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How do humans acquire relational concepts such as larger, which are essential for analogical 

inference and other forms of high-level reasoning? Are they necessarily innate, or can they be 

learned from non-relational inputs? Using comparative relations as a model domain, we show 

that structured relations can be learned from unstructured inputs of realistic complexity, applying 

bottom-up Bayesian learning mechanisms that make minimal assumptions about innate 

representations. First, we introduce Bayesian Analogy with Relational Transformations (BART), 

which represents relations as probabilistic weight distributions over object features. BART learns 

two-place relations such as larger by bootstrapping from empirical priors derived from initial 

learning of one-place predicates such as large. The learned relational representations allow 

classification of novel pairs and yield the kind of distance effect observed in both humans and 

other primates. Furthermore, BART can transform its learned weight distributions to reliably 
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solve four-term analogies based on higher-order relations such as opposite (e.g., larger:smaller :: 

fiercer:meeker). Next, we present BARTlet, a representationally simpler version of BART that 

models how symbolic magnitudes (e.g., size or intelligence of animals) are derived, represented, 

and compared. BARTlet creates magnitude distributions for objects by applying BART-like 

weights for categorical predicates such as large (learned with the aid of empirical priors derived 

from pre-categorical comparisons) to more primitive object features. By incorporating 

psychological reference points that control the precision of these magnitudes in working memory, 

BARTlet can account for a wide range of empirical phenomena involving magnitude 

comparisons, including the distance effect, the congruity effect, the markedness effect, and 

sensitivity to the range of stimuli. Finally, we extend the original discriminative BART model to 

generate (rather than classify) relational instances, allowing it to make quasi-deductive transitive 

inferences (e.g., “If A is larger than B and B is larger than C, then A is larger than C”) and predict 

human responses to questions such as, “What is an animal that is smaller than a dog?” Our work 

is the first demonstration that relations and symbolic magnitudes can be learned from complex 

non-relational inputs by bootstrapping from prior learning of simpler concepts, enabling human-

like analogical, comparative, generative, and deductive reasoning. 
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CHAPTER 1: 

BAYESIAN ANALOGY WITH RELATIONAL TRANSFORMATIONS 

One of the hallmarks of human reasoning is the ability to form representations of 

relations between entities, and then to reason about the higher-order relations between these 

relations. Whereas concepts such as larger and smaller, for example, are first-order relations, 

potentially derivable by comparing features of individual objects, a relation such as opposite is a 

higher-order relation between relations (Gentner, 1983). The capacity to represent and reason 

with higher-order relations has been considered central to human analogical thinking (Gentner, 

2010; Halford, Wilson & Phillips, 2010; Holyoak, 2012). 

The development of knowledge about comparative relations provides a clear illustration 

of these human abilities. By the time they reach school age, children have acquired the ability to 

accurately assess whether one object (e.g., bear) is “larger” or “smaller” than another (e.g., fox), 

even under speed pressure (McGonigle & Chalmers, 1984). Moreover, like adults (Moyer & 

Bayer, 1976), children’s judgments show a symbolic distance effect: the greater the magnitude 

difference between the two items, the faster the comparison can be made. Such symbolic 

comparisons are presumably based on stored representations of the perceptual dimensions 

associated with the individual concepts. A great deal of evidence—particularly, parallels 

between performance with symbolic and perceptual comparisons—suggests that humans and 

other species share a basic mechanism for representing continuous quantities on a “mental 

number line” (Dehaene & Changeux, 1993; Gallistel, 1993; Moyer, 1973). Moreover, rhesus 

monkeys are capable of learning shapes (Arabic numerals) corresponding to small numerosities 

(1-4 dots), such that the shapes acquire neural representations overlapping those of the 

corresponding perceptual numerosities (Diester & Nieder, 2007). 
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These species-general achievements are impressive. However, human children go on to 

acquire a deeper understanding of comparative relations. For example, they learn that the 

relations larger and smaller have a special relationship to each other (a type of antonym). 

Analyses of corpora of child speech have identified systematic use of such gradable antonyms by 

children aged 2-5 years (Jones & Murphy, 2005), and experimental studies show that by at least 

age 6 years children can use such concepts metaphorically (Gardner, 1974), and are aware that 

antonyms are contradictory (Glass, Holyoak & Kossan, 1977). Children eventually understand 

that a pair of concepts like larger-smaller is related in basically the same way as the pair faster-

slower, allowing them to see that such pairs of relations form analogies.  

 It seems that “something special” happens that enables humans to acquire higher-order 

relational representations. Animals of many taxa have the basic ability to detect and act based on 

perceptual relations, as exemplified by classic work on relational transposition in rats (Lawrence 

& DeRivera, 1954), and rudimentary numerical processing is clearly available to many primate 

and other species (see Gallistel, 1993). Nonetheless, there is a great deal of evidence that the 

relational capacities of humans exceed that of any other species, perhaps in a qualitative fashion 

(Povinelli, 2000; Penn, Holyoak & Povinelli, 2008). The difference has been characterized as a 

human capacity for relational reinterpretation: the ability to transform perceptually-grounded 

relations into explicit relational structures that distinguish the roles of relations from the objects 

that fill them (Doumas & Hummel, 2012), augmented by the additional ability to form higher-

order relational concepts (e.g., representations of hidden causes, or mental states of others).  

 From a computational perspective, the challenge is to explain what it might mean for a 

relation to be reinterpreted or rerepresented into a more explicit and abstract form, and to 

develop formal models of such a process. How could an inductive system ever get from some 
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initial pool of perceptually-available features to more abstract concepts corresponding to higher-

order relations (e.g., opposite), which seem not to be based entirely on the set of perceptual 

features that provided a starting point? The difficulty of the learning problem is compounded by 

evidence that children seem to acquire concepts largely from modest numbers of positive 

examples provided by adults (Bloom, 2000; see Xu & Tenenbaum, 2007).  

 An important part of the recipe for abstraction may be a pool of innate concepts. For 

example, Carey (2011) has argued, “There is no proposal I know for a learning mechanism 

available to nonlinguistic creatures that can create representations of objects, number, agency, or 

causality from perceptual primitives” (p. 115). But as Carey also argues, constructive 

mechanisms may operate over some combination of perceptual inputs and pre-existing concepts 

to create new types of mental representations. Part of a learner’s innate endowment may be 

processes that permit various forms of bootstrapping, whereby one type of representation is 

transformed into another. For example, there is evidence that analogical reasoning may play an 

important role in children’s acquisition of natural number (Carey, 2011; Opfer & Siegler, 2007; 

see also Gentner, 2010; Kurtz, Miao & Gentner, 2001).  

Goals of the Present Paper 

 In the present paper we present a new model of the induction of relational 

representations, Bayesian Analogy with Relational Transformations (BART).  In general terms, 

BART is a computational-level model
1
 (Anderson, 1991; Griffiths, Chater, Kemp, Perfors & 

Tenenbaum, 2010; Marr, 1982) that employs bootstrapping to acquire and transform relational 

representations. We apply BART to the domain of relations related to comparative judgment. 

Although this is only a special case of the more general problem of relation learning, it is a 



4 
 

domain that offers the advantage of a wealth of empirical evidence—behavioral, comparative, 

developmental, and neural—that can guide theory development. 

Our particular focus will be on a restricted but nonetheless realistic subdomain: relations 

definable over continuous-valued features associated with animal concepts. The basic inputs 

provided to the model are vectors of feature values for a set of dimensions. Our first goal is to 

have the model learn representations of first-order relations such as larger and smaller, fiercer 

and meeker, based on empirical priors (i.e., prior knowledge itself acquired by learning simpler 

concepts from relevant data) coupled with a limited set of positive examples instantiating 

relations. The use of empirical priors in learning is an example of a simple form of 

bootstrapping, whereby initial learning of a different or simpler concept provides a useful basis 

for acquiring more complex concepts. Similar ideas have been exploited in neural-network 

models of learning (e.g., Bao & Munro, 2006; Elman, 1993; but see Rohde & Plaut, 1999). 

Newport (1990) argued that children’s cognitive limitations (e.g., less capacity in working 

memory) may actually benefit certain aspects of language acquisition. Halford, Wilson and 

Phillips (1998) proposed that children are able to learn one-place predicates (e.g., large, small) 

prior to two-place relations (e.g., larger, smaller) because the former require less working-

memory capacity. Given the strong evidence for this sequential progression in children’s concept 

acquisition (e.g., Smith, 1989), we will focus on the potential use of one-place predicates as the 

basis for forming empirical priors to facilitate learning of comparative relations. 

The use of only positive training examples makes it possible to acquire a stable and 

context-independent representation of a relation (whereas negative examples can be of many 

different types, and the learned relational representation will vary depending on which negative 

examples are encountered). We aim to demonstrate that the acquired representations of relations 



5 
 

are generalizable (i.e., can be used to evaluate novel instantiations of the relations), and are 

sensitive to a basic factor that influences the difficulty of human relational judgments. 

Our second goal is to show how these first-order relational representations can be 

transformed and re-represented so as to allow the model to evaluate higher-order analogy 

problems of the form A:B::C:D instantiated by the learned relations (e.g., larger:smaller :: 

fiercer:meeker, rather than fiercer:slower). This transformation process is based on what we term 

importance-guided mapping, a subsymbolic form of analogical mapping based on similarity of 

weights associated with object features. Our overall aim is to provide a proof-of-concept that, for 

the domain of comparative relations, the capacity to solve structured analogy problems can be 

acquired by applying basically bottom-up learning mechanisms to raw inputs consisting of object 

concepts coded as simple feature vectors. 

Judgments Based on Comparative Relations 

 Our target domain, comparative relations, is tied to a rich body of cognitive research. 

Comparative judgments exhibit a number of robust empirical phenomena. The most notable is 

the semantic distance effect (Moyer, 1973; Moyer & Landauer, 1967). Strong empirical evidence 

indicates that the long-term-memory representation of a relation such as larger includes 

quantitative information that makes the difficulty of comparison decline as the magnitude 

difference increases. The symbolic distance effect is observed not only with quasi-perceptual 

dimensions such as size, but also with more abstract dimensions such as animal intelligence 

(Banks, White, Sturgill & Mermelstein, 1983) and such concepts as adjectives of quality (e.g., 

good, fair; Holyoak & Walker, 1976). Although magnitude representations exhibits analog 

properties, much like an internal number line (e.g., Woocher, Glass & Holyoak, 1978), 

magnitude comparisons do not in general depend on visual imagery (Holyoak, 1977). Non-
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human primates also exhibit a distance effect for judgments of numerosity (see Neider & Miller, 

2004, for a review). Given its ubiquity, the distance effect is arguably the primary signature that 

a learned representation of a comparative relation is psychologically realistic; hence the distance 

effect will be the first empirical focus in our evaluation of BART. In the General Discussion we 

will consider how BART might be extended to explain additional phenomena involving 

comparative judgments.  

In human children, comparative adjectives emerge as early words in the lexicon, with 

clear developmental trends (Smith, 1989; Smith & Sera, 1992). In general, children progress 

from a global sense of similarity and dissimilarity of objects, to learning one-place predicates 

that focus on specific dimensions of individual objects (big, small), to learning two-place 

comparative relations between multiple objects (bigger, smaller). As noted earlier, children 

eventually detect higher-order similarities and differences between comparative relations, 

coming to understand (for example) that higher and lower are polar opposites. Less is known 

about the details of this part of the developmental progression, but presumably a prerequisite for 

learning a higher-order relation approximating gradable opposite is to first achieve some degree 

of mastery with pairs of first-order comparative relations, such as higher and lower. 

The acquisition of relations is intimately related to the development of analogical 

reasoning ability. A great deal of evidence indicates that children’s ability to think analogically 

changes over the course of cognitive development (e.g., Chen, Sanchez & Campbell, 1997; 

Gentner & Toupin, 1986; Holyoak, Junn & Billman, 1984; Tunteler & Resing, 2002, 2007). The 

developmental transition toward greater reliance on relational structure has been termed the 

relational shift (Gentner & Rattermann, 1991). The empirical phenomenon of a relational shift is 

well established, but there has been some debate regarding the developmental mechanisms that 
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may underlie it. Considerable evidence indicates that some changes are maturational, involving 

increases in working memory capacity (Halford et al., 1998) and inhibitory control (Morrison, 

Doumas & Richland, 2010; Richland, Morrison & Holyoak, 2006). However, it is universally 

accepted that learning new relations is a prerequisite for solving analogy problems based on 

these relations (Goswami, 1992, 2001). In the present paper we focus on relation learning, the 

most basic mechanism required for analogical reasoning. 

Approaches to the Acquisition of Relational Concepts 

In recent years a number of different approaches to modeling the induction of relational 

concepts have been explored, which we will briefly review. We begin by laying out some criteria 

that we believe are of general importance in evaluating psychological theories of relation 

learning, including the present model. 

(1) Choice of inputs: The model should be capable of learning from inputs of realistic 

complexity that were independently generated. There is certainly much to be gained from 

exploratory work using small hand-coded inputs, and specifying realistic representations poses 

many challenges. However, without some tests using independently-generated inputs, it is 

difficult to assess the extent to which a model may owe its successes to the foresight and charity 

of the modelers. In addition, the model (unless it explicitly assumes that all relational 

representations are innate) must be able to learn at least some relations from inputs that are non-

relational (e.g., object representations). 

(2) Learning efficiency: As a psychological model, learning should be achieved on a 

human time scale as measured by the number of training examples required to produce at least 

partial success. Given that children seem to be able to acquire preliminary understanding of 

many concepts from relatively few examples, a model should also be able to demonstrate 
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efficiency by learning from a modest number. Although what “relatively few” means is 

inevitably vague, our focus will be on what can be learned from up to 100 or 200 positive 

training examples.  

(3) Generalization: The model should be able to make accurate relational judgments 

about novel examples. It is not sufficient to show that the model can learn the training examples 

as “relational facts”; it must also be able to apply its relational representations productively. 

(4) Performance difficulty: The difficulty of human relational judgments can be 

modulated by many factors. To be considered psychological, a model should account for at least 

some sources of differential difficulty in relational judgments for humans (and/or other animals). 

(5) Flexible reasoning: Relational knowledge plays an essential role in human reasoning 

and thinking, in essence providing a deeper source of information about conceptual similarity. 

Accordingly, the relational representations acquired by the model should be useable (either 

directly or after some additional learning process) to perform a variety of tasks that require 

relational reasoning (e.g., solving analogy problems). 

 These criteria are inherently qualitative rather than quantitative. Alternative assessment 

metrics could no doubt be advanced, but we have found the above criteria helpful in evaluating 

previous work on relational learning, as well as the models we test in the present paper. 

Vector Space Models 

 There is an extensive literature on automated methods for extracting relations based on 

the statistics of word or phrase co-occurrence in a large corpus of text. One class of methods, 

termed vector space models, originates from an information retrieval technique of the same name, 

and uses vectors or matrices in which the value of each element is derived from the frequency of 

some event, such as the frequency with which a certain word appears in a particular document or 
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phrase (for reviews, see Turney, 2006; Turney & Pantel, 2010). For example, Latent Semantic 

Analysis (LSA; Landauer & Dumais, 1997) yields vector representations of individual words by 

applying singular value decomposition to lexical co-occurrence data from a large corpus of text. 

LSA has proved useful in many applications that require measures of semantic similarity of 

concepts (Wolf & Goldman, 2003, including modeling the retrieval of story analogs (Ramscar & 

Yarlett, 2003). However, LSA vectors do not provide any direct basis for identifying abstract 

relations between concepts (although some modest results have been achieved by exploiting LSA 

vectors for relation words, such as opposite; Mangalath, Quesada & Kintsch, 2004). 

Related machine-learning algorithms have achieved greater success by working directly 

from co-occurrence data for word combinations found in a large corpus of text (Turney & 

Littman, 2005). Perhaps the most successful method is Latent Relational Analysis (LRA; 

Turney, 2006), which has been applied to the task of solving SAT verbal analogy problems (e.g., 

quart:volume :: mile:distance). The algorithm searches for patterns of words in which the A and 

B term (and their synonyms) appear (e.g., “quarts in volume”). The frequencies of the various 

patterns are used to create a vector of relational features for A:B; vectors are similarly formed for 

potential C:D completions. Cosine similarity is calculated to compare the A:B vector to the 

corresponding vectors created for various alternative C:D pairs, and the most similar C:D is 

selected as the analogical completion. LRA achieves a level of accuracy on SAT analogy 

problems comparable to that attained by college students. 

 Vector space models such as LRA provide effective machine-learning tools for extracting 

relational similarity. However, these models operate directly on texts that include relational 

vocabulary. Our present focus is on learning from inputs based on representations of individual 
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object concepts (including a set of such inputs that is derived from texts by a method similar to 

LSA). 

Hierarchical, Generative Bayesian Models 

Perhaps the most ambitious line of work has focused on hierarchical Bayesian models 

that integrate statistical learning with explicit representations of higher-order relational structures 

(Goodman, Ullman & Tenenbaum, 2011; Kemp, Perfors & Tenenbaum, 2007; Tenenbaum, 

Kemp, Griffiths & Goodman, 2011). For example, Kemp and Tenenbaum (2008) showed how 

Bayesian techniques can operate on relational structures to learn systems such as hierarchies and 

linear orderings (see also Kemp & Jern, 2009; Kemp, Tenenbaum, Griffiths, Yamada & Ueda, 

2006). In general terms, these hierarchical models are generative (Mackay, 2003) in the sense 

that representations of alternative relational structures are used to predict incoming data, and the 

data in turn are used to revise probability distributions over alternative structures. The highest 

level of the structure typically consists of a formal grammar or a set of logical rules that 

generates a set of alternative relational “theories”, which are in turn used to predict the observed 

data. 

 Although hierarchical generative models are extremely powerful, the models to date have 

generally focused on systems of formal relations that have a well-defined logical structure 

known to the modeler (e.g., hierarchies, rings, or chains). The set of possible relational structures 

is provided to the system by specifying a grammar that generates them. Since the postulated 

grammar of relations is not itself learned, the generative approach (although certainly 

incorporating inductive learning) retains rather strong nativist assumptions.  
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Neural Network Models 

 The BART model, like generative Bayesian models, operates at the computational level; 

however, its emphasis on bottom-up learning and emergence overlaps with the goals of 

algorithmic approaches to relation learning and analogy based on neural networks (e.g., Gasser 

& Colunga, 2000; Jani & Levine, 2002; Leech, Mareschal & Cooper, 2008; Rogers & 

McClelland, 2008; see McClelland et al., 2010). Our model shares the general aim of seeking 

emergence of structure from statistical operations over minimally structured inputs, coded as 

feature vectors. 

A standard connectionist approach to learning relational structures has been to create a 

feed-forward network in which separate pools of input units are used to code features of an 

object in a role and of a relation. These pools interact via a hidden layer, and thereby activate 

output units representing another filler of the role. Rogers and McClelland (2008) developed a 

model based on this type of architecture that learns simple propositions (e.g., “a canary can fly”). 

The model takes a sequence of input-output pairs and over repetitions adjusts the connection 

weights to learn facts of the form “canary” + “can” → “fly”. The Rogers and McClelland model 

succeeds in capturing a number of important general characteristics of human learning, such as 

progressive differentiation of concepts and domain-specific feature weighting. 

However, models of this sort (including that of Leech et al., 2008, a variation of the same 

architecture that aimed to account for how children learn to solve simple analogy problems) have 

not been shown to generalize to dissimilar training items, nor have they been extended to higher-

order relations. The Leech et al. model fails on even simple variations of its own training 

materials. For example, after being trained extensively with the various components required to 

solve the 4-term analogy apple:sliced-apple :: bread:sliced-bread, the model cannot generalize 
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its knowledge to evaluate sliced-apple:apple :: sliced-bread:bread, where the roles have been 

reversed (Holyoak & Hummel, 2008; also see French, 2008; Petrov, 2008).  

A basic problem is that standard neural-net models offer no way to represent relational 

roles. In connectionist networks of relation learning, both objects and relations are coded as 

distributed patterns of weights on links that serve as conduits for activation passed between units. 

The learned representations of relations therefore remain implicit, and relational knowledge 

cannot be accessed in a flexible fashion (cf. Halford et al., 2010). For example, in the Rogers and 

McClelland (2008) model, the representation of an object (e.g., canary) is inherently linked to a 

particular pool of relation-specific input units. As a consequence, after training the network that 

one thing a canary can do is fly, the model (unlike a human) would not be able to infer that one 

kind of thing that flies is a canary (i.e., make an inference in which canary serves as the output 

rather than input). 

Symbolic Connectionist Models 

 The acquisition of relational structure has been a longstanding concern in the literature on 

analogical reasoning. Gick and Holyoak (1983) proposed that as a consequence of comparing 

and mapping one situation to an analogous one in a different content domain (e.g., a military and 

medical problem), humans can learn relational schemas for more abstract categories. Hummel 

and Holyoak (1997, 2003) developed a symbolic connectionist model, LISA (Learning and 

Inference with Schemas and Analogies), which is able to form such schemas by comparing and 

mapping examples. However, LISA’s learning algorithm works by recombining pre-existing 

(and hand-coded) relational concepts, rather than by building new relational predicates. 

More recently, Doumas, Hummel, and Sandhofer (2008) developed a related model 

called DORA (Discovery of Relations by Analogy) that addresses the fundamental goal of 
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creating new relational predicates from non-relational inputs. The basic representational 

assumptions of DORA are very similar to those of LISA, with both objects and roles of relations 

represented in a distributed fashion over a pool of semantic units. Relations are explicitly 

represented by localist units that code individual roles (e.g., larger would be coded by units for 

the larger object and for the smaller one in a pair). Bindings of objects to roles are coded 

dynamically in working memory by temporal patterns (synchrony in LISA, close asynchrony in 

DORA), and statically in long-term memory by conjunctive units. Because relations are 

represented explicitly and independently of their fillers, DORA (like LISA, but unlike classical 

connectionist models) is able to flexibly generalize relations to new contexts. But like more 

traditional neural networks, objects and relations are represented in the same basic way (as 

patterns of weights on links connecting units that code semantic features). 

The basic learning algorithm used by DORA is to first compare feature representations of 

individual objects, creating new predicate units that connect to shared features (e.g., from the 

objects elephant and bear, a new one-place predicate connected to the shared feature large might 

be generated). Later, a pair of objects respectively instantiating the one-place predicates large 

and small (e.g., elephant and mouse) might be compared to another pair instantiating these same 

predicates (e.g., walrus and frog). With the aid of a comparator operator that can activate the 

features more and less based on the specific size values of paired objects, DORA might then 

generate the two-place predicate larger, with its first role connected to more and large and its 

second role to less and small. As additional examples of paired objects are encountered, 

sequential updating will refine the relational representation, honing in on features that prove to 

be invariant across examples.  
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The progression of learning comparative relations in DORA—from objects encoded as 

features, to one-place predicates such as large, to two-place relations such as larger (that then 

undergo gradual refinement)—parallels the general developmental sequence identified by Smith 

(1989; Smith & Sera, 1992) and others in studies of children’s acquisition of comparative 

relations. But although DORA can generate human-like patterns of relation learning, the 

robustness of its learning algorithm has not been extensively tested. So far DORA has only been 

tested with small hand-coded representations of objects as inputs, and the relations it learns are 

coded using features drawn from the same set already provided in these inputs. In particular, 

DORA assumes that in its inputs, all metric dimensions describing objects (e.g., size, speed) are 

coded by localist units. The model is also endowed with units representing relational features 

such as more and less, and with a comparator that will activate these relational features when 

given two objects associated with values on the same metric dimension. The model tacitly 

assumes that all relational predicates are definable by at least one pre-coded invariant feature 

(and the modelers ensure that the inputs satisfy this assumption).  

Discriminative Bayesian Models 

In contrast to the hierarchical, generative Bayesian models discussed above, simpler 

Bayesian models of category learning (e.g., Anderson, 1991; Fried & Holyoak, 1984) operate in 

a more bottom-up fashion. An important variant is discriminative Bayesian models (Mackay, 

2003), which focus on learning the probabilities of categories given features (rather than the 

probabilities of features given possible categories). Discriminative models have been applied 

with considerable success to analysis of neural receptive fields in neurophysiology (Rust, 

Schwartz, Movshon & Simoncelli, 2005; Victor, 2005), and construction of classification images 

in psychophysics (Eckstein & Ahumada, 2002; Lu & Liu, 2006). They also provide valuable 
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tools in other complex statistical tasks, such as the recognition of brain states based on 

neuroimaging data (Bayesian decoding models; see Friston et al., 2008). 

A discriminative Bayesian approach to relation learning was developed by Silva, Heller 

and Ghahramani (2007), who applied their model to tasks such as identifying classes of 

hyperlinks between webpages; Silva, Airoldi and Heller (2007) applied the same model to 

classifying relations based on protein interactions. Although this model was developed to address 

applications in machine learning, the general principles can potentially be incorporated into 

models of human relational learning. The BART model represents such an effort. 

One key idea is that a relation can be represented as a function that takes a pair of objects 

as its input and outputs the probability that these objects instantiate the relation. The model 

learns a representation of the relation from labeled examples, and then applies the learned 

representation to classify novel examples. A second key idea is that relation learning can be 

facilitated by incorporating empirical priors, which are derived using some simpler learning task 

that can serve as a precursor to the relation learning task. In particular, Silva, Heller and 

Ghahramani (2007) explored the usefulness of first teaching the model a general distinction 

between related and unrelated object pairs, and then using the learned representation of the 

general relation (related) as the empirical prior to bootstrap learning of each specific relation of 

interest. Chen, Lu and Holyoak (2010) incorporated a similar empirical prior into a model for 

learning abstract semantic relations, such as synonym and antonym, from features derived by 

LSA (Landauer & Dumais, 1997). 

These models have demonstrated some success in generalization tests involving 

identifying novel examples of learned relations.
2
 However, none of the models attempted to 

account for systematic sources of difficulty in human relational judgments, nor did they attempt 



16 
 

to show that the learned relational representations could in turn be used to reason about higher-

order relations. 

Bayesian Analogy with Relational Transformations: Overview 

Choice of Input Representations 

BART’s inputs are restricted to vectors representing objects, so that all the model’s 

relational knowledge must be acquired from non-relational inputs. Specifically, we focus on 

learning comparative relations from feature representations of animal concepts. In accord with 

the first of the criteria for model evaluation we laid out earlier, we wished to ensure that the 

inputs we used were not hand-coded by the modelers. We chose three different sets of input 

representations that can be viewed as complementary in their advantages and challenges for 

testing a learning model. 

The first set of inputs can be characterized as simple and transparent (low dimensionality, 

localist coding of magnitudes). These were feature vectors derived from human ratings of 

animals on four different magnitude continua (size, speed, fierceness and intelligence; Holyoak 

& Mah, 1981). No doubt it is oversimplified as a psychological model to assume that each 

dimension is coded by a single value; nonetheless, there is in fact strong evidence that humans 

and other primates are equipped with specialized neural circuitry for dealing with approximate 

magnitude on various dimensions (e.g., Cantlon, Brannon, Carter & Pelphrey, 2006; Dehaene & 

Changeux, 1993; Fias, Lammertyn, Caessens & Orban, 2007; Piazza et al., 2004, 2006, 2007; 

Pinel, Piazza, Bihan & Dehaene, 2004). As a practical matter, the simplicity of the rating-based 

representations (comparable to that of the hand-coded representations employed by Doumas et 

al., 2008) will prove helpful in understanding how the model operates. 
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To assess BART’s potential to scale-up to learn relations from more complex inputs, we 

also applied the model to input vectors derived from much more challenging databases (high 

dimensionality, distributed coding of magnitudes). Our second set, which we will refer to as the 

“Leuven inputs,” was based on norms of the frequency with which participants at the University 

of Leuven generated features characterizing various animals (De Deyne et al., 2008). Each 

animal is in the norms is associated with a set of frequencies across more than 750 features. 

Although some features in the Leuven inputs have prima facie relevance to the dimensions of 

interest to us, none were as direct as the Holyoak and Mah (1981) ratings of specific magnitude 

dimensions. The Leuven inputs have been successfully used as inputs for a Bayesian model of 

categorization (Shafto, Kemp, Mansinghka, & Tenenbaum, 2011). 

