this purpose.

In this paper, we present a kinetic fo_znulation of a conditioner consisting of
a microwave cavity operating in the TEoll mode while imn_rsed in a uniform axial
magnetic field. We treat analytically the linear problem of dependence of the axial
velocity spread on the cavity length, and use simulation to examine non-linear
aspects of the evolution of the spread with both the cavi.ty length and the operating
wavelength°

o

* Worksupportedby the Director,Officeof EnergyResearch,Officeof HighEnergyand Nuclear
Physics, Division of High Energy Physics, of ate U.S. Department of Energy under Contract
Numba' DE-AC03-76SFtK)098

" ** On leavefrom Universityof ElectronicScience.andTechnologyof China,Chengdu, Sichuan,
610054,China



In a cavity operating in the TE0_I mode, the electric field has on!y an
azimuthal component with a radial distribution given by the first order Bessel

function Jt(keR ), where kc is the cutoff wave number, and R is the radial
coordinate. For'a single-energy electron beam with a sufficiently small beam radius

and only one guiding center at the origin, the electrons with, a larger gyration radius
experience a stronger elecu'ic field decelerating fbrce (for appropriate phase) than
those with a smaller gyration radius. The larger the g3q'ation radius is, the more
energy the electron loses. By the coupling of energy with axial momentum (a
relativistic effect), the axial velocity of the electron is increased if the effect of the
time-dependent magnetic field is neglected. Therefore, as long as the beam pulse is
sufficiently short the axial velocity spread wiU be improved.

For an actual electron beam, the guiding-center radius Rg rmages from zero
to Rb, where Rb is the beam radius, and the gyration radius rL ranges front zero to

(Rb-Rg). In suct'_a situation, we can consider the azimuthal field as the sum of
infinite cyclotron harmonics. Of ali these harmonics only the zeroth one is
important. So for those electrons with non-zero guiding center, the previous
analysis holds. From this we can see that the axial velocity spread of an electron
beam with m_iti-gmding centers also can be improved.

Generally speaking, increasing the cavity length increases the interaction
thug. In this case, however, non-linear effects become important. As it is well
known, when the cavity operating frequency is slightly greater than the electron

relativistic cyclo_on frequency, the electron beam effectively interacts with
cyclotron harmonics and, as a result, resonant emission appears, which is the basis
of the maser instabilityP At this time, mast of the electrons lie in the decelerating, 7,8YJelectric fMd of the fundamental harmonic because of the negative mass effect

which results in particle bunching in the azimuthal direction as explained by
Spran.gle and Drobot. 10 So once the bunching appears, no matter whether the beam
experiences a net transverse acceleration or deceleration at the beginning interaction
(depending on the phase of the pulsed beam entrance of the cavity), the transverse
velocities of the most electrons can be continuously reduced in the next interaction.
Consequently, the axial velocity _read will be gradually improved until another
nonlinear process (resonant absorption) arises, so that the transverse velocities of
the electrons begin to increase,, resulting inan increase in the axial velocity spread.

The beam conditioning presented L_ereis different from the electr0n-beam
cooling proposed by Hirshfield and Park. 11 In their propgsal, the beam's ,.
distribution of energy is made narrower by use of both resonant emission and
absorption. This process cannot be usexl to improve the axial v,:le.clty spread. For
a single-energy electron be.arn with a spread irl axial velocity, for example, it can do
nothing because the width of the distribution in energy is null. The beam
conditioner, in contrast, reduces the spread in axial velocity (instead of the energy
spread) through the coupling of energy with axial momentum caused by resonant
emission.

In Sex:. II, a calculational model is set up to treat analytically a pulseA beam
with the Vlasov theory. The perturbation distribution function of the pulsed beam
conditioned by the RF cavity is deri,,ed and linear expressions for axial velocity "
spread are given. In Sex:.III, numerical simulatic,ns are used to check the analytical
results, and investigate the dependence of axial velocity spread on the cavity length --
and operating wavelength caused by the nonlinear interaction of the beam with the
cavity field. Finally, in Sec. IV some conclusions are made.
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L,LNEAR KINETIC THEORY OF TIlE BEAM CONDITIONER
1

,, In this section, based on linearized Vlasov equations, we will derive the
perturbation distribution functions of a pulsed electron beam conditioned by the RF

, cavity and use them to obtain analytic expressions for the rms-normalized axial
velocity spread.

