Lawrence Berkeley National Laboratory

Recent Work

Title

NOTE ON THE Pt AND Hg MASS-197 ISOMERS

Permalink

https://escholarship.org/uc/item/1xq3v2v2

Authors

Haverfield, A. J. Easterday, H.T. Hollander, J.M.

Publication Date

1964-08-01

University of California Ernest O. Lawrence Radiation Laboratory

NOTE ON THE Pt AND Hg MASS-197 ISOMERS

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

Berkeley, California

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

ì

Nuclear Phys.

UNIVERSITY OF CALIFORNIA •

Lawrence Radiation Laboratory Berkeley, California

AEC Contract No. W-7405-eng-48

NOTE ON THE Pt AND Hg MASS-197 ISOMERS

A. J. Haverfield, H. T. Easterday, and J. M. Hollander

August 1964

NOTE ON THE Pt AND Hg MASS-197 ISOMERS*

A. J. Haverfield, H. T. Easterday, and J. M. Hollander

Lawrence Radiation Laboratory University of California Berkeley, California

August 1964

Abstract

The decays of Pt¹⁹⁷, Pt^{197m}, Hg¹⁹⁷ and Hg^{197m} into the levels of 79^{Au¹⁹⁷} have been examined with use of semiconductor detector spectrometers. Gamma-ray spectra were recorded with lithium drifted germanium detectors, and internal conversion coefficients were measured with an electron-gamma spectrometer employing both silicon and germanium detectors.

These conversion coefficients were determined: the 191-keV transition in Au¹⁹⁷ following Pt¹⁹⁷ decay, $\epsilon_{\rm K} = 0.69 \pm 0.07$, K/L = 5.2 ± 0.6; the 346-keV transition in Pt^{197m}, $\epsilon_{\rm K} = 3.9 \pm 0.4$, K/L = 1.8 ± 0.2. The 191-keV transition is interpreted as having multipolarity M1 + (~28%) E2, and the 346-keV is an M4.

Details of the decay schemes are discussed. From the observed decay patterns of Pt^{197} and Pt^{197m} , spin assignments 1/2- and 13/2+ are made for these isomers, respectively. The spin of the 268-keV level in Au¹⁹⁷ is interpreted as 3/2+, consistent with the "core-excitation" interpretation of these levels by Braunstein and de Shalit.

The reported existence of a level in Au^{197} at 155 keV was not confirmed, and a reported weak 407-keV radiation from the decay of Hg^{197m} was not observed.

The absolute transition probability of the 202 keV E2 radiation connecting the 279 keV (5/2+) and 77 keV (1/2+) states is discussed, within the frame- work of the de Shalit model and also that of Kisslinger and Sorensen.

*This work was done under the auspices of the U. S. Atomic Energy Commission. [†]On leave from Oregon State University, Corvalis, Oregon.

1. Introduction

The low-lying energy levels of $_{79}^{Au^{197}}$ are well-known as the result of studies of the decays of 18-h $_{78}^{Pt^{197}}$, 65-h $_{80}^{Hg^{197}}$, 24-h $_{Hg^{197}}^{197}$, and also from studies of particle inelastic scattering on Au¹⁹⁷. The six known levels in Au¹⁹⁷ below 600 keV have been discussed by Braunstein and de Shalit¹) in terms of two intrinsic single proton states, $d_{3/2}$ (ground) and $h_{11/2}$ (409 keV) plus a quadruplet (1/2, 3/2, 5/2, 7/2) arising from the coupling of a 2+ core-excitation with the $d_{3/2}$ proton. This situation is represented in fig. 1.

The experiments described herein were motivated by the following considerations: 1) as pointed out by Artna^2 , doubt has been cast on the assignment of spin 3/2 to the 268 keV level as a result of the recent measurements by Joshi et al.³) of the internal conversion coefficient of the 191-keV transition. The value obtained by these workers, 2.0 ± 0.5, is considerably higher than the theoretical value⁴) for a pure Ml transition, 0.79, and suggests that the 191-keV transition has EO admixture and therefore that the 268-keV state has spin 1/2 rather than 3/2 as previously thought. 2) A recent paper by Griesacker and Roy⁵), reporting the results of beta-gamma and gamma-gamma coincidence experiments on neutron irradiated Pt¹⁹⁶ (enriched), has suggested a more complicated decay scheme for Pt¹⁹⁷ and Pt^{197m} than had previously been accepted, and also a new level in Au¹⁹⁷ at 155 keV was reported. 3) The multipolarity of the iosmeric transition in Pt^{197m} had not been definitely established.