Our third set of inputs was taken from the topic model (Griffiths, Steyvers, & 

Tenenbaum, 2007). The topic model is broadly similar to LSA (Landauer & Dumais, 1997), 

taking words in documents as its input and yielding approximate semantic representations of 

individual words as its output. The topic model uses Bayesian inference to associate each word 

in the corpus with a set of “topics”, which theoretically generate the words. For example, a topic 

that could loosely be characterized as “finance” would tend to generate such words as money, 

savings, and bank (in the sense of financial institution). For each word, a vector (typically of 

length 300) based on conditional probabilities of each topic given the word can be interpreted as 

a distributed semantic representation over features values. Relative to the Leuven inputs, the 

topics inputs were much more opaque, in that the meaning associated with each individual topic 

is generally difficult to characterize; unlike the rating inputs, individual topics do not correspond 

in any obvious way to the magnitude dimensions underlying the critical comparative. 
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Vectors based on the Leuven inputs or topics avoid any hand-coding of inputs by the 

modeler.  There is thus is no danger that we the modelers have inadvertently planted to-be-

discovered relations in the inputs provided to our learning model. Whereas the simple vectors 

based on human ratings provide magnitude information very directly, the more complex Leuven 

and topics vectors do not. To preview our computational results, BART achieves near-perfect 

performance on generalization and analogy tests after learning from the rating vectors, excellent 

performance using the much larger Leuven inputs, and reliable though imperfect performance 

based on the yet more complex topics inputs. 

Of course, there is no reason to believe that any of these representations directly 

correspond to the inputs available to human children when they first learn basic relations. The 

Leuven inputs perhaps come closest, as they include many features of animals that children 

would likely know. Children have much more direct access to perceptual and motoric features of 

objects, which can guide relation learning (e.g., Maouene, Hidaka & Smith, 2008). In addition, 

children’s learning of relations is clearly guided by linguistic cues from adults (e.g., Yoshida & 

Smith, 2005). 

Nonetheless, children surely are faced with considerable complexity in the inputs from 

which some relations are acquired; hence any plausible model will have to demonstrate 

robustness. By testing BART with inputs derived from three independent sources, we can have 

some confidence in the robustness of qualitative aspects of model performance that hold true 

across all three inputs. For the Leuven and topics inputs, the learning task demands that in a 

high-dimensional space, BART must infer distributed patterns of features that implicitly code the 

dimensions over which the model aims to learn relations. In addition, the model must then re-

map the acquired weight distributions to solve structured analogy problems. The complexity of 
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the learning task would likely be comparable (or greater) for inputs further enriched by 

perceptual and motoric features. In the General Discussion we consider how the approach used 

by BART might be extended to operate on such inputs. 

Overview of the Operation of BART 

Broadly speaking, BART proceeds in two stages. (1) First-order relation learning: given 

feature vectors corresponding to pairs of objects, the model uses statistical learning to update 

weights associated with feature dimensions for various comparative relations (e.g., larger, 

fiercer), and then uses its learned weights to decide whether or not novel pairs instantiate a 

specified relation. As shown in the right-hand plot in Figure 1.1, BART represents a relation 

using a joint distribution of weights over object features. Weight distributions code not only first-

order statistics (means), but also second-order statistics (variances and covariances) that capture 

the uncertainty of the estimated weights, as well as inter-weight correlations. (2) Importance-

guided relation mapping: to evaluate potential analogies between pairs of relations (e.g., 

larger:smaller :: fiercer:meeker), the model re-arranges the order of dimensions in acquired 

weight distributions for the source and target relation pairs to yield transformed relation 

representations. The transformation is based upon an assessment of importance of each 

dimension in the source pair, and on the correspondence of weight patterns between the source 

and the target pair.  

Learning first-order relations. BART is capable of learning flexibly from any 

combination of positive and negative examples; however, we focus on learning from positive 

examples only (as children are able to do; see Bloom, 2000). Importantly, positive examples 

make it possible to achieve a relatively context-free relational representation, rather than one that 

varies with the particular types of negative examples included in the training set. In addition,  
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Figure 1.1. Graphical representation of the general framework for relation learning in BART. Left: two objects A 

and B in a pair are represented as a vector x of n features for each object; vector w represents the unknown relational 

weights that define a relation R, which is learned using the training set of examples instantiating this relation (e.g., 

whale-alligator, where the intensity of cells represent feature values on each dimension; light indicates high positive 

values, dark high negative values). Right: the relation is represented as the joint normal distribution of weights w. 

The normal distribution is defined with two parameters: the mean weights vector (shown in the mean plot, in which 

the intensity indicates the values of means weights), and the covariance matrix of weights including the variance of 

each weight (diagonal cells in the covariance plot) and the covariances among them (off-diagonal cells in the 

covariance plot).  

 

because children often appear to learn useful approximations of concepts from small numbers of 

examples, we aimed to make learning in BART as efficient as possible, focusing on what the 

model can learn from a modest number of examples (a range of up to about 200). Also, 

children’s relation learning is clearly guided by linguistic inputs from adults (e.g., Gentner, 

Anggori & Klibanoff, 2011; Yoshida & Smith, 2005). In natural speech to children, comparative 

relations are given names, such as “larger”, which are explicitly connected to positive examples 

(“the elephant is larger than the hippo”). Accordingly, BART focuses on supervised learning 

using labeled positive examples. 
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Bayesian framework. BART learns a first-order relation by estimating the distribution of 

a corresponding weight vector w from a set of training pairs that constitute examples of that 

relation, as schematized in Figure 1.1. We adopt a Bayesian framework to learn the probability 

distribution of , where  represents the feature vectors for object pairs in the 

training set, the subscript S indicates the set of training examples, and  is a set of binary 

indicators, each of which (denoted by R) indicates whether a particular pair of objects 

instantiates the relation or not. The vector w constitutes the learned relational representation, 

which can be interpreted as weights reflecting the influence of the corresponding feature 

dimensions in X for relation judgment. Learning a first-order relation is based on estimating the 

posterior distribution of weights, which can be computed by applying Bayes’ rule using the 

likelihood of the training data and the prior distribution for w: 

  (1.1) 

The likelihood is defined as a logistic function for computing the probability that a pair 

instantiates the relation, given the weights and feature vectors, 

   (1.2) 

This likelihood function has been used in Bayesian logistic regression analysis, and in similar 

Bayesian models of relation learning described by Silva, Airoldi, and Heller (2007) and Silva, 

Heller, and Gharamani (2007). The logistic function is also commonly used in neural networks to 

introduce nonlinearity into activation functions. 

We assume that the prior  in Eq. (1.1) follows a multivariate normal distribution, 
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present paper is on the potential role of informative priors in relation learning. The key to 

efficient statistical learning is a good choice of priors, especially when the learning problem 

involves high dimensionality. Proposals for priors typically stem from abstract theory (Griffiths 

& Tenenbaum, 2009; Kemp & Tenenbaum, 2008; Lu et al., 2008) or analyses of statistics of the 

natural environment (Geisler, 2008; Simoncelli & Olshausen, 2001; Griffiths & Tenenbaum, 

2006; Lu et al., 2010).  Here we explore a variation of what are termed empirical priors, which 

are themselves learned from relevant data, combined with a hyperprior for variances of weights.  

 Empirical priors. BART takes advantage of the potential for inductive bootstrapping, 

using previously-acquired knowledge of simpler concepts to establish empirical priors that guide 

subsequent learning of more complex concepts. Previous work has explored use of a general 

relation (related) as an empirical prior for learning more specific relations (Chen et al., 2010; 

Silva, Airoldi & Heller, 2007). Here we consider the potential usefulness of more specific 

empirical priors tailored to individual relations. There is strong linguistic evidence (across many 

languages) that two-place comparatives are derived from corresponding relative adjectives either 

by adding a morpheme (e.g., large yields large + er, termed the synthetic form) or by creating a 

phrase using more or less (e.g., intelligent yields more intelligent, termed the periphrastic form; 

see Graziano-King & Cairns, 2005). Psychological evidence also indicates that comparative 

relations such as higher are initially derived from the corresponding one-place predicates (e.g., 

high; see Smith, Rattermann & Sera, 1988). In choosing the appropriate priors, it seems probable 

that children are guided by lexical similarities (e.g., larger is similar to large, smaller to small). 

However, to increase the generality of the model, we make the weaker assumption that the 

learner must infer the most relevant one-place predicate from the actual pairs used as positive 

training examples for the comparative. 
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We use one-place predicates as the building blocks for creating empirical priors. To 

determine which one-place predicate should be used to construct the empirical prior for learning 

a particular relation, we developed a simple categorization algorithm to select the one-place 

predicates based on training data. First, we train BART on the eight categories of one-place 

predicates (e.g., large, small, fierce, meek) that can be formed using the extreme animals at each 

end of the four different magnitude continua (size, speed, fierceness and intelligence). For 

example, we used the 20 largest animals (e.g., whale, dinosaur, elephant) to learn the category of 

large animals, and the 20 smallest animals (e.g., flea, fly, worm) to learn the category of small 

animals. As schematized in Figure 1.2, category learning of one-place predicates is conducted 

using Bayesian logistic regression, with a standard normal distribution for weights (i.e., mean 0 

and variance 1) as the prior to infer the weight distribution |( ),c cP w X  in which cw  indicates 

the weight vector corresponding to feature dimensions of an object, and cX  denotes the extreme 

animals in each group used for category learning. 

Second, we employ a simple voting procedure to select the “best” category of one-place 

predicates based on the training examples for the comparative. For each pair of objects 

 ,A BX X  in the training data for relation learning, we compute the probability that each 

individual object is a member of each category of one-place predicates, obtaining  | AP C X  and 

 | ,BP C X  respectively. If    | |A BP C X P C X  for a pair, a score of 1 is assigned to this 

category; otherwise, a score of 0 is assigned. These scores are summed over all the pairs of 

training data. In effect, the procedure for prior selection aims to identify the one-place predicate 

that best distinguishes the objects in the two relational roles (i.e., the category of which the first 

object is maximally more likely than the second to be a member). The reliability of prior 
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Figure 1.2. Illustration of the construction of an empirical prior for a comparative relation (larger) by bootstrapping 

from prior learning of weights for a related one-place predicate (large), in turn derived from features of individual 

objects (large animals).   

 

selection will naturally vary with the number of training examples, yielding an inherent source of 

variability in the acquisition of the relations. Although more sophisticated categorization models 

could be employed, this simple procedure proved adequate for our present purposes. For the 

most difficult set of inputs (topics), the method achieved near-perfect selection of the appropriate 

one-place predicate when given 100 training examples. 

Third, the category that yields the highest summed score is selected to set mean weights 

for the first role of a comparative. Although the model is in effect informed that the relation to be 

learned involves a comparison of two objects, the basis for the comparison must be learned. The 

potential priors on the second role are linked to those for the first role, by reversing the sign on 

the weights for the first role to form a contrast.
3 For our example, if large were to provide the 

basis for the empirical priors, then the priors for the comparative relation would include the 
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weights of large for the first role and the opposite weights for the second role, as shown in 

Figure 1.2. If there is a tie in the highest summed score between categories of one-place 

predicates, we simply take an average of the multiple weight vectors to generate empirical priors.  

Hyperprior. Confidence about the empirical priors bootstrapped from object concepts is 

represented by the variances in the prior distribution of weights. A simple model is to assume the 

same degree of confidence for all the individual weights in the empirical prior  Alternatively, 

confidence may vary from one dimension to another, affording greater flexibility. We adopt the 

method of automatic relevance determination (MacKay, 1992; Neal, 1996) to define the 

precisions of the empirical prior using hyperparameters. Specifically, the prior for the ith weight 

in vector  is assigned in the form of a normal distribution in which the mean is from the 

empirical prior and the variance is  

  (1.3) 

where the value of  (also termed precision, the inverse of variance) controls the certainty 

about mean weight values derived from the empirical prior. Thus increasing  values imply 

greater confidence that  is similar to  in the empirical prior.  We use a conjugate prior 

distribution in the form of a Gamma distribution for  with two hyperparameters, a0 and b0, to 

constrain the precision of each weight: 

                                                        (1.4) 

 Inference algorithm. Although the general framework of the relation learning model is 

straightforward, the inference step is non-trivial because the calculation of the integral in Eq. 

(1.1) lacks an analytic solution. A sampling approach is impractically slow for dealing with high 

feature dimensionality, and hence would unduly limit the generality of the model. Accordingly, 
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as in Silva, Heller, and Gharamani (2007), we employed the variational method developed by 

Jaakkola and Jordan (2000) for Bayesian logistic regression to obtain a closed-form 

approximation to the posterior distribution. Variational methods are a family of methods that 

transform the problem of interest into an optimization problem by introducing an extra 

variational parameter,  which is iteratively adjusted to obtain successively improving 

approximations. The input to the learning model includes training data X, composed of N 

training pairs and their corresponding relation labels R in which 1 indicates that the pair of words 

instantiates the relation (positive examples), and -1 indicates it does not (negative examples). 

The variational updates are applied until convergence or a maximum number of iterations is 

reached. For learning with an empirical prior, the model starts from the prior mean 
 
(i.e., 

bootstrapping from knowledge about the corresponding one-place predicates), and with  

assumed to be an identity matrix with variances 1 and covariances 0. On each iteration the 

variational parameter  is updated, along with the mean of the weight vector,  and the 

covariance matrix, with the following updating equations: 
 

 
   (1.5)

 

where   

  For learning with a hyperprior, the variational method is iteratively applied to update the 

mean, the covariance matrix, and the hyperparameters, as follows: 
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where  is the ith element of weight vector w, is the ith element of empirical prior  is 

the ith diagonal element of covariance matrix  and E ( )
α

A  is a diagonal matrix with its ith 

diagonal element given by  

Model evaluation on generalization test. To test generalization of the learned relational 

representation, we conduct a transfer task using new pairs of words, denoted by the subscript T. 

Given the training pairs  and their labels  the model aims to calculate the posterior 

predictive probability that a target pair  instantiates the learned relation:   

  (1.7) 

The posterior predictive probability can be approximated using the variational posterior (i.e., the 

lower bound of the predictive probability), which can be computed in a single pass through the 

training data set applying the updating equations as specified in Eq. (1.5). Hence, the 

probability predicted for a transfer pair (i.e., Eq. (1.7)) can be approximated as 

  (1.8) 
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where  and  denote the parameters in  after learning from the training pairs, 

and  and  denote the parameters in  found by adding the target 

pair to the training set.   

Higher-order relation mapping. In order for any model to have a chance to solve 

higher-order relational analogies (i.e., analogies based on relations between relations), it must 

first acquire at least approximate representations of the relevant first-order relations. However, as 

the example in Figure 1.3 makes clear, successful learning of comparative relations will not in 

itself guarantee solution of analogy problems such as larger:smaller :: fiercer:meeker. For 

example, if we were to compare the learned distributions for larger+smaller to those for 

fiercer+meeker, we would find that the two joint distributions are essentially uncorrelated. 

  

Figure 1.3. Successful learning of comparative relations is not sufficient to solve 4-term analogy problems such as 

larger:smaller :: fiercer:meeker, because high (positive or negative) weights are on different dimensions for 

larger+smaller versus fiercer+meeker. 

Sμ S
V  | ,P S Sw X R
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Roughly, in the former the size dimension has large (positive or negative) weights while the 

other dimensions have weights near zero, whereas in the latter the fierceness dimension has large 

weights and the rest have weights near zero. Without any mechanism to map different salient 

dimensions to one another, any implicit similarity would remain hidden. 

To solve higher-order analogy problems, BART employs an algorithm for importance-

guided mapping. In general terms, the algorithm aims to find a mapping between the dimensions 

for the A:B relation and those for the C:D relation that minimizes a distance measure defined 

over the weight distributions. Because the full search space for this correspondence problem 

scales exponentially with the number of dimensions, we employ a greedy search algorithm 

(Friston et al., 2008), a type of procedure designed to make locally optimal choices with the hope 

of approximating the global optimum. More specifically, the algorithm develops a one-to-one 

mapping between dimensions sequentially on the basis of the overall “importance” of 

dimensions. In essence, the algorithm minimizes correspondence errors for more important 

dimensions at the possible cost of greater errors for less important dimensions. 

In more detail, we assume that an analogy problem in the form A:B::C:D is evaluated by 

first focusing on the relation in the source (A:B), and then determining how well the target 

relation (C:D) maps to A:B. The algorithm prioritizes dimensions in proportion to their 

importance in A:B. Specifically, the mapping algorithm first searches for a dimension in C:D 

that is most similar to the most important dimension in A:B; it then searches for a dimension that 

maps to the second most important dimension in A:B among the remaining pool of dimensions 

in C:D, and so on until each dimension in A:B is mapped to a unique dimension in C:D. 

Qualitatively, BART aims to map important dimensions in A:B to dimensions in C:D that 

influence relation classification in an analogous way.  
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Figure 1.4. Illustration of importance-guided mapping for solving an analogy problem. 

 

Figure 1.4 schematizes the algorithm for importance-guided mapping. Intuitively, 

larger+smaller and fiercer+meeker are alike in that each has a key important dimension (size 

and fierceness, respectively). Moreover, “importance” has a clear numerical definition based on 

the absolute magnitudes of weights (normalized by their variances). To evaluate an analogy in 

the form A:B::C:D (e.g., larger:smaller :: fiercer: meeker), the model first assesses the 

importance of each dimension for A:B, and then reorders the dimensions (and transforms the 

distributions of mean weights) accordingly. The transformed representation of A:B can be 

obtained in three steps: (1) compute the normalized weights using mean weight values divided 

by their standard deviations; (2) sum up the absolute values across the two roles in each of the 
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two relations in A:B to get an importance score for each feature dimension; (3) rank order the 

dimensions (maintaining consistency across the two roles of both relations) based upon the 

importance index.  

Next, for each dimension in A:B, BART selects the dimension in C:D with the most 

similar pattern of weight distributions. Here we take advantage of a natural property of 

multivariate normal distributions. The marginal distribution over a subset of multivariate normal 

random variables can be obtained by dropping the irrelevant variables (the variables that one 

wants to marginalize out) from the mean vector and the covariance matrix. The marginal weight 

distributions for each feature dimension can therefore be easily calculated for A:B and C:D, 

respectively. Then the similarity of marginal distributions is evaluated by computing a distance 

measure between two distributions.
 4

 The J-divergence distance is employed to maintain the 

symmetric property of a distance measure by summing up two Kullback-Leibler (KL) 

divergences (Cover & Thomas, 2006), 

  (1.9) 

where p and q denote two distributions, and  The advantage of 

using normal distributions is that it becomes possible to solve analytic expressions for the 

distance measure using the means and covariance matrices of the two normal distributions, 

  (1.10) 

where  denotes the matrix trace.   

Finally, having transformed the C:D distribution to reflect its mapping to A:B, BART 

uses the overall J-divergence distance between the two transformed distributions as its measure 

of how well the C:D relation matches that of A:B. For our example, the transformed 

 , ( || ) ( || )D p q KL p q KL q p 

( )

( )
( | | ) ( ) log .p x

q x
x

KL p q p x dx 

      1 1 1 11 1
,   2

2 2

T

q p q P qp p q q p dD p q V V tr V V V V I              

 tr 



32 
 

representations will identify size as the most important dimension for larger+smaller, and then 

select fierceness as the dimension for fiercer+meeker that has the most similar mean weight 

distribution to that of size for larger+smaller. The resulting transformed distributions will map 

size to fierceness, thereby contributing to a lower overall J-divergence distance (i.e., higher 

similarity) for A:B::C:D than for a C-D’ foil such as fiercer+slower. 

Note that BART evaluates relational analogy problems without forming an explicit 

representation of a higher-order relation such as opposite. Rather, BART estimates the degree of 

match between the C:D and A:B relations under the assumption that similar relations (whatever 

they may be) will generate lower J-divergence distance between the two mean weight 

distributions based on the correspondences produced by importance-guided mapping. In the 

General Discussion we will consider how an extension of BART might go on to acquire explicit 

representations of higher-order relations. 

Tests of BART Using Ratings Inputs 

Inputs 

  The rating vectors used as inputs to BART were based on norms reported by Holyoak 

and Mah (1981), collected for use in a study of symbolic magnitude comparisons. Holyoak and 

Mah had 25 undergraduates rate the subjective magnitude of each of 80 animal names on four 

continuous dimensions: size, speed, fierceness and intelligence. Ratings were made on a 9-point 

Likert scale, with a rating of 9 indicating maximum magnitude. Magnitude norms for each 

dimension were then derived by successive interval scaling (Bock & Jones, 1968). This method 

provides a simultaneous normalization of the responses to each item across the nine response 

categories, yielding what can be interpreted as an interval scale. The resulting values (which for 

each dimension correlated .99 with mean ratings) were normalized to range from 0 through 10.  
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A few examples are shown here in Table 1.1. (See Holyoak & Mah, 1981, Table 1, p. 200, for 

the entire set of norms.) Because the ratings reflect subjective magnitude differences, the norms 

incorporate the typical non-linear relationship between subjective and objective magnitudes (e.g., 

the norms indicate the difference in subjective size between a goldfish and a cat is roughly the 

same as that between a deer and a hippopotamus). Of the 80 animals in the norms, topics 

representations were available for 77, and all simulations were based on this subset. 

Intercorrelations among the four dimensions across the 77 animals were moderate, ranging from 

.38 (size with speed) to .60 (size with fierceness). 

Table 1.1 

Examples of Ratings of Animals on Four Dimensions of Magnitude (from Holyoak & Mah, 1981, 

Table 1, p. 200) 

 

Animal size fierceness intelligence speed 

alligator 5.46 8.88 3.67 5.03 

cow 6.52 3.95 3.35 4.59 

flea 0.00 2.52 0.24 3.65 

goldfish 1.91 1.35 1.45 4.18 

moose 7.04 5.98 3.96 6.29 

mouse 2.41 3.08 3.34 5.02 

 

Each of the 77 words thus initially corresponded to a vector of four continuously-valued 

features, with all values being non-negative. However, the logistic likelihood function used by 

BART is designed to map values between negative and positive infinity onto the outcome 

variable, with the value of 0 serving as the natural midpoint of the input scale. Accordingly, we 

centered the rating vectors by a linear transformation, subtracting from each value the mean 
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value for that dimension across all 77 words. Thus the feature values in the vectors used as inputs 

to BART included both negative and positive values with means of 0. 

 In our tests, both training and test items were created by randomly selecting pairs of 

animals and concatenating their rating vectors. Thus, each input vector had two components: the 

four features of animal 1 and the four features of animal 2. To ensure that the differences in 

magnitudes between animals in a pair were likely to be distinguishable by humans, we 

constrained all training and test pairs to be based on animals differing by at least 0.50 on the 

relevant dimension. Under this criterion, over 2000 animal pairs were available as positive 

examples for each to-be-learned relation.  

Training 

 For the purpose of generating empirical priors, the 20 animals that were “greatest” and 

“least” on each dimension were first used to train BART to classify each of the 8 possible one-

place predicates (i.e., large, small, fierce, meek, etc.) For this initial phase of learning, the priors 

on all weights were set to standard normal distributions (i.e., means of 0, variances of 1, 

covariances of 0).  

 In learning two-place relations, we tested two models. The first model was a version of 

BART that selected empirical priors for means of weights based on one-place predicates as 

described earlier (e.g., the mean weights for large might be selected to provide the priors for the 

first role of larger, with the second role set by replicating the weights for large as a contrast). 

Priors for variances were set to 1 and those for covariance were set to 0. (Because the learning 

task with rating inputs proved to be extremely easy for BART, a hyperprior was not used in these 

simulations.) For comparison, a baseline model simply used uninformative priors (standard 

normal distributions). We trained and tested BART on each of the eight comparative relations 
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involving the animal ratings (larger, smaller; fiercer, meeker; smarter, dumber; faster, slower).  

Assuming training examples are randomly sampled from the same population, the solutions for 

polar-opposite relations (e.g., larger and smaller) would be expected to converge at asymptote 

with symmetrical weight distributions (i.e., distributions with weights reversed between the two 

roles). This result was clearly obtained, so we will only report generalization results for the four 

“greater” relations. However, the analogy results are based on learned representations of all 

relations (“lesser” as well as “greater”).  

 Generalization Performance 

   Basic tests. On each run, we trained the model on some number (1-100) of randomly 

selected pairs that constituted positive examples of the target relation (and satisfied the minimum 

difference criterion). All the remaining pairs in the pool (both positive and negative examples) 

were then used as test pairs. For test pairs, negative examples were created by simply reversing 

the “correct” order of the two animals for the target dimension. The number of test pairs that 

instantiated a relation was always equal to the number that did not instantiate it (since they 

involved the same animals in reverse order).  

A test pair that instantiated the relation was counted as correct if its posterior predictive 

probability of being an example of the relation was greater than 0.5, whereas a test pair that did 

not instantiate the relation was counted as correct if its predicted probability was less than 0.5.  

This criterion assumes that the model is unbiased. When trained solely with positive examples, it 

is plausible that a learning model might develop an overall bias favoring a “yes” response. Based 

on signal detection theory, sensitivity after correcting for possible bias can be measured using the 

Az measure (Dorfman & Alf, 1969), which calculates the area under the receiver operating 

characteristic (ROC) curve. For the ratings data, the criterion of 0.5 in fact proved to be optimal 
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prior to reaching ceiling accuracy in generalization performance, indicating that BART’s 

generalization decisions were unbiased within this range. Accordingly, we will simply report 

percent correct.  

All reported results are based on the average performance over 100 runs, each of which 

randomly selected a set of training pairs from the pool. Figure 1.5 depicts BART’s generalization 

curves for the four “greater” relations as a function of the number of training examples. Learning 

was very successful for all relations. The BART model with empirical priors generalized 

moderately accurately after a single training example (mean of 71% correct across all relations), 

and reached 96% correct after 20 training trials. BART’s learned representations of one-place 

predicates thus provided effective empirical priors for the two-place comparative relations. The 

baseline model with uninformative priors (means of 0) started at a substantially lower level of  

 

Figure 1.5. Accuracy in the generalization task with rating vectors as a function of the number of training examples 

for the four comparative relations (log scale). Solid lines indicate the performance of BART using the empirical 

prior; dashed lines indicate the performance of a baseline model (Bayesian logistic regression model with 

uninformative prior).   
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performance (mean of 59%), and required about twice as many training examples (40) to reach 

95% accuracy. After 100 training examples, both models converged at near-perfect accuracy 

(99% correct) in generalization. These results demonstrate that at least when magnitude 

information is transparently coded in small input vectors, BART can learn comparative relations 

very efficiently from a modest number of positive examples, especially when guided by 

empirical priors. 

To determine whether the relational representations acquired by BART yield the 

ubiquitous symbolic distance effect obtained for comparative judgments by humans, we 

examined how BART’s probability estimates (using the full model with empirical priors) relate 

to the rated subjective distance between each test pair of animals on the dimension of interest 

(i.e., size, fierceness, intelligence, or speed). Distance effects are generally revealed in reaction-

time paradigms. Although BART does not provide a process model of speeded judgments, 

standard models of reaction time (e.g., Link, 1990) would predict that reaction time as a measure 

of judgment difficulty will have an inverse monotonic relationship to the log ratio of posterior 

probabilities that each ordering of a pair fits the indicated relationship (e.g., for a pair such as 

elephant-horse, a positive log ratio will indicate that elephant is larger than horse, with the 

predicted difficulty of the discrimination decreasing as the log ratio becomes increasingly 

positive). 

Distances were grouped into five bins based on inter-item distance in ratings on the 

relevant continuum (i.e., animals very similar in size fell in bin 1, animals maximally different in 

size fell in bin 5). Distance bins are based on Holyoak and Mah’s (1981) norms, in which values 

range from 0-10: bin 1 (distances between 0.5 and 2), bin 2 (distances 2-4), bin 3 (distances 4-6), 

bin 4 (distances 6-8), and bin 5 (distances 8-10). Figure 1.6 plots the log ratio of the predicted 
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posterior probability for each positive test pair compared to the predicted probability for the 

reversed pair as a function of distance between the pair after learning based on 40 training pairs, 

averaged across the four comparative relations.  Consistent with a symbolic distance effect, the 

log ratio increases with distance. 

 
 
Figure 1.6. Log of the ratio between predicted posterior probability of each positive test pair instantiating a “greater” 

relation and that of the reversed pair instantiating the relation on generalization test (rating inputs) as a function of 

rated distance on the relevant continuum. Distance bins are based on Holyoak and Mah’s (1981) norms, in which 

values range from 0-10: bin 1 (distances between 0.5 and 2), bin 2 (distances 2-4), bin 3 (distances 4-6), bin 4 

(distances 6-8), and bin 5 (distances 8-10). Results are collapsed over the four continua. 

 

 Generalization beyond the range of training examples. The basic generalization tests 

described above always involved test pairs that had not been shown during training. We also 

performed a series of computational experiments to determine whether BART is capable of 

generalizing to new types of pairs that in various ways go beyond the range of the training 

examples. 