In the model, we take the pulsed beam as a segment, which has a length L,
of an infinitely long electron beam. We will first calculate the perturbation
distribution function for the infinitely long beam, and then we use it to calculate the
axial velocity spread of the considered segment, We assume that the electron beam
is mono-energetic. The electron's transverse velocity is small compared with its
axial velocity and variation in the pulse length is negligible when the pulsed beam
goes from one end of the cavity to another. The beam pulse front is located at z=0
when t =01 At t--d/vo with d (>L) the cavity length and v0 the tcttal initial velocity,
the beam pulse arrives at the front end of the cavity, and at t=(d+L)/Vo, the pulse
beam has passed through the cavity, as shown in Fig. 1. For simplicity, the time-
dependent nw,gnetic field is neglec,ted in the linear consideration.

REGION(I) REGION(11)

fo+ t'1(_) fo+ fl (=l)

CONSIDEREDPIECE

OFELECTRONBEAM t=d/V0 t=(d+L)/Vo..__
_ ELECTRON-- . _ _. _'"_ - . _---_ BEAM

t=0 CAVITY

,.L 0 d d+L
lib.._

• _ iii L II I I II III

APPLIEDUNIFORMAXIALMAGNETICFIELDB0

Fig. I. Calculationalmodel. The pulsed electron beam is taken as a segment of an
infinitely long beam. When t =0, the fit_nt of the segment of beam is located at z=0.
When t =d/vo and t =(d+L)ro, the front is at z=d and z=(d+L ), respectively.

The Vlasov eqtmtion de._cribing the beam conditioner is given by

bf + v. 19f + e (E + v x B) bf 0, (1)
0t ggx _p

where

E = q_EoJI(kcR ) sin _z sin cot, (2)



B = _ Bo. (3)

In Eqs. (2) and (3), the cyhndrical coordinates are used, and P,, cp and _,are ali unit
vectors; Eo is the TEoll-mode electric field amplitude, B0 is the applied uniform
axial magnetic field, and 09is the cavity operating frequency. Accordin,:; to the

small signal assumption [Eo/Boc[<< 1 , where c is the light speed in free space,
Eq. (I) can be 12ne.a_iz.extas

e (v × B).m (4)
"_'_ 0 '

_x _p ]'1(113
and

--+v.--+e(vxB), fl 'lI) - EOf°
_t _x _p _p

where f0 is the equilibrium distribution function for both regions (13and (H), and

/"103and fl _) are, respectively, the perturbation distribution functions for the two
regions. In region li), there is a cavity field, whereas in region (II) there is no

cavity field. So flt_ satisfies Eq. (5) mad fl(tI)satisfies Eq. (4).
At t = 0 the electric field begins to con4ition the cavity-in part of the

infinitely long electron beam so that it produces a perturbation of the distribution of
the beam. Then the perturbation propagates with a velocity of t,_ in the z-direction

like a. wave. So ['1o) and fl (n) are required to satisfy the following initial and
boundary conditions

fl(I)(t<-O) =f_(n)(t5 _ ) = 0, (6)

f_a)(z=d) = f lO1)(z--d). (7)

Eqs, (4)-(7) are the basis of finding perturbation functions,, Only after obtaining
them can we calculate the axial velocity spread.

'ro calculate perturbation distribution functions we first have to determine
the equilibrium distribution function from F.x].(4). According to the first order
partial differential equation theory, any combination of constants of motion from
characteristic equations of Eq. (4) is _ solution. So, if we find the constants of
motion we can use them to construct equilibrium distribution functions in terms of a
given electron beam. For convenience, we use cylindrical coordinates in the
momentum space just as in the configuration space, that is, px=p±cos¢,
py=p±sin_) , and pz=pz.

Calculations indicate that the characteristic equations of Eq. (4) have six
independent constants of motion: . :



C1 = p±, (8)
. C_:=Pz, (9)

C3 = ¢ - lent z , (10), Pz

C4 = R cosq_ ,-_. sine
legS0 ' (1_) '

C_ =R sin_ + _cos¢, (12)

C6=¢ - .Q t , (13)

where e is the electron charge, and I2_e_o/(_n) is the relativistic cyclotron

ang'ular frequency, with 7=(p2+pz_-m2c 2) U2/(mc) the relativistic factor and m
the electron rest mass.

Because the electrons gyrate in the axial magnetic field, it is more
convenient to use those constants of motion characterizing guiding centers to
conswact equilibrium distribution functions, for this gives us a clear physical
picture.

