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CONDITIONER FOR A HELICALLY TRANSPORTED
ELECTRON BEAM®

Changbiao Wang**
Lawrence Berkeley Laboratory
University of Califomia
Berkeley, CA 94720

ABSTRACT

The kinetic theory is developed to investigate a conditioner for a helically
transported electron beam. Linear expressions for axial velocity spread are derived.
Numerical simulation is used to check the theoretical results and examine nonlinear
aspects of the conditioning process. The results show that in the linear regime the
action of the beam conditioner on a pulsed beam mainly depends on the phase at
which the beam enters the conditioner and depends only slightly on the operating
wavelength. In the nonlinear regime, however, the action of the conditioner
strongly depends on the operating wavelength and only slightly upon the entrance
phase. For a properly chosen operating wavelength, a little less than the electron's
relativistic cyclotron wavelength, the conditioner can decrease the axial velocity
spread of a pulsed beara down to less than one-third of its initial value.

INTRODUCTION

in a beam conditioner, proposed by Sessler, Whittum and Yu,!%* a nearly
monoernergetic beam has the shape of the beam's phase volume so changed that its
axial velocity spread is improved. As a result, the beam conditioner can greatly
reduce the spread in axial velocity of an electron beam, and hence it can be used,
with advantage, on almost all fast wave devices. It is therefore natura! that it has
aroused considerable attention, 4

There are different means for conditioning electron beams. The longitudinal
electric field in a microwave cavity, as proposed by Sessler, et al, can be used to
condition electron beamns, and this is an efficient method. However, for low energy
beams, transported by a helical magnetic field, some other method of beam
conditioning is required. The transverse electric field in an RF cavity can,
conveniently, be used for this purpose.

In this paper, we present a kinetic formulation of a conditioner consisting of
a microwave cavity operating in the TEg;; mode while immersed in a uniform axial
magnetic field. We treat analytically the linear problem of dependence of the axial
velceity spread on the cavity length, and use sirmulation to examine non-linear

aspects of the evolution of the spread with both the cavity length and the operating
wavelength.

* Work supported by the Director, Office of Energy Research, Office of High Energy and Nuclear
Physics, Division of High Energy Physics, of the U.S. Department of Energy under Contract
Number DE-AC03-76SF)0098
** On leave from University of Electronic Science and Technology of China, Chengdu, Sichuan,
610054, China
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In a cavity operating in the TEg1 mode, the electric field has only an
azimuthal component with a radial distribution given by the first order Bessel
function Jy(kcR ), where k. is the cutoff wave number, and R is the radial
coordinate. For a single-energy electron beam with a sufficiently small beam radius
and only one guiding center at the origin, the electrons with a larger gyration radius
experience a stronger electric field decelerating force (for appropriate phase) than
those with a smaller gyration radius. The larger the gyration radius is, the more
energy the electron loses. By the coupling of energy with axial momentum (a
relativistic effect), the axial velocity of the electron is increased if the effect of the
time-dependent magnetic field is neglected. Therefore, as long as the beam pulse is
sufficiently short the axial velocity spread will be improved.

For an actual electron beam, the guiding-center radius R, ranges from zero
to Rp, where Ry is the beam radius, and the gyration radius r;, ranges from zero to

(Rp-Rg). In such a situation, we can consider the azimuthal field as the sum of
infinite cyclotron harmonics. Of all these harmonics only the zeroth one is
important. So for those electrons with non-zero guiding center, the previous
analysis holds. From this we can see that the axial velocity spread of an electron
beam with muiiti-guiding centers also can be improved.

