
UC Irvine
ICS Technical Reports

Title
An analysis of test data selection criteria using the RELAY model of error detection

Permalink
https://escholarship.org/uc/item/1xq3z656

Authors
Richardson, Debra J.
Thompson, Margaret C.

Publication Date
1987

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1xq3z656
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

An Analysis of Test Data Selection Criteria
U sin'g- the RELAY Model of Error Detection

(Technical Report 88-05)

Debra J._Richardsont
Margaret C. Thompson+

July 1987

t Information and Computer Science Department
University of California
Irvine, California 92717

+Computer and Information Science Department
University of Massachusetts

Amherst, Massachusetts 01003

Keywords: software testing, test data selection, fault-based testing, criteria evaluation

This work was supported by grants DCR-8404217 from the National Science Foundation, CCR-87044 78 from the
National Science Foundation with cooperation from the Defense Advanced Research Projects Agency (ARPA Order
6104), CCR-8704311 from the National Science Foundation with cooperation from the Defense Advanced Research
Projects Agency (ARPA Order 6108), F30602-86-C-0006 from the Rome Air Development Center.

Abstract

RELAY, a model for error detection, defines revealing conditions that guarantee that a fault
originates an error during execution and that the error transfers through computations and data
flow until it is revealed. This model of error detection provides a framework within which the
capabilities of other testing criteria can be evaluated. In this paper, we analyze three test data
selection criteria that attempt to detect faults in six fault classes. This analysis shows that none
of these criteria is capable of guaranteeing error detection for these fault classes and points out
two major weaknesses of these criteria. The first weakness is that the criteria do not consider the
potential unsatisfiability of their rules; each criterion includes rules that are sufficient to cause errors
for some fault classes, yet when such rules are unsatisfiable, many errors may remain undetected.
Their second weakness is failure to integrate their proposed rules; although a criterion may cause a
subexpression to take on an erroneous value, there is no effort made to guarantee that the enclosing
expression evaluates incorrectly. This paper shows how the test data selection criterion defined by
RELAY overcomes these weaknesses.

1 Introduction

Many testing techniques [Bud83,Fos80,Ham77,How85,Mor84,Zei83,Wey81] are directed toward the

detection of errors that might result from commonly occurring faults in software. These "fault­

based" testing techniques are often sufficient to select data that cause the computation of erroneous

values for particular faults but do not guarantee that these erroneous results are reflected in the

output. Instead, the erroneous intermediate values are often masked out by later computations.

This extremely common occurence is a type of "coincidental correctness,'' which is the bane of

testing. Coincidental correctness occurs when no error is detected, even though a statement con­

taining a fault has been executed; thus the effort put into selecting the data and the associated

execution is for naught.

This paper reports on a study that analyzes several "fault-based" testing techniques in terms

of their abilities to actually reveal errors. This analysis is based on the RELAY model of error

detection, which formalizes a fault-based approach to testing. RELAY defines revealing conditions

that guarantee that a fault originates an error during execution- and that the error transfers through

all affected computations until it is revealed. The next section summarizes the RELAY model; more

detail is provided in a related paper[RT86]. The third section briefly describes the instantiation

of the model to develop revealing conditions for a particular class of faults. The origination and

transfer conditions for six fault classes are found in Appendix A. In the fourth section, we present

an evaluation of the error detection capabilities of three proposed test data selection· criteria for

these six fault classes using the model. In summary, we discuss the implications of the analysis

and our future plans for RELAY.

2 RELAY: A Model of Error Detection

The RELAY model has three principal uses. First, it is a test data selection criterion that when

used to test a program is capable of guaranteeing the detection of errors that result from some

chosen class or classes of faults. Second, given test data that has been selected by another criterion,

RELAY can be used as a measurement technique for determining whether that test data detects

such errors. Third, RELAY provides a method for analyzing .the ability of other test data selection

1

criteria to guarantee detection of errors for classes of faults. It is this third application that is the

focus of this paper.

The errors considered within the RELAY model are those caused by some chosen class or classes

of faults in the module's source code. The fault-based approach to testing relies on an assumption

that the module being tested bears a strong resemblance to some hypothetically-correct module.

Such a module need not actually exist, but we assume that the tester is capable of producing

a correct module from the given module and knowledge of the errors detected. As currently

formulated, RELAY is limited to the detection of errors resulting from a single fault.

A node containing a fault may be executed yet not reveal an error; the module appears correct,

but just by coincidence of the test data selected. It is also possible that the tested module produces

correct output for all input despite a discrepancy between it and the hypothetically-correct module.