39 
 

(1) One test introduced pairs in a distance range outside of that used in training. Using 

empirical priors set in the same manner as described previously, we trained BART on the 

relation larger based on 40 positive examples drawn randomly from the first three distance bins 

only (e.g., 40 pairs of animals exhibiting small or moderate size differences for larger). We then 

tested the model’s generalization performance at each of the five distance bins, using all possible 

animal pairs excluding the training pairs. We again obtained a monotonic increase in mean log 

ratio across all levels of distance:  2.80, 7.12, 12.00, 16.07, and 21.13 for bins 1 to 5, 

respectively. The model thus assessed pairs of animals with large size differences (bins 4-5) as 

the best positive examples of larger. BART’s acquired representation of larger was sufficiently 

robust and flexible as to enable very accurate generalization to novel test pairs exhibiting size 

differences greater than the range presented during training. 

(2) Another series of generalization tests varied the magnitudes of the individual training 

and test objects. For this purpose all the animals were sorted into four roughly equally-sized 

groups based on their value on the relevant dimension in the Holyoak and Mah (1981) norms, 

such that animals in group 1 have the lowest values and animals in group 4 have the highest 

values. We then trained the model with 100 examples based on pairs of the form [4, 1]. In other 

words, the first animal is drawn from group 4 and the second animal is drawn from group 1 (i.e., 

for learning larger, the first animal is very large and the second animal is very small). The 

generalization test included all and only pairs of the form [3, 2] (i.e., middle-sized animals). 

BART’s performance was similar across the four “greater” relations with an overall accuracy of 

91%, indicating very successful generalization.  

(3) Because pairs of the form [3, 2] are necessarily close in magnitude, a generalization 

test that includes only pairs of the form [3, 2] is inherently more difficult than one composed of 
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pairs formed from all groups. For comparison with test (2), we also trained the model in the 

usual way (positive examples formed from all groups), and then tested it on only pairs of the 

form [3, 2]. BART performed similarly across the four “greater” relations on this test as well, 

achieving an overall accuracy of 99% after 100 training examples. In comparison, the 91% 

accuracy obtained in test 2 is somewhat lower, indicating that restricting the magnitude range of 

the training items impaired generalization to some extent. 

(4) Another test involved training with 100 pairs of the form [2, 1] (i.e., pairs of small 

animals) and testing with those of the form [4, 3] (i.e., pairs of large animals), or the reverse 

(training on [4, 3], then testing on [2, 1]). This test is inherently difficult because the training 

items are drawn from a restricted range, and the test items are drawn from a different restricted 

range (and moreover, are very close in magnitude). Averaged across the two variations, 

generalization accuracy was 65%, 79%, 77%, and 81% for larger, fiercer, smarter, and faster, 

respectively. Thus transfer from one extreme on a continuum to the other was reliable although 

imperfect. 

(5) A final test ensured that the animals (not just pairs) used during training and testing 

did not overlap by selecting a random half of the animals for training, and then testing on all 

pairs formed by the remaining animals.  After 100 training examples, BART achieved 98% 

overall accuracy, indicating very successful generalization to animals not encountered during 

training. 

Analogy Performance 

To test BART’s ability to solve higher-order analogy problems using its acquired 

relational representations, we constructed problems based on the comparative relations. If the 

model is able to implicitly learn relations between relations, then its standard training on the four 
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sets of paired comparatives should allow it to solve analogies based on two distinct higher-order 

patterns, which we will gloss as “same-extreme” (e.g., the relationship of larger to fiercer, or 

smaller to meeker; see Clark, 1970, for a discussion of the polarity of comparative relations) and 

“opposite” (e.g., the relationship of larger to smaller, or fiercer to meeker). Table 1.2 gives 

examples of five types of 4-term analogy problems that can be constructed by pairing one of the 

two higher-order relations with various foils, using the first-order relations acquired by BART. 

The first types are based on same-extreme, with the foil being either an opposite pair (Same-O) 

or a pair of relations at the opposite extreme of their respective dimensions (Same-OE). The 

other three types are based on opposite.  The foil could be split across two dimensions (Opp-S), 

reverse polarity on a dimension (Opp-R), or involve a conflict (Opp-C) in which one relation in 

the foil was in fact identical to one of the A:B terms. In such problems the analogical answer 

C:D has to overcome the misleading featural identity of the D’ term in the C:D’ foil to the B 

term in A:B. Except for Same-OE problems, the C:D’ (or C’:D) foils always share one word with 

the analogical C:D completion. 

 For the first four types, chance performance would be 50% if the A:B and/or C:D 

relations had not been acquired. J-divergence, like other proposed measures of relational 

similarity that have been used to model human judgments (e.g., Goldstone, 1994; Taylor & 

Hummel, 2009) is sensitive to featural as well as relational overlap. For Opp-C analogies, 

expected performance in the absence of relation learning would therefore be 0%, because the 

featural overlap based on the word shared by A:B and the foil C:D’ would cause the foil to 

always be selected as more similar to A:B. The Opp-C conflict set thus provided an especially 

challenging test of BART’s ability to solve higher-order analogies based on its learned relational 

representations, directly pitting relational against featural similarity. Similar designs have been 
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Table 1.2 

Examples of Analogies Based on the Relations “Same-Extreme” “and “Opposite,” with Various 

Types of Foils (Number of Examples Used to Test BART is Indicated in Parentheses) 

 

Analogy test type Target Foil 

Same-O (48): 

Same-extreme (opposite as foil) 

larger : fiercer :: 

smarter : faster 

larger : fiercer :: 

smarter : stupider 

Same-OE (48): 

Same-extreme (opposite extreme as foil) 

smaller : stupider :: 

meeker : slower 

smaller : stupider :: 

faster : fiercer 

Opp-S (48): 

Opposite (split pair as foil) 

faster : slower :: 

smarter : stupider 

faster : slower :: 

smarter : meeker 

Opp-R (24): 

Opposite (reversed as foil) 

larger : smaller :: 

smarter : stupider 

larger : smaller :: 

stupider : smarter 

Opp-C (48): 

Opposite (conflict foil) 

fiercer : meeker :: 

smarter : stupider 

fiercer : meeker :: 

smarter : meeker 

 

employed in studies of human analogical mapping both with adults (e.g., Markman & Gentner, 

1993) and children (Richland et al., 2006).  

To test BART’s capacity to make analogical inferences, we created sets of each of the 

five types (see Table 1.2 for the number of each type). BART’s assessment was counted as 

correct (i.e., as an analogical response) if the calculated J-divergence distance was lower for the 

analogical C:D pair than for the non-analogical foil, C:D’ (or C’:D). Figure 1.7 shows the 

performance of BART and the baseline model (both using the identical algorithm for 

importance-guided mapping) on the five types of analogy problems. Although both models 

performed extremely well after learning from ratings inputs, BART achieved slightly higher 

success after fewer training examples. The advantage of BART over the baseline model in 

efficiency of learning to solve analogy problems is most apparent for Type Opp-C. After three  
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Figure 1.7. Proportion of analogical responses as a function of the number of training examples (log scale) with 

rating inputs for the five types of analogy problems. Solid lines present the results for BART with empirical prior; 

dashed lines present results for baseline model (with uninformative prior). Error bars indicate 1 standard deviation 

(results based on 100 runs). 
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training examples, BART begins to show more accurate performance than the baseline model, 

and the two models do not converge in their performance until after 60 training examples, at 

which point both models achieve essentially perfect performance on all problem types. 

These results demonstrate that the algorithm for importance-guided mapping is in fact 

capable of solving structural analogies based on learned representations of first-order relations, 

implicitly finding correspondences between non-identical dimensions based on the importance-

guided mapping operation using marginal weight distributions. Moreover, the empirical priors 

proved to be effective in establishing relational distributions that support analogical reasoning, 

especially in competition with featural similarity.   

In summary, the tests with ratings vectors provide a first demonstration that BART is 

able to learn relational representations that pass five critical tests:  (1) learning from non-

relational inputs, (2) with high efficiency, (3) generalizing to new examples of first-order 

relations, (4) capturing a key source of differential difficulty in human performance, symbolic 

distance, and (5) supporting structured analogical reasoning. 

Tests of BART Using Leuven Inputs 

Inputs 

We next applied BART to the much more challenging problem of learning comparative 

relations from high-dimensional input representations based on the Leuven database (De Deyne 

et al., 2008). As noted earlier, these norms are based on the frequency with which participants 

generated features characterizing 129 animals, for 759 features. To make the results as 

comparable as possible to those obtained with the ratings inputs, we used the subset of 44 animal 

names from the Holyoak and Mah (1981) norms that were also included in the Leuven database. 

Although this subset was substantially smaller than the 77 animals used in the simulations based 
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on ratings, it was still large enough to generate a pool of over 750 pairs for training and 

generalization tests.  

To construct input representations we followed the procedure used by Kemp, Chang and 

Lombardi (2010, p. 219), who used the Leuven norms to estimate the probability of each feature 

conditional on each animal (see their Equation 8, top). We multiplied the computed probability 

by 100 to make the magnitude range roughly comparable to that of the rating inputs. Because the 

values as described so far are based on probabilities, they necessarily are non-negative. As noted 

in connection with the rating vectors, to optimize the scale for the logistic likelihood function it 

is desirable to center the vectors by a linear transformation. Accordingly, we subtracted from 

each feature the mean value of that feature across all 129 animals in the Leuven norms. The 

feature values in the vectors used as inputs to BART therefore included both negative and 

positive values, with means near 0. 

In order to reduce the size of the search space, we focused on the most important 

dimensions. Specifically, we summed the feature vectors for the 44 animals and identified the 50 

dimensions that yielded the largest sums (after dropping one dimension, “is small”, that was 

clearly redundant with another, “is big”). By using just these 50 most important dimensions to 

form vectors for each individual word, the total size of the vector for each word pair was fixed at 

100.  

Training 

  The basic training regimen was very similar to that employed with the rating vectors. To 

create empirical priors, we again selected 20 animals close to each of the two extremes on each 

of the four dimensions of interest. These included all of the extreme animals included in the 

subset of 44 for which Leuven vectors were available (the number ranging from 8-15 across the 
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eight sets). We augmented this “core” group with additional animals from the entire Leuven set 

of 129 animals that we judged to be close to the relevant extremes, thus bringing the total 

number of animals in each set to 20. Insofar as some of the animals used to train one-place 

predicates may not have been the most extreme, and many were not included in the subset of 44 

used to train relations, this procedure for selecting positive examples for learning empirical 

priors would be expected to make successful relation learning more challenging. 

  The search space for the Leuven representations was much larger relative to that for the 

ratings inputs used previously. Accordingly, we aimed to improve the stability of the estimates 

for empirical priors by increasing the number of examples. Given that the set of positive 

examples available for each one-place predicate was necessarily constrained, we augmented the 

training pool by including negative examples. To learn large, for example, BART was given 

both 20 positive examples (i.e., 20 large animals) and 20 negative examples (i.e., 20 small 

animals). As in the case of our simulations using rating vectors, direct training on each 

comparative relation (e.g., larger) was still based solely on positive examples.  

  To help cope with the greater complexity of the learning problem with high 

dimensionality, we used a hyperprior to increase BART’s representational flexibility. Based on a 

preliminary search of the parameter space, we set the values of the hyperparameters (a0, b0) to be 

5 and 1, respectively. We found that allowing BART to use the hyperprior (with hyperparameters 

fixed for all simulations) tended to improve its generalization performance by about 2 percentage 

points relative to using the standard covariance matrix (the procedure used in the simulations 

with rating inputs), and significantly improved accuracy in certain analogy tests. For comparison, 

we also tested the same baseline model as that used with ratings vectors (i.e., Bayesian logistic 

regression with standard normal distributions as uninformative priors). 
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Generalization Performance 

Basic tests. All reported results are based on the average performance over 10 runs, each 

of which randomly selected a set of training pairs from the pool. Figure 1.8 depicts BART’s 

generalization curves for the four “greater” relations as a function of the number of training 

examples. Not surprisingly, given the greatly increased dimensionality of the learning problem, 

the level of performance was lower overall than was obtained with the rating vectors. However, 

the full BART model, with empirical priors on mean weights and a hyperprior on variances, 

achieved substantial generalization (about 80-95% accuracy for the four “greater” relations after 

100 training examples). The baseline model showed much weaker generalization performance, 

achieving only about 60-70% accuracy overall after 100 training examples. 

 

Figure 1.8. Accuracy in the generalization task with Leuven inputs as a function of the number of training examples 

(log scale) for the four comparative relations. Solid lines indicate the performance of BART using the empirical 

prior and hyperprior; dashed lines indicate the performance of a baseline model (Bayesian logistic regression model 

with uninformative prior).  
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We also explored how BART’s generalization performance changed with more extended 

training. Whereas BART appeared to be unbiased when trained with up to 80-90 examples, a 

further increase in the number of training examples led to a bias towards “yes” responses. This 

type of response bias leads to reduced accuracy if a fixed decision criterion is used. Accordingly, 

we computed the Az measure, which is more robust to response bias (Dorfman & Alf, 1969). 

Generalization performance as measured by Az continued to improve slightly with increased 

numbers of training examples. After 700 training examples, both BART and the baseline model 

achieved an Az value of about .95. 

To examine whether the relational representations that BART derives from Leuven 

vectors yield the distance effect obtained for comparative judgments by humans, we examined 

how BART’s generalization performance relates to the rated subjective distance between each 

test pair of animals on the dimension of interest (as measured using the Holyoak & Mah, 1981, 

norms). Figure 1.9 plots the mean log ratio of predicted probabilities for positive versus negative 

test pairs as a function of distance on the relevant dimension between the two animals in a pair 

(after learning from 100 training examples). Because only 44 of the animals in the Holyoak and 

Mah norms are included in the Leuven dataset, we used four distance bins instead of five. The 

log ratio of posterior probabilities increased monotonically with distance. Thus, the relational 

representations that BART acquired from Leuven inputs clearly yield a symbolic distance effect. 

Generalization beyond the range of training examples. As in the case of the 

simulations based on ratings, we performed a series of computational experiments to determine 

whether BART is capable of generalizing to new types of pairs that in various ways go beyond 

the range of the training examples. 
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Figure 1.9. Log of the ratio between predicted posterior probability of each positive test pair instantiating a “greater” 

relation and that of the reversed pair instantiating the relation on generalization test (Leuven inputs) as a function of 

rated distance on the relevant continuum. Distance bins are based on Holyoak and Mah’s (1981) norms: bin 1 

(distances between 0.5 and 1.5), bin 2 (distances 1.5-3), bin 3 (distances 3-5.5), and bin 4 (distances 5.5-10). Results 

are collapsed over the four continua. 

 

 (1) Training with 100 examples from distance bins 1-2 only and testing on all four 

distance bins. We obtained a monotonic increase in mean log ratio across all levels of distance: 

1.02, 2.30, 4.51, and 8.00 for bins 1 to 4, respectively. These results again demonstrate that the 

model assessed pairs of animals with large size differences, in bins 3 and 4, as the best positive 

examples of larger.  

 (2) Training with 100 pairs of the form [4, 1] and testing on all pairs of the form [3, 2]. 

BART’s accuracy was 89%, 67%, 73%, and 92% for larger, fiercer, smarter, and faster, 

respectively, indicating fairly successful generalization performance based on a restricted set of 

training inputs. 
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(3) Standard training with 100 pairs formed from all groups and testing on all pairs of 

the form [3, 2]. BART achieved accuracies of 87%, 69%, 77%, and 87% for larger, fiercer, 

smarter, and faster, respectively. Thus for the Leuven inputs, restricting the training pairs to 

those of the form [4, 1] (test 2) had minimal negative impact on generalization performance. 

(4) Training with 100 pairs of the form [2, 1] and testing on all pairs of the form [4, 3], 

or the reverse. Averaged across the two variations, generalization accuracy was 85%, 73%, 77%, 

and 54% for larger, fiercer, smarter, and faster, respectively, indicating fairly successful 

generalization across magnitude extremes for the first three relations. 

(5) No overlap between training and test animals. This test was performed with 60 

training examples because the Leuven subset included only 44 animals in total. BART achieved 

accuracies of 92%, 79%, 84%, and 85% for larger, fiercer, smarter, and faster, respectively, 

indicating fairly successful generalization to animals not encountered at all during training. 

Content of Learned Weight Distributions 

 To convey a sense of the content that BART used to learn comparative relations from the 

Leuven inputs, Figure 1.10 depicts typical mean weights for the four “greater” relations that the 

model acquired using 100 training examples. For each relation the 50 dimensions are ordered by 

importance. Several qualitative observations are of interest. First, the representations are clearly 

contrastive, with positive (light) weights associated with important weights on the first role and 

negative (dark) weights associated with the second role, or vice versa. Second, among the more 

important weights, the positive value is predominantly associated with the first role. This is the 

type of relational information that indicates to BART that these comparatives are in fact oriented 

toward the “greater” extremes of their respective continua. 
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Fig. 1.10 (2 pages) 
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Figure 1.10. Illustration of mean weights for four relations learned from 100 training examples using Leuven inputs. 

For each relation, the weights on 50 dimensions (based on the specified query) are rank-ordered by importance. The 

intensity of cells represent weight values on each dimension (light indicates high positive values, dark indicates high 

negative values). The first column corresponds to weights on features of the first object, and the second column 

corresponds to weights on features of the second object.  

 

smarter 
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Third, the representations are highly distributed. For each relation, upwards of 20 

corresponding dimensions (i.e., 40 weights) show clear contrasts between the two roles. Unlike 

the rating vectors, in which a single dimension provided a localist code for each continua, the 

Leuven vectors lack any single dimension that suffices to define any comparative relation. To 

take the most salient example, one might have supposed that “is big” would be sufficient to 

predict relative size. In fact, although this dimension is indeed the single most important 

predictor of which object is larger, it is far from sufficient. The Leuven dimensions were derived 

from the frequencies with which participants generated features, rather than from a continuous 

rating scale of the sort used to create the Holyoak and Mah (1981) norms. Accordingly, in the 

Leuven dataset, animals for which size is a salient dimension (often in reference to a 

subcategory) tend to have higher features values for “is big”. Based on a comparison of feature 

values on that dimension alone, the Leuven dataset indicates that (for example) an eagle is larger 

than a giraffe, a seagull is larger than a horse, and a cow is the same size as a pelican. However, 

BART is able to flexibly integrate weakly predictive information provided by dozens of 

individual dimensions to successfully learn and generalize the comparative relations.  

Analogy Performance 

 The distributed nature of the relation representations acquired from the Leuven inputs 

posed a strong test of BART’s algorithm for importance-guided mapping. Although this 

algorithm was extremely successful when applied to localist representations derived from the 

rating data, it was far from obvious whether it would also be effective with distributed 

representations. We tested BART and the baseline model on the five types of analogy problems 

in the same manner as for the rating inputs. The results are shown in Figure 1.11. The overall 

level of performance is lower than was obtained when the models were trained with ratings  
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Figure 1.11. Proportion of analogical responses as a function of the number of training examples (log scale) with 

Leuven inputs for the five types of analogy problems. Solid lines present results from BART with empirical prior 

and hyperprior; dashed lines present results for baseline model (uninformative prior). Error bars indicate 1 standard 

deviation (results based on 10 runs). 
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inputs, which is not surprising given the much greater complexity of the Leuven inputs. Indeed, 

it was far from obvious that the algorithm for importance-guided mapping would work at all 

when applied to representations of first-order relations that are highly distributed over many 

dimensions, rather than being localized on one critical dimension (as was the case for the 

simulations based on rating vectors; see Figure 1.4). As indicated in Figure 1.10, the first-order 

relations acquired from the Leuven vectors generally involved at least 40 reliable predictor 

variables working together. 

In fact, the performance of the BART model on the analogy tests was excellent, 

achieving essentially perfect accuracy after 100 training trials on four problem types, and about 

90% on Opp-C problems. For the Same-O, Same-OE, and Opp-R analogy types, the baseline 

model does not catch up to BART until after 40 training pairs. For the Opp-S and Opp-C analogy 

types, performance of the baseline model hovers around chance (50% and 0%, respectively) even 

after 100 training trials. For the latter problem types, we explored the impact of more extended 

training on analogy performance for the baseline model. Even after 700 training examples, the 

baseline model still lagged behind BART by about 9 percentage points on Opp-S problems and 

46 percentage points on Opp-C problems. In sum, when faced with high-dimensional inputs 

based on Leuven inputs, BART was able to achieve substantial success in solving structured 

analogy problems, with its informative priors playing a decisive role. 

Tests of BART Using Topics Vectors 

Inputs 

  We also applied BART to the yet more challenging problem of learning comparative 

relations from input representations taken from the topic model (Griffiths et al., 2007). Whereas 

the ratings vectors has clear localist codes for the critical continua (size, fierceness, etc.), and the 
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Leuven vectors included some features that were transparently related to them, the more opaque 

topics vectors did not provide any dimensions that were transparently relevant for learning 

comparative relations. To make the results as comparable as possible to those obtained in the 

previous simulations, we used the same set of 77 animal names taken from the Holyoak and Mah 

(1981) norms that were used in the simulations based on rating inputs.  

The topics representations we used for these words were derived from the output of the 

topic model based on the tasaALL data base (see Griffiths et al., 2007). This output consists of 

twenty-four samples with 300 topics each for 26,243 unique words. Each sample consists of a 

word-by-topic matrix, in which the entry in the ith row and jth column is the number of times 

that the ith word appeared in the corpus and was assigned to the jth topic. We performed several 

pre-processing operations to create the vectors used as the immediate inputs to BART. First, we 

added a smoothing parameter of 0.01 to each entry in the matrix. We then derived a feature 

vector for each word, in which each feature value corresponds to the conditional probability of a 

corresponding topic given that word. This value is simply the joint frequency of the topic and 

word (an entry in the matrix) divided by the frequency of that word (the sum of a row in the 

matrix). Although the frequencies of specific words for each topic vary somewhat across the 24 

samples, it was clear from inspection that the same 300 topics appeared in the same order across 

all 24 samples, indicating that the topics solutions are robust. Accordingly, a single feature 

vector for each word was calculated simply by averaging its feature vectors across all samples. 

We multiplied the computed probability by 100 to make the magnitude range roughly 

comparable to that of the rating inputs.  

If all 300 dimensions of each word vector were used, each word-pair vector would have 

600 dimensions. However, for any individual word, most feature values are close to 0 (reflecting 
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the fact that most of the 300 topics are irrelevant for any particular word). Dimensions that yield 

feature values at or near 0 for all words of interest (the animal names) will be useless in 

subsequent relation learning, and are likely to introduce noise that will impede any learning 

algorithm given the sheer size of the search space and limited number of training examples. In 

order to focus on the most important dimensions (those for which animals names tend to have 

non-zero probabilities), we summed the feature vectors for all 77 animals and identified the 50 

dimensions that yielded the largest sums. By using just these 50 most important topics 

dimensions to form vectors for each individual word, the total size of the vector for each word 

pair was reduced to 100 (the same dimensionality as for the Leuven vectors).  

Because the feature values as described so far are based on probabilities, they are 

necessarily non-negative. Accordingly, we subtracted from each feature the mean value of that 

feature across all 26,243 word vectors. The feature values in the vectors used as inputs to BART 

therefore included both negative and positive values, with means near 0. 

Training 

  The basic training regimen was identical to that employed with the Leuven vectors 

(except all learning was based solely on animals from the Holyoak & Mah, 1981, norms). The 

same hyperprior parameters were used. (Hyperpriors improved generalization performance by 

about 3 percentage points overall, with more significant improvement for certain analogy tests.) 

For comparison, we again tested the same baseline model as that used with both rating and 

Leuven inputs (i.e., Bayesian logistic regression with standard normal distributions as 

uninformative priors).  
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Generalization Performance 

Basic tests. All reported results are based on the average performance over 10 runs, each 

of which randomly selected a set of training pairs from the pool. Figure 1.12 depicts BART’s 

generalization curves for the four “greater” relations as a function of the number of training 

examples. Not surprisingly, given the vastly greater opacity of topics representations, the level of 

performance was considerably lower overall than was obtained with the rating or Leuven 

vectors. However, the full BART model, with empirical priors on mean weights and a hyperprior 

on variances, achieved substantial generalization (about 70-80% accuracy for the four “greater” 

relations after 100 training examples). These results indicate that even when magnitude 

information is not coded in any clear way in the inputs, BART can learn useful representations of 

comparative relations from positive examples. The baseline model showed much weaker  

 

Figure 1.12. Accuracy in the generalization task with topics vectors as a function of the number of training 

examples for the four comparative relations. Solid lines indicate the performance of BART using the empirical prior 

and hyperprior; dashed lines indicate the performance of a baseline model (Bayesian logistic regression model with 

uninformative prior).  
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generalization performance, starting at chance (50%) and peaking at a mean of 67% accuracy 

after about 80 training examples. 

We also explored how BART’s generalization performance changed with more extended 

training. Whereas BART appeared to be unbiased when trained with up to 80-90 examples, a 

further increase in the number of training examples led to a bias towards “yes” responses. This 

type of response bias leads to reduced accuracy if a fixed decision criterion is used. (Note the 

slight decline in accuracy apparent in Figure 1.12 after 70 training examples, especially for the 

baseline model). Generalization performance as measured by Az continued to improve slightly 

with increased numbers of training examples. But even after 2000 training examples, overall 

generalization performance as measured by Az was higher for BART (.87) than for the baseline 

model (.82). 

To examine whether the relational representations that BART derives from topics vectors 

yield the distance effect obtained for comparative judgments by humans, we again examined 

how BART’s generalization performance relates to the rated subjective distance between each 

test pair of animals on the dimension of interest (as measured using the Holyoak & Mah, 1981, 

norms). Figure 1.13 plots the mean log ratio of predicted probabilities for positive versus 

negative test pairs as a function of distance on the relevant dimension between the two animals in 

a pair (after learning from 100 training examples), using the same distance bins as were used to 

test the model with rating vectors. The log ratio again increased monotonically with distance. 

Thus, the relational representations that BART acquired from topics inputs clearly yield a 

symbolic distance effect. 
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Figure 1.13. Log of the ratio between predicted posterior probability of each positive test pair instantiating a “greater” 

relation and that of the reversed pair instantiating the relation on generalization test (topics inputs) as a function of 

rated distance on the relevant continuum. Distance bins are based on Holyoak and Mah’s (1981) norms (see Figure 

1.6). Results are collapsed over the four continua. 

 

 Generalization beyond the range of training examples. As in the case of the 

simulations based on ratings and Leuven vectors, we performed a series of computational 

experiments to determine whether BART is capable of generalizing to new types of pairs that in 

various ways go beyond the range of the training examples. 

(1) Training with 100 examples from distance bins 1-3 only and testing on all five 

distance bins. We obtained a monotonic increase in mean log ratio across all levels of distance: 

.78, 2.05, 2.86, 3.29, and 3.61 for bins 1 to 5, respectively, extending the similar pattern obtained 

with ratings and Leuven inputs.  

 (2) Training with 100 pairs of the form [4, 1] and testing on all pairs of the form [3, 2]. 

BART’s accuracy levels were 75%, 45%, 54%, and 44% for larger, fiercer, smarter, and faster, 

respectively.  
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(3) Standard training with 100 pairs formed from all groups and testing on all pairs of 

the form [3, 2]. BART’s accuracy levels were 87%, 54%, 56%, and 54% for larger, fiercer, 

smarter, and faster, respectively. Thus for topics inputs, tests 2 and 3 indicate that generalization 

performance was weak for close midrange pairs, especially when the range of the training pairs 

was restricted to those of the form [4, 1] (test 2). 

(4) Training with 100 pairs of the form [2, 1] and testing on all pairs of the form [4, 3], 

or the reverse. Averaged across the two variations, generalization accuracy was 49%, 61%, 63%, 

and 62% respectively for larger, fiercer, smarter, and faster, indicating modest performance for 

the latter three relations. 

(5) No overlap between training and test animals with 100 training examples. BART 

achieved accuracies of 71%, 65%, 68%, and 63% for larger, fiercer, smarter, and faster, 

respectively, indicating moderately successful generalization to animals not encountered during 

training. 

Content of Learned Weight Distributions 

 We examined representative solutions that BART generated in learning representations 

for the comparative relations based on topics inputs. These solutions were even more distributed 

than those obtained using Leuven inputs (Figure 1.10), with around 30 dimensions (i.e, about 60 

weights) distinguishing the two roles for each comparative. The two roles were generally 

contrastive (i.e., weights associated with the two roles took on opposite signs). However, unlike 

those based on ratings and Leuven vectors, the topics solutions did not clearly distinguish the 

“greater” and “lesser” poles of individual continua. That is, rather than having predominantly 

high positive weights on the first role and high negative weights on the second, the pattern of 

weight polarity was more mixed. As we will see, the lack of a clear distinction between “greater” 
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comparatives (larger, fiercer, etc.) and “lesser” ones (smaller, meeker, etc.) had negative 

consequences for BART’s ability to solve some specific types of analogy problems based on 

topics inputs. 