Generally speaking, increasing the cavity length increases the interaction
time. In this case, however, non-linear effects become important. As it is well
known, when the cavity operating frequency is slightly greater than the electron
relativistic cyclotron frequency, the electron beam effectively interacts with
cyclotron harmonics and, as a result, resonant emission appears, which is the basis
of the maser instability.® At this time, most of the electrons lie in the dccclcrating
electric ficld of the fundamental harmonic because of the negative mass effect’®
which results in particle bunching in the azimuthal direction as explained by
Sprangle and Drobot.!% Sc once the bunching appears, no matter whether the bearn
experiences a net transverse acceleration or deceleration at the beginning interaction
(depending on the phase of the pulsed beam entrance of the cavity), the transverse
velocities of the most electrons can be continuously reduced in the next interaction.
Consequently, the axial velocity spread will be gradually improved until another
nonlinear process (resonant absorption) arises, so that the transverse velocities of
the electrons begin to increase, resulting in an increase in the axial velocity spread.

The beam conditioning presented here is different from the electron-beam
cooling proposed by Hirshfield and Park.!! In their proposal, the beam's
distribution of energy is made narrower by use of both resonant emission and
absorption. This process cannot be used to improve the axial velecity spread. For
a single-energy electron beam with a spread in axial velocity, for example, it can do
nothing because the width of the distribution in energy is null. The beam
conditioner, in contrast, reduces the spread in axial velocity (instead of the energy
spread) through the coupling of energy with axial momentura caused by resonant
emission.

In Sec. 11, a calculational model is set up to treat analytically a pulsed beam
with the Vlasov theory. The perturbation distribution function of the pulsed bearn
conditioned by the RF cavity is derived and linear expressions for axial velocity
spread are given. In Sec. III, numerical simulations are used to check the analytical
results, and investigate the dependence of axial velocity spread on the cavity length
and operating wavelength caused by the nonlinear interaction of the beam with the
cavity field. Finally, in Sec. IV some conclusions are made.



LINEAR KINETIC THEORY OF THE BEAM CONDITIONER

In this section, based on linearized Vlasov equations, we will derive the
perturbation distribution functions of a pulsed electron beam conditioned by the RF
cavity and use them to obtain analytic expressions for the rms-normalized axial
velocity spread.

In the model, we take the pulsed beam as a segment, which has a length L,
of an infinitely long electron beam. We will first calculate the perturbation
distribution function for the infinitely long beam, and then we use it to calculate the
axial velocity spread of the considered segment, We assume that the electron beam
is mono-energetic. The electron's transverse velocity is small compared with its
axial velocity and variation in the pulse length is negligible when the pulsed beam
goes from one end of the cavity to another. The beam pulse front is located at z=0

when 1=0. At r=d /vy with d (2L ) the cavity length and vy the tdtal initial velocity,
the beam pulse arrives at the front end of the cavity, and at #=(d+L) /v, the pulse

beam has passed through the cavity, as shown in Fig. 1. For simplicity, the time-
dependent magnetic field is neglected in the linear consideration.

REGION (ij | REGION (i)
i
f,+ 10 £+ 1"
CONSIDERED PIECE
OF ELECTRON BEAM =d/Vg {t=(d+L)Vo
; — ELECTRON
— N BEAM
=0 CAVITY
P 7
- L 0 d d+L

-
APPLIED UNIFORM AXIAL MAGNETIC FIELD B

Fig. 1. Calculational model. The pulsed electron beam is taken as a segment of an
infinitely long beam. When r =), the front of the segment of beam is located at z=0.
When r=d /vg and t=(d+L)/vo, the front is at z=d and z=(d*L), respectively.

The Vlasov equation describing the beam conditioner is given by

-g”f+v.:a~f-'-+e(E+va).§—f»20. (1
ot ox ap
where
E =9 EoJy(kR) sin &z sin wr, (2)
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B=2B. (3)

In Eqgs. (2) and (3), the cylindrical coordinates are used, and R , @ and Z are all unit
vectors; Ep is the TEpy1-mode electric field amplitude, By is the applieq uniform
axial magnetic field, and @ is the cavity operating frequency. Accordiny to the
small signal assumption |Ep/Boc|<<1 , where ¢ is the light speed in free space,
Eq. (1) can be linearized as

’-—a-+v.-a—~+e(v><B).il fo \_p, (4)
\6: ox op l AR

and
ia~+ v.-—a—- +e(vx B).—?—— }flm =-e E(’—’f2 ' &)
ot ox ap ap

where f; is the equilibrium distribution function for both regions (I) and (II), and

fla) and fl(m are, respectively, the perturbation distribution functions for the two
regions. In region (I), there is a cavity field, whereas in region (II) there is no

cavity field. So flm satisfies Eq. (5) and fl(m satisfies Eq. (4).