In this case, the module is not merely coincidentally correct, it is correct. Thus, a discrepancy

is only "potentially" a fault. Likewise, incorrect evaluation of an expression is only "potentially"

an error since the erroneous value may be masked out by later computations before an erroneous

value is output. A potential fault, denoted fn, is a discrepancy between a node n in the tested

module M and the corresponding node n* in the hypothetically-correct module M* - that is,

n -/= n*. The evaluation of some expression EXP1 in M, which. contains a potential fault, a~d

the corresponding expression EXP* in M* results in a potential error when exp -/= exp*. To

discover a potential fault, erroneous results must appear for some test datum which requires the

use of some test oracle that specifies correct execution of the module[How78,Wey82].

A test oracle might be a functional representation, formal specification, or correct version of

the module or simply a tester who knows the module's correct output. In any case, an oracle

is a relation that specifies acceptable output for any input. Execution of a module reveals an

output error when the input-output pair is not in the oracle relation. A "standard" oracle judges

the correctness of the module's output for valid input data. Testers often have a concept of the

"correct" behavior of a module, however, in addition to its correct output. Rather than waiting

until output is produced to find errors, the tester might check the computation of the module at

1 Upper case [EXP] is used here to denote the source-code expression, while lower case [exp] denotes the evaluated

expression.

2

l:X := U * V

2:U := V**2

false
4:if A< B

true

5:W:=Y*Z
7:W:=X*B

6:output X

8:output W

Figure 1: Module for Application of RELAY

some intermediate point, as one does when using a run-time debugger. This approach to testing

can be performed with an oracle that includes information about intermediate values that should

be computed by the module; this information might be derived from some correct module, an

axiomatic specification, monitoring of assertions, or run-time traces [How78]. Let us associate with

the initial execution of a module a context, which contains the values of all variables after that

execution. A context oracle is a relation that relates an initial execution to one or more acceptable

contexts. Execution reveals a context error when the context is not accepted by the context

oracle.

RELAY is a model that describes the ways in which a potential fault manifests itself as an error.

Given some potential fault, a potential error originates if the smallest subexpression of the node

containing the potential fault evaluates incorrectly. Consider the module in Figure 1, for example.

Suppose that the statement X := U * V at node 1 contains a variable reference fault and should be

X := B* V. A potential error originates in the smallest expression containing the potential fault,

which is the reference to U, whenever the value of U differs from the value of B.

3

It is not only important to originate an error but also to ensure that it is not masked out by

later computations. A potential error in some expression transfers to a "super"-expression that

references the erroneous expression if the evaluation of the "super"-expression is also incorrect.

Take another look at Figure 1; if V holds the value zero, the potential error in U that originates

in node 1 does not transfer to affect the assignment to X; the potential error transfers, on the

other hand, whenever V is nonzero. To reveal a context error, a potential fault must originate a

potential error that transfers through all computations in the node thereby causing an incorrect

context. This is termed computational transfer. To reveal an out:put error, a potential fault

must cause a context error that transfers from node to node until an incorrect output results. This

transfer includes data flow transfer, whereby a potential error reaches another node - that is,

the potential error is reflected in the value of some variable that is referenced at another node

- as well as computational transfer within the nodes that an erroneous value reaches. Using the

example of Figure 1 again, the potential error in X must transfer through data flow to a use, say at

node 7, transfer through the computations at node 7 to produce an error in W, and then transfer

to the output of W at node 8. We know unequivocally that the module is incorrect only if an

output error is revealed. Thus, a potential fault is a fault only if it produces incorrect output for

some test datum.

Figure 2 illustrates the RELAY model of error detection and how this model provides for the

discovery of a fault. The conditions under which a fault is detected are 1) origination of a potential

error in the smallest containing subexpression; 2) computational transfer of that potential error

through each operator in the node, thereby revealing a context error; 3) data flow transfer of that

context error to another node on the path that references the incorrect context; 4) cycle through

(2) and (3) until a potential error is output. If there is no single test datum for which a potential

error originates and this "total" transfer occurs, then the potential fault is not a fault, and the

module containing the potential fault is equivalent to some hypothetically-correct module.

As shown in Figure 3, the RELAY view of error detection has an illustrative analogy in a

relay race, hence the name of our model. The starting blocks correspond to the fault location.