Accordingly, we have studied the decays of Pt^{197} , Pt^{197m} , Hg^{197} , and Hg^{197m} in an effort to shed further light on these questions. Briefly, we have (1) found the 191-keV transition to be an M1-E2, not an M1-E0, mixture; (2) established the multipolarity of the 346-keV transition in Pt^{197m} to be M4; and (3) shown that the spin of Pt^{197} is L/2. However, we do not confirm the reported⁵) existence of a level in Au¹⁹⁷ at 155 keV.

2. Experimental Procedure and Instrumentation

-2-

Samples of 18-h. Pt^{197} and 97-minute Pt^{197m} were prepared by the neutron irradiation of isotopically enriched Pt^{196*} in the G. E. reactor at Vallecitos, California. An average thermal flux of $1.8 \times 10^{13} \text{ n/cm}^2$ sec was used, with a slow/fast neutron ratio of 7.3/1. Chemical purification of the platinum from gold (principally Au¹⁹⁹) was done by extraction of the gold into amyl acetate, following dissolution of the sample in aqua regia. A portion of the Pt fraction was liquid-deposited on to a gold-coated mylar source backing for electron and gamma counting; the Au fraction was examined only in solution for the gamma spectrum. Samples of 24-hour Hg¹⁹⁷ and 65-hour Hg^{197m} were prepared by irradiation of gold metal (Au¹⁹⁷) with 15-MeV deuterons in the L.R.L. 88-inch cyclotron. Carrier-free Hg sources were obtained by distillation of mercury from the gold target at ~ 800° C in a quartz vessel on to a water-cooled gold disc. A 2-mm circular collimator defined the area of the Hg deposit.

Gamma ray spectra were observed with a liquid-nitrogen-cooled lithiumdrifted germanium (Ge(Li)) detector of dimensions $4 \text{ cm}^2 \times 7 \text{ mm}$ deep, coupled to a low-noise preamplifier-amplifier system designed by Goulding and Landis^{6,7}). The detectors and the associated electronics were all fabricated at this Laboratory⁸). Internal conversion coefficients were measured with an electrongamma spectrometer, designed for this purpose, which utilizes Si(Li) and Ge(Li) detectors for quantitative measurement of the electron and gamma-ray spectra, respectively⁹). Dimensions of the detectors in this apparatus are: silicon, 1 cm² × 3 mm; germanium, 4 cm² × 5 mm.

*Obtained from Stable Isotopes Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Isotopic analysis of this material was: $Pt^{190} < 0.05\%$, $Pt^{192} < 0.05\%$, Pt^{194} 6.57\%, Pt^{195} 26.18\%, Pt^{196} 65.55\%, Pt^{198} 1.70\%.

The performance of the gamma-ray spectrometer is illustrated in fig. 2. In this spectrum, a half-width of 2.3 keV is obtained for the 122- and 136-keV photons of Co^{57} . Figure 3 shows the electron and gamma spectra of the 279-keV transition in Hg²⁰³, recorded with the conversion-coefficient spectrometer. In this spectrum, resolution of the electron side of 4.2 keV, and that of the gamma-ray side is 4.6 keV.

3. Gamma Spectra - Pt¹⁹⁷ and Pt^{197m}

Subsequent to a 4-hour irradiation of enriched Pt^{196} , a series of gamma spectra of the Pt-fraction was recorded with the 2 cm² Ge(Li) detector. The multi-channel analyzer was programmed to record the spectrum for 30-minutes, print out, and re-cycle. This was continued for a period of 9 hours. The first 30 minute spectrum, taken about 3 hours after the end of irradiation, is shown in fig. 4a. Figure 4b shows a spectrum, started approximately 12 hours after the end of irradiation, and run for 15 hours. In fig. 5, the intensities of the major peaks are plotted as a function of time. The known half-lives of Pt^{197} (18 hr) and Pt^{197m} (~ 97 min) are clearly distinguished, with no evidence of compound decay. The 279- and 346-keV photons arise from Pt^{197m} decay; the 77-, 191- and 268-keV photons arise from Pt^{197} (g.s.) decay.