At =0 the electric field begins to condition the cavity-in part of the
infinitely long electron beam so that it produces a perturbation of the distribution of
the beam. Then the perturbation propagates with a velocity of v, in the z-direction

like a wave. So flm and fI(II) are required to satisfy the following initial and
boundary conditions

fPas0)=fPeszdy <0, ©
P =d) = fP=d) @)

Eqs. (4)~(7) are the basis of finding perturbation functions. Only after obtaining
them can we calculate the axial velocity spread.

Equilibrium Distribution Function

To calculate perturbation distribution functions we first have to determine
the equilibrium distribution function from Eq. (4). According to the first order
partial differential equation theory, any combination of constants of motion from
characteristic equations of Eq. (4) is 2 solution. So, if we find the constants of
motion we can use them to construct equilibrium distribution functions in terms of a
given electron beam. For convenience, we use cylindrical coordinates in the
momentum space just as in the configuration space, that is, px=p Cos@,
py':'-[)_l_81ﬂ¢ , and DPz=Ds.

Calculations indicate that the characteristic equations of Eq. (4) have six
independent constants of motion:



Ci=pys> (8)

Car=p;» )

Camth - lfillifz_o_z : (10)

Ca =R cosg ui—e’T’éLo-sin‘ﬁ, (11)
Cs=Rsing + '}%Ecow, (12)
Ce=¢ -£21 , (13)

where e is the electron charge, and Q<=e|Bo/(ym) is the refétivistic cyclotron

angular frequency, with y<{p f+p,2+m202) "2 /(mc) the relativistic factor and m
the electron rest mass.

Because the electrons gyrate in the axial magnetic field, it is more
convenient to use those constants of motion characterizing guiding centers to
construct equilibrium distribution functions, for this gives us a clear physical
picture.

Setting rz=p, /leBol and ¢ =5+(Bo/|Bol)n/2, from Eqgs.(11) and (12) we
have

Rg cos @ =R cosp -rpcosf » (14)
Rg sin @y =R sing - rp, sin6 (15)

where Rg and @, are radial and azimuthal coordinates of the guiding center and they
are all constants of motion.

When By >0, the electrons are right-rotated along the z-direction, and when
By <0, the electrons are left-rotated. In the beam conditioner, unlike a
gyrotron,'#13 distinguishing the gyration direction is important because different
gyration dircctions can result in different variations in velocity spread.

Suppose that the distribution of the guiding centers of the electron beam is
uniform, so the equilibrium distribution function can be chosen as

fo=6(y- w)H(p,) H[|eBo|(Ro-R,)-p.] H(Rg)H(Ry-Rg) Hp,)»  (16)

where % is the initial relativistic factor, and H(x) is a unit step function. Since 7,

Pi, Pz, and Ry are all constants of motion, fo given by Eq. (16) is a solution of
Eq. (4).



Perturbation Distribution Function
We will use the methed of integration along characteristics to solve for fla)

and then directly determine fl(m by using fi(M and arguments involving constants
of motion.

The perturbation distribution function flm can be expressed as

4
’ a ’
f xm =-€ E . ""‘fg" .
0 o
To perform the above integration, we have to make local expansion of the clectric

field E in the guiding center (R ¢, ). Applying the Bessel function addition
theorem

an

+ oo
NkR) @O = B 1 y(keRy) D% (Kory) €600, (1g)
l=-.00
we have
+ o
Ep=EosinZz sinat 3 (DYikR)Jialkery) sin 1(9g-6) , (19)
l.—.-oo
+ 00
Eg=Eosin Lz sin Y, (DY kRY Fatkars) cos 1(9,-6) , (20)
I=.00

where E, and Eg are, respectively, the components of the 7z- and 6 -directions in
the guiding-center frame.