The take off of the first runner, as the gun sounds the beginning of the race, is analogous to the

origination of a potential error. The runner carrying the baton through the first leg of the race

4

data flow
transfer

context
error

Figure 2: RELAY Model of Error Detection

is the computational transfer of the error through that first statem~nt. The successful completion

of a leg of the· race has a parallel in revealing a context error, and the passing of the baton from

one runner to the next is analogous to the data flow transfer of the error from one statement

to another. Each succeeding leg of the race corresponds to the computational transfer through

another statement. The race goes on until the finish line is crossed, which is analogous to the test

oracle revealing an output error.

Our goal, of course, is to complete the relay race - that is, to detect errors. To this end, the

RELAY model proposes the selection of test data that originates an error for any potential fault

of some type and transfers that error until it is revealed. Using the concepts of origination and

transfer, RELAY develops remmling conditions that are necessary and sufficient to guarantee error

detection - that is, any test data set that satisfies these conditions contains some test datum for

which a potential error originates and transfers until it is detected by the oracle. Sufficient means

that if the module is executed on data that satisfies the conditions and the node is faulty, then an

error is revealed. Necessary, on the other hand, means that if an error is revealed then the module

must have been executed on data that satisfies the condition and the node is faulty. When these

conditions are instantiated for a particular type of fault, they provide a criterion by which test

data can be selected for a program so as to guarantee the detection of an error caused by any fault

5

of that type.

·:Jncexc . 1

ror ft I

"
; -,/ ... ______ _

1 data flow
transfer CONTEXT

ORACLE

:omoutat.ona1
:ransfer

' ~- ------ .(j!}'t'
~ --~~
comoutational data 11:~

transfer transfer 1
/

failure

·----~----

Figure 3: The Testing Relay

Revealing conditions are defined for a potential fault independent of where the node occurs

in the module. The test data selected, however, must execute the node within the context of the

entire module. Thus, for a potential fault at node n, such test data are restricted to the domain

of n, which is defined by the union of the domains of all initial paths ending at n. Because these

conditions are both necessary and sufficient, if the conditions are infeasible within that domain;

then no error can be revealed and the potential fault is not a fault. Although, in general, the

feasibility problem is undecidable, in practice, it can usually be solved.

First, suppose that we are attempting to detect a particular fault f n in a node n. This is

somewhat unrealistic, since if orre explicitly knew the location of a fault, one would fix it. We will

address this issue in a moment, after some groundwork is laid.

To reveal an output error, we must first generate a context error at the node containing the

fault; thus, let us first consider the conditions required to guarantee the detection of a context

error. By requiring test data to distinguish the faulty subexpression from the correct one, the

origination condition for a potential fault f n guarantees that the smallest subexpression con­

taining fn originates a potential error. A potential error originating at the smallest subexpression

containing a potential fault must transfer to affect evaluation of the entire node. By requiring test

6

data that distinguishes the parent expression referencing a potential error from the parent expres­

sion referencing the correct subexpression, the computational transfer condition guarantees

that a potential error transfers through a parent operator. To affect the evaluation of a node, test

data must satisfy the computational transfer condition for each operator that is an ancestor of the

subexpression in which the potential error originates thereby producing a context error. The node

transfer condition is the conjunction of all such computational transfer conditions. To guaran­

tee a fault's detection through revealing a context error, a single test datum must satisfy both the

origination and node transfer conditions. The revealing condition for a context error resulting

from a potential fault fn occurring in node n is the conjunction of the origination condition and

the node transfer condition for fn and n.

As an example of these conditions for error detection, consider again the module in Figure 1. If

the statement X := U * V at node 1 should be X := B * V, then the origination condition is [u f. b].

This originated potential error must transfer through the multiplication by V; the corresponding

computational transfer condition is (u * v f. b * v), which simplifies to (v f. 0). This value must

then transfer through the assignment to X, which is trivial. Thus, the revealing condition for a

context error resulting from this potential fault is [(u f. b) and (v f. O)].

Testing is primarily concerned with the generation of an output error as the manifestation of

a fault and not only with incorrect values at intermediate points in the module. Thus, we must

guarantee that a context error transfers to affect execution of the module as a whole. A context

error is evidenced through a potential error in at least one variable. By requiring test data that

causes the execution of a statement referencing a variable that contains a potential error and

that causes the smallest subexpression containing that reference to result in a potential error, a

data flow transfer condition describes the requirements for transfer of a context error from one

statement to another. To reveal an output error, we must execute a def-use chain that begins with

the node containing the potential fault and ends with the output of a variable. A def-use chain

is a chain of alternating definitions and uses of variables, where each definition reaches the next

use in the chain and that use defines the next variable in the chain. Satisfaction of the data flow

transfer conditions will force execution of such a chain. In addition, the subsequent node transfer

conditions for the references forced by data flow as well as the context error revealing condition

7

at the location of the fault must be satisfied. A chain transfer condition for a def-use chain is

the conjunction of the data flow transfer conditions for all pairs in the def-use chain and the node

transfer conditions for all uses in the def-use chain. The revealing condition for an output error

is the conjunction of the context error revealing condition and the chain transfer condition for the

def-use chain from the fault location to the output.