 In addition to being more highly distributed, the topics solutions proved to be much more 

opaque than the Leuven solutions. Indeed, the term “topic” (which suggests an overall semantic 

theme) seems like a misnomer when applied to the feature dimensions that loaded highly for the 

various continua. Rather than having a clear semantic interpretation, each topic can really only 

be characterized by the list of words associated with it. For example, the “topic” most strongly 

predictive that the first object was larger than the second was highly associated with words for 

body parts (e.g., blood, body, heart, cells, etc.). Of course, this is only one of about 30 topics that 

collectively drove the decision as to which animal is larger. Thus BART was able to learn and 

generalize representations of comparatives from topics inputs with moderate success, even 

though the underlying features were subsymbolic. 

Analogy Performance 

 Given that the topics representations for comparatives were highly distributed and 

semantically opaque, it is not surprising that using them to solve higher-order analogy problems 

proved to be challenging. We tested BART and the baseline model on the five types of analogy 

problems in the same manner as for the ratings and Leuven inputs. The results for up to 300 

training examples are shown in Figure 1.14. The overall level of performance is lower than was 

obtained when the models were trained with ratings or Leuven inputs. Nonetheless, performance 

of the BART model on the analogy tests after learning from topics inputs was quite good. After 

300 training examples, the performance level of BART was essentially perfect for Same-O 

problems, at about 90% accuracy for Opp-S problems, and 80% for Opp-C problems. BART  
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Figure 1.14. Proportion of analogical responses as a function of the number of training examples with topics input 

for five types of analogy problems. Solid lines present results from BART with empirical prior and hyperprior; 

dashed lines present results for baseline model (uninformative prior). Error bars indicate 1 standard deviation 

(results based on 10 runs). 
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performed less well on the Opp-R problems (about 70%) and the Same-OE problems (about 

60%).  

 BART’s lower performance on the latter two types of problems reflects that fact that in 

each case the correct answer can only be discriminated from the foil on the basis of polarity. 

Thus in the Same-OE type, the foil is a pair of relations at the opposite pole from the A:B pair, 

and in the Opp-R type the foil has the polarity reversed relative to A:B (e.g., if larger:smaller is 

the A:B term and fiercer:meeker is the correct C:D choice, the foil might be meeker:fiercer). As 

discussed earlier, for any pair of polar opposites BART implicitly identifies the “greater” relation 

as that for which the first role has predominantly positive weights on the relevant dimensions, 

whereas the “lesser” relation is that for which the first role has predominantly negative weights. 

As noted above, the topics inputs were much less clear than the rating or Leuven inputs, 

providing a mix of dimensions that were positively and negatively weighted as indicants of (for 

example) larger and smaller. In other words, topics inputs did not clearly establish “which end is 

up” for the various continua, making it difficult for BART to use polarity information as its sole 

basis for selecting an analogical completion. 

 Somewhat paradoxically, the baseline model actually was more accurate than BART for 

the problems types where polarity information was critical (Same-OE and Opp-R). The reason is 

that the baseline model (without empirical priors or hyperpriors) estimated higher variances on 

weights, which increased sensitivity to the small difference between the same-pole correct choice 

and the opposite-pole foil. Intuitively, BART “knew too much”, viewing (for example) a pair 

like meeker-fiercer as a competitive foil to fiercer-meeker when seeking a match to larger-

smaller, since all these pairs instantiate contrasting relations. By contrast, the baseline model 
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could detect no apparent relationship between meeker-fiercer and larger-smaller, so was more 

likely to favor the correct option as the analogical completion. 

 More broadly, however, the performance of the baseline model across the entire set of 

analogy tests was dismal (see Figure 1.14). As was the case for the Leuven inputs, the baseline 

model failed completely on the Opp-S problem type (near chance level of 50%) and the Opp-C 

type (near chance level of 0%). Even after 2000 examples, performance of the baseline model 

lagged 33 percentage points behind BART on Opp-S problems and 90 percentage points on Opp-

C problems. Thus even though the baseline model achieved modest success in relational 

generalization using both Leuven and topics inputs, it was unable to use its learned 

representations to reliably solve higher-order analogy problems. 

 It may seem surprising that priors continued to play a critical role in analogy performance 

even after 2000 trials, as the general rule for Bayesian models is that priors are eventually 

swamped by data. However, the fact that learning in our simulations was based solely on positive 

examples may have made priors especially potent. Although the model was expected to learn a 

specific comparative relation, such as larger, a finite set of positive examples is likely to be 

consistent with multiple possible relations (e.g., both animals, both physical objects). The 

contrastive priors provided BART with a strong “push” in the direction of comparative relations, 

whereas the baseline model, with its uninformative priors, might sometimes have acquired 

weights consistent with other possible relations exhibited by the positive training examples. 

Consequently, the patterns of weight distributions acquired by the baseline model likely were 

more variable from one comparative to another, impairing its performance on higher-order 

analogy problems.  
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General Discussion 

Summary 

The work described in this paper addresses the issue of whether and how relational 

representations that can support structured reasoning may be learnable from non-relational 

inputs. Using comparative relations as a model domain, we performed a series of computational 

experiments based on BART, a Bayesian model of relation learning and analogical inference. In 

order to relate our findings to the general manner in which children appear to acquire concepts, 

we focused on learning from labeled positive examples of each target relation. BART 

incorporates a key representational assumption: a relation is represented by a weight distribution 

that serves to assess the probability that a pair of objects exemplifies it. BART proceeds in two 

basic stages. First, guided by empirical priors on mean weights and hyperprior on variances, the 

model uses Bayesian inference to update its weight distribution based on training examples. 

Second, the model uses importance-guided mapping to transform its learned weight distributions 

and then calculate the distance between pairs of relations, thereby assessing the validity of 

higher-order analogies based on the implicit relations “both same” (higher:fiercer :: 

smarter:faster) and “opposite” (higher:lower :: fiercer:meeker). 

When trained and tested with items based on small object vectors derived from human 

ratings of subjective magnitudes, BART achieved near-perfect accuracy both in generalizing to 

new examples of relations and in assessing higher-order analogies based on its acquired 

relations. The high-dimensional and more complex Leuven and topics vectors posed a far greater 

computational challenge, as no invariant features are apparent, and learning depends on 

acquiring distributed representations over dozens of feature dimensions. When Leuven vectors 

were used as inputs, generalization accuracy was in the range of 90% accuracy after 100 training 
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examples; with topics vectors, accuracy was in the range of 70-80%. Thus BART showed 

substantial generalization ability after learning from the more complex inputs. Moreover, for all 

three types of inputs, BART was able to generalize to a completely new set of animals than those 

used in training. 

When tested on higher-order analogy problems based on the relations “same extreme” 

and “opposite”, the algorithm for importance-guided mapping yielded near-perfect performance 

using BART’s learned relational representations, for both ratings and Leuven inputs. BART’s 

analogy performance was also quite strong for topics inputs (except that topics inputs did not 

provide information that could clearly distinguish the “greater” versus “lesser” pole of each 

magnitude continua). In contrast, a baseline model with uninformative priors showed 

substantially weaker generalization and analogy performance for both Leuven and topics vectors 

(even though it was provided with the identical algorithm for importance-guided mapping). 

For all three types of inputs, the relational representations learned by BART provided a 

qualitative account of the symbolic distance effect (Moyer, 1973). The degree of difficulty of 

making relative judgments on a dimension (as indexed by the model’s estimates of log posterior 

probability ratio for a target relation) varied inversely with the magnitude difference between the 

two items in a pair.  In addition, BART demonstrated the capacity to generalize outside the range 

of magnitude distances provided in the training set. Even when trained on animal pairs exhibiting 

small or medium size differences, the model was most confident when generalizing to novel 

pairs exhibiting large size differences. The model is thus consistent with evidence that people 

can distinguish “ideal” from “most typical” exemplars (Kittur, Hummel & Holyoak, 2006). 

BART in effect defines the “ideal” exemplar of a larger relation as the pair with the largest size 



68 
 

difference (e.g., “a dinosaur is larger than a flea”), even though a pair like “a fox is larger than a 

dove” would be more typical of the observed instances (i.e., closer to their central tendency). 

Overall, the simulations reported here thus show that BART was able to pass five critical 

tests that can be posed for any model of relation learning.  We have shown that the model (1) can 

learn first-order relations from complex non-relational inputs that were independently generated, 

(2) with high efficiency, (3) generalize to classify novel relational examples, (4) capture a major 

factor (symbolic distance) that affects difficulty of human comparative judgments, and (5) use its 

learned relational representations to solve higher-order analogy problems. No previous model of 

relation learning has met all of these criteria. 

Comparison with Previous Approaches 

There have been many previous computational models of various aspects of analogical 

reasoning, which have been classified as symbolic, connectionist, and various hybrids (French, 

2002; Gentner & Forbus, 2011). BART’s capabilities appear painfully limited when compared to 

those of the “state-of the art” analogy models. To date, its most advanced accomplishment is to 

solve simple four-term analogy problems, whereas other models can perform much more 

complex feats involving analog retrieval, mapping, inference, and schema formation. Even in the 

restricted domain of four-term analogy problems, BART cannot compete with state-of-the-art 

machine-learning models (e.g., Turney, 2006). 

However, BART is focusing on very different issues than those addressed by most 

previous analogy models. It attempts to answer the basic question: How might relational 

representations be created? The operation of BART provides a well-specified computational 

model of the type of relational re-representation that seems to underlie the power of human 

thinking (Penn et al., 2008). More generally, the model provides a concrete example of how new 
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representations can be acquired by forms of inductive bootstrapping: first the use of empirical 

priors to “jump start” relation learning, and then the use of importance-guided mapping to 

transform and compare relational representations. BART illustrates the centrality of analogical 

bootstrapping in learning relations (cf. Carey, 2011; Gentner, 2010). 

The idea that functionally-defined importance provides a key pragmatic constraint on 

mapping has a long history (Holyoak, 1985), and BART exemplifies a very basic mechanism by 

which importance can be defined quantitatively and used to place non-identical dimensions into 

correspondence. Unlike previous computational models of mapping, BART finds mappings 

between features at a subsymbolic level (identifying systematic correspondences between 

distributed patterns in a high-dimensional weight space), rather than between explicit predicates. 

Subsymbolic mapping processes of this sort may underlie various types of implicit analogical 

transfer (e.g., Day & Goldstone, 2011). 

The present findings provide a proof-of-concept that, for the domain of comparative 

relations, a capacity for structured relational reasoning can potentially emerge from bottom-up 

learning based on unstructured inputs.  Particularly, in the case of the topics vectors, the inputs 

were created without any human guidance that might have tailored them to the relational learning 

task. If we consider the operation of the topic model itself (Griffiths et al., 2007) in conjunction 

with BART, the representations that the latter model used to assess structured analogy problems 

can be traced back to the raw statistics of covariation among words in texts. The to-be-learned 

relations did not correspond to any specific dimensions created by the topic model. In broad 

strokes, we have shown that BART can (1) solve structured analogy problems, albeit simple 

ones, (2) using relational representations the model learned itself (3) from unstructured inputs (4) 

that were independently generated. No previous model of analogy has demonstrated a 
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comparable capability, which arguably is the essential precursor to a satisfying account of 

complex human analogical reasoning.  

The most appropriate comparisons for BART are with previous models of relation 

learning. As a discriminative Bayesian model, BART is most directly related to the model 

developed by Silva, Airoldi and Heller (2007; Silva, Heller & Ghahramani, 2007; also Chen et 

al., 2010). Like the model of Silva and colleagues, BART uses empirical priors to bootstrap 

relation learning; however, in BART the empirical priors are relation-specific, and can be used 

together with a hyperprior on variances. BART is able to use training examples to automatically 

select the one-place predicate best-suited for generation of priors on mean weights for a new 

comparative relation. The algorithm for importance-guided mapping is a key innovation that 

enables BART to move beyond relational generalization to the more challenging task of solving 

higher-order analogy problems based on its learned representations. 

It is instructive to relate the core concepts and mechanisms instantiated in BART to those 

that underlie other approaches to relation learning. We will focus on three central aspects of the 

BART model. These are: (1) exploiting empirical priors, (2) representing relations as weight 

distributions, and (3) allowing role-dependent operations on representations. With these in mind, 

we can draw comparisons and contrasts with three general approaches reviewed earlier. 

Comparison to hierarchical generative models. If we take the structure-learning model 

of Kemp and Tenenbaum (2008) as an example, the generative approach is broadly similar to 

BART in the use of statistical learning over distributions. The two approaches also converge in 

denying that explicit representations of relations could be acquired by a complete tabula rasa. 

However, the models make different assumptions about what knowledge or capacities the learner 

brings to the task. Kemp and Tenenbaum’s model is endowed with a grammar that can generate 
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candidate structures over which statistical learning can be applied. BART does not come 

equipped with a comparable grammar of relations. Rather, it comes with a suite of operations 

that it can use to create and transform representations (in particular, the ability to select and use 

empirical priors to initialize the representation of a to-be-learned relation, and the ability to 

perform importance-guided mapping and subsequent relational transformations). 

The generative and discriminative approaches to learning relations may well prove to be 

complementary. An important question for future research is whether a relational representation 

of the type acquired by BART might be transformed into a generative model, a step likely to be 

necessary in order to achieve the full range of human-like relational capabilities. 

Comparison to neural network models. Both generative and discriminative Bayesian 

models are similar to neural network models in their emphasis on statistical learning as a major 

contributor to the acquisition of knowledge. Discriminative models such as BART are perhaps 

somewhat closer to the spirit of neural network models, emphasizing the emergence of 

knowledge from bottom-up processing of data provided by the environment. However, the 

weight distributions over feature vectors that BART uses to code relations capture more 

information than do the representations created by typical neural network models. Weight 

distributions code not only first-order statistics (means), but also second-order statistics 

(variances and covariances) that capture uncertainty about weights and inter-weight correlations 

(a property shared by “deep learning nets”; Salakhutdinov & Hinton, 2009).  

Yet paradoxically, BART’s relational representations are also explicit and structured in 

ways that representations in a distributed neural network are not. Most basically, BART’s weight 

distributions respect the integrity of distinct roles (e.g., the roles of the larger versus smaller 

member of a pair of objects). The internal structure of relations in BART is presumably inherited 
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from the output of the perceptual system, which codes objects as individuals. A relation such as 

larger is learned from pairs of objects, and hence is structured as a pair of roles. In contrast to the 

model of Rogers and McClelland (2008), for example, an individual relation in BART has a 

distinct identity (e.g., the weight distribution for larger is different from that for fiercer, and also 

from the complementary relation smaller). Because relational representations in BART are 

isolable from one another, they can be compared and systematically transformed. The properties 

of the weight distributions employed by BART are thus qualitatively and quantitatively different 

from those of the weight matrices used in classical neural networks.  

Comparison to symbolic connectionist models. Among the algorithmic models of 

relation learning, BART has most in common with the class of symbolic connectionist models, 

such as LISA (Hummel & Holyoak, 1997, 2003) and DORA (Doumas et al., 2008; also see 

Halford et al., 1998).  These models, like BART, assume that relational representations are 

structured in terms of roles, thereby escaping the fundamental limitations of conventional neural-

network models. Another important similarity is that BART, like DORA, exploits the potential 

for bootstrapping from initial learning of one-place predicates to learning comparative relations. 

In general terms, both DORA and BART aim to learn relations using bottom-up 

mechanisms based on detection of covariation among the objects that fill relational roles. DORA 

emphasizes learning from unlabeled examples, whereas BART focuses on learning from labeled 

examples (either positive or negative, although the former are assumed to be more common in 

child language acquisition). DORA, extending earlier proposals concerning schema induction 

(Gick & Holyoak, 1983), learns relations by taking the intersection of the feature representations 

of multiple examples. In comparison to a regression algorithm of the sort used by BART, the 

logical intersection operator appears to be too strict (a single exception may cause a feature to be 
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dropped from the representation of a relation). The method is ill-suited for learning concepts 

defined by distributed representations over features that are only probabilistically predictive, as 

was the case for Leuven and topics vectors. By using Bayesian inference, BART is able to learn 

probabilistic representations of relations from positive examples, without requiring any strictly 

invariant features, while simultaneously factoring in the influence of prior knowledge. As noted 

earlier, DORA has only been tested on hand-coded inputs that include invariant features over 

which to-be-learned relations can be defined. DORA (like LISA) is not designed to map non-

identical features to one another, as the mapping algorithm is restricted to mapping predicates, 

rather than object features.  

Most basically, BART’s representational scheme for relations distinguishes it from 

symbolic as well as non-symbolic connectionist models. In both varieties of neural-network 

models, relations and objects have generally been represented in a common format (as 

distributed sets of units interconnected by weighted associations). In symbolic-connectionist 

models, which focus on explicit relational representations, both relations and objects have been 

represented in terms of units for semantic features—either separate pools of feature units for the 

two types of entities (LISA; Hummel & Holyoak, 1997, 2003; also Halford et al., 1997), or a 

single pool (Doumas et al., 2008). BART introduces a very different representational 

assumption. Whereas objects are represented by a vector of features, first-order relations are 

represented as weight distributions. In BART, relations (weight distributions) and objects 

(feature vectors) constitute distinct but connected representational elements. This 

representational distinction is critical for BART’s ability to acquire relational representations by 

statistical learning. 



74 
 

 BART’s representational assumptions may suggest an important way in which 

algorithmic symbolic-connectionist models can be refined. The use of temporal synchrony for 

role binding gives rise to inherent capacity limits, related to the number of distinct temporal 

phases that can be interleaved without significant overlap of firing for each phase. Given 

established limits on neural firing rates, this “relational bottleneck” has been estimated at 4-6 

distinct phases (Cowan, 2001; Hummel & Holyoak, 1997). If role bindings are coded by 

synchronizing the neural code for a role and its filler, as the LISA model assumes, then this limit 

translates directly into 4-6 concurrently active role bindings, or 2-3 complete propositions, a 

number that appears plausible for adult humans. But as noted earlier, models that use temporal 

firing patterns as a dynamic code for role bindings in active memory can only synchronize 

representations that can be kept distinct despite firing together. LISA’s use of neural synchrony 

therefore depends on defining separate pools of features for objects and relations. 

In order to model the learning of features of relations from features of objects, the DORA 

model (Doumas et al., 2008) assumes instead that relations and objects are defined over a single 

pool of semantic features, and that role bindings are coded by asynchrony of firing for a role and 

its filler. This shift in representational assumptions means that DORA requires twice as many 

distinct temporal phases as does LISA to represent the same number of role bindings. In effect, 

DORA’s estimate of the capacity of human working memory is half the value predicted by 

LISA. Doumas et al. (2008, pp. 30-31) suggest that asynchrony may be required only for relation 

learning and not for relational inference. However, it is unclear how inferences could be made 

reliably if roles and their fillers were coded on the same pool of features, and yet allowed to fire 

in synchrony (e.g., the distinction between “elephants are big” and “elephants are gray” would 

seem to be lost). 
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 BART’s assumption that relations (more generally, predicates) and objects rely on 

distinct types of representations (weight distributions versus feature vectors) goes between the 

horns of this dilemma, providing a potential basis for a LISA-like system of binding by 

synchrony that nonetheless is capable of relation learning. That is, the dynamic form of coding a 

role binding might involve the synchronous activation of a role (a distinct subset of the weight 

distribution for a relation) and the feature vector for its filler. The role (weight distribution) and 

its filler (feature vector) would not be confusable even when synchronized, because each would 

constitute a distinct representational type. An algorithmic implementation based on BART’s 

form of relation representation would thus yield the same estimate for the capacity of working 

memory as does LISA. 

Potential Extensions 

Acquiring more detailed developmental data. For the present project, we created a 

microworld in which a learner (the BART model and variations on it) must learn several 

comparative relations defined over a set of animal concepts, using inputs consisting of feature 

vectors, and then must draw higher-order analogies based on the acquired relational 

representations. In general terms, we constrain the task in ways that seem consistent with 

comparable relation learning by children (modest numbers of largely positive examples, 

acquiring one-place predicates prior to true relations). But we acknowledge that our microworld 

is not the one that children actually encounter. Children do not learn larger and other 

comparative relations from animals only, and we lack detailed knowledge of the inputs children 

actually have available. At most, realistic inputs resemble those that BART receives in that they 

are also based (at least in part) on sets (likely quite large) of features associated with individual 

objects. 
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Because of the idealized nature of our microworld, empirical assessment of the models 

was largely qualitative (which is rather counterintuitive, since BART generates detailed learning 

curves). We hope that future tests of computational models of relation learning can be informed 

by more detailed empirical evidence regarding the inputs children use to acquire relations, the 

trajectory of children’s learning for specific relational concepts, and the linkage between 

relational generalization and the ability to reason by analogy. 

Extensions to richer inputs. As we emphasized at the outset, the representations that 

serve as inputs to children learning relations are undoubtedly richer than those we provided to 

BART in the present set of simulations. Children learn from more direct perceptual experience, 

including motoric feedback from their own actions. For example, Maouene, Hidaka and Smith 

(2008) showed that the age of acquisition for basic English verbs (e.g., kiss, hug, kick) is related 

to the nature of their association (for adults) with body parts (e.g., the mouth versus the hands 

and arms). As another example, work on action recognition has identified certain “signature 

movements”, such as a punch, that have a special status in rapid identification of types of 

threatening actions (van Boxtel & Lu, 2011, 2012). Such cues (in conjunction with adult speech) 

very likely provide a significant part of the inputs available to children as they learn verbs 

corresponding to basic actions. Realistic inputs are likely to involve greater structure than the 

“flat” vectors used in the present paper, including various types of higher-order features (Regier, 

1996; Regier & Carlson, 2001). Future research should explore the use of learning algorithms 

that can create and exploit hierarchical structure in their inputs. 

Role of empirical priors in relation learning. The simulations reported here 

demonstrate that representations of one-place predicates can provide very useful empirical priors 

to facilitate learning of the corresponding two-place relations. Knowledge about a one-place 



77 
 

predicate such as large can be learned from a set of single objects (e.g., elephant), whereas 

learning the relation larger requires joint processing of pairs of objects (e.g., elephant and bear). 

Based on Halford’s (1993; Halford et al., 2010) assumption that capacity increases over the 

course of cognitive and neural development, and that attending to two objects requires greater 

capacity than attending to one, it follows that children will tend to learn one-place predicates 

prior to multi-place relations (which have at least two roles), in accord with developmental 

evidence (Smith, 1989).  

However, this developmental pattern does not necessarily imply that learning specific 

one-place predicates (e.g., large, small) is a strict prerequisite for learning a related two-place 

predicate (e.g., larger). At least for ratings and Leuven vectors, the baseline model with 

uninformative priors was able to learn comparative relations and achieve substantial 

generalization performance when given an adequate number of training examples. As long as we 

assume sufficient working memory to hold two items, BART can proceed to learn a two-place 

predicate directly, regardless of whether or not it has already acquired corresponding one-place 

predicates. It is an open empirical question whether or not children necessarily learn one-place 

relative adjectives as a prerequisite to learning two-place comparative adjectives (cf. Halford et 

al., 2010). More generally, however, many multi-place predicates (e.g., opposite) do not seem to 

naturally decompose into simpler one-place predicates. 

The further exploration of empirical priors will be especially important in attempting to 

extend the current approach to other types of relations besides comparatives (see Jurgens, 

Mohammad, Turney & Holyoak, 2012). As the pool of potential empirical priors grows larger 

and more varied, more sophisticated algorithms for prior selection may prove useful. For 
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example, prior selection may involve a hierarchical process, winnowing options based on general 

types of relations (e.g., varieties of sameness versus contrast). 

It should be emphasized that the concept of empirical priors is considerably more general 

than the idea of using one-place predicates to guide learning of related two-place relations. 

Relation learning can also potentially be bootstrapped by previously-learned relations (e.g., a 

perceptually-based comparative such as larger might facilitate subsequent acquisition of a more 

abstract comparative such as smarter). Yet more generally, the entire process of analogical 

reasoning can be viewed as a sophisticated use of empirical priors, in which the source analog is 

used to impose priors to guide learning about the target (Holyoak, Lee & Lu, 2010). 

Learning higher-order relations. Although the present version of BART does not create 

explicit representations of higher-order relations such as opposite, it does appear to set the stage 

for this possibility. In evaluating higher-order analogies, the model is implicitly sensitive to 

whether A:B and C:D both instantiate some version of opposite. By assessing the distance 

between transformed weight distributions, BART shows how representations of different 

relations can be compared with one another. To create explicit higher-order representations, an 

extension of the model could treat these transformed weight distributions in a manner analogous 

to feature vectors, recursively applying its statistical learning procedures to acquire higher-order 

weights that capture the commonalities between pairs of first-order relations such as 

larger:smaller and fiercer:meeker (i.e., a representation of opposite). In moving from first-order 

to higher-order relations in this manner, an extension of BART would in effect re-represent first-

order relations as derived feature vectors, which can then serve as inputs to a learning process 

that yields representations of higher-order relations. This basic move—treating learned weights 

as derived features—provides a potential avenue to allow the development of hierarchical 
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relational systems. It also provides a possible answer to the inductive puzzle we raised at the 

outset: how does the mind acquire concepts that cannot be defined in terms of features bound to 

perception?  

Toward an algorithmic model. Although we have developed BART as a computational-

level model of how relations might be learned and transformed to solve higher-order analogy 

problems, it should be possible to incorporate the basic ideas into algorithmic models. As 

suggested above, the fact that BART creates separate (but linked) representations for relations 

and their fillers is compatible with synchrony-based models of the symbolic-connectionist 

variety (Hummel & Holyoak, 1997, 2003). More generally, it is useful to distinguish those 

aspects of BART that depend on role-governed operations from those that do not. Importantly, 

the inductive process that updates weight distributions based on training examples is not directly 

dependent on roles. The feature vectors associated with the two objects being compared are 

simply concatenated. BART’s weight distributions can be viewed as a type of “attention 

weights” that reflect the importance of each dimension for accurate classification of relations. 

Learning models based on the idea of attention weights have been applied to object 

categorization and perceptual learning (Nosofsky, 1985; Petrov, Dosher & Z.-L. Lu, 2005). 

BART would require a more complex learning algorithm to acquire distributions of 

weights (rather than simply mean weights) based on supervised learning (cf. Salakhutdinov, 

Hinton, 2009). A psychologically-realistic learning model would have to accommodate 

sequential training inputs. Although the version of BART we have described operates on all 

training data at once, we have in fact also implemented a variant that uses sequential updating. 

(In general, regression models can operate in either “batch” or sequential fashion.) The 

sequential version produces very similar results after roughly 100 training examples. Thus, 
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although a full model of sequential learning would require additional theoretical work, there is 

reason to be optimistic that such a model is possible (see Lu, Rojas, Beckers & Yuille, 2008, for 

a sequential model of causal learning). For example, it is conceivable that the brain in effect 

implements some kind of variational method based on tacit assumptions about the form of neural 

distributions.  

Although the core learning model (updating of weight distributions) is not role-governed, 

BART does operate on roles to (1) establish empirical priors that guide acquisition of relations, 

and (2) perform importance-guided mapping based on the learned representations of relations. 

These operations depend on the manipulation of structured-knowledge, a capacity that is 

arguably specific to humans (Penn et al., 2008). Interestingly, neither of these operations appears 

to depend on the full covariance matrix for weight distributions. Rather, the mean weights (MAP 

estimates) may suffice (see footnote 4). At a neural level, it is more plausible that summary 

statistics such as MAP estimates could be transmitted to downstream brain regions, rather than 

the full covariation matrix. It seems plausible that early neural areas are sensitive to 

intercorrelations among neural firing patterns, which encode covariance information (Aertsen, 

Gerstein, Habib, & Palm, 1989; Cohen & Kohn, 2011; Cohen & Maunsell, 2009; Kohn & Smith, 

2005; Nirenberg & Latham, 2003), whereas higher-level areas instead respond to broader 

temporal patterning, such as synchrony (Uhlhaas & Singer, 2010; Siegal, Donner & Engel, 

2011). 

The operations of BART can thus be viewed as demarcating major points along an 

evolutionary continuum in relational processing and representation. The basic capacity to code 

approximate magnitudes so as to enable comparative judgments is common across many species. 

Some primates, including the rhesus monkey, have a limited ability to attach arbitrary symbols to 



81 
 

small magnitudes (Diester & Nieder, 2007), and can also learn alternative first-order relations 

defined over a common continuum (e.g., selecting the larger or else the smaller of two 

numerosities in response to a discriminative cue; Cantlon & Brannon, 2005). Roughly, these 

species-general capabilities correspond to the modest ability of our baseline model, starting with 

uninformative priors, to learn weight distributions that support comparative judgments, allowing 

generalization to novel pairs. 