From Egs. (19) and (20), we find that the electric field is expanded as a sum
of infinite cyclotron harmonics. The amplitude of the / th harmonic is proportional

to Ji(kRg). Because a small beam radius is used, k.R, is much less than unity. In
addition, because the field of the first harmonic varies azimuthally, its effect on an
electron tends to cancel when the electron makes a revolution in the linear limit. So,
the effect of the zeroth one is dominant. It should be noted that the zeroth harmonic
has only an azimuthal component of the electric field and it is axisymmetric in the
guiding-center frame, just like the whole TEg;;-mode electric field in the
waveguide-axial frame. In fact, if we let R, approach zero, Egs. (19) and (20) go
back to Eq. (2).
The equations describing the characteristics are given by

=z-v (-1, (1)

e



9'=6—Q(t~t') , (22)
where v;=p,/(¥n) is the axial velocity and it is also a constant of motion.

Substituting Eqs. (19)-(22) into Eq. (17), after a tedious calculation we can
obtain the first-region perturbation distribution function

+ oo

0= % -I-gﬁ‘ileaop,c;,“’, (23)

l=-oo

where

Fr=(- 1)1 {Jl(chg)JlH(kcrL)[

o , b af"] L g1 (keRY) Ti (kerp) 5—"5‘1-}

9y mcP 3y TeBol e
G =~ L-{sin[lpy + (Bz-16 |+ wt | - sin I + (B2-16)- (Bv-12)¢] }
+ -al); (sin 1, - (%,»ulf))- ot |- sin [upg - (%zwe )+ (invzwg )]}
- Z}; (sin [t + (E2-16)- a |- sin[tgy+ (Lz-16)- (Evr12)e] )
+ 5)1-17 (sin[tg, - (B2+16) + or ] - sin 1 - (Ez+io)+ EBrrie]) s
In Eq. (25), @11, @y, 3, and @4 are given by
Oui=0+Ly, 210 (26)
O3ar= @ -Ly, 10 . @7)

On the basis of the perturbation distribution function in region (I), we can
easily obtain the one in region (II). From Eq. (24) we can see that F; is only a
function of constants of %ﬁon and, of course, it is also a constant of motion.” In
Eq. (25), however, G ; not only depends on the constants of motion
@g, vz, and L2, but also depends on z, 8, and ¢, which are not constants of motion.
So if we can use some constants of motion t&)takc the place of them, then Eq. (4) is
satisfied. To this end, setting z=d in G, and then replacing ¢ and 6 by the
following constants of motion:

:*::z-«&;(z-d)» (28)

e*me-gl(z-d). (29)
we obtain the second-region perturbation dzistribution function



+ 00
B
fl(n)': Z -'--E-‘é—%eEoFlGl(m’ (30)

[=-00

where
¢ -%Sl (sin[t(py-7#) + @] - sin[1(py-64) - (Evr-i2)4] |
) %‘?_ {sin [1(pg-6%) - wr¥] - sin Tl (pg-6*) + (%vﬁl.() )r*] }

-+

) o)) (et

_H
Wy

(sin [1(@g-6*)+ wr] - sin :l(ng-e*) + (g-v,wa )t*] } : (31)

Since r* and 6* are all constants of motion, f 1(11) satisfies the equilibrium

Vlasov equation. Indeed, it is easy to verify that f 1(1) and f I(II) satisfy the initial
and boundary conditions.