Consider again the potential variable reference fault at node 1 in Figure 1. One def-use chain

from the fault location to an output consists of the definition of X at node 1, followed by a use

of X at node 7, where W is defined, followed by a use of W in the output statement at node 8.

The potential error in X transfers through data flow to node 7 whenever the false branch of the

conditional at node 4 is taken; thus, the data flow transfer condition is (a 2:: b). Reference to the

potential error in X must transfer through the multiplication by B to the assignment of Wat node

7, which entails a node transfer condition of (b =/= 0). Thus, for this def-use chain, the chain transfer

condition is [(a~ b) and (b =/= O)]. Recall that the context error revealing condition is [(u =/= b) and

(v =/= O)], creating an output error revealing condition for this chosen def-use chain of [(u =/= b) and

(v =/= 0) and (a 2:: b) and (b =/= 0)].

As currently defined, derivation of revealing conditions is dependent on knowledge of the correct

node. Since this is unlikely, an alternative approach is to assume that any node, in fact any

subexpression of any node, might be incorrect and consider the potential ways in which that

expression might be faulty. By grouping these potential faults into classes based on some common

characteristic of the transformation, we define conditions that guarantee origination of a potential

error for any potential fault of that class. A class of potential faults determines a set of alternative

expressions, which must contafn the correct expression if the original expression indeed contains a

fault of that class. To guarantee origination of a potential error for a class, the potentially faulty

expression must be distinguished from each expression in this alternate set. For each alternative

expression, then, our model defines an origination condition, which guarantees origination of a

potential error if the corresponding alternate were indeed the correct expression. For an expression

and fault class, we define the origination condition set, which guarantees that a potential

error originates in that expression if the expression contains a fault of this class. The origination

condition set contains the origination condition for each alternative expression.

8

For each alternative expression, a potential error that originates must also transfer through each

operator in the node to reveal a context error and through data flow and subsequent computations

to reveal an output error. The transfer conditions, which are determined by these subsequent

manipulations of the data, are independent of the particular alternate. Thus, for a fault class,

each alternate defines a revealing condition, which is the conjunction of the origination condition

and the transfer conditions. The revealing condition set contains a revealing condition for each

alternate in the alternate set and is necessary and sufficient to guarantee that a potential fault of

a particular class reveals an output error.

Once again, consider the module in Figure 1 and the statement X := U * V, but now suppose

that the reference to U might be faulty but we do not know what variable should be referenced.

To guarantee origination of a potential error for an incorrect reference to U, we must select test

data such that for each alternative variable, U 2 , T contains a test datum where the value of U

is different from the value of U at node 1. The possible alternates depend on what other variables

may be substituted for U without violating the language syntax. If we assume that all variables

referenced in this module are of the same type, then there are seven alternates and hence seven

origination conditions. The origination condition set is {[u :/= u] I U E {A,B, V, W,X,Y,Z}}. The

node transfer condition for node 1 is [v :/= O]. The chain transfer condition for the use of X to

define W at node 7 and the output of W at node 8 is [(a~ b) and (b :/= O)]. Thus, the set {[(u :/= u

and (v :/= 0) and (a ~ b) and (b :/= O)] I U E {A, B, V, W, X, Y, Z}} is a sufficient revealing condition

set for this potential fault. This set is sufficient but not necessary because all def-use chains are

not considered.

The RELAY model of error detection is based on the generic revealing condition sets just

defined. The model is applied by first selecting a fault classification. Given a particular class of

faults, the generic origination and transfer conditions are instantiated to provide conditions specific

to that class. The next section summarizes the instantiation of RELAY for six classes of faults.