Other, weaker, photons observed in the early spectra include the 246and 317-keV photons of 30-minute Pt^{199} (produced from Pt^{198} in the target material) and the 99- and 130-keV photons of Pt^{195m} (produced from Pt^{194}). In the later spectra, the 158- and 208-keV photons of Au^{199} and the 293- and 328-keV photons of Ir^{194} are observed in low intensity from these impurities.

The intense 155-keV gamma ray reported by Griesacker and Roy²) as arising from the decays of Pt^{197} and Pt^{197m} is not observed. From the spectrum

-3-

of fig. 4a, an upper limit to its intensity can be set as 0.5% of the 191-keV photon of Pt¹⁹⁷ or as 20% of the 279-keV photon of Pt^{197m}. A similar situation applies with the 202-keV gamma ray reported by these authors. Our Pt^{197 + 197m} spectrum shows that the intensity of the 202-keV photon is less than ~ 5% of the 279-keV photon in Pt^{197m} decay, whereas the spectrum of Griesacker and Roy indicates that the 202-keV gamma is stronger than the 279-keV gamma. It is possible that the 155- and 202-keV gammas reported by Griesacker and Roy were in reality due to the prominent 158- and 208-keV gammas of Au¹⁹⁹, which would have been an impurity in their source since a radio-chemical separation was not performed in their experiments. In fig. 6 we show for comparison the gamma spectrum of the gold chemical fraction from our "Pt¹⁹⁶" + n irradiation; the prominent radiations of Au¹⁹⁹ are obvious.

-4-

A very weak 358-keV gamma-ray of unknown origin was also seen in our early gamma spectra; it decays with a \approx 50 minute half-life.

Table 1 summarizes the gamma-ray data on Pt^{197} and Pt^{197m} . Included in this table is the 53-keV E2 transition of Pt^{197m} found by Sehgal and Emery¹⁰). This transition was not observed in our photon spectrum because of its large conversion coefficient ($e/\gamma \sim 100$).

4. Gamma Spectra-Hg¹⁹⁷ and Hg^{197m}

A series of timed gamma spectra was recorded of the purified Hg fraction from the Au + d bombardment, in a manner similar to that of the Pt^{197} experiments. Figure 7 is a reproduction of the $Hg^{197 + 197m}$ spectrum. All photon lines seen in this spectrum decayed with single periods (the 22-hour half-life of Hg^{197m} or the 66-hour half-life of Hg^{197}) except for the weak 263-keV line, whose assignment is uncertain. Figure 8 shows the decay curves of the various gamma-ray lines, and Table 2 contains a summary of the photon intensity data on Hg^{197} and Hg^{197m} .

-5-

It is interesting to note that, in spite of many previous investigations of these iosmers, the 268-keV gamma had not been reported in the decay of 66-hour $Hg^{197 \ ll}$). The Ge(Li) spectrum of fig. 7 clearly shows its presence, and the decay curves of fig. 8 confirm its 66-hour half-life. In the decay of 22-hour Hg^{197m} , the weak 202-keV gamma-ray had previously been unreported.

A few words may be stated about the 407-keV M4 crossover gamma ray in Au^{197} that has been reported¹³). We find no evidence for this gamma ray either in Hg^{197m} or Pt^{197m} decay, and our data allow the following upper limits of its intensity to be set:

from Pt^{197m} decay: I(409) / I(279) < 0.04;from Hg^{197m} decay: I(409) / I(279) < 0.001.

5. Internal Conversion Coefficients

Measurements were made of the K- and L- internal conversion coefficients of the 191-keV transition of Pt¹⁹⁷ decay and of the 346-keV transition of Pt^{197m} decay. The electron-gamma semiconductor spectrometer used for these measurements has been described elsewhere⁹). Essentially, this device contains Si(Li) and Ge(Li) detectors for observation of the electron and gamma spectra, respectively, and the system is calibrated for quantitative measurements by use of several well-known conversion coefficients.

The conversion coefficient is determined from the following relationship:

 $\epsilon = \frac{A}{A_{\gamma}} \cdot \frac{\eta_{\gamma}(E_{\gamma})}{\eta_{\gamma}(E_{\gamma})}$

UCRL-11607

where Ag is the area under the conversion electron peak.

 A_{γ} is the area under the corresponding gamma-ray peak.

-6-

 $\eta_{\gamma}(E_{\gamma})/\eta_{e}(E_{e})$ is the ratio of detector efficiencies of the Ge and Si detectors for the relevant photon and electron energies. The

normalized efficiency curves are given in reference 9.