Setting rt:-=pj_/teBo[ and O=O+(ao/IBol)rc/2,fromEqs.(11) and (12) we
have

R_ cos q_g= R cos_p - rL coso , (14)

Rg sin _g =R sin_ - rL sin0 , (15)

where Rg and _pgare ra.NN and azimuthal coordinates of the guiding center and they
are,ali constants of motion.

When Bo > 0, the elexztmns are right-rotated along the z-direction, and when
B0<0, the electrons are left-rotated. In the beam conditioner, unlike a
gyrotron, Iz13 distingu![shing the gyration direx:tion is important because different
gyration directions can result in different variations in velocity spread.

Suppose that _e distribution of the guiding centers of the electron beam is
uniform, so the equilibrium distribution function can be chosen as

f0 = 6(7- 7o)H(P.t)H[[eBo[(Rb-Rg)-p.OH(Rg)H(Rb°Rg ) H(pz), (16)

where )t) is the initial relativistic factor, and H(x) is a unit step functi'm. Since 7,

P±, Pz, and Rg are all consumts of mo'ion, f0 given by Eq. (16) is a solution of
' Eq. (4).



Perm_.__r__h.ationDistribution Functi0n

We will use '..hemethod of integration along characteristics to solve for fl a)

and then directly detemfine fl ftl) by usingfl00 and arguments involving constants
of motion.

"l'he perturbation distribution function fl (I)can be expressed as

= E' _/0 dt 'fl g) -e . "" •
_p, (17)

To perform the above integration, we have to make local expansion of the electric

field E in the guiding center (Rg, _p&). Applying the Bessel function addition
theorem

Jl(kcR)ei(q"°)= _._ J1-t(kcRg)eiO't)_rJt(kcrL) ei(lq)°, (18)

we have

EtL= Eosin I_z sin cot _ (-1)lJl(kcRg)Jl+l(kcrL) sin l(qgg-O) , (19)

_¢.o0

Eo= Eosin I_z sin cot _ (-1)lJl(keRg)Jl+l(kcrL)COs l(epg.O) , (20)
1_o,_

where En. and E o are, respectively, the components of the rr,. and 0-directions in
the guiding-center frame.

From Eqs. (19) and (20), we find that the electric field is expanded as a sum
of inf'mite cyclotron harmonics. The amplitude of the I th harmonic is proportional

to Jt(kcRg). Because a small be.am radius is used, kcRg is 'much less than unity. In
addition, because the field of the fin'st harmonic varies azimuth'ally, its effect on an
electron tends to cancel when the eIectron makes a revolution in the linear limit. So,
the effect of the zeroth one is dominant. It should be noted that the zeroth harmonic
has only an azimuthal component of the electric field and it is axisymmetric in the
guiding-center frame, just like the whole TE011-mode electric field in the

waveguide-axial frame. In fact, if we let Rg approach zero, Eqs. (19) and (20) go
back to Eq. (2).

The equations describing the characteristics are given by

z'= z - vz (t - t'), (21)



t

0 = 0- .(2(t - t' ) , (22)

, where vz=pz/(Tm ) is the axial velocity and it is also a constant of motion.
Substituting Eqs. (19)-(22) into Eq, (17), after a tedious calculation we can

obtain the first-region perturbation distribution function
q

f _ = _ . BO L e Eo Ft Gt(I) , (23)lad 4t=.**
where

(24)

(.Oil

+_L. {sin [lcpg-(_z+/O)+ cot]-sin [/_&-(_-z+/O )+ (_vz+lI2)t 1}. (25)co4t

In Eq. (25), colt, o_, c031,and c04tare given by

o)2t.lt = o9+ _ Vz+ 112 , (26)

(.03t.4t= co - _ v, + IO • (27)
On the basis of the perturbation distribution function in region (I), we can

easily obtain the one in region (II). From Eq. (24) we can see that Ft is only a

function of constants of m(_tion and, of course, it is "also a constant of motion. Ia_
Eq. (25), however, G1 not only depends on the constants of motion
_g, vz, and .(2, but also depends on z, 0, and t, wlfich are not constants of motion.
So if we can use some constants of motion tg_take the piace of them, then Eq. (4) is
satisfied. "Io this end, setting z = d in Gtw and then replacing t and 0 by the
following constants of motion:

t* = t -.1.. (z- d ), (28)
Vz

0* = 0 - v-$2(z- d ), (29)
we obtain the second-region pertulbation _stribution function

z
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(1/)
f: = " , (30)