The instantiated origination and transfer conditions can be evaluated for the nodes in a module's

control flow graph to provide the actual revealing condition sets that must be satisfied to guarantee

the detection of any fault in the chosen classification. The actual revealing conditions for a module

2 We use the bar notation to denote an alternate.

9

can be used to measure the effectiveness of a pre-selected set of test data and/or to select a set ·

of test data. A simple example of RELAY as a test data selection criterion is presented at the

end of the next section. The instances of the origination and transfer conditions can also be used

to evaluate the ability of another test data selection criterion to guarantee detection of an error

caused by the chosen classes of faults. RELAY is applied in this fashion to analyze three test

data selection criteria for the six fault classes in section four. This analysis demonstrates the :flaws

inherent in most techniques and shows the advantages provided by the use of RELAY for test data

selection.

3 Instantiation of RELAY

In this section, we discuss the instantiation of the RELAY model for a class of faults. The de­

velopment of the revealing condition set for a class of faults consists of the development of the

origination condition set and of any applicable transfer conditions. This instantiation process is

illustrated for the class of relational operator faults. We derive the origination condition set for

this class and the computational transfer conditions through boolean operators since a relational

expression may be contained within boolean expressions.

The class of relational operator faults is one of six for which RELAY is instantiated in [RT86].

The six classes are constant reference fault,. variable reference fault, variable definition fault, boolean

operator fault, relational operator fault, arithmetic operator fault. These ·six classes were selected

because of their relevance to a number of test data selection criteria, which include those criteria

analyzed here. The application presented provides revealing conditions for context errors for single

statements potentially containing a fault in one of the six classes. Each ofthe six classes is a class

of atomic faults, where a (potential) fault fn is atomic· if the node n differs from the correct node

n* by a single token. Moreover, the restriction to context errors means that only computational

transfer need be. considered at this time.

To determine the revealing conditions for a class of potential faults, we must instantiate the

origination condition set for the class as well as the applicable computational transfer conditions.

Thus, for the six fault classes, we derive origination conditions for each class as well as transfer

conditions through all operators applicable to these faults - that is, assignment operator, boolean

10

test data relation
expression evaluated (exp1 <exp2) (exp1 = exp2) (exp1>exp2)

(EXP1 s EXP2) true true false
(EXP1<EXP2) true false false

(EXP1 = EXP2) false true false
(EXP1 :/;EX P2) true false true
(EXP1>EXP2) false false true

(EX P1 2:: EX P2) false true true

Table 1: Relational Operator Evaluation

operator, arithmetic operator, and relational operator.

3.1 Origination Conditions

An origin:ation condition guarantees that the smallest expression c~ntaining a potential fault pro­

duces a potential error. Thus, given the smallest expression SEX P containing a potential fault

and an alternative expression SEX P, the origination condition guarantees that sexp :/; sexp. The

origination condition set contains the origination condition for each alternate.

Consider the class of relational operator faults, where a potential error may result when a rela­

tional operator is mistakenly replaced with another relational operator. We consider six relational

operators~ <, ::;, =, :j;, 2::, >. Given a relational expression (EX P1ropEX P2), if the relational oper­

ator rop is faulty, then the correct expression must be in the alternate set {(EX P1ropEX P2) I rop

is a relational operator other than rop } .

As an example, let us construct. the origination condition set for the relational operator <. We

must determine the origination condition that distinguishes (EX P1 < EX P2) from each alternate

(EX P1 rop EX P2). For any relational expression, there are three possible relations for which test

data may be selected - (exp1 < exp2), (exp1 = exp2), (exp1 > exp2). Table 1 enumerates the

evaluation of any relational expression with data satisfying these three relations. For illustration, let

us construct the origination condition for alternative operator =. As seen from Table 1 the original

expression, (EX P1 < EX P2), and alternative expression, (EX P1 = EX P2), evaluate differently

for any test datum satisfying either the relation (exp1 < exp2) or the relation (exp1 = exp2);

11

thus the condition (exp1 :::; exp2) is sufficient for origination of a potential error. For a test datum

satisfying the third possible relation, (exp1 > exp2) the original and alternate expressions evaluate

the same; hence, the condition (exp1 :::; exp2) is also necessary for origination of a potential error.

The origination condition to distinguish between EX P1 < EX P2 and EX P1 = EX P2, therefore, is

[exp1 :::; exp2]. The origination conditions for the other alternative operators are derived similarly.