We have obtained perturbation functions and now we can use them to
calculate the axial velocity spread.
The rms-normalized axial velocity spread is defined by

o=V (6. 46" - G2)

here f3; is the axial velocity normalized to the light speed ¢, the averages (,B,) and
&Lgﬁrc given by

(8., B.2) = 4 j (8. B (fo + 71) dp®x . (33)

Here fy denotes f l(I) orf 1(“), and

A= 1 :
o+ f1) Bpd3x
From Egs. (32) and (33), we have

(8.7)- (B = (8.2 - (8 + [(82) - (8 - 2 (B {3k » ©39)

where () and ) denote taking an average with f; and f; respectively.
After a lot of calculations we can obtain!4

(34)
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where } is the cavity operating wavelength and Sy=vo/c .

Eq. (36) describes the axial velocity spread when the pulsed beam arrives at
the front of the cavity and Eq. (37) describes the spread when it leaves the cavity.
When the beam length approaches zero, the two formulas give the same result, as
expected. Because the linear modification of the axial velocity spread is caused by
the zeroth harmonic, it only depends on the cavity length normalized to an operating
wavelength; that is, there is no dependence on what wavelength is used.

Taking Eg=1.5x10% Volt/cm, B¢=2500 Gauss, (Eo/Boc=0.1), Rpy=1cm
and %=2.47,'% from Eq. (37) we have drawn the dependence of the rms-
normalized axial velocity spread on the normalized cavity length. As shown in Fig.
2, we can see that the maximum of the spread increases with the pulse length. For
the pulsed beam with a length of 0.01 wavelength, the velocity spread is
maximumly improved when the normalized cavity length is about 0.62. For ihe
pulsed beam with a length of 0.5 wavelength, however, the spread is not improved
and instead it is deteriorated. From this it can be inferred that the effect of the pulse
length on velocity spread is important. From Fig. 2, we also can find that the
spread varies quasi-periodically with the cavity length. The varying amplitude
approaches zero as the cavity length increases infinitely. According to Eq. (37), the
quasi-periodicity of the dependence of the spread on the cavity length is related to
the electron's initial energy, the operating wavelength, and the pulse length.

It should be noted that the spread for 0.5 normalized cavity length, about
3.41%, is the same as that of the equilibrium beam. It seems that the beam is not
affected at all when it passes through the cavity. This can be explained as follows:
when the cavity length is equal to half an operating wavelength, the waveguide
radius appproaches infinity and so the electric field within the electron beam
vanishes. Accordingly, the beam cannot be conditioned.
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Fig. 2. Dependence of the rms-normalized axial velocity spread on the normalized
cavity length. The entrance time of the pulsed beams is zero.

RMS-NORMALIZED AXIAL VELOCITY SPREAD

The linear theory indicates that the improvement on the spread is very small.
Therefore, investigation of non-linear processes for the beam conditioner is
necessary.

NONLINEAR EVALUATION OF THE BEAM CONDITIONER

In this section we will use the basic equations governing the nonlinear
behavior of the beam conditioner to examine relations between the axial velocity
spread and the cavity length.

In our procedure, the vacuum-cavity TEg;;-mode fields are used and the
contribution of the pulsed beam to the cavity fields is neglected. This is quite
reasonable because the transverse velocities of the beam are rather small in the beam
conditioner, unlike the cyclotron maser where an electromagnetic wave is efficiently
amplified through the coupling between the wave and an electron beam with much
larger averaged transverse velocity.!® The electron orbits are related to the fields
through the relativistic Lorentz force equations in the single-particle simulation.
First, in order to check the previous linear kinetic theory we use only the TEq;;-
mode electric field and neglect its magnetic field to compute a single pulsed beam.
Then we use both the electric and magnetic fields of the TEo;1 mode to compute the
same pulsed beam and compare them with each other. This simulation reveals the
nonlinear evolution of the rms-normalized axial velocity spread as a function of
cavity length.

v en only the electric field is used in the simulation, the axial momentum is
a constant and it is examined to check the validity of the calculation. In the general
case, all three checks have been passed by the code. When both the electric and
magnetic fields are included, we use Liouville's theorem to check the code by

10



computing the Jacobi deterrainant (time is taken as an independent vgriable_) a}r}d,
also, by reversing the computation and using the final values of a particle as initial
conditions.