t

l=-** IBd 4
where

G, 0I)= H(----t*---_){sin [/((pe-,)*) + rot*]-sin[l(q)g-O*)-(_vz-ll2 )t*]}roll

H(t*) {sin [l((pg-0*)-a_t*]- sin[l(rpe-O*)+(_vz+II2 )t*]}co2t

ro3t

H(t*) {sin [l(,ps.0,) + rot*]-sin[l(rpe-O*)+(_vz+II2 it*]}. (31)ro4t

Since t* and O* are all constants of motion, f 101)satisfies the equilibrium

Vlasov equation. Indeed, it is easy to verify that f _ and f :(1I)satisfy the initial
and boundary conditions.

_ial Velocity Sm'emdv _ ____

We have obtained perturbation functions mad now we can use them to
calculate the axial velocity spread.

The rms-normalizeA axial velocity spread is defined by

h_-e flz is the axial velocity normalize.xi to the light speed c, the averages (flz)and
_)are given by

(_z,flz2)= A f (_z, flz2)OrO+fl)d3pd3x• (33)l

Here fl denotes f lfr)or f1aI), and

A=-- J[

f " (34)
(f0 + fl) d3pd3x

From Eqs. (32) and (33), we have

where ( )0and ( h denote taking an average with f0 and f: respectively.
After a lot of calculatiorkq we can obtain 14



__
.

_= _/14--'-'_ ilO' 7omc] 1+-- l--_--)

7tBoc 2
1

floA 'NA ] ' (37)

where g is the cavity operating wavelength and ilo=vole.
Eq. (36) describes the axial velocity spread when the pulsed beam arrives at

the front of the cavity and Ext. (37) describes the spread when it leaves the cavity.
When the beam length approaches zero, the two formulas give the same result, as
expecte& Because the linear modification of the axial velocity spread is caused by
the zemth harmonic, it only depends on the cavity length normalized to an operating
wavelength; that is, there is no dependence on what wavelength is used.

Talcing E0=7.5x104 Volt/cre, Bo=2500 Gauss, (Eo/Boc---0.1), Rb=l cna

and 7o=2.47,15 from Eq. (37) we have drawn the dependence of the rms-
normalized axial velocity spread on the normalized cavity length. As shown in Fig.
2, we can see that the maximum of the spread increases with the pulse length. For
the pulsed beam with a length of 0.01 wavelength, the velocity spread is
max£murnly improved when the normalized cavity length is about 0.62. For the
pulsed beam with a length of 0.5 wavelength, however, the spread is not improved
and instead it is deteriorated. From this it can be inferred that the effect of the pulse
length on velocity spread is important. From Fig. 2, we also can find that the
spread varies quasi-periodieaUy with the cavity length. The varying amplitude
approaches zero as the cavity length increases infinitely. According to Eq. (37), the
quasi-periodicity of the dependence of the spread on the cavity length is related to
the electron's initial energy, the operating wavelength, and the pulse length.

It should be noted that the spread for 0.5 normalized eavity length, about
3.41%, is the same as that of the equilibrium beam. It seems that the beam is not
affected at all when it passes tkrough the cavity. This can be explained as follows:
when the cavity length is equal to half an operating wavelength, the waveguide
radius appproaches infinity and so the electric field within the electron beam
vanishes. Accordingly, the beam cannot be conditioned.
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Fig. 2. Dependence of the rms-nonnalized axial velocity spread on the normalized
cavity length. The entrance time of the pulsed beams is zero.

The linear theory indicates that the improvement on the spread is very small.
Therefore, investigation of non-linear processes for the beam conditioner is
necessary.

NONLINEAR EVALUATION OF THE BEAM CONDITIONER

In this section we will use the basic equations governing the nonlinear
behavior of the beam conditioner to examine relations between the axial velocity
spread and the cavity length.

In our procedure, the vacuum-cavity TE011-mode fields are used and the
contribution of the pulsed beam to the cavity fields is neglected. This is quite
reasonable because the transverse velocities of the beam are rather small in the beam
conditioner, unlike the cyclotron rnaser where an electromagnetic wave is efficiently
amplified through the coupling betwex_nthe wave and an electron beam with much
larger averaged transverse velocity} ° The electron orbits are, related to the fieIds
through the relativistic Lorentz force equations in the single-particle simulation.
Fk,'st, in order to check the previous linear kinetic theory we use only the TE011-
mode electric field and neglect its magnetic field to compute a single pulsed beam.
Then we use both the electric and magnetic fields of the TE011 mode to compute the
same pulsed beam and compare them with each other. This simulation reveals the
nonlinear evolution of the rms-normalized axial velocity spread as a function of
cavity

l_r_en,,,_,t, only the electric field is used in the simulation, the axial momentum is
a constant and it is examined to check the validity of the calculation. In the general
case, _ three checks have been passed by the code. When both the electric and
magnetic fields are included, we use Liouville's theorem to check the c'ode by

10



computing the Jacobi detertainant (time is taken as ata independent variable) and,
also, by reversing the computation and using the final values of a particle as initial

. conditions.