The origination conditions for relational operator faults are summarized in Table 2.

operators unsimplified origination condition origination condition
<,:::; [exp1 = exp2] [exp1 = exp2]
<,= [(exp1 <exp2) or (exp1 = exp2)] [exp1 :::; exp2]
<,~ [exp1 >exp2] [exp1 >exp2]
<,~ [(exp1 <exp2) or (exp1 = exp2) or (exp1>exp2)] [true J
<,> [(exp1 <exp2) or (exp1 >exp2)] [exp1 ~ exp2]
:::;,= [ex'P1 <exp2] [exp1 <exp2]
:::;,~ [(exp1 = exp2) or (exp1>exp2)] [(exp1 ~ exp2]
:::;,~ [(exp1 <exp2) or (exp1>exp2)] [exp1 -1- exp2]
:::;,> [(exp1<exp2) or (exp1 = exp2) or (exp1>exp2)] [true J
=,~ [(exp1<exp2) or (exp1 = exp2) or (exp1>exp2)] [true]
=,~ [exp1 >exp2] [exp1 >exp2]
=,> [(exp1 = exp2) or (exp1 >exp2)] [exp1 ~ exp2]

~'~ [(exp1 <exp2) .or (exp1 = exp2)] [exp1 :::; exp2]
~,> [(exp1 <exp2)] [exp1 <exp2]
~,> [exp1 = exp2] [exp1 = exp2]

Table 2: Origination Conditions for Relational Operator Faults

The origination condition set for the class of relational operator faults for a particular operator

is the set of all origination conditions that distinguish that original operator from some alternate.

For a less than (<) fault, for instance, the origination condition set can be qerived from Table 2

as {[exp1 = exp2], [exp1:::;exp2], [exp1>exp2], [true], [ex'P1~exp2]}. The origination condition sets

for other relational operator faults are derived similarly and stated in Table 3.

3.2 Transfer Conditions

A computational transfer condition guarantees that a potential .error in an operand of an ex­

pression is not masked out by the computation of a parent operator. Thus, given an expression

12

operator

<

<

>

>

origination condition set
{[exp1 = exp2], [exp1sexp2], [true],

[(exp1>exp2)], [exp1 #exp2]}
{[exp1 = exp2], [exp1 <exp2], [true]

[exp1~exp2], [exp1 #exp2]}
{[exp1sexp2], [exp1 <exp2], [true],

[exp1>exp2], [exp1~exp2]}
{[exp1 > exp2], [exp1~exp2], [true],

[exp1sexp2], [exp1 <exp2]}
[true], [exp1#exp2], [exp1>exp2],

{[exp1sexp2], {[exp1 = exp2]}
{[exp1#exp2], [true], [exp1 <exp2],

[exp1~exp2], [exp1=exp2]}

Table 3: Origination Condition Sets for Relational Operator Faults

op(... , EXP, ...), where a potential error exists in EXP, the transfer condition guaran_tees that

op(... , exp, ...) also produces a potential error. More specifically, given EXP containing a poten-

tial fault and EXP an alternate, the existence of a potential error in exp implies that exp # exp,

and the transfer condition guarantees that op(... , exp, ...)# op(... , exp, ...).

Let us now continue with our illustration for relational operator faults. A relational expressi~n

may be contained within a boolean expression; thus, in order to develop revealing condition sets

for the class of relational operator faults, we must also develop transfer conditions through boolean

operators and must consider both unary and binary boolean operators.

Consider first transfer through a unary boolean operator. The unary boolean transfer condition

guarantees that not (EX P1) is distinguished from not (EX P1), where EX P1 and EX P1 are

distinguished. From Table 4, we see that no additional conditions are necessary for transfer of

a potential error in a unary boolean expression because not (exp1) # not (exp1) if and only if

exp1 # exp1.

The binary boolean transfer conditions guarantee both that (EX P1 bop EX P2) is distinguished

from (EXP1 bop EXP2) and that (EXP2 bop EXP1) is distinguished from (EXP2 bop EXP1),

whenever EX P1 and EX P1 are distinguished. Since the binary boolean operators are commu-

13

exp1 exp1 exp2 exp1 and exp2 exp1 and exp2 exp1 or exp2 exp1 or exp2
true false true true false true true
true false false false false true false
false true true false true true true
false true false false false false true

Table 4: Boolean Expression Evaluation

tative, we need not develop separately the transfer conditions for a potential error in the right

operand. The binary boolean transfer conditions depend upon the boolean operator. For the

boolean operator and, we see from Table 4 that (exp1 and exp2) i= (exp1 and exp2) only when

exp2 = true. Thus, exp2 must be true to guarantee that a potential error .in exp1 transfers through

the boolean operator and. For the boolean operator or, notice that (exp1 or exp2) i= (exp1 or exp2)

only when exp2 = false. Hence, exp2 must be false to guarantee transfer of the potential error in

exp1 through the boolean operator or.