In the previous linear theory, for the convenience of calculation, the TEgq -
mode field is expanded as a sum of infinite harmonics. In the computation,
however, it is more convenient to resove directly the TEg;;-mode field into
components in the guiding-center frame without expansion into harmonics.

In the waveguide-axial frame, the TEq;;-mode fields are given by

Eg=EgJi(k:R) sin %z sin @t » (38)
=.FE, 1K L , -

Bp=-E p d.ll(ch)cos 208 wt 39

B, = - E %Jo(kck) sin &z cos o - (40)

In the guiding-center frame, Eg and By are resolved into the following:

E, = Eofl(koR)%g sin (6- g) sin Lzsinor (41)
Eg=EoJ 1(keR)[%g- cos (0- qwg)-f-%-] sin %z sin wt (42)
B, =- EO—]—EJI(kOR)[Ei cos (0- [ )+i] cos Xz cos ot (43)
e wd R &Ry '

cELE 5 pRe (o I

Bo= EoL L si(keR) S sin (6- @, cos Lz cos ot (44)
where

R=VRE+rf+2Rsrp cos (6-g) . (45)

Here we use the same symbols as those in the linear theory. But it should be noted
that some of them have different mathematical contents. For example, in the kinetic

theory R, and ¢, are functions of both the momentum variables and the
configuration variables, whereas in this single-particle simulation they are fixed for
a given guiding-center frame.

From Eqgs. (41)-(44), the Lorentz force equations in the guiding-center
frame can be written as

$on Y4721 F

B
E°E 5 (46)

11
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where

£ = ool Jo®y R)+1o®, R )|Rysin 2n(6- g} sinnFsin 20, (52)
o= aalJo®y R )+JoR) R )| Rycos 2n(6- i,)47 ) sin n7 sin 2n7 , (53)
r == o Jo(Rp B ) +Jo(R, !T)][f@;cos 2n(é~ Eg)ﬁ] Cos Z cos 21 1,(54)

o= adJo®y ) +JoR, B )Ry sin 2n(6- pg)cos 7 cos 207, (55)
:= 03 - A4Jo(Ry R ) sin n7 cos 2n7 , (56)

P &
"

L

with —on=e|REo/(2mc?),  apdelRyEg/(4dmec?),  os=leBo/mkec). and
a4={e|Eo/(max), The normalized Quantities appearing in Eqgs. (75)-(85) are defined

by Z=z/d, F=ri/Re, 9=8/2n), =t /2r), Pi=(dry/de)le, B=(rod8/ds Ve,
Bs=(dz/dt)lc, d=d/A, Ryp=k.Rp, Re=Rg/Ro, @g=qy/(210), R=R/Rp, and
r=(1-Bi*- B B2,

Simulation Results

We used Eqs. (46)-(51) and made computations for a pulsed beam,
immersed in a 2500 Gauss axial magnetic field, with a length of 0.5 cm, a radins of
1 cm, and an initial relativistic factor of 2.47.1% The initial electron's relativistic
cyclotron frequency is 2.83 GHz, corresponding to its relativistic cyclotron
wavelength 10.6 cm in free space. Three layers of sample electrons are taken
within the beam and each layer has six guiding centers with 209 electrons, Because
the TEg;1-mode fields are axisymmetrical, the six guiding centers are all placed at




@=0. The guiding centers are distributed uniformly along the radial direction with

the coordinates Rg/Rp, = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0, and the distribution of the
electrons on gyration orbits simulates the equilibrium distribution function, given
by Eq. (16), of neglecting the gradient effect of the guiding center. The amplitude

of the cavity electric field is taken as 7.5x10% Volt/em.