Lorentz For_e Fm_uafion_jn |t_eOuidin_
" In the previous linear theory, for the convenience, of calculation, the TEo11-

mode field is expanded as a sum of infinite harmonics. In the computation,
however, it is more convenient to resove directly the TE011-mode field into
components in the guiding-center frame without expansion into harmonics.

Irl the waveguide-axial frame, the TE011-mode fields are given by

E_= EoJl(kcR ) sin I_z sin rot , (38)

Bz =- Eo _-_Jo(koR) shl _z cos tot • (40)

In the guiding-center frame, E_,and BR are resolved into the following:

Rg (0- _pg)sinEr, = EoJl(koR ) _ sin _z sin tot , (4.1)

Eo=EoJI(koR) cos(0-,.,g)4 R sin_zsin tot , (42)

Br_=-Eo]_l_Jl(kcR)[-t_-cos(O-fpg)+_]cosl_zcostot (43)

B o E ll_-Jl(koR) Rg= 0to -_-sin (0-_pg)cos _z cos cot, (44)
where

R =_/Rg 2 + r_ + 2RgrL cos (b-_pg). (45)

Here we use the same symbols msthose in the finear theory. But it should be noted
that some of them have different mathematical contents. For exmaaple, in the kinetic

theory Rg and q_gare functions of both the momentum variables and the
configuration variables, whereas in this single-particle simulation they are fixed for
a given guiding-center frame.

From Eqs. (41)-(44), the Lorentz force equations in the guiding-center
frame can be written as

= __ __ilk, (46)

11



= -J_-- f4_-_--1 ]=---J_-, (4.7)
d_ 2Rb r/_

- 2. , (48)
P3

• 1}d_=,_"_¥-LI-_,_n__+j.[_,_g.(_-2)_o-/.'%-,"_,_-,,(50>

where.

B;=- Cx:_Jo(R"bR')+J:z(_t"bR')][R'gcos27I(0"-_,)+?]cosx_"cos2_t,(54)

fro= o:,_,Jo(R,'bR')+J2(RbR)]_'gsi_,2rc(O'-_,)cosr(_cos2r_t, (55)

B-_= _:_.. o_,U'o(R'-_R) sm _:2cos 2xr, (56)

with ctl_e[ebE.t_t(2mc_.), a_._elR_Ed(471_'2), o_3=_e_ol(mK-c), and.
c.x4_eIEo/(mox:). The normalized quantifies appearing in l_s. (75)-(85) are, clef'meal

,,,..,,

by _=z/d, T'=rc/Rb, O=O/(2rO, _wt/(2rc), fll=(drL/dt )/c, f_=(rz.dO/dt )/c,

fl3=(dz/dt )/c, "d-.d/X, R'-'_=kcRb, R'g=Rg/Ro, _s=cpff(2_), i'd=R/Rb, and
.2 R, 2 /,_2,_ I/2

7'=(I',/_,"_-'z"ez :" •

We used Eqs. (46)-(51) _trtd made computations for a pulsed beam,
immersed in a 2500 Gauss axial magnefi,c field, with a length of 0.5 cre, a radius of
I cre, and an initial relativistic factor of 2.47. I_ The initial electron's relativistic
cyclotron frequency is 2.83 GHz, corresponding to its relativistic cyclotron
wavelength 10.6 cm in fl_e space. Three layers of sample elecu, ons are taken
within the beam _d each layer has six guiding centers with 200 elec_ms. Because
the TE01 _-mode fields aze axisymmetticaJ, the six guidk_g centers are all placed at

12



qgg---0.The guiding centers are distributed uniformly along the radial direction with

• the coordinates Rg/Rb = 0.0, 0.2, 0.4, 0.6, 0.8, mad 1.0, and the distribution of the
electrons on gyration orbits simul;ates the equilibrium distribution function, given
by Eq. (16), of neglecting the gradient effect of the guiding center. The amplitude

• of the cavity electric field is taken as 7.5x10 4 Volt/cm.
First, let us ex,'maine the numerical simulation using only the electric field.