 However, the capacity to learn weight distributions only sets the stage for acquiring 

explicit relational representations. BART has the additional capacity to treat weight distributions 

as structured representations with multiple roles. These explicit representations of first-order 

relations can then be made available to symbolic processes capable of comparison and 

rudimentary analogical mapping, thereby enabling a variety of boot-strapping operations. BART 

uses roles to guide selection of empirical priors, thereby greatly increasing the efficiency of 

relation learning. After first-order relations have been acquired, BART is able to make structured 

analogical inferences by mapping dimensions based on their functional influence on relation 

discrimination, as opposed to their literal identity. An extension of the model that treats weights 

as derived features could potentially go on to discover the higher-order commonalities shared by 

first-order relations defined over different dimensions, thereby acquiring explicit representations 

of higher-order relations such as opposite. These symbolic capabilities, perhaps specific to 

humans, may depend on multiple subregions of the prefrontal cortex (particularly the 

rostrolateral portion; for a review see Knowlton & Holyoak, 2009). The capacity for role-

governed operations may thus represent a late evolutionary development that has allowed 

humans to attain their unique capacity for abstract thought. 
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Footnotes 

1. Although BART focuses on the computational level of analysis, its implementation 

includes assumptions at the level of representation and algorithm. 

2. In the present paper we refer to this type of test as “relational generalization”, whereas it 

has been called “analogical reasoning” in the machine-learning literature (Silva, Airoldi, 

& Heller, 2007). The task is indeed closely related to first-order analogical reasoning, in 

which the relation between A and B concepts (generally objects) is assessed to determine 

if it is sufficiently similar to the relation between C and D concepts (e.g., Turney, 2006). 

In contrast, the “analogy” problems described in the present paper require second-order 

analogical reasoning, which is based on the similarity of relations between relations. 

3. We considered the alternative of forming empirical priors from a combination of two 

one-place predicates (e.g., large and small might be used to set priors for larger). 

However, developmental evidence indicates that young children often treat such polar 

opposites as disjoint, whereas children clearly link the primary one-place predicate to its 

corresponding comparative (e.g., large to larger; see Smith et al., 1988). 

4. A simpler variant of importance-guided mapping is based on just MAP estimates (i.e., 

mean weights) rather than on entire covariance matrices. Indeed, in exploring all three 

data sets reported in the present paper, we have found that the simpler variant yields 

virtually the same performance as the version based on the full covariance matrix. The 

covariance matrix plays important roles in guiding the acquisition of the MAP estimates 

during learning, and aids in relational generalization, but apparently is not essential in 

subsequent analogical processing. In the present paper we describe the complete version 

of importance-guided mapping for the sake of computational generality, but the simpler 
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MAP variant may well be more psychologically realistic (see General Discussion). The 

MATLAB code provides the simpler variant as an option. 
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CHAPTER 2:  

THE DISCOVERY AND COMPARISON OF SYMBOLIC MAGNITUDES 

Humans and other primates have sophisticated abilities to learn and make judgments 

based on relative magnitude. Magnitude comparisons are critical in making choices (e.g., which 

of two products is more desirable?), making social evaluations (e.g., which person is friendlier?), 

and in many other forms of appraisal (e.g., who can run faster, this bear or me?). In addition to 

making comparisons based on elementary perceptual dimensions (e.g., identifying the longer of 

two line segments or the brighter of two lights), people are able to make analogous judgments 

based on symbolic dimensions using information stored in memory (e.g., the relative size or 

intelligence of various animals). Non-human primates are also capable of at least rudimentary 

symbolic comparisons. For example, rhesus monkeys are capable of learning shapes (Arabic 

numerals) that correspond to small numerosities (1-4 dots), such that the shapes acquire neural 

representations overlapping those of the corresponding perceptual numerosities and can be 

compared on that basis (Diester & Nieder, 2007). 

Striking parallels have been observed between perceptual and symbolic judgments. In 

particular, both perceptual and symbolic judgments yield a distance effect, such that the ease of 

judgments (indexed by accuracy and/or reaction time) increases with the magnitude difference 

between the objects being compared (e.g., Moyer, 1973; Moyer & Bayer, 1976; Moyer & 

Landauer, 1967). A symbolic distance effect is observed not only with quasi-perceptual 

dimensions such as size, but also with more abstract dimensions such as animal intelligence 

(Banks, White, Sturgill & Mermelstein, 1983) and with scalar adjectives of quality (e.g., good, 

fair; Holyoak & Walker, 1976). Non-human primates also exhibit a distance effect for judgments 

along various perceptual dimensions, including numerosity (Neider & Miller, 2003). 
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When judgments are made using contrastive polar concepts (e.g., “choose brighter” 

versus “choose dimmer”, “choose better” versus “choose worse”), both perceptual (Audley & 

Wallis, 1964; Wallis & Audley, 1964; Petrusic & Baranski, 1989) and symbolic judgments also 

yield a semantic congruity effect: for objects with high values on the dimension, it is easier to 

judge which object is greater, whereas for objects with low values, it is relatively easier to judge 

which is lesser (e.g., Banks, Clark & Lucy, 1975; see Moyer & Dumais, 1978, for an early 

review). Like the distance effect, semantic congruity effects have also been obtained with 

monkeys (Cantlon & Brannon, 2005). A further phenomenon, the markedness effect, refers to 

the fact that for some pairs of polar adjectives, one (the “unmarked” form) is easier to process 

overall than the other (Clark, 1969). For example, the “unmarked” question “Which is larger?” 

tends to be answered more rapidly overall than the “marked” question “Which is smaller?” 

(Clark, 1969; Clark, Carpenter & Just, 1973). The impact of markedness implies that the 

congruity effect often takes the form of an asymmetrical interaction. 

How Are Magnitudes Generated? 

Numerous models of symbolic magnitude comparisons have been proposed, and we will 

review several of them below. However, in the present paper we focus on a question that (even 

though it is arguably the most basic of all) has seldom been asked, far less answered: where do 

subjective magnitudes come from? In the case of perceptual judgments with unidimensional 

stimuli (e.g., tones varying in loudness), it is reasonable to assume that a specific neural channel 

generates magnitudes. For symbolic comparisons, the tacit assumption has been that the long-

term memory representation of each object being compared includes a magnitude value (perhaps 

with an associated variance), and that these magnitudes are simply retrieved and loaded into 

working memory, where a comparison process operates. 
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For a few types of symbolic comparisons, such as numerical magnitudes of digits, it may 

indeed be the case that each object has a pre-stored magnitude in long-term memory. But for 

more complex dimensions this assumption is questionable, and indeed quite unrealistic. Even 

symbolic size judgments, which are closely linked to perceptual features, are unlikely to always 

be based on pre-stored magnitudes, as size is actually a complex function of three-dimensional 

shape. Indeed, recent evidence indicates that although numerical magnitudes are automatically 

activated when reading integers, size magnitudes associated with animal names are activated 

only when the reader has the goal of making size comparisons (Hoedmaker & Gordon, 2013). 

People may have stored size values for a few “landmark” objects (e.g., an elephant or a mouse), 

but are unlikely to have pre-stored size values for less familiar animals (e.g., a beaver or a 

swordfish). The notion that magnitudes are pre-stored becomes yet more implausible for the 

wide range of dimensions on which people can make symbolic comparisons, especially in the 

interpersonal and social realm (e.g., intelligence, friendliness, religiosity, conservatism). Rather 

than being elementary components of concept meanings, magnitudes may often be derived, 

context-dependent features (Goldstone, 1994; Smith, Gasser & Sandhofer, 1997). 

It follows that a comprehensive account of symbolic magnitude comparisons must begin 

with a model of how symbolic magnitudes are discovered. One general hypothesis is that 

magnitudes can be generated by operations performed on vectors of more elementary features 

associated with individual objects. Figure 2.1 provides a visualization of the sort of input that 

might underlie people’s everyday knowledge of various types of animals. These representations 

were derived from norms of the frequencies with which participants at the University of Leuven 

generated features characterizing various animals (De Deyne et al., 2008; see Shafto, Kemp, 

Mansinghka, & Tenenbaum, 2011). Each animal in the norms is associated with a set of  
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Figure 2.1. Illustration of Leuven vectors for some example animals. The cell intensities represent feature values 

(light indicates high frequency values, dark indicates low frequency values). 
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frequencies across more than 750 features. Figure 2.1 includes feature vectors for 30 example 

animals based on the 50 features most highly associated with a larger set of animal names (Lu, 

Chen & Holyoak, 2012). Although these “Leuven vectors” presumably only approximate 

people’s knowledge about animal concepts, they have the great virtue of being derived from 

independent sources of data, rather than being hand-coded. The simulations reported in the 

present paper are based on inputs extracted from the Leuven vectors, as well as similar feature 

vectors created using the topic model (Griffiths, Steyvers, & Tenenbaum, 2007).  

Could individual Leuven features be directly used as measures of magnitude? One might 

have supposed, for example, that the value of the feature “is big” would be sufficient to predict 

relative size. But although this dimension is indeed the single most important factor predicting 

size, it is far from sufficient. The Leuven features were derived from the frequencies with which 

participants generated attributes, and animals for which their large size is salient (often in 

reference to a subcategory) tended to have higher feature values for “is big” (e.g., based on a 

comparison of feature values for that attribute alone, the Leuven dataset indicates that an eagle is 

larger than a hippopotamus). To address this problem we need distributed representations that 

can be used to compute derived magnitude dimensions. 

To provide such distributed representations, Lu et al. (2012) developed Bayesian Analogy 

with Relational Transformations (BART), a model of how one-place scalar adjectives (e.g., 

large, smart) and two-place comparative relations (e.g., larger, smarter) can be learned from 

non-relational feature vectors. Using various inputs, including Leuven vectors and vectors 

derived using the topic model (Griffiths et al., 2007), the model was applied to the acquisition of 

concepts related to four continuous dimensions: size, ferocity, speed and intelligence. BART 

incorporates information from a prior probability distribution over a space of weights, as well as 
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examples of animal pairs that instantiate a relation, to obtain a posterior distribution over the 

weight space, which is used to predict whether the relation holds for novel pairs. The 

representations of relational concepts created by BART for each of the four magnitude 

dimensions of interest turned out to be highly distributed, based on at least 20 statistically 

predictive features (see Lu et al., 2012, Figure 10, pp. 634-635). 

The simulation results reported by Lu et al. (2012) suggest that concepts related to 

symbolic magnitudes can be discovered by inductive learning, rather than simply assumed to be 

directly available in long-term memory. Moreover, the Bayesian approach in general (and the 

BART model in particular) implies that magnitudes will be represented not as deterministic 

values, but rather as probability distributions. The probabilistic framework is in agreement with 

the intuition that symbolic magnitudes (e.g., the size of a kangaroo, the intelligence of a goat) are 

“fuzzy” rather than firm, and thus judgments related to these attributes are susceptible to the 

influence of context. 

Our goal in the present paper is to provide an integrated account of how symbolic 

magnitudes, represented in working memory as probability distributions, can be created and then 

used to make comparative judgments. We will first briefly review previous accounts of the three 

major phenomena observed in studies of comparative judgment: symbolic distance effects, 

semantic congruity effects, and markedness. We will then show how a model incorporating 

assumptions about the attentional control of magnitude representations in working memory can 

provide a unified account of these core phenomena. 

Alternative Models of Symbolic Magnitude Comparisons 

 We will not attempt an exhaustive review of the large literature on mental magnitude 

comparisons, but rather will focus on findings that give rise to some of the principles we include 
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in our current model (for broader reviews of work with humans see Moyer & Dumais, 1978; 

Petrusic, 1992; for a review of work with non-human primates see Cantlon, Platt & Brannon, 

2009). 

There is virtually complete consensus among current researchers that the ubiquitous 

distance effect reflects some form of internalized representation of magnitude akin to positions 

on a number line, such that larger magnitudes are more readily discriminable. This notion goes 

back at least to Moyer (1973), who referred to an “internal psychophysics” for symbolic 

comparisons. Behavioral studies have identified striking parallels between symbolic distance 

effects and those observed in overt perceptual comparisons (e.g., Audley & Wallis, 1964; Moyer 

& Bayer, 1976, Holyoak & Patterson, 1981). As in the case of perceptual comparisons, the 

pattern of difficulty for symbolic comparisons suggests that internal magnitudes are typically 

compressed such that subjective magnitude differences decrease as the absolute magnitudes of 

the objects being compared increase (Shepard, Kilpatric & Cunningham, 1975). More recent 

work has provided strong evidence that humans and other primates are equipped with specialized 

neural circuitry for dealing with approximate magnitude on various dimensions (e.g., Cantlon, 

Brannon, Carter & Pelphrey, 2006; Dehaene & Changeux, 1993; Piazza et al., 2004, 2006, 2007; 

Pinel, Piazza, Bihan & Dehaene, 2004). 

 Several models for magnitude comparisons have been proposed (for a review see 

Petrusic, 1992). The evidence distinguishing among them mainly involves the congruity and 

markedness effects. The congruity effect has been interpreted in multiple ways. An expectancy 

model (Banks & Flora, 1977; Marschark & Paivio, 1979) assumes that the congruity effect arises 

because the comparative is presented prior to the stimulus pair, enabling the person to prepare in 

some way for stimuli within a certain range (e.g., either small or large objects). However, robust 
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congruity effects are found even when the comparative is presented after the stimuli to be 

compared, in a design in which questions about multiple dimensions were intermixed (Holyoak 

& Mah, 1981). Other studies yielded similar disconfirmatory findings (Banks et al., 1983; 

Howard, 1983; Shoben, Sailor, & Wang, 1989). 

A related explanation of the congruity effect attributes the phenomenon to differential 

frequency of association between each comparative and items of various magnitudes (i.e., the 

“greater” comparative may be more often used with items of high magnitude, and the reverse for 

the “lesser” comparative).  However, Ryalls and Smith (2000) taught adults novel comparatives, 

and found that a congruity effect arose even when the training set was designed to eliminate any 

correlation between the form of the comparative and the magnitude of items. These and other 

findings concerning acquisition of comparative terms (Ryalls, Winslow & Smith, 1998) suggest 

that the congruity effect reflects the meaning of the contrastive terms, rather than unbalanced 

presentation frequencies during learning that might influence expectancies about items. 

A frequency-based explanation has also been offered for markedness effects, as 

unmarked forms of adjectives are typically used more frequently than the corresponding marked 

forms. Often the marked term is aptly applied only to the range of magnitudes extending from 

the negative pole to the midpoint, whereas the unmarked term can be aptly applied across the full 

magnitude range (Clark, 1969). However, the finding of a markedness effect in monkeys, in a 

design in which the two forms of the implicit query occurred on an equal number of trials during 

training, suggests that markedness effects cannot be fully explained by unequal frequency of 

linguistic use (Cantlon & Brannon, 2005). 

 The semantic coding model (Banks et al., 1975; Banks, Fujii, & Kayra-Stuart, 1976) 

attributes the congruity effect to categorical codes based on language (e.g., “large” and “small”). 



107 
 

In this model, the congruity effect reflects systematic differences in the probability that the codes 

for the objects will match the linguistic form of the comparative. Although the model provides a 

good quantitative fit to some data sets (Banks et al., 1976), it faces a number of problems as a 

general explanation of symbolic comparisons. Because it is based on linguistic codes, the model 

is severely strained by the fact that distance, congruity and markedness effects are also observed 

with non-linguistic primates, such as monkeys (Cantlon & Brannon, 2005; Cantlon et al., 2009). 

Also, the model cannot explain evidence that similar effects are observed in direct judgments of 

discriminability among ordered items (e.g., the form of comparative used in the question 

influences the relative spacing of cities along an east-west dimension as recovered by scaling 

methods; Holyoak & Mah, 1982). Finally, the model predicts that the magnitude of the congruity 

effect will be independent of factors that influence decision difficulty (Banks et al., 1975). 

However, there is considerable evidence that the magnitude of the congruity effect in fact varies 

systematically with decision difficulty (Petrusic, 1992; Petrusic & Baranski, 1989; Shaki, Leth-

Steensen, & Petrusic, 2006).  

Reference-Point Models 

The final major class of models (and the one most relevant to the present proposal) 

includes those that locate the congruity and markedness effects within the decision stage itself. 

The intuitive idea is that when judging (for example) whether an elephant is larger than a hippo, 

the subjective magnitude difference is in fact more discriminable than when judging whether an 

elephant is smaller than a hippo. Such discriminability effects might arise by a mechanism 

through which the form of the question modulates magnitude representations in working 

memory. A number of specific models have been proposed, which share the hypothesis that the 

polarity of the comparative serves to establish a reference point at or near the corresponding end 
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of the continuum, and that magnitude differences between objects close to the reference point are 

discriminated more easily than otherwise comparable differences between objects far from the 

reference point (Marks, 1972; Jamieson & Petrusic, 1975; Holyoak, 1978; Holyoak & Mah, 

1982). Holyoak (1978) argued that attending to a reference point at the congruent extreme of a 

dimension aids in coding the polarity of the question (i.e., distinguishing between “choose 

greater” versus “choose lesser” for a specific pair of comparatives). 

Reference-point models are not inherently linguistic, and hence can in principle be 

applied to comparative judgments in non-linguistic species (Cantlon et al., 2009); they can 

accommodate the influence of the question form on direct discriminability judgments (Holyoak 

& Mah, 1982); and in some variants (Marks, 1972) they predict the general finding that 

congruity effects are larger when decisions are more difficult (Petrusic, 1992; see Banks et al., 

1975, for a derivation). In addition, reference-point models can potentially explain another 

critical property of the congruity effect, which is that it is sensitive to the range of magnitudes 

exhibited in the stimulus set. For example, if the presented stimuli are all relatively small animals 

(e.g., smaller than a dog), then the relatively large animals within this restricted set (e.g., rabbit 

and beaver) will show an advantage for “choose larger” over “choose smaller” (Čech & Shoben, 

1985; Čech, Shoben & Love, 1990; see also Petrusic & Baranski, 1989). Similar range effects 

have been observed in studies of comparative judgments by monkeys (Jones, Cantlon, Merritt & 

Brannon, 2010). It is natural to suppose that an observer could strategically shift reference points 

to reflect the magnitude range of the presented stimuli.  

A number of explanations of how a reference point exerts its effect have been proposed. 

Jamieson and Petrusic (1975) and Holyoak (1978) suggested that observers assess the ratio of 

distances from each object to the reference point, rather than simply taking the difference. The 
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distance ratio provides good quantitative fits to some data sets, including data from experiments 

in which an explicit reference point is specified at an intermediate point on the scale (e.g., 

judging which digit, 2 or 3, is closer to 5; Holyoak, 1978). However, other data sets are less well 

fit by the quantitative form specified by the distance ratio. For example, although scale 

compression triggered by the form of the comparative can be observed in non-speeded 

discriminability judgments, the effects tend to be smaller than the distance ratio would predict 

(Holyoak & Mah, 1982). 

Perhaps reference points directly alter mean magnitudes of items, expanding differences 

close to the reference point relative to differences far from it. However, shifts in discriminability 

might instead reflect changes in variances of magnitude, rather than in mean values. Marks 

(1972), building on the assumptions of signal detection theory, suggested that internal 

magnitudes are represented as distributions that encode uncertainty, which is reduced in the 

region of a reference point (i.e., the variance or “discriminal dispersion” of magnitude 

representations is lower for magnitudes close to a reference point). Marks did not develop a 

quantitative model; however, related reference-point models have introduced evidence-accrual 

mechanisms, consistent with the basic idea that comparative judgments are based on iterative 

sampling from magnitude distributions (see Petrusic, 1992). The model we propose in the 

present paper adopts the key idea proposed by Marks (1972), that the form of the comparative 

affects discriminability by dynamically altering magnitude variances based on distance from a 

reference point. 

Reference-point models in general, including Marks’s (1972) specific proposal of the 

modulation of variance as a mechanism, are broadly consistent with the wider literature on 

attentional influences on magnitude representation. Miller’s (1956) classic paper focused on the 
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limited channel capacity available to make absolute magnitude judgments (and explicitly linked 

signal variance with information transmission). In psychophysical work, Luce, Green, and Miller 

(1976) proposed that observers are able to strategically control attention bands, selectively 

monitoring a relatively narrow intensity range. Luce et al. suggested that neural variability of the 

internal representation of intensities will be reduced within the favored attention band, yielding 

greater sensitivity as measured by signal-to-noise ratio. Nosofsky (1983) found evidence that 

observers can indeed strategically shift attention to a specific intensity band, thereby facilitating 

discrimination of tones in the favored region. He also argued, based on a literature review, that 

this flexible allocation of attention to a magnitude band is limited to just one such location along 

a continuum; hence performance falls off monotonically with distance from the favored region.  

A reference-point explanation has also been offered for the markedness effect. It is 

possible that markedness, like the congruity effect, fundamentally arises from the inherent 

meaning of comparatives, and in particular from the fact that many comparative pairs have an 

inherent asymmetry in their polarity: one end is positive or “greater” and the other end is 

negative or “lesser”. If markedness is rooted in the underlying meaning of comparatives, then the 

effect might reflect some additional processing difficulty encountered in maintaining precise 

magnitude distributions when focusing on the “negative” or “lesser” pole. Marks (1972) 

suggested that the markedness effect could be modeled by assuming that the precision of 

magnitude representations falls off more rapidly moving from the lesser than from the greater 

reference point. We will also adopt this assumption, which serves to integrate the markedness 

effect with the semantic congruity effect. 

In sum, psychophysical work provides broad support for the hypothesis that observers 

can selectively modulate attention to a favored region along a magnitude continuum. Given the 



111 
 

many established parallels between perceptual and symbolic magnitude comparisons, it is natural 

to hypothesize that similar mechanisms operate in symbolic tasks. Moreover, reference points 

established by the form of the question and the range of the presented stimuli can readily be 

viewed as cues that establish attention bands. Marks’ (1972) proposal that such modulation 

operates by influencing the variance of magnitude representations provides a key theoretical 

element in the model we will describe below. The hypothesis that attention operates in part by 

modulating variability in an internal representation is also consistent with findings concerning 

visual detection and discrimination tasks (Dosher & Z. Lu, 2000; Rahnev et al., 2011). 

Magnitude Representations in BARTlet 

Multiple Levels of Representation for Comparative Relations 

Our goal in the present paper is to provide a unified model of how symbolic magnitudes 

can be discovered and used to make comparative judgments. The model we propose, termed 

BARTlet (i.e., the diminutive form of BART), builds on the learning capability of BART (Lu et 

al., 2012) but makes simpler representational assumptions. A key idea incorporated in both 

models is that learning can be bootstrapped by incorporating empirical priors—a “favorable” 

initial knowledge state derived from some related but simpler learning task. In BART, learning 

of explicit comparative relations (two-place predicates, such as larger) is guided by empirical 

priors derived from initial learning of one-place predicates (e.g., large, small). 

BARTlet also emphasizes the role of bootstrapping operations that allow learning at a 

lower level to guide subsequent learning at a higher level. Although we do not aim to provide a 

serious developmental model (which would require a detailed specification of the inputs 

available to children), we do aim to implement a learning process that can acquire magnitude 

information from inputs of realistic complexity. Moreover, we focus on learning from inputs that 
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were not hand-coded, but rather were generated by an autonomous process (i.e., independently of 

the modelers). We use two different sets of inputs as a further way of showing that the learning 

model is robust and does not depend on specific details of what features are included in the input. 

Given that humans are able to make magnitude comparisons between objects that they 

may never have previously considered together (e.g., which is larger, a walrus or a fox?), our 

goal was to create a model that can learn from a limited set of examples and then generalize to 

novel comparisons. At the same time, we also wished to capture the significant commonalities 

between magnitude comparisons performed by humans and by non-human animals. BART 

learns explicit two-place relations representing comparatives (e.g., larger). In addition to 

supporting generalization to new animal pairs, these explicit relations can be systematically 

transformed to solve analogies based on higher-order relations between different pairs of polar 

adjectives (e.g., larger : smaller :: faster : slower). However, such high-level reasoning is beyond 

the capability of most animals (indeed, it may be uniquely human; Penn, Holyoak & Povinelli, 

2008). In contrast, basic comparative judgment appears to be similar in humans and symbol-

trained monkeys (Moyer & Landauer, 1967; Diester & Neider, 2010). Many other species, such 

as rats, can respond on the basis of relative magnitude when shown perceptual stimuli that vary 

along simple continua (Lawrence & DeRivera, 1954). Thus as a model of basic comparative 

judgment, the explicit relational representations acquired by BART appear to be over-powerful. 

Figure 2.2 sketches different levels of representation that may be involved in making 

magnitude comparisons and reasoning with comparative relations (for a similar representational 

hierarchy, see Halford, Wilson, & Phillips, 1998, 2010). At a pre-categorical level (i.e., a level of 

representation that does not involve categorical distinctions or explicit predicates), simple 

associative or statistical mechanisms can perform basic magnitude comparison and learn from 
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ordered pairs. For example, under certain conditions the Rescorla-Wagner model of associative 

learning (Rescorla & Wagner, 1972; see Wynne, 1995) can model qualitative aspects of animals’ 

ability to infer transitivity of choice (e.g., after being trained on only adjacent pairs of stimuli 

exhibiting the reward pattern A > B, B > C, C > D, D > E, an animal will tend to choose B over 

D). Other associative models can account for learning of orderings across a broader range of 

conditions (von Fersen, Wynne, Delius, & Staddon, 1991). 

In the present paper we adopt a statistical model capable of learning continuous-valued 

attributes from a partial ordering of examples (Parikh & Grauman, 2011). This model (described 

more fully below) learns to rank objects based on the algorithm of a support vector machine with 

certain additional constraints, and hence will be referred to as RankSVM. RankSVM extracts 

continuous dimensions of attributes by learning weights on object features, such that the 

maximum number of ranking constraints is satisfied for the training data. Note that RankSVM 

does not create representations that categorize attributes in a binary manner (e.g., elephant is 

large, not small); rather, this algorithm yields representations sensitive to relative order on a 

dimension (e.g., elephant is ordered before horse in size, horse is ordered before cat). Parikh and 

Grauman successfully tested their RankSVM model on problems involving comparisons of 

realistic visual images. Though we do not claim that the algorithm is psychologically realistic, it 

provides a functional model that can deal with partial orderings of elements coded by high-

dimensional feature vectors. The function performed by this model is consistent with empirical 

evidence that both animals and humans can learn simple orderings from a partial set of ordered 

pairs (Merritt & Terrace, 2011; Wynne, 1995; Trabasso & Riley, 1975; Woocher, Glass & 

Holyoak, 1978). Moreover, its output (feature weights) can readily be translated into empirical 

priors for learning one-place predicates.  
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Figure 2.2. Relationships among inputs (bottom), levels of representation (middle row) and tasks (top) involving 

magnitude-related concepts. Pre-categorical processes bootstrap acquisition of one-place predicates (the domain of 

BARTlet), which in turn can bootstrap acquisition of two-place predicates and ultimately higher-order relations (the 

domain of BART). The lower levels have access to external inputs (non-relational feature vectors for individual 

objects) and can be used to perform comparisons based on dimension-specific magnitudes; the higher levels operate 

(in part or entirely) on internally-generated representations, and can be used to perform more abstract types of 

reasoning, such as higher-order analogical reasoning and transitive inference. 
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BARTlet thus integrates dimensional information provided by examples of ordered pairs (via 

RankSVM) with categorical information, thereby refining its knowledge about dimensional 

magnitudes. 

The additional levels of representation sketched in Figure 2.2 are based on explicit 

relations (i.e., predicates with more than one argument, such as larger). Whereas BARTlet uses a 

comparison operator (based on signal detection theory) to compare relative magnitudes derived 

from one-place predicates, BART creates two-place predicates that in effect represent the 

comparison operator as part of the relation itself. As described by Lu et al. (2012), these more 

complex relational representations (arguably unique to humans) can be learned by bootstrapping 

from one-place predicates, and can in turn be bootstrapped to generate higher-order relations 

between relations (e.g., “polar opposite”). We will return to the topic of levels of representation 

in the General Discussion.  For now, we simply note that the goal of the present paper is to show 

that BARTlet, a model limited to one-place predicates (i.e., without access to explicit two-place 

comparatives) is capable of basic symbolic magnitude comparisons. 