The five previously reported measurements of the K- conversion coefficient of the 191-keV transition in Au¹⁹⁷ (summarized in Table 3) show a spread from 0.65 to 2.5. The theoretical K-conversion coefficient of Sliv⁴) for an Ml transition of this energy is 0.95, and that for an E2 transition is 0.185. According to the interpretation of the Au¹⁹⁷ levels as represented in fig. 1, the 191-keV transition can be M1 or an M1-E2 mixture. Thus, it is significant if the true value of this conversion coefficient is established to be higher than 0.95 because this would imply EO admixture in the 191-keV transition, and thus the spin of the 268-keV level would have to be assigned as 1/2 + in contradiction to the model of Braunstein and de Shalit (fig. 1).

The appropriate portions of our $Pt^{197 + 197m}$ electron and gamma spectra are shown in figs. 9a and 9b. From these and similar spectra the data of Table-4 were obtained. Comparison of the experimental conversion coefficient, 0.69 \pm 0.07, with the theoretical values of Sliv yields the result that the 191-keV transition is an M1-E2 mixture with $33 \pm 9\%$ E2 admixture. The K/L ratio, 5.2 ± 0.6, indicates a 22 ± 11% E2 admixture. This result is consistent with the assignment of the 268-keV level as 3/2+ and thus with the core-excitation interpretation of the Au¹⁹⁷ levels as given by Braunstein and de Shalit¹).

In Table 5 are given the data for the 346-keV transition of Pt^{197m} decay. The experimental values, $\epsilon_{\rm K}$ = 3.9 ± 0.4 and K/L = 1.8 ± 0.2, clearly establish the multipolarity of this transition as M4 since the theoretical M4 values⁴) are $\beta_{k}(M4) = 4.2$, K/L = 1.75.

6. Beta Decay of the Mass-197 Isobars; Spin Assignment of Pt¹⁹⁷

It is of interest to compare the decay properties of the isomers of Pt^{197} with those of the Hg^{197} isomers. The Hg^{197} ground-state, with a measured spin $1/2^{16}$), and $P_{1/2}$ assignment, decays to the 77-keV level (98%, log ft = 5.9) and to the 268-keV level (2%, log ft = 7.0)¹¹). From our experimental upper limit on the intensity of the 279-keV gamma ray in Hg^{197} decay (see Table 2), we can set an upper limit for electron-capture to the 279-keV state as 0.022%. This corresponds to a log ft lower-limit of 8.9, which is consistent with the accepted interpretation of this transition as a " $\Delta I = 2$, yes" type.

The situation with Pt¹⁹⁷has not been clear. The Pt¹⁹⁷ ground state has variously been assigned spin 1/2 or 3/2. Most recently, the value 3/2 has been adopted, from an analysis of existing data¹¹). This choice was based on the reported observation of a weak 279-keV photon from Pt¹⁹⁷ decay and its interpretation as arising from a weak beta branch of Pt^{197} to the 279-keV (5/2+) level¹⁵). Our data on Pt¹⁹⁷ support neither this observation nor its interpretation. The radiation from Pt¹⁹⁷ which had been reported¹⁵) as "279 keV" is seen from our gamma spectra actually to be the 268-keV crossover gamma-ray. The 279-keV gamma-ray that is observed in our spectra decays with the 97-minute half-life of Pt^{197m}, not with the 18-hour half-life of Pt¹⁹⁷, and it is possible to set a quite small upper limit on its intensity in Pt¹⁹⁷ decay (see Table 1). From this upper limit we calculate an upper limit for beta decay of Pt¹⁹⁷ to the 279-keV level in Au¹⁹⁷ as 0.013%, which corresponds to a log ft value > 9.7. This log ft limit is consistent with the interpretation of the beta decay branch to the 279-keV level as a " $\Delta I = 2$, yes" type (same as the corresponding Hg¹⁹⁷ transition). Therefore it appears that the correct assignment for the Pt¹⁹⁷ ground-state is 1/2-, as it is for Hg^{197} .

With the $p_{1/2}$ assignment for the Pt¹⁹⁷ ground-state and the known multipolarities of the 53 keV (E2) and the 346-keV (M4) cascade transitions, the isomeric state is assigned as $13/2+(i_{13/2})$.