Taking the operating wavelength as I0 cre, and the entrance time of the pulsed
beam front as zero arid 0.5T (T is the pericx:l of the cavity field), we find that the
linear results aga_'equalitatively with the ones from the simulation, as shown in Fig.
3a and Fig. 3b, respectively. Bgth in the linear and simulation results, the axial
veiocity spread oscillates with the cavity length and the oscillation damps gradually.
When the cavity length is larger than one wavelength, however, the nonlinear effect
becomes very considerable. In the nonlinear interaction, the mean value of
oscillation of the velocity spread evidently reduces with the cavity length, whereas
in the linear result it keeps constant.

Then we made simulations for the same pulsed beam with the whole TEol_-
mode field, including both electric and magnetic fields. Since the reduction in the
mean value of oscillation is caused by resonant emission, it should not depend on
the phase at which the pulsed beam enters the cavity. From Fig. 4 we can see,
indeed, that these mean values are almost the same. The dependence of the rms-
normalized energy spread on the normalized cavity length is shown ha Fig. 5.
From Fig. 4 and Fig. 5 we find that for short cavities no matter whether the axial
velocity spread is increased or decrea:ed, the energy spread ;s always increased.

To examine the dependence of the axial velocity spread on the operating
wavelength and to find out at what wavelength the beam conditioner can best
improve the beam's axial velocity spread, we made simulations for different
wavelengths. The result indicates that the axial velocity spread strongly depends on
the operating wavelength, as shown in Fig. 6. For a wavelength of 11 cna (2.73
GHz), the mean value of the axial velocity spread reduces most rapidly with the
noxrnalized cavity length. For too long, or short, a wavelength compared with 10.6
cm (corresponding to the initial electron's relativistic cyclotron frequency 2.83
GHz), the axial veloci,'y spread cannot be improved. From Fig. 6, we also can fund
that in the linear regime the dependences of axial velocity spread on the cavity
length nor_alizexl to different wavelengths are, almost the same, which means that
there is little dependence on what waveIength is used to normalize the cavity length.
From this we can deduce that the effect of the zeroth harmonic is dominant and the
effect of the first harrnonic is negligible in the linear regime, which agrees with the
previous linear theory.

Although the axial velocity spread rapidly reduces with the cavity length
when the cavity operates at a wavelength of 11 cm, it very soon reaches its
minimum value of 3.9%, only decreased by 2.1% compared with its initial value of
6%. If the cavity operates at 10 cre, the axial vel_ity spread deca'eases down to
1.8%, less than one third of its initial value. However, the cavity length is greater -
than that tbr the 11 cm case, as shown in Fig. 7.

, From Fig. 7, we also can find that the time-dependent magnetic field plays
such a role that the mean value of oscillation of the axial velocity spread is more
rapidly decreased.
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CONCLUSIONS

We have developed a linear kinetic theory to investigate a conditioner for a
• helically transported electron beam. The expressions for axial velocity spread of a

pulsed beam conditioned by the RF cavity operating in the TE011-mode were
derived. Numerical simulations were, used to check the linear theory and it was

' found that the lineaz results ,are qualitatively in agreement with those from the
simulations. We also have examined the nonlinear evolution of the axial velocity
spread with the cavity length and the cavity ope,rating wavelength due to the
negative mass effect. In summary, we can make the fc[lowir.lg conclusions. In the
linear regime, in which the cavity length is less than one operating wavelength, the
modification of axial velocity spread is caused mainly by the interaction of the
electrons with the zeroth harmonic, and hence whether the axial velocity spread is
improved and this improvement mainly depends on the phase at which the pulsed
beam enters the _;avity and only sJighfly depends on the operating wavelength, In
the nonlinear regime, the variation in axial velocity spread results from the
interaction of the electrons with the fundamental harmonic b_ed on the negative
mass effect, and so it strongly depends on the operating wavelength and only
slightly depends on the entrance phase of the pulsed beam. The simulation for a
pulsed beam with a length of 0.5 cre, passing through a cavity operating at_ a
wavelength of 10 cm, indicates that the tins-normalized axial velocity spread can be
reduced down to 1.8%, less than one third of its initial value. From this we see that

a beam conditioner can be used to decrease the spread in axial velocities for a low-
energy electron beam.
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