First, let us examine the numerical simulation using only the electric tield.
Taking the operating wavelength as 10 cm, and the entrance time of the pulsed
beam front as zero and 0.5T (T is the period of the cavity field), we find that the
linear results agree qualitatively with the ones from the simulation, as shown in Fig.
3a and Fig. 3b, respectively. Both in the linear and simulation results, the axial
velocity spread oscillates with the cavity length and the oscillation damps gradually.
When the cavity length is larger than one wavelength, however, the nonlinear effect
becomes very considerable. In the nonlinear interaction, the mean value of
oscillation of the velocity spread evidently reduces with the cavity length, whereas
in the linear result it keeps constant.

Then we made simulations for the same pulsed beam with the whole TEo11-
mode field, including both electric and magnetic fields. Since the reduction in the
mean value of oscillation is caused by resonant emission, it should not depend on
the phase at which the pulsed beam enters the cavity. From Fig. 4 we can see,
indeed, that these mean values are almost the same. The dependence of the rms-
normalized energy spread on the normalized cavity length is shown in Fig. 5.
From Fig. 4 and Fig. S we find that for short cavities no matter whether the axial
velocity spread is increased or decreased, the energy spread ‘s always increased.

To examine the dependence of the axial velocity spread on the operating
wavelength and to find out at what wavelength the beam conditioner ¢an best
improve the beam's axial velocity spread, we made simulations for different
wavelengths. The result indicates that the axial velocity spread strongly depends on
the operating wavelength, as shown in Fig. 6. For a wavelength of 11 cm (2.73
GHz), the mean value of the axial velocity spread reduces most rapidly with the
normalized cavity length. For too long, or short, a wavelength compared with 10.6
cm (corresponding to the initial electron's relativistic cyclotron frequency 2.83
GHz), the axial velocity spread cannot be improved. From Fig. 6, we also can find
that in the linear regime the dependences of axial velocity spread on the cavity
length normalized to different wavelengths are almost the same, which means that
there is little dependence on what wavelength is used to normalize the cavity length.
From this we can deduce that the effect of the zeroth harmonic is dominant and the
effect of the first harmonic is negligible in the linear regime, which agrees with the
previous linear theory.

Although the axial velocity spread rapidly reduces with the cavity length
when the cavity operates at a wavelength of 11 cm, it very soon reaches its
minimum value of 3.9%, only decreased by 2.1% compared with its initial value of
6%. If the cavity operates at 10 cm, the axial velocity spread decreases down to
1.8%, less than one third of its initial valuc. However, the cavity length is greater
than that for the 11 cm case, as shown in Fig. 7.

From Fig. 7, we also can find that the time-dependent magnetic field plays
such a role that the mean value of oscillation of the axial velocity spread is more
rapidly decreased.
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CONCLUSIONS

We have developed a linear kinetic theory to investigate a conditioner for a
helically transported electron beam. The expressions for axial velocity spread of a
pulsed beam conditioned by the RF cavity operating in the TEq;;-mode were
derived. Numerical simulations were used to check the linear theory and it was
found that the linear results are qualitatively in agreement with those from the
sinulations. We also have examined the nonlinear 2volution of the axial velocity
spread with the cavity length and the cavity opsrating wavelength due to the
negative mass effect. In summary, we can make the fctlowing conclusions. In the
linear regime, in which the cavity length is less than one operating wavelength, the
modification of axial velocity spread is caused mainly by the interaction of the
electrons with the zeroth harmonie, and hence whether the axial velocity spread is
improved and this improvement mainly depends on the phase at which the pulsed
beam enters the avity and only slightly depends on the operating wavelength. In
the nonlinear r¢gime, the variation in axial velocity spread results from the
interaction of the electrons with the fundamental harmonic based on the negative
mass effect, and so it strongly depends on the operating wavelength and only
slightly depends on the entrance phase of the pulsed beam. The simulation for a
pulsed beam with a length of 0.5 cm, passing through a cavity operating at a
wavelength of 10 cm, indicates that the rms-normalized axial velocity spread can be
reduced down to 1.8%, less than one third of its initial value. From this we see that
a beam conditioner can be used to decrease the spread in axial velocities for a low-
energy electron beam.
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