It is possible from the observed gamma-ray intensities to calculate the beta decay branching of Pt^{197m} with use of the following relationship.

$$\beta \beta^{-} = \frac{1}{1 + \frac{I_{346\gamma} (1 + \epsilon_{346})}{I_{279\gamma} (1 + \epsilon_{279})}} \times 100$$
$$= \frac{1}{1 + \frac{100(1 + 6.7)}{21(1 + 0.3)}} \times 100$$

The conversion coefficient of the 346-keV transition used for this calculation is essentially our measured value (corrected for M, N...conversion) and that used for the 279-keV transition is an estimate based on the assumption of an ML-E2 transition with ~25% E2 admixture.

3.4 ± 1%

A similar calculation for $\mathrm{Hg}^{197\mathrm{m}}$, made with use of the relative intensities of the 164-keV and 279-keV gammas and the theoretical M4 conversion coefficient for the 164-keV transition, yields the result that the electron capture branching of $\mathrm{Hg}^{197\mathrm{m}}$ occurs in 6.8% of the decays. An independent calculation using the relative intensities of the 130-keV and 279-keV gammas yields the value 6.5%.

7. Discussion .

Figure 10 shows the decay schemes of the Pt^{197} and Hg^{197} isomers. Not shown in this figure: is the 7/2+ level of Au^{197} at 548 keV, since this state is not populated by their decays.

The present data have suggested some simplifications in the mass 197 level scheme. In particular, the ground-state spin and parity assignment of ${}_{78}$ Pt¹⁹⁷ appears to be the same as that of ${}_{80}$ Hg¹⁹⁷ (1/2-) and the two corresponding isomeric states also have the same assignment (13/2+) and decay patterns.

Fairly well established is the existence of the quadruplet of excited states in Au¹⁹⁷ with spins 1/2, 3/2, 5/2, and 7/2 (even parity). As mentioned earlier, Braunstein and de Shalit¹) have proposed the simple model of a one-phonon excitation coupled to the $d_{3/2}$ particle state to describe the predominant features of this quadruplet. The model is able to account for the small magnetic moment of the 77 keV (1/2+) state and also to correlate the observed transition probabilities from the one-phonon states to the ground state.

One additional piece of information obtained in the study reported here derives from the observation of the 202 keV radiation that connects the 279 and 77 keV states. The measured relative photon intensity of this transition, which must be an E2 if the state assignments are correct, allows one to calculate the absolute photon transition probability. The resulting value may be compared with predictions of specific nuclear models.

From the measured photon intensities (Table 2) together with the known half-life of the 279-keV state $(1.6 \times 10^{-11} \text{ sec})$ and an estimated conversion coefficient of the 279 keV transition (0.3), we calculate the absolute transition probability of the 202 keV E2 photon to be $4.9 \times 10^8 \text{ sec}^{-1}$. The single proton transition rate, calculated from the Moszkowski formula with a = 1.2×10^{-13} cm instead of 1.45×10^{-13} cm is $0.29 \times 10^8 \text{ sec}^{-1}$. Thus the observed E2 transition

-9-

probability between the 5/2+ and 1/2+ states of the "quadruplet" is more than an order of magnitude greater than the single particle rate. On the other hand, the results of a preliminary calculation of B(E2) by Thankappan and Rasmussen¹⁷) made with use of the wave functions given by de Shalit¹⁸) for the nearly pure $d_{3/2}+$ phonon states indicate that this E2 transition probability would be about one-third the single-particle value. Thus there appears to be a discrepancy between our experimental result and the de Shalit wave-functions.

In a generalized theoretical treatment of the energy levels and moments of spherical nuclei, Kisslinger and Sorensen¹⁹) have included a description of the levels of $_{79}$ Au¹⁹⁷. In their model, the 1/2+ level at 77 keV is composed of about 92% s_{1/2}, 3% d_{5/2} + phonon, and 4% d_{3/2} + phonon, and the 5/2+ level at 279 keV is made up of about 2% d_{5/2}, 0.1% d_{5/2} + phonon, 74% d_{3/2} + phonon, and 8% s_{1/2} + phonon. It is likely that this description could better account for the large observed B(E2)_{5/2} \rightarrow 1/2 than the simpler "core-excitation" model because here there is a contribution to the E2 transition rate from 5/2_{(s1/2}+ phonon) \rightarrow 1/2_(s1/2), which would be expected to be a fast transition.

It is interesting to point out that both the Kisslinger and Sorensen model and the de Shalit model predict magnetic moments for the 77 keV 1/2+ level that are small, and close to the experimental value. Thus in this case it appears that the E2 transition probability may provide a more sensitive test of the two models than the magnetic moment.