Deriving Magnitudes from Unstructured Feature Vectors 

In BARTlet, magnitudes are created by applying learned dimension-specific weights to 

more primitive features of objects. Magnitudes are represented in working memory as derived 

features that follow specified probability distributions, modulated by reference points. BARTlet 

(like BART) represents a one-place predicate (e.g., large) using a joint distribution of weights 

over object features, as illustrated in Figure 2.3 (bottom). A predicate is learned by estimating the 

probability distribution  | ,P S Sw X Φ , where  represents the feature vectors for objects in the 

training set, the subscript S indicates the set of training examples, and SΦ  
is a set of binary 

indicators, each of which (denoted by  ) indicates whether a particular object instantiates the 

S
X
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predicate or not. The vector w constitutes the learned predicate representation, which can be 

interpreted as weights reflecting the influence of the corresponding feature dimensions in X on 

judging whether the predicate applies. Formally, the posterior distribution of weights can be 

computed by applying Bayes’ rule using the likelihood of the training data and the prior 

distribution for w: 

  
   

   

| ,
| , .

| ,

P P
P

P P



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S S
w

Φ w X w
w X Φ

Φ w X w
 (2.1) 

           The likelihood is defined as a logistic function for computing the probability that an object 

instantiates the predicate, given the weights and feature vector: 

    
1

1| , 1 .P e


  
T

w x
w x  (2.2) 

The prior distribution P(w) in Eq. (2.1) is assumed to follow a normal distribution with 

mean and covariance matrix as parameters. To define the prior, the BARTlet model relies on 

initial learning at a simpler representational level to bootstrap subsequent learning at a more 

complex level.  Specifically, the BARTlet uses weights learned by RankSVM as means and a 

standardized covariance matrix (e.g., variance of 1, covariance of 0) as the empirical prior for 

learning one-place predicates. The RankSVM model takes ordered pairs as inputs, where each 

object is represented by a feature vector. Its algorithm is a support vector machine, which in 

essence performs linear regression with an additional constraint to minimize weight values. The 

novel feature of RankSVM is the further addition of a penalty for violating the given partial 

ordering of objects (for a full mathematical description, see Parikh & Grauman, 2011).  

RankSVM was developed for machine-learning purposes, and we make no claim for the 

psychological plausibility of its algorithm. However, there is ample evidence that many types of 

animals can learn simple orderings from a partial set of pairs. For both animals (Merritt & 



117 
 

Terrace, 2011; Wynne, 1995) and humans (Trabasso & Riley, 1975; Woocher et al., 1978), 

orderings are typically learned “from the ends in”, with the extreme or “landmark” objects being 

acquired prior to those that lie closer to the middle of a continuum. In the present simulations, we 

first trained the RankSVM model with ordered pairs that mainly involved the half dozen animals 

with the highest or lowest values on the relevant continuum. The resulting weights then served as 

empirical priors for BARTlet, which in turn received relatively extreme animals as examples 

(positive or negative) of each one-place predicate. 

From Weight Distributions to Derived Magnitudes 

The weight distribution that BARTlet acquires for a one-place predicate such as 

largeprovides all the information required to specify the magnitude of each animal on each 

dimension. As shown in Figure 2.3, the magnitude of an object on a dimension (e.g., size) can be 

derived as a weighted sum of the feature values x for this object:  

                                                                (2.3) 

This weight distribution codes not only first-order statistics (means, ), but also second-order 

statistics (variances and covariances) that capture the uncertainty of the estimated weights, as 

well as inter-weight correlations. Because the weights are normally distributed, the derived 

magnitude variable M follows a normal distribution with a mean of and a variance of , 

which are calculated according to:  

  (2.4)  

   (2.5) 
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Figure 2.3. In the BARTlet model, weight distributions derived from one-place predicates (e.g., large) are applied to 

the feature vector for an individual animal to compute a derived magnitude (normally distributed) for that object. 

 

The variance of the derived magnitude reflects uncertainty about the magnitude value and 

can be modulated by factors such as attention, in a manner that we will describe. Importantly, 

BARTlet does not make use of explicit relations when making symbolic comparisons. Rather, 

BARTlet evaluates which of two objects is larger (or smaller, faster, etc.) by the more primitive 

operation of comparing the derived magnitudes of the two individual objects, using the 

framework of signal detection theory. 

Reference Points in Symbolic Comparisons 

 BARTlet adds two explicit algorithmic assumptions: People operate under limited 

capacity to maintain veridical estimates of magnitudes in working memory, and the focus of 

attention on a particular magnitude range is controlled by reference points. Because the 

representation of magnitudes includes uncertainty, it is straightforward to implement the key 

assumption that magnitude discriminability is influenced by reference points, which operate by 

influencing the associated variances (Marks, 1972). BARTlet selectively attends to a particular 

region of the relevant dimensional spectrum (e.g., the high end of the size spectrum when 

choosing the larger of two objects), leading to greater discriminability between objects in that 

favored region (Figure 2.4). The distance to a reference point is calculated by comparing an 
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object to a reference object, and this distance is used to scale the magnitude variance of the 

object. As a result, magnitudes of objects closer to the reference point have greater precision 

(i.e., less uncertainty), whereas the magnitudes of objects farther from the reference point have 

less precision. 

 

Figure 2.4.  BARTlet’s representations of magnitudes in working memory. Based on the assumption that reference 

points at the extremes control attention, variances of magnitude distributions increase with distance from the 

reference point at the extreme consistent with the question. The increase in variance with distance from the reference 

point is assumed to be greater for the marked form of a comparative.  

 

BARTlet generates magnitude values (M) based on unmarked one-place predicates (e.g., 

large), and hence M values are positive and monotonic relative to the unmarked form (e.g., large 

animals are associated with high size values, and small animals with low size values, rather than 

the reverse). We assume that because the unmarked form of the question requires reversing the 
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natural scale (e.g., “smaller” focuses attention on low magnitudes), precision diminishes more 

quickly with distance from the reference point in the case of the marked comparative. 

Specifically, BARTlet uses the following procedure to answer a comparative query such 

as, “Which is larger, an elephant or a giraffe?” First, the model establishes a reference point 

based on the comparative involved in the question and all presented stimuli (i.e., the context). 

Because the comparative in this question is larger, the reference point is taken to be the object 

among the presented stimuli with the highest mean magnitude on the size dimension. (If the 

comparative were instead slower, the reference point would be the object with the lowest mean 

magnitude on the speed dimension.) Based on the selected reference point, the model computes 

D, the maximum possible distance from the reference point within the current context (i.e., the 

subjective range on the relevant dimension). This value is simply the absolute difference in mean 

magnitudes between the reference point and the opposite-extreme reference point. For larger, the 

opposite-extreme reference point is the object among the presented stimuli with the lowest mean 

size magnitude. 

The model computes the means and unscaled variances according to Eqs. (2.4) and (2.5) 

for the magnitudes of the two objects being compared. In our example, the mean and variance of 

the size magnitude is computed for both the elephant and the giraffe. Then, for each object being 

compared, the model computes , a measure of the distance between that object and the 

reference point as a proportion of the maximum possible distance from the reference point.
1
 This 

value corresponds to the absolute difference between the mean magnitude of the object and of 

the reference point, divided by D.  For each object being compared, the model scales the 

variance of its magnitude by , where   is an intercept parameter and   is a slope 

parameter, both free parameters. The specific parameter values were selected to be consistent 



e
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with the qualitative assumptions of the model. In our simulations,   was set to 0.1, implying 

that the variance of an object’s magnitude is decreased by 90% when that object’s mean 

magnitude is equal to that of the reference point. The values of   were selected so as to yield 

magnitude variances that are about 10 times (for unmarked relations;  = 4.6) or 20 times (for 

marked relations;  = 5.3) as high as the original variances when an object is maximally distant 

from the reference point. Thus, magnitude variances are assumed to increase more rapidly for 

marked relations than for unmarked relations as distance from the reference point increases (cf. 

Marks, 1972). In the present model, variances increase exponentially with distance from the 

reference point; however, a variety of neural mechanisms for gain control could potentially 

implement the impact of attention on gain control (Dosher & Z. Lu, 2000; Rahnev et al., 2011; 

for a review see Reynolds & Chellazzi, 2004). 

Measuring Discriminability between Magnitudes 

 BARTlet models the discriminability between magnitudes of two objects that are made 

available to a comparison process. Based on signal detection theory, a natural measure of 

discriminability is , which is the variant of  appropriate when variances are unequal 

(Wickens, 2002, p. 65): 

                                   (2.6) 

 A complete model of symbolic magnitude comparisons needs to specify a decision 

process that would translate degree of discriminability into accuracy and reaction time for 

comparative judgments. For example, the decision diffusion model (Ratcliff, 1978; Ratcliff & 

McKoon, 2010; Ratcliff, Van Zandt, & McKoon, 1999) is an extension of signal detection theory 

to the time domain, accumulating information continuously on the basis of repeated samples 
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(also see Link, 1990; Petrusic, 1992). If applied to comparative judgment, a theoretical measure 

of discriminability, such as , could be used to predict the average value across repeated 

samples (corresponding to the mean of the drift rate in a diffusion process). Because our present 

focus is on variables that influence discriminability (i.e., information quality), rather than on the 

decision process per se, we will simply use BARTlet to make qualitative predictions of decision 

difficulty, based on values of . We assume (as the diffusion model predicts) that decreases in 

discriminability will make the decision process more difficult, yielding slower and/or less 

accurate comparative judgments. 

Simulations of Symbolic Magnitude Judgments Using Leuven Vectors 

Predicting Human Magnitude Ratings 

We first evaluated whether the M values learned by BARTlet in fact reflect the subjective 

magnitudes of animals on the relevant dimensions. The “ground truth” for all training examples 

and test pairs was provided by norms derived from ratings by college students on the dimensions 

of size, ferocity, intelligence and speed (Holyoak & Mah, 1981). For the animals used in the 

simulations reported in the present paper, intercorrelations among the four dimensions were 

moderate, ranging from .38 (size with speed) to .60 (size with fierceness). For our first set of 

simulations, we identified a set of 44 animals that also appeared in the Leuven norms (de Deyne 

et al., 2008). Each animal was represented by a vector of 50 continuous-valued features (see Lu 

et al., 2012, pp. 631-632, for a description of how the Leuven vectors were created). 

As described earlier, learning of one-place dimensional predicates (large, fierce, 

intelligent, fast) proceeded in two stages. First, RankSVM was provided with the ordering for 

each of the top three and bottom three animals on the relevant dimension relative to all other 

animals, plus an additional 100 pairwise orderings selected at random from the pool of all 

ad

ad
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possible pairs of 44 animals.
2
 The mean weights estimated by RankSVM (linearly scaled by a 

factor of 5 to roughly match the range of weights BARTlet would infer from an uninformative 

prior) became the empirical priors on weight means for BARTlet.
3
 As RankSVM does not 

provide a covariance matrix, an uninformative prior (variances = 1, covariances = 0) was used. 

Second, BARTlet was provided with the 20 animals with the highest values (positive examples) 

and the 20 with the lowest values (negative examples) on the relevant dimension. These training 

examples were drawn from the entire pool of 129 animals in the Leuven norms. The resulting 

weight distributions across the 50 features of the Leuven inputs (Figure 2.1) were highly 

distributed, based on at least 20 statistically predictive features for each of the four magnitude 

dimensions of interest. 

The weight distribution for each one-place predicate was used to calculate M values for 

each animal, as described earlier. Figure 2.5 shows the scatter plots of mean M values versus 

human magnitude ratings for each of these dimensions. Spearman rank-order correlations ranged 

from .86 to .96 for the four dimensions. These results indicate that magnitude values, derived 

from weight distributions acquired by BARTlet’s learning mechanism from large, 

independently-generated feature vectors (Leuven vectors; see Figure 2.1), are quite accurate in 

predicting human judgments about subjective magnitudes of animals on the four dimensions. 
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Figure 2.5. Scatter plots of human magnitude ratings (based on data from Holyoak & Mah, 1981) versus mean 

magnitudes derived from BARTlet using Leuven vectors for animals on four dimensions. 

  

Symbolic Distance Effect 

 To evaluate whether BARTlet exhibits the ubiquitous symbolic distance effect obtained for 

comparative judgments by humans, we formed all possible pairs of the 44 animals previously 

identified, which served as testing items for each of the unmarked comparative relations 

corresponding to the four rated dimensions in Holyoak and Mah’s (1981) norms: larger, fiercer, 

smarter, and faster. To ensure that the differences in magnitudes between animals in a pair were 
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likely to be distinguishable by humans, we excluded pairs that differed by less than .5 on the 

normed ratings for the relevant dimension. The resulting pairs of animals were grouped into four 

distance bins, such that animals very close on the relevant dimension fell into bin 1 and animals 

maximally far apart on that dimension fell into bin 4. Figure 2.6 plots the mean  value for each 

distance bin, averaged across the four unmarked comparative relations. Results for the four 

marked relations are similar. Consistent with a symbolic distance effect, BARTlet’s predicted 

discriminability increases with the distance between the pair of animals. 

Semantic Congruity Effect 

 To test BARTlet’s ability to predict the congruity effect, for each of the four dimensions we 

selected five animal pairs that were either both at the high end (e.g., whale-elephant for size) 

 

Figure 2.6. BARTlet’s predicted discriminability value, , for comparative judgments using Leuven vectors as a 

function of the subjective distance between pairs of animals on the relevant dimension. Distance bins are based on 

Holyoak and Mah’s (1981) norms, in which values range from 0-10: bin 1 (distances between 0.5 and 1.5), bin 2 

(distances 1.5-3), bin 3 (distances 3-5.5), and bin 4 (distances 5.5-10). Results are collapsed over the four unmarked 

comparative relations. 
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or both at the low end (e.g., goldfish-fly). We selected pairs that were at least minimally 

discriminable based on the learned weight distributions. All these pairs were relatively close in 

magnitude, as the congruity effect is typically maximized when both pairs are near to an extreme 

and hence close in magnitude. A congruity effect was observed for all four dimensions, as 

indicated by the interaction apparent in each panel (see Figure 2.7). In each case the interaction 

shows an asymmetry, with the advantage of the unmarked congruent form of the question (e.g., 

  

  

Figure 2.7. Predicted semantic congruity effect for magnitude comparisons with polar adjectives using Leuven 

vectors, based on BARTlet’s predicted discriminability value, , for unmarked and marked comparatives for four 

dimensions. 
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“choose larger” for large animals) being slightly greater than the corresponding advantage of the 

marked congruent form (e.g., “choose smaller” for small animals). In other words, the congruity 

effect was modulated by a markedness effect, as is commonly observed in behavioral studies 

(e.g., Holyoak & Mah, 1981). 

Influence of Stimulus Range on Congruity Effect 

 An important additional finding concerning the congruity effect is that it is influenced by 

the range of magnitudes represented in the stimulus set (e.g., Čech & Shoben, 1985, for humans; 

Jones et al., 2010, for monkeys). Since BARTlet sets its reference points dynamically based on 

the magnitude range relevant to the current context, it naturally predicts how the congruity effect 

will vary with the context. To test this aspect of the model, we created four sets of stimuli based 

on the size dimension, ordered in size from Set 1 (pairs of largest animals) to Set 4 (pairs of 

smallest animals). Sets 1 and 4 were the same pairs used to test the basic congruity effect (see 

Figure 2.7). Sets 2 and 3 were intermediate in size (e.g., Set 2 included alligator-pig; Set 3 

included cat-sparrow). The size distance between the two animals in each pair was closely 

matched across all four sets. In two different tests, BARTlet made “choose larger” and “choose 

smaller” judgments using either the full range of magnitudes (i.e., Sets 1-4), or a restricted range 

(i.e., Sets 2-3 only). As shown in Figure 2.8, both tests yielded congruity effects; however, the 

magnitude of the congruity effect for the critical Sets 2-3 based on middle-sized animals was 

substantially larger when these intermediate sets were tested alone (restricted range; 2.03 in 

units) than when they were intermixed with the pairs of very large or very small animals (full 

range; 1.11 in  units). BARTlet thus provides an account of how context can influence 

comparative judgments by dynamically altering reference points. 
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Figure 2.8. Predicted semantic congruity effect (using Leuven vectors) for stimuli from the full range of animal 

sizes (Sets 1-4) and a restricted intermediate range (Sets 2-3 only), based on BARTlet’s predicted discriminability 

value, .  

 

Simulations of Symbolic Magnitude Judgments Using Topics Vectors 

 To derive topics vectors, we obtained a preprocessed version of the English Wikipedia 

corpus in which entries shorter than 512 words were removed, as were words that are not in a 

standard English dictionary or that are on a list of “stop words” (high-frequency function words 

that have low semantic content, such as the, and, etc.), resulting in a total of 174,792 entries and 

116,128 unique words. We ran the topic model (Griffiths et al., 2007) on this corpus to obtain 

300 topics. The algorithm was used to generate three Markov chains, taking the first sample after 

1000 iterations and then sampling once every 100 iterations, for a total of eight samples from 

each chain or 24 samples overall. Each sample yielded a matrix in which the (i, j)th entry is the 

number of times that word i has been assigned to topic j. From this matrix, we derived a vector 

for each word based on the conditional probability of each topic given that word (i.e., each 
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resulting word vector is based on the relative frequencies of the different contexts within which 

the word could occur), using the same procedure employed by Lu et al. (2012) for outputs of the 

topic model ran on a different corpus. 

 Samples from a single Markov chain were very similar, in that the same 300 topics 

seemed to be found in each (based on examining the most probable words for each topic), but 

different chains produced different sets of topics. To create a single unified set of topics vectors 

for all words, we first averaged the word vectors based on samples from the same chain to 

produce a single set of word vectors for each chain. We then unified the three different chains 

(averaged across eight samples each) through the following procedure: First, for each of the 

averaged chains, we chose the 30 features (topics) that had the highest sums across the vectors of 

the 77 animal words in Holyoak and Mah’s (1981) norms (i.e., the 30 most prevalent topics for 

these animal concepts). Using the resulting animal vectors (reduced to 30 features for each 

chain), we then ran the full BART model to learn the relations larger, fiercer, smarter, and 

faster. We examined BART’s generalization performance for these relations using the animal 

vectors from each chain (using the same tests as Lu et al., 2012). Starting with all 30 features 

from the chain that produced the best performance, we added features one at a time from the 

other two chains (each of which also had 30 features) in order of BART’s performance on the 

chains. To minimize redundancy, a feature was added only if its correlations across the 77 

animals with the features chosen so far were all less than .80. This process resulted in a total of 

52 selected features. All simulations reported below were run using these topics vectors of length 

52. 

 Based on the topics vectors, the same general procedure was used to learn one-place 

predicates with BARTlet as was used for Leuven vectors (i.e., initial weights acquired using 
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RankSVM provided empirical priors for the learning of one-place predicates). The weights 

obtained by RankSVM were scaled by a factor of 10 rather than by a factor of 5 (to better match 

the scale of weights learned from topics vectors). The top and bottom 20 animals on each 

dimension (used as training data for BARTlet after the RankSVM stage) were drawn from the 77 

animals in Holyoak and Mah’s norms, rather than the 129 animals in the Leuven dataset. The 

same method was used as before for calculating magnitude means and variances for each animal 

on each dimension. 

  

  

Figure 2.9. Scatter plots of human magnitude ratings (based on data from Holyoak & Mah, 1981) versus mean 

magnitudes derived from BARTlet using topics vectors for animals on four dimensions. 
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Predicting Human Magnitude Ratings 

 As we had done for the Leuven vectors, we performed correlational analyses to predict 

the human ratings (from Holyoak & Mah, 1981) using magnitudes extracted from the one-place 

predicates learned by applying BARTlet to topics vectors (except across a total of 77 animals, 

rather than the 44 available with Leuven vectors). Scatter plots are shown in Figure 2.9.  

Spearman rank-order correlations were lower than for the Leuven vectors, but all were reliable, 

ranging from .73 to .82 across the four dimensions. 

Symbolic Distance Effect 

 As shown in Figure 2.10, the topics vectors yielded a robust distance effect (calculated in  

 

Figure 2.10. BARTlet’s predicted discriminability value, , for comparative judgments using topics vectors as a 

function of the subjective distance between pairs of animals on the relevant dimension. Distance bins are based on 

Holyoak and Mah’s (1981) norms, in which values range from 0-10: bin 1 (distances between 0.5 and 2), bin 2 

(distances 2-4), bin 3 (distances 4-6), bin 4 (distances 6-8), and bin 5 (distances 8-10). Results are collapsed over the 

four unmarked comparative relations. 
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the same way as for the Leuven vectors, except using an additional distance bin made possible 

because a larger set of animals was available). 

Semantic Congruity Effect 

 As done previously for Leuven vectors, we selected sets of five pairs of animals consisting 

of animals near the high or else low end of each of the four continua. Each pair was at least  

  

  

Figure 2.11. Predicted semantic congruity effect for magnitude comparisons with polar adjectives using topics 

vectors, based on BARTlet’s predicted discriminability value, , for unmarked and marked comparatives for four 

dimensions. 
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minimally discriminable but relatively close in magnitude (as the congruity effect is maximized 

for comparison of items with similar magnitudes). 

Figure 2.11 shows the congruity effects obtained for each of the four dimensions. A 

robust congruity effect was obtained for each. A markedness effect (overall advantage for the 

unmarked form of the comparative) was obtained for all of the dimensions (though more 

pronounced for size and ferocity than for the other two). Because the topics vectors yielded 

cruder magnitude codes than did the Leuven vectors, we did not attempt to model the effect of 

range (as it was too difficult to generate discriminable pairs at more than two levels of overall 

magnitude). 

General Discussion 

Relational Comparisons without Explicit Relations 

 In the present paper we have presented a model, BARTlet, that provides a unified account 

of how subjective magnitudes on different dimensions can be learned from more elementary 

features, represented and modulated in working memory, and used to assess the discriminability 

of objects. Previous models of symbolic magnitude comparisons have tacitly assumed that 

magnitude values on the relevant dimensions are prestored in long-term memory as features of 

objects. We argue that this assumption is unrealistic, even for a quasi-perceptual dimension such 

as size, and especially for the many complex social and interpersonal dimensions on which 

people can make comparisons (e.g., intelligence, religiosity). By building on BART, a Bayesian 

model of how comparative concepts can be learned from examples by statistical inference (Lu et 

al., 2012), we were able to integrate an account of how magnitudes are compared with an 

account of how magnitudes can be created in working memory based on prior learning about 

comparative concepts. The generality of the approach was demonstrated by applying the model 
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to two sets of inputs (Leuven vectors and topics vectors), each of which was generated 

autonomously. BARTlet serves as an existence proof that symbolic comparisons can be modeled 

using high-dimensional distributed representations of elementary features, without assuming pre-

existing dimensions, and without hand-coding inputs. 

 The operation of BARTlet, in comparison to its “smarter” precursor, BART, provides an 

instructive computational example of how a relational task (comparative judgment of 

magnitudes) can be performed without explicit relational representations. BART forms explicit 

representations of first-order relations such as larger (defined by weight distributions over pairs 

of objects assigned to distinct roles). In contrast, BARTlet operates only on weight distributions 

for one-place predicates (e.g., large), bootstrapping from priors on mean weights derived from 

pre-categorical comparisons (a partial ordering of pairs from which mean weights are learned by 

RankSVM, a model based on statistical regression).  Magnitudes of individual objects are 

derived directly from the learned weight distributions for one-place predicates. BARTlet then 

proceeds to use an implicit comparison operation, which can be characterized in terms of signal 

detection theory, to assess which of two objects is the larger. No explicit larger relation is 

needed for BARTlet to choose the larger of two objects. BARTlet is thus an existence proof that 

the ability to make comparative judgments does not require explicit relational representations, 

consistent with evidence that rudimentary types of symbolic magnitude comparisons are within 

the capabilities of non-human primates (Cantlon et al., 2009). 

Whereas BART is a computational-level model (Marr, 1982) of how comparatives can be 

learned, BARTlet adds explicit algorithmic assumptions concerning the representation and 

processing of magnitudes, based on consideration of limited computational resources in working 

memory. These core assumptions are firmly rooted in long-standing theories concerning 
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attentional influences on magnitude representation. Human (and non-human) observers have 

limited capacity in working memory to maintain veridical estimates of magnitudes, which 

therefore vary in their precision (Miller, 1956). To partially compensate, observers focus 

attention on a favored region, or magnitude band, along the relevant continuum (Luce et al., 

1976; Nosofsky, 1983). When making comparisons based on relative concepts, such as “choose 

larger” or “choose smaller”, attention is guided by a reference point located at or near the end of 

the continuum cued by the form of the question (Marks, 1972; Jamieson & Petrusic, 1975; 

Holyoak, 1978). More specifically, selective attention causes the precision of magnitudes in 

working memory to be greatest (i.e., associated with low variance) for values close to the 

reference point, decreasing with distance from the reference value (Marks, 1972). The decrease 

in precision with distance from the reference point tends to be asymmetrical, with a steeper 

function for the “marked” form of the question (e.g., “choose fiercer” as opposed to “choose 

meeker”). 

Armed with these algorithmic assumptions, together with the tools of signal detection 

theory, we showed by a series of simulations that BARTlet can predict (1) human ratings of 

subjective magnitudes for animals along four different dimensions, (2) the symbolic distance 

effect, (3) the semantic congruity effect, (4) the modulation of the congruity effect by the 

polarity of the comparative (i.e., markedness), and (5) the context sensitivity of the congruity 

effect (i.e., the influence of the magnitude range of the presented stimuli). Furthermore, BARTlet 

accounts for all of these phenomena based on magnitude distributions that emerge from prior 

statistical learning of weight distributions over a high-dimensional feature space. No previous 

theory of magnitude comparisons has provided a comparable integration with the acquisition of 

comparative concepts. 
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BARTlet’s predictions for magnitude comparisons are qualitative, based on a simple 

discriminability measure, , derived from signal detection theory. However, this measure has a 

natural link to established theories of two-choice decision making under varying degrees of 

speed pressure, notably the decision diffusion model (Ratcliff, 1978; Ratcliff & McKoon, 2010). 

The diffusion model, which describes the continuous accumulation of decision-relevant 

information over time, has a plausible neural realization (e.g., Ratcliff, Cherian, & Segraves, 

2003; Wong & Wang, 2006). The diffusion model could in principle provide a more detailed 

account of the mechanisms by which decreases in discriminability will make a comparative 

judgment more difficult, yielding slower and/or less accurate comparative judgments.  

Reference Points in Magnitude Comparisons 

 BARTlet provides a computational realization of a qualitative hypothesis proposed four 

decades ago by Marks (1972): Reference points cued by the form of comparative questions 

systematically modulate the precision of magnitudes represented in working memory, yielding 

the semantic congruity effect. The reference-point hypothesis implies that the congruity effect 

results from differences in the discriminability of magnitudes represented in working memory, 

rather than a bias in encoding (e.g., Marschark & Paivio, 1979) or a linguistic influence (Banks 

et al., 1975). BARTlet provides a well-specified mechanism by which reference points can alter 

discriminability in direct judgments of discriminability (Holyoak & Mah, 1982) as well as 

speeded tasks. The modulation of precision will maximally impact discriminability between 

objects with relatively similar magnitudes, in accord with the general finding that congruity 

effects are larger when the objects being compared are closer in magnitude (Petrusic, 1992). The 

BARTlet model could easily be extended to account for the impact of explicit reference points 

ad
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(e.g., in a task requiring selection of which of two digits is closer in magnitude to 5; Holyoak, 

1978), which can shift the favored attention band to an intermediate region on a continuum. 

 The semantic congruity effect is typically modulated by a markedness effect, i.e., the 

advantage of the “greater” comparative for pairs of items at the high end of a continuum often 

exceeds the reverse advantage of the “lesser” comparative for pairs at the low end of the 

continuum. The overall advantage of the unmarked form (e.g., “choose fiercer”) over the marked 

form (e.g., “choose meeker”) has generally been interpreted as a linguistic effect (Clark, 1969); 

however, the fact that the form of the comparative question has a similar impact on the 

performance of monkeys (Cantlon & Brannon, 2005) is problematic for a purely linguistic 

account. 

BARTlet generates magnitude values (M) based on unmarked one-place predicates (e.g., 

large), and hence M values are positive and monotonic relative to the unmarked form (e.g., large 

animals are associated with high size values, and small animals with low size values, rather than 

the reverse). We assume that because the unmarked form of the question requires reversing the 

natural scale (e.g., “smaller” focuses attention on low magnitudes), precision diminishes more 

quickly with distance from the reference point in the case of the marked comparative. Our 

approach thus provides a mechanism by which polarity could impact magnitude judgments made 

by non-linguistic animals. This interpretation supports the hypothesis that the linguistic 

differences associated with markedness in human languages can be traced to more fundamental 

representational differences in magnitude continua. 