The transfer conditions for boolean operators are summarized in Table 5. The transfer coridi-

operator expression transfer condition
not not(exp1) i= not(exp1) true
and exp1 and exp2 i= exp1 and exp2 exp2 =true
or exp1 or exp2 i= exp1 or exp2 exp2 =false

Table 5: Transfer Conditions for Boolean Operators

tions through the operators applicable to the six fault classes are summarized in Appendix A.

3.3 Revealing Conditions

In this section, we illustrate the formation of context error revealing conditions for the class of

relational operator faults and demonstrate how these conditions can be used to select test data.

Consider the module fragment and that portion of the control flow graph shown in Figure 4.

The relational operator at node 2 is potentially faulty. The origination condition set for the

class ofrelational operator faults for< in node 2 is {[x*y = z], [X*Y > z], [x*y:::; z], [x*y i= z], [true

14

X, Y, Z: integer
B, C : boolean
1 input X, Y, Z,B, C
2 if (X * Y < Z or B) and C then

@

@
@

0 z
XY

Figure 4: Module Fragment

8
c

B

]}. Examinati9n shows that the origination conditions [x * y = z] and [x * y > z] are sufficient to

satisfy the entire set. Thus, a sufficient origination condition set is {[x * y = z], [x * y > z]}. A

potential error resulting from the < in node 2 must transfer through the boolean operators or and

and. The node transfer condition is simply

(b =false) and (c = true).

The origination condition set combines with the node transfer condition to form the following

revealing condition set

{[(x * y = z) and (b =false) and (c =true)],
[(x * y>z) and (b =false;) and (c = true)] }.

We are now in a position to select a test data set that satisfies the revealing condition set. A

test datum that satisfies a revealing condition must be selected within the domain of the module;

further it must be selected such that the revealing conditions are satisfied before execution of the

node. Because the node for which we have developed revealing conditions is one of the first nodes

of the module, selection of test data that satisfies the conditions is relatively easy. There are many

possible test data sets that satisfy the revealing conditions developed for this example. Consider a

test data set that contains the following two data (l,2,2,false, true) and (l,3,2,false, true). The

15

first datum satisfies the first revealing condition in the revealing condition set, and the second

datum satisfies the second revealing condition. If the < operator should have been some other

relational operator, then execution for these two test data will reveal a context error. If no context

error is revealed, then the < operator is correct.

4 Analysis of Related Test Data Selection Criteria

RELAY provides a sound method for analyzing the error detection capabilities of a test data

selection criterion in terms of its ability to guarantee detection of an error for some chosen class

or classes of faults. A test data selection criterion is usually expressed as a set of rules that test

data must satisfy. Our analysis approach evaluates a criterion in terms of the relationship between

its rules and the revealing conditions defined. by RELAY for the six fault classes. The revealing

conditions are both necessary and sufficient to guarantee error detection, so this is an unbiased

means of analysis. A rule or combination of rules is judged either to be insufficient to reveal an

error, to be sufficient to reveal an error, or to guarantee that an error is revealed. This analysis is

completely program independent.

In this section, we use the origination and transfer conditions for the six fault classes (pro­

vided in Appendix A) to analyze the error detection capabilities of three fault-based test data

selection criteria - Budd's Error-Sensitive Test Monitoring [Bud81,Bud83), Howden's Fault­

based Functional Testing [How82,How85,How87], and Foster's Error Sensitive Test Case Analysis

[Fos80,Fos83,Fos84,Fos85]. Each of these criteria was selected because its author claims that it

is geared toward detection of ,faults of the six classes previously discussed. Our analysis shows,

however, that none of the criteria guarantees detection of these types of faults. The analysis also

points out two weaknesses .that are common to all three criteria and demonstrates how RELAY

rectifies these common pro bl ems.

As noted, the application of RELAY discussed in this paper is limited to revealing context

errors. Thus, the revealing condition set is necessary for the detection of a fault (as opposed to a

potential fault), but not sufficient. This is because the context error introduced by satisfaction of

these conditions may still be masked out by later computations on the path and thus not transfer

16

to produce an output error. To describe the conditions under which a criterion guarantees the

detection of a fault of a particular class through an output error, the revealing condition set must

be augmented to include data flow transfer conditions. The analysis of the test data selection

criteria to follow does not consider whether or not these criteria guarantee the detection of a fault

through revealing an output error. As we shall see, however, this limitation is of little consequence,

since for the most part, the criteria do not guarantee the revealing of a context error.