Acknowledgments

We acknowledge with gratitude the essential contribution of F. S. Goulding and his colleagues in the development of the semi-conductor counting systems. In this regard, thanks are especially due C. A. Crayne, W. L. Hansen, B. Jarret, G. W. Kilian, D. A. Landis, and C. E. Miner. We are grateful also for the technical assistance rendered by C. J. Butler and J. A. Harris.

Thanks are due Professor J. O. Rasmussen for several enlightening dis-

References 1) A. Braunstein and A. de Shalit, Phys. Letters 1 (1962) 264 2) A. Artna, private communication (Jan. 1963) 3) M. C. Joshi and B. V. Thosar, Proc. Intern. Conf. Nucl. Structure, Kingston, Canada, D. A. Bromley and E. V. Vogt, Ed. Univ. of Toronto Press (1960) p. 623 4) L. A. Sliv and I. M. Band, Coefficients of internal conversion of gamma radiation (USSR Academy of Sciences, Moscow-Leningrad, 1956) Part I: K Shell, Part II: L Shell 5) P. B. Griesacker and R. R. Roy, Nucl. Phys. 50 (1964) 41 6) F. S. Goulding and D. Landis, Proceedings of Conference "Instrumentation Techniques in Nuclear Pulse Analysis", Monterey, April 1963, N.A.S.-N.R.C. publication 1184 F. S. Goulding, UCRL-11302 (Feb. 1964) 7) 8) F. S. Goulding and W. L. Hansen, UCRL-11261 (Feb. 1964) 9) H. T. Easterday, A. J. Haverfield and J. M. Hollander, Nucl. Instr. and Methods (to be published) 10) M. Sehgal and G. T. Emery, private communication (July 1964) 11) See, e.g., Nuclear Data Sheets, published by Nuclear Data Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 12) L. Feuvrais, Ann. Phys. 5 (1960) 181 R. Joly, J. Brunner, J. Halter and O. Huber, Helv. Phys. Acta 28 (1955) 403 13) 14) O. Huber, F. Humbel, H. Schneider, A. de Shalit and W. Zunti, Helv. Phys. Acta 24 (1951) 127 15) V. R. Potnis, C. E. Mandeville and J. S. Berlew, Phys. Rev. 101 (1956) 753 16) W. G. Procter and F. C. Yu, Phys. Rev. 81 (1951) 20

-12-

÷

- 17) V. K. Thankappan and J. O. Rasmussen, unpublished results (July 1964)
- 18) A. de Shalit, Phys. Rev. <u>122</u> (1961) 1530

.)'

19) L. S. Kisslinger and R. A. Sorensen, Rev. Mod. Phys. <u>35</u> (1963) 853

Ph	otons of Pt ¹⁹⁷ and Pt	,197m decay
	Energy (keV)	Relative Intensity
Pt ¹⁹⁷	77	33 ± 3
	191.4	· 100
	268	7 ± 1
	279 (not seen)	< 0.2
Pt ^{197m}	52.95 ^a	a an
	(130) ^b	
	202	≤ 1
	279	21 ± 2
	346	100

-17

Table 1

^aL-subshell conversion electrons observed by Sehgal and Emery¹⁰). Substantial conversion research by Setupate Killing (γ).

^bPhotons of this E3 transition not seen because of large conversion coefficient (e/ γ ~ 25).

	Table 2 Photons of Hg^{197} and Hg^{1}	9 ^{7m} decay
	Energy (keV)	Relative Intensity
Hg ¹⁹⁷	77	•
	191	100
	268	7.6 ± 0.7
	279 (not seen)	< 2
Hg ^{197m}	134	100
•	165	0.95 ± 0.1
	202	0.23 ± 0.03
	279	15.7 ± 1

 \mathcal{O}

Ŭ

Table 3

-16-

Reported values of the K conversion coefficient of the 191-keV transition in Au¹⁹⁷

€ _K	Reference	•
0.65 ± 0.15	12	
0.90 ± 0.10	13	
≈ 1.7	14	
2.0 ± 0.5	3	• .
2.5	15	