 The strong evidence that reference points influence discriminability implies that the 

semantic congruity effect is properly viewed as an example of the broader class of framing 

effects that impact decision making (Tversky & Kahneman, 1981). Indeed, semantic congruity 
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effects have been observed not only in magnitude comparisons involving objects, but also in 

judgments of preferential choice. For example, Birnbaum and Jou (1990) found that judging 

which individual is “liked more” for generally likeable individuals took less time than judging 

between unlikeable individuals, whereas judging which individual is “liked less” for likeable 

individuals took more time than judging between unlikeable individuals (also Nagpal & 

Krishnamurthy, 2008). The mechanisms instantiated in the BARTlet model may well prove 

applicable to decision making in areas such as consumer choice and social judgment. 

The general notion of reference points has also been introduced in linguistic models of 

the interpretation of scalar adjectives (Tribushinina, 2009), which are interpreted in a context-

sensitive manner. Scalar adjectives such as large, warm, and average refer to positions along a 

continuous dimension of magnitude; they are interpreted not as absolute values, but rather in 

relation to the noun category being modified (Partee, 1995). Thus an eagle is a large bird, but not 

an especially large animal; a tall boy is tall for a boy, but not for a tree. The interpretation of 

scalar adjectives requires scaling a subjective magnitude, or a probability of category 

membership derived from a magnitude, based on comparison to a norm or range derived from 

knowledge about the noun concept (see Barner & Snedecker, 2008). 

The Power and Limits of Magnitude Representations 

 The parallels between the patterns of performance observed in monkeys and humans 

when performing magnitude comparisons suggest that this type of comparative judgment is 

based on evolutionarily primitive mechanisms. More broadly, neural and other evidence 

indicates that primates have evolved a specialized system for processing approximate magnitude, 

in which the intraparietal sulcus plays a key role (e.g., Cantlon et al., 2006; Dehaene & 

Changeux, 1993; Fias et al., 2007; Piazza et al., 2004, 2006, 2007; Pinel et al., 2004).  
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One reason for the apparent ubiquity of magnitude representations is that they can serve 

to answer multiple types of questions, each of which also provides learning opportunities. 

BARTlet learns magnitudes by integrating training with partial orderings (e.g., elephant is 

ordered before dog on the size dimension), the type of information provided to RankSVM, with 

training based on categorical inputs (e.g., elephant is large). Its acquired magnitude information 

might then be used to answer other interrelated types of questions (e.g., How large is a dog? Is a 

dog large? Is it larger than a cat? Is it smaller than a bear? Which is closer in size to a bear, a dog 

or a fox?). Feedback on the answers to any of such questions could be used to refine magnitude 

representations for a wide range of individual animals (not just those directly queried), thereby 

improving the model’s ability to answer any question that depends on these magnitudes.  

 The fact that magnitudes are involved in answering many different questions and can be 

learned by multiple routes explains why evolution has apparently placed a premium on the 

creation of specialized neural hardware for manipulating such representations. Given the 

ubiquitous importance of comparative judgments in decision making, a system for discovering 

and manipulating magnitudes will be broadly advantageous. Nonetheless, unidimensional 

magnitude representations have their limitations. One limitation is that the neural system for 

approximate magnitude acts as a bottleneck. Precisely because any dimension can be coded in 

terms of a single internal number line, it is very difficult to code distinct orderings on separate 

dimensions for a single set of objects (Banks & White, 1982), a bottleneck that contributes to the 

“halo effect” (De Soto, 1961).  In addition, the validity of a one-dimensional magnitude 

representation is inherently limited, as is apparent whenever we try to reduce a complex 

multidimensional situation to a single number that serves as a “score” (e.g., GPA as a summary 
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of a student’s academic ability, h-index as a summary of a scientist’s scholarly impact, dollar 

earnings as a summary of a year of one’s life). 

Limitations and Possible Extensions of the BARTlet Model 

 Although the BARTlet model captures several basic phenomena related to symbolic 

magnitude comparisons, it currently has a number of empirical limitations. We have focused on 

the distance, semantic congruity, and markedness effects, which are arguably the phenomena 

most universally observed in studies of symbolic magnitude comparisons. An additional 

phenomenon, typically observed for comparisons involving a closed-set series for which only 

ordinal information is available (e.g., an arbitrary ordering of elements for which magnitude 

information is not provided) is a bow-shaped serial position curve: accuracy and decision time 

indicate greater difficulty for pairs drawn from near the center of the list than for pairs closer to 

the ends. A bowed serial position curve is not observed for magnitude continua such as those on 

which we have focused in the present paper, but it is found for arbitrary orderings, both for 

humans (e.g., Potts, 1974; Trabasso & Riley, 1975; Woocher et al., 1978) and many animal 

species, including squirrel monkeys (McGonigle & Chalmers, 1977), rats (Davis (1992) and 

pigeons (von Fersen et al., 1991; for a review see Merritt & Terrace, 2011).  

 Although BARTlet does not currently model learning and performance with arbitrary 

series, it is in fact well-suited to be extended in this direction. One leading hypothesis is that 

bow-shaped serial position curves reflect positional discriminability (Holyoak & Patterson, 

1981; Merritt & Terrace, 2011). The basic idea is that if individual items lack featural 

information that conveys magnitude, they are instead coded by their position relative to the 

beginning and end terms, which are learned first and serve as anchors. In accord with the 

representations used by BARTlet, these positional codes will be imprecise, forming a normal 



141 
 

distribution centered on an item's veridical position. Positional codes can be compared in the 

same way as codes for “true” magnitudes.  The codes for central items will necessarily have 

greater overlap, and may well have higher variances than end items (Bower, 1971; Murdock, 

1960; Trabasso & Riley, 1975). Thus, a natural extension of BARTlet would use the same basic 

type of representation—continuous-valued codes, normally distributed and varying in 

precision—to explain comparisons based on arbitrary ordered sets of elements. Such an 

extension would generate responses that exhibit distance effects, congruity effects, bow-shaped 

serial position effects, and transitivity of choice, as is empirically observed. 

 There has been some debate concerning whether, or in what way, magnitude codes are 

spatial in nature. The apparent empirical differences between learning and performance with 

dimensional magnitude codes versus positional codes suggest that although both are essentially 

analog (i.e., continuous-valued), magnitude codes are not necessarily spatial (nor are they 

inherently visual; Holyoak, 1977). In contrast, positional codes seem to be more spatial in nature, 

akin to an internal array (Holyoak & Patterson, 1981; Woocher et al., 1977). Nonetheless, similar 

brain areas are involved in comparisons of both types (see Cantlon et al., 2009). 

A behavioral phenomenon often cited in support of a specifically spatial interpretation of 

magnitude codes, especially for number, is the SNARC effect (“Spatial Numerical Association 

of Response Codes”; Dehaene, 1992; Dehaene, Bossini & Giraux, 1993). When evaluating a 

number (e.g., deciding whether it is odd or even), people typically respond to small numbers 

more quickly when the response key is to the left, and to large numbers more quickly when the 

response key is to the right. The SNARC effect thus suggests that number magnitude has a 

natural mapping onto the left-right axis of space (small numbers associated with the left). 

 The original tasks that exhibited a SNARC effect only used numbers, and did not involve 
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magnitude comparisons. More recently, SNARC-like effects have also been observed in 

comparison judgment tasks, but the empirical picture is quite complex. Shaki, Petrusic and Leth-

Steensen (2012) reported that (1) a typical SNARC effect is found for digit comparisons with 

both “larger” and “smaller” instructions, (2) a typical SNARC effect is found for animal size 

comparisons with a “choose smaller” instruction, but a reverse SNARC effect is found for a 

“choose larger” instruction; (3) a short, newly-learned height ordering behaves much like size 

comparisons; (4) the above pattern for English speakers (1-3) is reversed for Israeli-Palestinians 

who habitually read right-to-left. A rough characterization of Shaki et al.’s (2012) findings is that 

although by default small numerical magnitudes are associated with the left, for non-numerical 

continua this bias is overridden by a preference to place the reference point on the left (or more 

generally, on the side from which orderings usually begin—hence the reversal due to cultural 

experience). 

BARTlet does not model output processes, so it does not provide any obvious insight into 

the SNARC effect. However, as Shaki et al. (2012) noted,  “….the mere fact that spatial 

information is being activated in association with the activation of magnitude information does 

not, in and of itself, conclusively imply that such spatial information is then actually being used 

by the comparison process itself” (p. 525). Whatever the SNARC effect may imply about spatial 

processing, there is reason to doubt it has a deep connection to the comparison process that is the 

focus of BARTlet. 

A further limitation of BARTlet stems from the fact that it can only compute comparative 

relations, and does not store or retrieve facts. People can certainly learn specific relational facts 

that arise repeatedly, or are tied to the intrinsic meanings of words (e.g., we commonly see dogs 

that are larger than cats; we know mountains are larger than hills because of how these terms are 
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defined), and comparisons of this sort are made relatively quickly (Holyoak, Dumais & Moyer, 

1979). BARTlet does not account for the role of fact retrieval in magnitude comparison. It 

should be emphasized, however, that fact retrieval seems to play a modest secondary role. The 

initial demonstration of distance effects involving the digits 1-9 (Moyer & Landauer, 1967) was 

especially compelling because although adults surely know the fact that 3 is larger than 2 very 

well, they nonetheless find it easier to decide that 8 is larger than 2. In general, the ease of mental 

comparison seems to trump that of fact retrieval.  

Relation to Previous Models of Learning Dimensional Representations 

 As a learning model, BARTlet is based on the BART model, which Lu et al. (2012, pp. 640-

642) discussed in relation to other models of relation learning. Here we consider three models 

(roughly ordered from least to most explicit in their relational representations) that have 

addressed the acquisition of continuous dimensions and/or linear orderings.  

 Smith, Gasser, and Sandhofer (1999) developed a multi-layer neural network model that 

learns dimensional adjectives by back-propagation. This model focuses on the interactive 

constraints provided by sensory, perceptual and linguistic information. Smith et al. argued that 

dimensional attributes, such as large or red, need not correspond to invariant features at the 

sensory level, but rather can be learned as distributed representations over more elementary 

features. Learning in their model involves updating weights on features; the magnitudes of 

weights are interpreted as indicators of learned selective attention. These assumptions are shared 

by BARTlet. Though the Smith et al. model has not been directly applied to the task of 

magnitude comparisons, it might well be extended in that direction. As a standard neural 

network, the model learns weights as point estimates, and hence does not capture differences in 

precision. But at a global level, the Smith et al. model is similar in spirit to BARTlet, taking a 
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basically bottom-up approach to the acquisition of dimensional concepts, and operating without 

explicit representations of comparative relations. 

DORA (Discovery of Relations by Analogy) is a symbolic-connectionist model that 

learns both one-place predicates (e.g., large) and two-place relations (e.g., larger), focusing on 

comparatives (Doumas, Hummel & Sandhofer, 2007). Like BARTlet (and BART), it emphasizes 

bottom-up learning from objects coded as feature vectors (though it has not yet been tested on 

high-dimensional inputs of the sort used in the present paper). DORA includes a comparator 

operator that is well-suited for performing magnitude comparisons. Because DORA’s predicates 

are initially most similar to the specific cases from which they were learned, the model predicts a 

congruity effect early in learning (e.g., for children, the representation of large will be more 

similar to large than small objects, and vice versa for small, leading to a congruity effect). As the 

model continues to refine its predicates using a feature-intersection mechanism, its 

representations of dimensional adjectives will tend to become more “magnitude neutral.” It is 

therefore less clear whether the model could account for congruity effects observed in studies 

with adults. However, it is possible that DORA could be extended to include assumptions about 

the role of reference points. 

 Finally, an extremely general framework for learning relational structures has been 

proposed by Kemp and Tenenbaum (2008, 2009). By coupling a generative grammar for 

structural forms with a hierarchical Bayesian inference engine, their integrated model can 

generate many different structures to explain data patterns, including trees, multidimensional 

spaces, grids, rings, chains and (most importantly in the present context) linear orders. As Kemp 

and Tenenbaum acknowledge, “…we offer a modeling framework rather than a single model of 

induction. Our framework can be used to construct many specific models… (2009, p. 22). Any 
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specific model within the framework involves a combination of assumptions about the available 

forms and about the processes that operate on forms to make inductive inferences. Given its 

flexibility, a model could presumably be created within the framework that would closely 

emulate BARTlet (or BART, or other alternative models). 

 The power of the framework is also its Achilles’ heel as a psychological theory. Without 

clear constraints, it is hard to derive testable predictions. However, we can evaluate the specific 

model of linear orderings that Kemp and Tenenbaum (2008) provided. This model has two basic 

problems as a psychological proposal. First, given that the model can learn many different 

structural forms, it does not account for the empirical fact that linear orderings are special in the 

realm of animal cognition. As we have seen, a great variety of species can make comparative 

judgments based on linear orderings. By contrast, animals have considerably more difficulty 

learning circular orderings, or rings (von Fersen et al., 1991). The special status of linear 

orderings is a natural consequence for BARTlet and other models that base comparisons on 

magnitudes, or some similar unidimensional quantity. But within the Kemp and Tenenbaum 

framework, there is no apparent reason why rings should be any more difficult to learn than 

linear orders (though a prior could be arbitrarily imposed to favor either one).  

 A second basic problem is that the Kemp and Tenenbaum model of linear orders does not 

account for the ubiquitous distance effect. Their model creates explicit asymmetric relations 

between all possible pairs in an ordering (e.g., if elements A through E form a linear order, the 

learned structure would not only include links A > B, B > C, etc., but also B > D, B > E, etc.). 

The proposed inference processes (Kemp & Tenenbaum, 2009) imply that the strength of an 

inference concerning any two elements in a structure will be monotonic (in one direction or the 

other) with the length of the chain of links connecting the elements. But in the linear order 
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model, the chain length is constant (one) for all pairs; hence the model predicts that (for 

example) a reasoner could evaluate B > C just as easily as B > D. 

An ordering structure of this form was used to account for patterns of dominance 

behavior among members of a monkey troop (observed by Range & Noë, 2002; see Kemp & 

Tenenbaum, 2008, Figure 4a, p. 10689). In fact, as we will discuss below, it is possible to 

explain monkeys’ choices regarding whether or not to exhibit submissive behavior toward a 

conspecific without assuming that they form explicit comparative relations at all, far less a 

complete explicit representation of all pairwise relations. Thus, while the Kemp and Tenenbaum 

model of linear orders provides a useful tool for extracting the types of representations employed 

by (human) primatologists, it is problematic if interpreted as a psychological model of the mental 

representations that guide the choice behavior of primates. 

Re-representation and the Emergence of Explicit Relations 

 A great virtue of computational models is that they can bring clarity to important 

conceptual distinctions that might otherwise be blurred, or dismissed as a matter of semantics. A 

longstanding question in comparative psychology has been whether or not non-human animals 

(especially primates) “think”, “reason”, “use logic”, or “understand relations” in fundamentally 

the same way as humans do. Various relational tasks have figured prominently as sources of 

evidence, including comparative judgment and transitive choice. As noted earlier, many species, 

from pigeons to primates, exhibit transitivity of choice (see Merritt & Terrace, 2011). Some have 

viewed such performance as tantamount to Piagetian transitive inference (e.g., if a 5-year old 

child is told that object B is bigger than object C, and object A is bigger than object B, then the 

child will likely be able to infer that A is bigger than C, despite knowing nothing about the 

features of the objects). 
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But in fact, transitivity of choice and Piagetian transitive inference involve completely 

different task demands, with little in common other than their misleadingly similar names 

(Halford, 1984; Markovits & Dumas, 1992). Transitivity of choice can be accomplished by using 

perceptually-based training data (ordered pairs and/or individual objects) to learn approximate 

quantities associated with individual items (e.g., magnitude codes, positional codes, values, or 

associative strengths). Examples of associative and statistical models that can accomplish 

learning of this type include the Rescorla-Wagner model (Rescorla & Wagner, 1972), Value 

Transfer Theory (von Fersen et al., 1991), RankSVM (Parikh & Grauman, 2011), and BARTlet. 

Although these models differ in many important ways, all provide mechanisms for performing 

relational judgments without explicit relations. 

Accordingly, demonstrating success in basic comparative judgments tasks, or in 

transitivity of choice paradigms, cannot in principle provide evidence for the use of explicit 

comparative relations. Morgan’s Canon can prudently be applied: “In no case may we interpret 

an action as the outcome of the exercise of a higher psychical faculty, if it can be interpreted as 

the outcome of the exercise of one which stands lower in the psychological scale” (Morgan, 

1894, p. 53). If we replace the quaint Victorian phrase “psychical faculty” with “relational 

complexity” or “representational rank” (Halford et al., 1998; Phillips, Halford, & Wilson, 1995), 

then Morgan’s Canon continues to provide a valuable guide for comparative (and cognitive) 

psychology in the 21
st
 century. 

As Penn et al. (2008) argued based on a review of comparative studies, there is 

overwhelming evidence that many species of animals can make relational judgments based on 

perceptual information, yet no compelling evidence that any non-human primate is able to reason 

about relations. At the same time, it appears that the neural system supporting comparisons based 
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on approximate magnitude in non-human primates operates in humans as well (Dehaene & 

Changeux, 1993). Apparently, humans have not lost the simpler mechanisms available to other 

animals for comparing magnitudes, but rather have exploited these mechanisms as a foundation 

for symbolic mathematical thinking (Opfer & Siegler, 2012). More generally, humans appear to 

have surpassed the intellectual capacity of any other species on earth by acquiring neural 

machinery that enables the re-representation of lower-level information in terms of explicit 

relational concepts. 

As a small computational example of such re-representation, BARTlet becomes the 

prequel to BART, which uses one-place predicates such as large to bootstrap acquisition of 

explicit two-place relations such as larger. A system that is restricted to magnitude 

representations (lacking the ability to form explicit relational representations) inevitably “hits the 

wall” when faced with more complex symbolic tasks. A monkey (and BARTlet) can learn to 

choose the larger or the smaller of two objects. But a human (and BART) can also acquire an 

explicit representation of the relations larger and smaller, and go on to reason about them (e.g., 

noticing that larger is related to smaller in much the same way as fiercer is related to meeker; Lu 

et al., 2012). 

Similarly, associative and statistical mechanisms that can support transitivity of choice 

prove completely inadequate when confronted with a Piagetian transitive inference task. The 

latter task requires a “one shot” inference based on integration of two binary premises in working 

memory, without repeated acquisition trials, and without support from perceptual cues or 

magnitude codes. Reliable success is not achieved by any species except humans, and not until 

preschool age (Andrews & Halford, 1998; Halford, 1984; Halford, 1993). Piagetian transitive 

inference is heavily dependent on a mature and intact human frontal cortex (Waltz et al., 1999). 
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We have recently extended the BART model to enable it to use its learned representations to 

solve abstract transitive inference problems (Chen, Lu, & Holyoak, 2013). Perhaps surprisingly, 

explicit comparative relations are not required to make comparative judgments. However, they 

prove essential for any reasoner who aspires to think about what such judgments mean. 
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Footnotes 

1. We assume for simplicity that reference points are established using the range of 

presented stimuli. Of course, the range of presented stimuli will typically become 

apparent to the observer over the course of exposure to a series of examples. Reference 

points are therefore likely to be updated dynamically, reflecting a compromise between 

prior expectations about stimulus range and the range actually observed in the context 

(Petrusic & Baranski, 1989). 

2. The specific selection of training examples is not critical to the performance of the 

model. We aimed to limit the number of training examples so that the model was forced 

to generalize on test pairs. The emphasis on early learning of extreme “landmark” 

animals is consistent with the typical pattern observed in learning orderings (Potts, 1974; 

Ryalls & Smith, 2000). 

3. The use of the prior provided by RankSVM increased the rank-order correlations between 

human magnitude ratings and magnitudes derived from the model by approximately .10 

(relative to an uninformative prior) for the Leuven inputs and about .02 for the topics 

inputs. 
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CHAPTER 3: 

GENERATIVE INFERENCES BASED ON A DISCRIMINATIVE 

BAYESIAN MODEL OF RELATION LEARNING 

 

Introduction 

Generative and Discriminative Models 

Bayesian models of inductive learning can be designed to focus on learning either the 

probabilities of observable features given concepts (generative models) or the probabilities of 

concepts given features (discriminative models; Friston et al., 2008; Mackay, 2003). Generative 

models are especially powerful as they are capable of not only classifying novel instances of 

concepts (using Bayes’ rule to invert conditional probabilities), but also generating 

representations of possible instances. In contrast, discriminative models focus directly on 

classification tasks, but do not provide any obvious mechanism for making generative inferences. 

In recent years, generative Bayesian models have been developed to learn complex concepts 

based on relational structures (e.g., Goodman, Ullman & Tenenbaum, 2011; Kemp & Jern, 2009; 

Kemp, Perfors & Tenenbaum, 2007; Tenenbaum, Kemp, Griffiths & Goodman, 2011). 

Representations of alternative relational structures are used to predict incoming data, and the data 

in turn are used to revise probability distributions over alternative structures. The highest level of 

the structure typically consists of a formal grammar or a set of logical rules that generates 

alternative relational “theories”, which are in turn used to predict the observed data. That is, the 

set of possible relational structures is provided to the system by specifying a grammar that 

generates them. 

Despite their impressive successes, there are some reasons to doubt whether the 

generative approach provides an adequate basis for all psychological models of relation learning. 
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Since the postulated grammar of relations is not itself learned, the generative approach implicitly 

makes rather strong nativist assumptions. Moreover, generative models of relation learning do 

not fit the intuitive causal direction. For example, it seems odd to claim that a binary relation 

such as larger than somehow acts to causally generate an ordered pair (e.g., <dog, cat>) that 

constitutes an instantiation of the relation. It seems more natural to consider how observable 

features of the objects in the ordered pair give rise to the truth of the relation, i.e., to apply a 

discriminative approach. 

Discriminative Models of Relation Learning 

Recently, discriminative models have also been applied to relation learning. Silva, Heller, 

and Ghahramani (2007) developed a discriminative model for relational tasks such as identifying 

classes of hyperlinks between webpages and classifying relations based on protein interactions. 

Although their model was developed to address applications in machine learning, the general 

principles can potentially be incorporated into models of human relational learning. One key idea 

is that an n-ary relation can be represented as a function that takes ordered sets of n objects as its 

input and outputs the probability that these objects instantiate the relation. The model learns a 

representation of the relation from labeled examples, and then applies the learned representation 

to classify novel examples. A second key idea is that relation learning can be facilitated by 

incorporating empirical priors, which are derived using some simpler learning task that can serve 

as a precursor to the relation learning task. 

These ideas were incorporated into Bayesian Analogy with Relational Transformations 

(BART), a discriminative model that can learn comparative relations from non-relational inputs 

(Lu, Chen, & Holyoak, 2012). Given independently-generated feature vectors representing pairs 

of animals that exemplify a relation, the model acquires representations of first-order 
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comparative relations (e.g., larger, faster) as weight distributions over the features. Learning is 

guided by empirical priors for the weight distributions derived from initial learning of one-place 

predicates (e.g., large, fast). BART’s learned relations support generalization to new animal 

pairs, allowing the model to discriminate between novel pairs that instantiate a relation and those 

that do not. Moreover, BART’s learned weight distributions can be systematically transformed to 

solve analogies based on higher-order relations (e.g., opposite). 

BART has thus demonstrated promise as a discriminative model of relation learning, 

which does not presuppose an innate grammar of relations. However, the challenge remains to 

extend the model to tasks requiring generative inferences. For example, people are able to 

construct actual instantiations of relations, answering questions such as, “What is an animal that 

is smaller than a dog?” (Although one might suppose that such questions could be answered by 

undirected trial-and-error, we shall see that people’s answers are often systematically guided by 

their representations of the relation and of the animal provided as a cue.) Another challenging 

task is purely hypothetical reasoning, which requires making inferences about arbitrary instances 

of the relation. Comparative relations such as larger exhibit the logical properties of transitivity 

and asymmetry, supporting deductions such as “If A is larger than B, and B is larger than C, then 

A is larger than C.” Children as young as five or six years can make such transitive inferences 

reliably (Halford, 1992; Goswami, 1995; Kotovsky & Gentner, 1996). In the present paper we 

describe an extension of the BART model that addresses these challenges of making generative 

inferences. 
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BART Model of Relation Learning 

Domain and Inputs 

We focus on the same domain and inputs used in the initial BART project (Lu et al., 

2012): the domain of comparative relations between animal concepts (e.g., a cow is larger than a 

sheep). To establish the “ground truth” of whether various pairs of animals instantiate different 

comparative relations, Lu et al. used a set of human ratings of animals on four different continua 

(size, speed, fierceness, and intelligence; Holyoak & Mah, 1981). These ratings made it possible 

to test the model on learning eight different comparative relations: larger, smaller, faster, slower, 

fiercer, meeker, smarter, and dumber. 

Each animal concept is represented by a real-valued feature vector. In order to avoid the 

perils of hand-coded inputs (i.e., the possibility that the model’s successes may be partly 

attributable to the foresight and charity of the modelers), we use two sets of inputs that we call 

“Leuven vectors” and “topics vectors,” respectively. 

Leuven vectors. We derived Leuven vectors from norms of the frequencies with which 

participants at the University of Leuven generated features characterizing 129 different animals 

(De Deyne et al., 2008; see Shafto, Kemp, Mansinghka, & Tenenbaum, 2011). Each animal in 

the norms is associated with a set of frequencies across more than 750 features. We created 

vectors of length 50 based on the 50 features most highly associated with the subset of 44 

animals that are also in the ratings dataset (Lu et al., 2012). Figure 3.1 provides a visualization 

(for 30 example animals and the first 15 of the 50 features) of these high-dimensional and 

distributed representations, which might be similar to the representations underlying people’s 

everyday knowledge of various animals. 
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Figure 3.1. Illustration of Leuven vectors (reduced to 15 features to conserve space) for some example animals. The 

cell intensities represent feature values (light indicates high values and dark indicates low values). 

 

 Topics vectors. We obtained topics vectors by running the topic model (Griffiths, 

Steyvers, & Tenenbaum, 2007) on a pre-processed version of the English Wikipedia corpus, 

which contained 174,792 entries and 116,128 unique words. This analysis yielded the frequency 

with which each word was assigned by the topic model to each of 300 different topics, from 

which we derived a vector representation for each word based on the conditional probability of 

each of 52 topics given that word. The details of how we ran the topic model and reduced the 

dimensionality of the resulting vectors are described in Chapter 2 (Chen, Lu, & Holyoak, under 

review). 

Relations as Weight Distributions 

BART represents a relation using a joint distribution of weights, w, over object features. 

A relation is learned by estimating the probability distribution ,( ,| )P S SRw X  where S
X  
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of training examples, and S
R

 
is a set of binary indicators, each of which (denoted by R) 

indicates whether a particular object (or pair of objects) instantiates the relation or not. The 

vector w constitutes the learned relational representation, which can be interpreted as weights 

reflecting the influence of the corresponding feature dimensions in X on judging whether the 

relation applies. The weight distribution can be updated based on examples of ordered pairs that 

instantiate the relation. Formally, the posterior distribution of weights can be computed by 

applying Bayes’ rule using the likelihood of the training data and the prior distribution for w: 

  
   

   

| ,
| , .

| ,

P P
P

P P



S S

S S

S S
w

R w X w
w X R

R w X w
  (3.1) 

The likelihood is defined as a logistic function for computing the probability that a pair of 

objects instantiates the relation, given the weights and feature vector: 

 .
1

( 1 | , )
1

P R
e

 


Tw x
w x  (3.2) 

The prior, P(w), is a Gaussian distribution and is constructed using a bottom-up approach 

in which initial learning of simple concepts provides empirical priors that guide subsequent 

learning of more complex concepts. Specifically, BART extracts empirical priors from weight 

distributions for one-place predicates such as large to guide the acquisition of two-place relations 

such as larger. Lu et al. (2012) trained BART on the eight one-place predicates (e.g., large, 

small, fierce, meek) that can be formed using the extreme animals at each end of the four relevant 

continua (size, speed, ferocity, and intelligence). 

After learning the joint weight distribution that represents a relation, BART discriminates 

between pairs that instantiate the relation and those that do not by calculating the probability that 

a target pair Tx  instantiates the relation R: 
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( 1 | , , )

( 1 | , ) ( | , ).

T T

T T

P R

P R P

 



S S

S S
w

x X R

x w w X R
 (3.3) 

Although the general framework of the relation learning model is straightforward, the 

calculations of the normalization term in Eq. (3.1) and the integral in Eq. (3.3) are intractable, 

lacking analytic solutions. As in Silva, Heller, and Gharamani (2007), we employed the 

variational method developed by Jaakkola and Jordan (2000) for Bayesian logistic regression to 

obtain closed-form approximations to the posterior weight distribution ,( )|P S SX Rw  and the 

predictive probability ( 1| , , ).T TP R  S Sx X R   

Extension to Generative Inference 

The goal of the present paper is to endow BART with generative abilities, allowing it (for 

example) to complete a partially-instantiated relation, answering questions such as, “What is an 

animal that is smaller than a dog?” We use the weight representation for a relation learned by 

BART to construct a new generative model for the completion task. When presented with a cue 

relation (e.g., smaller) and a cue object (e.g., dog), the model produces possible responses for the 

remaining object (e.g., cat) so that the ordered object pair satisfies the relation. More specifically, 

given the features of an object B, ,Bx  and the knowledge that relation R holds for the object pair 

(A, B), the model generates a probability distribution for the features of object A, ,Ax  by making 

the following inference: 

      | , 1 1| , | .B A B A BAP R P R P  x x x x x x  (3.4) 

The likelihood term,  1| , ,A BP R  x x  is the probability that relation R holds for a 

particular hypothesized object A, ,Ax  and the known object B, .Bx  It is defined using a logistic 

function, just as in Eq. (3.2): 
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1 2

1
1| , .

1 A B
A BP R

e 
 


T Tw x w x

x x  (3.5) 

Relative to Eq. (3.2), we have only introduced small differences in the notation. The learned 

relational weights, w, are written as two separate halves: weights associated with the first 

relational role ( 1w ) and weights associated with the second relational role ( 2w ). Similarly, the 

feature vector x for a pair of objects is separated into the feature vector for object A ( Ax ) and the 

feature vector for object B ( Bx ). 

The prior for the features of object A,  | ,BAP x x  is the conditional distribution given the 

features of object B. It is defined as the following: 

    2, .|A B BNP x xx I  (3.6) 

We assume that object B (the referent) serves a starting point for generating object A, so the 

means of  | BAP x x  are taken to be the feature values of object B, reflecting a certain degree of 

semantic dependency between the two objects (i.e., people’s tendency to think of A objects that 

are similar to B). The prior also encodes the assumptions that the features of A are uncorrelated 

and have the same variance 
2 ,  the value of which is a free parameter reflecting the strength of 

the model’s preference for generating A objects that are similar to B. 

Our generative model infers a feature distribution for object A that reflects a compromise 

between (1) maximizing the semantic similarity of A and B, which is reflected in the prior term; 

and (2) maximizing the probability that the relation holds, which is reflected in the likelihood 

term. We adapted the variational method to estimate the posterior distribution, using the 

following updating rules for the mean μ and covariance matrix V of the feature distribution, as 

well as the variational parameter ξ: 
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Figure 3.2. Illustration of the generative model for inferring an animal that is larger than a sheep. Colors annotate 

probability densities (red indicates high values and blue indicates low values). The top panel shows the prior and 

posterior distributions with 
2 7   (favoring similarity-based completions such as cow), and the bottom panel 

shows the prior and posterior with 
2 25   (favoring “landmark” completions such as elephant). Various animals 

are represented in the two-dimensional space based on their size and speed ratings. The posterior was generated 

using the relational weights that BART learned from the full ratings input (i.e., all four dimensions). 
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where  
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Figure 3.2 illustrates the operation of the model in generating an animal (A) that is larger 

than a sheep (B). The feature distribution for A is updated from a prior favoring some degree of 

similarity between the two animals (left panel; top: high similarity, bottom: low similarity) to a 

posterior distribution after taking into consideration the relation (i.e., larger) instantiated by the 

animals (right panel). These distributions are shown in a simplified two-dimensional feature 

space (the size and speed ratings for animals; Holyoak & Mah, 1981).  

Modeling Transitive Inference 

Comparative relations such as larger exhibit the logical properties of transitivity and 

asymmetry, supporting deductions such as, “If A is larger than B and B is larger than C, then A is 

larger than C.” Such hypothetical reasoning seems to depend on the ability to generate arbitrary 

instantiations of the relation without any guidance from object features (as the object 

representations are semantically empty). Our first test evaluated whether the generative extension 

of BART enables transitive inferences on comparative relations using arbitrary hypothetical 

instances. 

Operation of the Model 

The basic approach to transitive inference is straightforward: The model “imagines” 

objects A, B, and C that instantiate the two given premises, as in the example above, and then 

tests the unstated relationship for the pair <A, C>. If the larger relation that BART has learned is 

indeed transitive, then any such instantiation will satisfy the conclusion, “A is larger than C.” 

This test is done repeatedly, in essence searching for a counterexample. If no counterexample is 

ever found, the transitive inference is accepted. 
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Specifically, for each of the eight comparative relations that BART learned, we first let 

the model “imagine” an animal B (because the statement “A is larger than B” implies that B is the 

referent against which A is being compared) by sampling a feature vector from a distribution 

representing the animal category. This is a Gaussian distribution with a mean vector and 

covariance matrix that were directly estimated from the feature vectors of the animals in the 

ratings dataset that had Leuven or topics vectors, respectively. There were 44 such animals for 

the Leuven inputs and 77 such animals for the topics inputs. 

Given the sampled animal B, the generative model constructs a distribution for animal A 

(e.g., to satisfy the premise that “A is larger than B”) by letting B fill the second role of the 

relevant relation. Similarly, the model constructs a distribution for animal C (e.g., to satisfy the 

premise that “B is larger than C”) by letting B fill the first role of the same relation. Next, the 

model creates feature representations for specific animals A and C by setting their feature 

vectors, Ax  and ,Cx  to be the means of the inferred feature distributions for A and C, 

respectively. Note that these “imagined” animals are hypothetical: although their features are 

sampled from the distribution of animal features, the results will seldom correspond to actual 

animals. To ensure that the premises have actually been satisfied, the model accepts the imagined 

animal A only if ( 1| , ) 0.5BAP R  x x  and ( 1| , ) 0.5,ABP R  x x  and the imagined animal C 

only if ( 1| , ) 0.5B CP R  x x  and ( 1| , ) 0.5.C BP R  x x  

Finally, if Ax  and Cx  have been accepted as satisfying the premises, the model calculates 

both ( 1| , )CAP R  x x , denoting the probability that A is larger than C, and ( 1| , ),ACP R  x x

denoting the probability that C is larger than A.  The model concludes that the relation holds for 
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the pair <A, C> (and not for <C, A>) if ( 1| , ) 0.5CAP R  x x  and ( 1| , ) 0.5,C AP R  x x  

implying that a counterexample has not yet been found to refute the transitive inference.  

Evaluation of the Model 

We conducted tests of transitive inference using the relational representations that BART 

learned based on 100 randomly-chosen training pairs. For comparison, we also tested a baseline 

model that substituted an uninformative prior for the empirical prior that guides BART’s relation 

learning (see Lu et al., 2012). For each of the eight comparative relations, the relation learning 

model was run ten times, each time with a different set of training pairs and resulting in a 

different learned weight distribution. For each of these 80 learned weight distributions, we let the 

model generate 100 A-B-C triads satisfying the premises, testing the relevant relationship 

between A and C for each triad. To assess the influence of the free parameter in model 

predictions, the tests were conducted multiple times with different values of 2  ranging from 1 

to 1,000 for the Leuven inputs and from 100 to 100,000 for the topics inputs.
1
 The strongest tests 

are those in which 2  is set at low values, creating a strong prior preference that A, B, and C are 

similar to one another. When the similarity constraint is strong, the model is forced to generate 

animals that are similar on the relevant dimension, and hence more likely to yield a 

counterexample.  

Results for Leuven inputs. When the value of 2  was reduced below 1 for the Leuven 

inputs, the models produced many instantiations that did not satisfy the required premises (i.e., A 

> B, B > C, and not vice versa). We therefore treated the value of 1 as the minimal value of 2  

that yields triplets of animals with discriminable values on the relevant dimension for the Leuven 

inputs. Figure 3.3 shows the mean proportion correct (i.e., the mean proportion of triads that 

satisfy the conclusion based on transitive inference) for BART and the baseline model as a 
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function of 2 ,  using Leuven vectors. These results were averaged over all 80 learned relational 

weight distributions. The critical result is that BART’s accuracy remained constant at 100% as 

2  was reduced to the effective minimal value of 1. Thus, BART demonstrates what may be 

considered an inductive approximation to deduction: despite exhaustive search for a 

counterexample to the transitive inference, no counterexample was ever found. In contrast, the 

baseline model often failed to infer that A > C (and not vice versa) even when the value of 2  

was as large as 100. 

 

Figure 3.3. Mean proportion correct on the transitive inference task for BART and the baseline model using Leuven 

vectors, as a function of the variance parameter. These results are averaged over the 80 learned relational weight 

distributions. 

 

 Results for topics inputs. Figure 3.4 shows the mean proportion correct for BART and 

the baseline model as a function of 2.  BART remained at 100% accuracy for the different 
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weight distribution, even when 2  was set to the maximum value of 100,000. Nevertheless, the 

figure shows the mean proportion correct for the triads generated by the baseline model that did 

satisfy the premises (of which there were on average 1.54, 22.7, 67.71, and 73.43, respectively, 

for the values of 2  from 100 to 100,000). Once again, whereas the baseline model finds many 

counterexamples to the transitive inference, BART demonstrates that the comparative relations it 

has learned are indeed transitive and asymmetric.  

 

Figure 3.4. Mean proportion correct on the transitive inference task for BART and the baseline model using topics 

vectors, as a function of the variance parameter. These results are averaged over the 80 learned relational weight 

distributions. 
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relations (larger, smaller, faster, and slower) and nine cue animals (shark, ostrich, sheep, dog, 

fox, turkey, duck, dove, and sparrow) were used. At least 50 responses were collected for each of 

the 36 relation-animal pairs. To minimize learning across trials, we asked each participant to 

answer only two questions about a single animal: either larger and then slower, slower and then 

larger, faster and then smaller, or smaller and then faster. 

 MTurkers were instructed to complete the study only if they were fluent in English. 

There were 1,147 participants, resulting in a total of 2,294 responses across the 36 queries. We 

processed the responses by removing articles such as “an,” correcting obvious misspellings (e.g., 

“pidgeon”), and expanding abbreviations (e.g., “hippo”). We then removed two of the responses 

(“dig” and “bow”) because it was not clear what animals they were supposed to be. 

The same 36 relation-animal pairs were presented to the model after it had been trained 

on the relevant relations using either Leuven or topics vectors. For each question, the model 

produced a continuous posterior distribution for the feature vector of the missing animal using 

Eq. (3.4). This distribution was used to calculate the probability densities for the feature vectors 

of various animals. For the Leuven inputs, we used all 129 animals in the Leuven dataset. For the 

topics inputs, we used the set of 168 animals that participants provided as a response at least 

twice in the entire MTurk study. In both cases, the set of animals for which we obtained model 

predictions included many animals outside of the original training set given to the relation 

learning model, which was restricted to animals in the ratings dataset. The probability densities 

calculated for all 129 or 168 animals were normalized to produce a discrete probability 

distribution. These discrete probabilities were then averaged across the ten runs of the relation 

learning model. 
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Human Results 

The complete set of human responses is shown in the Appendix. The responses appear to 

be mainly driven by two trends: (1) reporting an animal similar to the cue animal and fitting the 

cue relation (e.g., cat for “smaller than a dog”), and (2) reporting a “landmark” animal at an 

extreme of the continuum (e.g., turtle for “slower than a dog”). The landmark animal coupled 

with the cue animal provides an “ideal” example of the cue relation (i.e., one that maximizes the 

probability that the relation holds). This tradeoff between reporting animals that are similar to the 

cue animal and reporting animals that are landmarks for the cue relation (and usually more 

dissimilar to the cue animal) is captured by the single free parameter in the generative module, 

2.  As explained earlier (see Figure 3.2), a low 2  results in a response distribution that favors 

animals similar to the cue animal, whereas a high 2  leads to a preference for response animals 

that are more likely to satisfy the cue relation with respect to the cue animal (i.e., landmark 

animals for the cue relation). 

Another pattern we observed in the human responses is that the responses to each query 

were often dominated by the most popular response to that query. Averaged across all 36 queries, 

about 40% of the responses to each query were the most frequent response. A typical pattern of 

human responses is displayed in Figure 3.5, which shows the response frequencies and 

proportions (out of 53 total responses) to the query, “Name an animal that is slower than a dog.” 

The most dominant response of turtle is followed by a long tail of low-frequency responses. It is 

difficult to explain exactly why some participants chose these less-frequent responses, especially 

baby seal, seahorse, or even pig, which was given as an answer by three different participants 

and ties with cat for third place. Therefore, we focused on the most popular response to each 

query when analyzing the model predictions. 
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Figure 3.5. A typical pattern of human responses in the animal generation task, showing response proportions and 

frequencies (shown above the bars) for the query, “Name an animal that is slower than a dog.” 

 

Model Results 

We evaluated the model with respect to predictions of the most frequent human response 

to each question, considering both whether the model actually gave the highest probability to that 

response as well as that animal’s predicted rank among the entire set of animals for which we 

obtained model predictions. Some of the four tested relations seemed to encourage a “landmark” 

response strategy (especially faster and slower, and larger to a lesser extent) whereas others 

seemed to elicit more responses based on similarity to the cue animal. Accordingly, the variance 

parameter in the generative model was chosen separately for each relation to maximize the 

number of questions involving that relation for which the model gave the highest probability to 

the top human response (the number of exactly correct predictions), with ties broken by the 

median of the predicted ranks for the top responses to those questions (a lower median rank is 

considered better).  
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Results for Leuven inputs. We compared the full generative model with two alternative, 

simpler models. The first alternative model used the prior distribution from the generative model, 

 | ,BAP x x  to calculate probability densities for the set of 129 Leuven animals, and thus 

considered only the similarity of each possible response to the cue animal. The second 

alternative model calculated the likelihood probability,  1| , ,A BP R  x x  for each of the animals, 

and thus cared only about the probability that a possible response satisfies the cue relation with 

respect to the cue animal. 

We chose the variance parameter for the generative model from the values 1, 5, 10, 50, 

and 100. The best-performing variances were 50, 10, 10, and 100, respectively, for larger, 

smaller, faster, and slower. For larger, smaller, and slower, the chosen variances are sensible 

given the general pattern of “landmark” versus “similarity” responses for these relations. The 

relatively small value of 10 for faster is also sensible because the Leuven dataset does not 

include cheetah, the landmark animal for the faster relation and the most popular human 

response to all of the faster questions, so the model had to instead predict the second most 

popular response, which was often based more on similarity. 

Number of correct predictions. The full generative model correctly predicted the top 

human response for 13 of the 36 questions, which is impressive considering that there were 129 

animals to choose from for each question. In fact, the probability of correctly predicting the top 

response for at least 13 of the 36 questions by random chance is only 

3636
19

13

36 1 128
7.14 10 .

129 129

i i

i i







    
     

    
  Because about 40% of all human responses were the 

most frequent responses, we would expect a human participant to provide the top response for 

36 0.4 14.4   questions. In contrast, the alternative model that uses only the prior term (the 
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“prior” model) correctly predicted the top response for only one of the 36 questions (“smaller 

than a dog,” to which the top response was cat), and the likelihood model made only four correct 

predictions (for one faster question and three slower questions). The probabilities of getting at 

least one correct and at least four correct by random chance are about .24 and 41.74 10 ,  

respectively. The full generative model correctly predicted the top response for two larger 

questions, one smaller question, one faster question, and all nine slower questions. Predicting 

that turtle would be the top human response to all nine slower questions required an impressive 

feat of generalization on the model’s part, because turtle was not in the original training set given 

to the relation learning model. 

Median ranks. We also analyzed the medians of the ranks that the models assigned to the 

top human responses. Even if the models did not always predict the highest probabilities for the 

top responses, they may have given them relatively high probabilities, so the 129 animals were 

ranked in descending order of predicted probability for each question. The median was chosen so 

that a few outliers would not affect the results too much, although the results were very similar 

for means. Across all 36 questions, the median of the ranks that the full generative model 

assigned to the top human responses was 8.5. In comparison, the median rank was 71.5 for the 

prior model and 11.5 for the likelihood model. Figure 3.6 shows the breakdown of these results 

for the four comparative relations, with the median ranks displayed above the bars. For easier 

comparison with the topics inputs, for which the models considered a different number of 

animals (168), the y-axis shows the median rank as a fraction of the total number of animals 

considered (129 in this case). As can be seen, the prior model performed very badly on all four 

relations, and the likelihood model tended to perform slightly worse than the full generative 

model. These results indicate that the full generative model, which considers both similarity to 
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the cue animal and the likelihood of satisfying the cue relation with respect to the cue animal, 

predicts the pattern of human responses better than models that consider only one of these factors. 

 

Figure 3.6. Median ranks for the top human responses assigned by the different models using Leuven vectors, 

broken down by relation. The y-axis shows the median rank as a fraction of the total number of animals considered 

by the models. The actual median ranks (out of 129 animals) are shown above the bars. Note that lower values 

indicate better performance. 
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For a given cue animal word 1,w  we calculated 2 1)( |P w w  for each of the 168 possible response 

animal words 
2( )w  using all 300 topics (z) obtained from the topic model. This method yielded a 

predicted probability for each possible response animal corresponding to the semantic 

association strength from the cue animal word to the response animal word, which can be (but is 

not always) based on feature similarity between the two animals. 

For the topics inputs, the variance parameter for the generative model was chosen from 

the values 100, 500, 1000, 5000, and 10000. The variances selected were 10000, 1000, 10000, 

and 500, respectively, for larger, smaller, faster, and slower. These values are sensible for larger, 

smaller, and faster given their patterns of “landmark” versus “similarity” responses. As we will 

see, the generative model performed the worst on the slower questions (perhaps because turtle 

was not in the original training set), though still better than both of the alternative models. 

Number of correct predictions. The full generative model correctly predicted the top 

human response for 15 of the 36 questions. The probability of making at least 15 correct 

predictions by random chance when there are 168 animals to choose from for each question is 

about
242.07 10 .  In contrast, both the likelihood model and the model based on word 

association correctly predicted the top human response for only one of the 36 questions (one 

faster question and one smaller question, respectively), the corresponding chance probability for 

which is about .19. The full generative model correctly predicted the top response for two larger 

questions, three smaller questions, all nine faster questions, and one slower question. Of 

particular note, predicting that cheetah would be the top human response to all nine faster 

questions required the model to generalize beyond the set of animals it encountered when 

learning the comparative relations. 
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Median ranks. As before, we ranked the 168 considered animals by their predicted 

probabilities for each question. The median rank for the top human response across all 36 

questions was 7 for the full generative model, 24 for the model based on word association, and 

29 for the likelihood model. Figure 3.7 shows the breakdown of these results for the four 

relations. The full generative model performed better than the two alternative models on all four 

relations. These results indicate that the generative model accounts for the human data better 

than either simple word association or mere consideration of the relation. Table 3.1 summarizes 

all the model results on the animal generation task for both Leuven and topics inputs. 

 

Figure 3.7. Median ranks for the top human responses assigned by the different models using topics vectors, broken 

down by relation. The y-axis shows the median rank as a fraction of the total number of animals considered by the 

models. The actual median ranks (out of 168 animals) are shown above the bars. Note that lower values indicate 

better performance. 
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Table 3.1 

Summary of Model Results on the Animal Generation Task 

 

 

Leuven inputs Topics inputs 

Generative 

model 
Prior Likelihood 

Generative 

model 

Word 

association 
Likelihood 

Number 

correct 

Overall  13 1 4 15 1 1 

larger 2 0 0 2 0 0 

smaller 1 1 0 3 1 0 

faster 1 0 1 9 0 1 

slower 9 0 3 1 0 0 

Median 

rank 

(and 

fraction) 

Overall 8.5 (.07) 71.5 (.55) 11.5 (.09) 7 (.04) 24 (.14) 29 (.17) 

larger 8 (.06) 107 (.83) 3 (.02) 7 (.05) 14 (.11) 9 (.07) 

smaller 46 (.36) 58 (.45) 48 (.37) 8.5 (.07) 15.5 (.12) 36 (.28) 

faster 11 (.09) 31 (.24) 19 (.15) 1 (.01) 73 (.57) 8 (.06) 

slower 1 (.01) 91 (.71) 3 (.02) 25 (.19) 40 (.31) 45 (.35) 

 

General Discussion 

These results on modeling transitive inference and predicting human responses on the 

animal generation task provide evidence that a discriminative model of relation learning, BART 

(Lu et al., 2012), can be extended to yield generative inferences. These inferences can involve 

relations between either hypothetical (in the case of transitive inference) or actual (in the case of 

animal generation) objects.  

The model’s ability to make transitive inferences based on relations it has learned from 

examples in a bottom-up fashion illustrates the potential power of the discriminative approach to 

relation learning. Importantly, BART is not endowed with any notion of what a “transitive and 

asymmetric” relation is (though like a 6-year-old child, it is endowed with sufficient working 

memory to integrate two relations as premises). Rather, it simply uses its learned comparative 

relations to imagine possible object triads, and without exception concludes that the inference 
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warranted by transitivity holds in each such triad. The model thus approximates “logical” 

reasoning by a systematic search for counterexamples (and failing to find any), akin to a basic 

mechanism postulated by the theory of mental models (Johnson-Laird, 2008). The fact that 

BART achieves error-free performance in the tests of transitive inference is especially 

impressive given that its inductively-acquired relational representations are most certainly 

fallible (e.g., the model makes errors in judging which of two animals close in size is the larger; 

see Lu et al., 2012). It turns out that imperfect representations of comparative relations, acquired 

by bottom-up induction, can be sufficiently robust as to yield reliable quasi-deductive transitive 

inferences. 

In the animal generation task, the generative extension of BART achieves moderate 

success in modeling human response patterns by maximizing both similarity to the cue animal 

and the probability that the cue relation is satisfied, performing better than models that consider 

only each of these factors alone. Importantly, BART’s ability to generate a feature distribution 

for hypothetical animals that satisfy a certain relation with respect to another animal could be 

used to generate many more training examples for the relation learning model than is currently 

available. When fed back to the learning model, these extra examples might improve the learned 

relational representations. In fact, because the generated animals are constrained to be similar to 

the cue animal, each pair of animals should differ only on a few relevant dimensions, thus 

constituting a more ideal example for the relation and allowing the learning model to narrow 

down the most important features. Repeating this procedure of generating more examples and 

then relearning the relation based on the additional examples could allow the model to 

progressively refine its learned relations, capitalizing on the bootstrapping strategy that has 

proven valuable in our work so far (e.g., empirical priors). 
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Footnote 

1. We use different ranges of 2  for the Leuven and topics inputs because they are scaled 

differently. Across the animals in the ratings dataset, the mean variance among the 50 

Leuven features is .79, whereas the mean variance among the 52 topics features is 147.24. 
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Appendix: Human Responses on the Animal Generation Task 

Cue 

relation 

Cue 

animal 
na 

Response proportions 

larger 

shark  66 
whale elephant bear snake zebra      

.79 .17 .02 .02 .02      

ostrich 70 
elephant giraffe whale bear lion rhinoceros camel cow hippo other 

.63 .13 .04 .03 .03 .03 .01 .01 .01 .07 

sheep 73 
elephant cow horse bear lion whale giraffe tiger bison other 

.29 .19 .15 .11 .04 .04 .03 .03 .01 .11 

dog 53 
elephant horse cow bear lion tiger whale bull cat other 

.26 .19 .11 .08 .06 .04 .04 .02 .02 .19 

fox 79 
elephant bear wolf dog tiger cheetah deer horse lion other 

.28 .27 .13 .08 .05 .04 .03 .03 .03 .09 

turkey 65 
elephant dog bear cow lion ostrich peacock deer giraffe other 

.22 .12 .11 .11 .05 .05 .05 .03 .03 .25 

duck 69 
elephant dog goose lion bear horse chicken peacock pig other 

.22 .14 .13 .07 .06 .06 .03 .03 .03 .23 

dove 63 
elephant tiger eagle cat dog cow bear chicken wolf other 

.16 .14 .13 .10 .10 .06 .05 .03 .03 .21 

sparrow 58 
dog elephant eagle hawk bear cat crow giraffe ostrich other 

.19 .16 .10 .07 .05 .03 .03 .03 .03 .29 

smaller 

shark  59 
cat dog fish turtle goldfish dolphin mouse rabbit ant other 

.10 .10 .10 .10 .08 .07 .05 .05 .02 .32 

ostrich 66 
mouse cat dog chicken rabbit ant bird chinchilla rooster other 

.15 .14 .11 .06 .06 .03 .03 .03 .03 .36 

sheep 61 
cat mouse dog frog rabbit pig ant chicken goat other 

.21 .16 .13 .08 .07 .05 .03 .03 .03 .20 

dog 65 
cat mouse rat rabbit bird frog gerbil hamster squirrel other 

.31 .22 .17 .06 .05 .05 .03 .03 .03 .06 

fox 63 
mouse cat rabbit rat bird turtle ant box turtle canary other 

.29 .21 .19 .10 .03 .03 .02 .02 .02 .11 

turkey 60 
chicken mouse cat rat duck fish hamster rabbit squirrel other 

.27 .18 .10 .10 .03 .03 .03 .03 .03 .18 

duck 62 
mouse squirrel chick rat ant bird fish frog goose other 

.42 .06 .05 .05 .03 .03 .03 .03 .03 .26 

dove 55 
mouse hummingbird ant rat sparrow worm fly bee beetle other 

.36 .15 .05 .05 .05 .05 .04 .02 .02 .20 

sparrow 58 
mouse hummingbird ant worm goldfish mole rat robin snail other 

.26 .19 .09 .09 .03 .03 .03 .03 .03 .21 
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faster 

shark  59 
cheetah dolphin eagle jaguar antelope bird falcon gazelle lion other 

.59 .17 .03 .03 .02 .02 .02 .02 .02 .08 

ostrich 66 
cheetah tiger cat cougar jaguar coyote eagle emu gazelle other 

.71 .06 .03 .03 .03 .02 .02 .02 .02 .08 

sheep 61 
cheetah dog horse tiger cat cougar fox jaguar lion other 

.36 .10 .10 .07 .05 .03 .03 .03 .03 .20 

dog 65 
cheetah horse tiger cat leopard bird coyote deer fox other 

.69 .08 .05 .03 .03 .02 .02 .02 .02 .06 

fox 63 
cheetah jaguar deer cat tiger cougar gazelle giraffe horse lion 

.75 .06 .05 .03 .03 .02 .02 .02 .02 .02 

turkey 60 
cheetah rabbit cat dog horse ostrich fox leopard zebra other 

.42 .10 .07 .05 .05 .05 .03 .03 .03 .17 

duck 62 
cheetah dog cat deer horse rabbit snake alligator bird other 

.35 .13 .10 .03 .03 .03 .03 .02 .02 .26 

dove 55 
cheetah eagle falcon hawk hummingbird cat tiger bluebird dog other 

.38 .15 .11 .07 .05 .04 .04 .02 .02 .13 

sparrow 58 
cheetah eagle hawk bee lion rabbit zebra cougar falcon other 

.53 .14 .07 .03 .03 .03 .03 .02 .02 .09 

slower 

shark  66 
turtle snail whale fish dog sloth tortoise walrus bird other 

.38 .15 .09 .08 .06 .06 .03 .03 .02 .11 

ostrich 70 
turtle sloth snail cat cow dog elephant bear duck other 

.39 .20 .07 .06 .06 .04 .04 .03 .01 .10 

sheep 74 
turtle sloth snail cow donkey elephant moose camel cat other 

.42 .20 .12 .03 .03 .03 .03 .01 .01 .12 

dog 53 
turtle snail cat pig elephant sloth slug tortoise baby seal other 

.49 .08 .06 .06 .04 .04 .04 .04 .02 .15 

fox 79 
turtle snail rabbit sloth deer dog elephant bear cow other 

.68 .06 .05 .05 .03 .03 .03 .01 .01 .05 

turkey 65 
turtle sloth snail slug duck ant cat chick chicken other 

.52 .12 .08 .06 .03 .02 .02 .02 .02 .12 

duck 70 
turtle snail slug tortoise worm chicken sloth beetle elephant other 

.47 .20 .06 .06 .04 .03 .03 .01 .01 .09 

dove 63 
turtle sloth snail slug elephant worm bear duck fox other 

.48 .14 .14 .05 .03 .03 .02 .02 .02 .08 

sparrow 58 
turtle sloth snail dog ostrich tortoise worm bear cat other 

.29 .21 .14 .03 .03 .03 .03 .02 .02 .19 

 

Note. The nine most frequent responses are shown for each question (except for “faster than a fox,” which had exactly ten unique responses). The total proportion of the other 

responses to each question is shown in the “other” column. 

 
a The total number of responses for each question.
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