Run	$\mathbf{A}_{\mathbf{K}}/\mathbf{A}_{\mathbf{\gamma}}$		₽ _K ∕₽ _L	$K/L = (a)$ $\frac{A_{K}}{A_{L}} \cdot \frac{\eta_{L}}{\tau_{i_{K}}}$
l	1.141	0.705	5.87	4.95
2	1.025	0.633	6.72	5.67
3	1.200	0.742	4.78	4.04
4	1.149	0. 710	6.23	5.26
5	1.088	0.672	6.54	5.52
(6)	1.051	0.649	6.68	5.64
7	1.104	0.6 82	• · · · · · · ·	
	ε	= 0.69±0.07	· · · ·]	$K/L = 5.2 \pm 0.6$

Table 4. K-conversion coefficient and K/L conversion ratio of 191-keV transition in Au¹⁹⁷

(a)_{Gamma-ray} and electron efficiency values were taken from Figures 6 and 7 of Reference 9.

					:	
Run	Α _K /Α _γ	$\frac{\epsilon}{\frac{A_{K}}{A_{\gamma}}} \cdot \frac{\eta_{\gamma}}{\eta_{K}}$	^A K∕A ^I	.	$\frac{K/L}{\frac{A_{K}}{A_{L}}} \cdot \frac{\eta_{L}}{\eta_{K}}$	(a)
1	16.03	3.62	2.31		2.16	
2 3	16.42 19. 0 0	3.71 4.29	1.75 1.80		1.64 1.68	
		3.9±0.4		· · · · ·	1.8±0.2	
(a) _{Gamma-1} Reference	ray and elect 9.	ron efficiency va	llues were take	en from Fi	gures 6 au	id 7 of
					· · · · · · · ·	
					· • · · ·	

Table 5. K-conversion coefficient and K/L conversion ratio of 346-keV transition in Pt. 97m

-16b-

Figure Captions

-17-

•	Figure 1.	Energy levels of Au ¹⁹⁷ arranged according to the "core-excitation
	•	model of Braunstein and de Shalit (reference 1).
	Figure 2.	Co^{57} gamma-ray spectrum taken with 2 cm ² × 7 mm deep Ge(Li) detector
	·	system.
	Figure 3.	Electron and gamma-ray lines of the 279-keV transition of Hg^{203}
	•	recorded with the conversion-coefficient spectrometer.
	Figure 4a.	Gamma-ray spectrum of sample containing principally Pt^{197} and Pt^{197m} ,
		observed with 2 cm ² \times 7 mm deep Ge(Li) detector system. This spectrum,
	•	the first in a series of sixteen, was recorded 3 hours after end of
		irradiation
	Figure 4b.	Gamma spectrum No. 16 of series of fig. 4a, recorded 12 hours after
	· · ·	end of irradiation
	Figure 5.	Decay curves of the various gamma-ray lines of Pt^{197} and Pt^{197m} shown
		in figs. 4a and 4b.
	Figure 6.	Gamma-ray spectrum of Au ¹⁹⁹ , observed with 2 cm ² \times 7 mm deep Ge(Li)
		detector system.
	Figure 7.	Gamma-ray spectrum of sample containing $Hg^{197} + Hg^{197m}$, observed
		with 2 cm ² \times 7 mm deep Ge(Li) detector system.
	Figure 8.	Decay curves of the various gamma-ray lines of ${\rm Hg}^{197}$ and ${\rm Hg}^{197m}$
		shown in fig. 7.
	Figure 9a.	Electron spectrum of sample containing Pt^{197} and Pt^{197m} , recorded
		with 1 $cm^2 \times 3$ mm deep Si(Li) detector of the conversion-coefficient
		spectrometer.

Figure 9b. Gamma-ray spectrum recorded simultaneously with the electron spectrum of fig. 9a by the $4 \text{ cm}^2 \times 5 \text{ mm}$ deep Ge(Li) detector of the conversion-coefficient spectrometer.

Figure 10. Decay scheme of the A = 197 isomers of Hg and Pt. The 7/2+ level in Au¹⁹⁷ at 548 keV is not shown in this figure.

 $(\cdot$

-19-

- 4

MUB-3888

Fig. 1

MUB-3715

Fig. 2

MUB-3717

Fig.3

 \mathcal{O}^{*}

Fig.4a

J'

Fig.4b

V

MUB-3891

Jª

MUB-3892

Fig.6

AU)

Fig. 7

MUB-3894

Fig.8

2.

Ju

40

MUB-3720

¥.

MUB-3721

Fig.9b

54

MUB-3895

¥

Fig. 10

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