For each criterion, we first define it in the terminology provided in Section 2. Next, we examine

the criterion's ability to satisfy the origination condition sets for each class of faults and also its

ability to satisfy transfer conditions through the applicable operators. Then, for each class of

faults, we discuss the circumstances in which the criterion will guarantee revelation of a context

error, which requires that a single test datum must be selected to satisfy both a specific origination

condition in the origination condition set and the node transfer condition. Thus, although a

criterion may include rules that satisfy the origination condition set and the applicable transfer

conditions, if the criterion does not explicitly force all such transfer conditions to be satisfied by

the same data that satisfies the origination condition sets for a class of faults, revelation is not

guaranteed for that class. In the case where only origination is guaranteed, revelation of a context

error is guaranteed only when the potential fault is in the outermost expression of the statement or

is contained only within expressions for which transfer conditions are trivial (e.g., unary boolean).

Furthermore, recall that the test data selected for a particular node n must be in DOMAIN(n).

If no such data exists to satisfy the application of a particular rule in a criterion, then the rule is

unsatisfiable for n. When no alternative selection guidelines are proposed, we do not assume the

selection of any test data for an unsatisfiable rule.

In the discussion that follows, we provide counter examples to demonstrate when a criterion does

not guarantee origination or transfer. When it is obvious that a criterion guarantees origination or

transfer (e.g., a rule of a criterion is equivalent to an origination or transfer condition), we merely

state this fact. Several of the conditions are trivially met by any criterion that satisfies statement

coverage, these include origination of a constant reference fault and transfer through assignment

operator. Since each of the three crit.eria analyzed here direct their selection of test data to each

statement in a module, we will not belabor the satisfaction of these trivial conditions.

17

The following is not intended to be a complete analysis of the error detectfon capabilities of

these criteria. Only those faults discussed in Section 4 are included in the discussion. A complete

analysis must consider a more complete classification of faults. The analysis presented in this

paper, however, provides insight into how our model of error detection can be used to analyze the

strengths and weaknesses of testing criteria.

4.1 Budd's Estimate

Budd's Error-Sensitive Test Monitoring (Estimate) [Bud81,Bud83] is the first stage of Budd's

Mutation Testing suite. For the most part, the testing suite is directed toward the evaluation of

a test data set, but the first stage also provides a criterion that aids in the selection of test data.

A test data set satisfying Budd's Estimate executes components in the program (e.g., variables,

operators, statements, control flow structures) over a variety of inputs. The rules below outline

test data that must be selected to pass Estimate.

Rule 1 For each variable V, T contains test data ta, tb, tc, for some node na, nb, nc such that:

a. ta E DOMAIN(na) and v = O;

b. tb E DOMAIN(nb) and v < O;

c. tc E DOMAIN(nc) and v > 0.

Rule 2 For each each assignment V .- EXP at each node n, T contains a test datum ta E
DOMAIN (n) such that:

a. exp f- v.

Rule 3 For each binary logical expression 1 EX Pi bop EX P2 at each node n, T contains test data
ta, tb E DOMAIN (n) such tha,t:

a. exp1 = true and expz = false;

b. expi = false and exp2 = true.

Rule 4 For each edge (n, n') E E, where BP(n, n') is the branch predicate, T contains a test
datum ta such that:

a. ta E DOMAIN(n) and bp(n, n') = true.

Rule 5 For each relational expression, EX Pi rop EX P2 , at each node n, T contains test data
ta, tb, tc, td E DOMAIN(n) such that:

a. expi - exp2 = O;

18

b. exp1 - exp2 > O;

c. exp1 - exp2 < O;

d. exp1 - exp2 = -E or +E (where Eis a "small" value).

Rule 6 For each binary arithmetic expression EX P1 aop EX P2 at each node n, T contains a test
datum ta E DOMAIN (n) such that:

a. exp1 > 2 and exp2 > 2 .

Rule 7 For each binary arithmetic expression EX P1aopC (CaopEX P1), (where C is a constant),
at each node n, T contains a test datum ta E DOMAIN(n) such that:

a. exp1 > 2.

First, let us consider Estimate's ability to ·originate potential errors for the six fault classes.

Rule 3 satisfies the origination condition set for boolean operator faults, and rule 5 satisfies the

origination condition set for relational operator faults. Thus, Estimate guarantees origination of a

potential error for boolean and relational operator faults.

Rule 1 appears to be concerned with forcing variables to take on a variety of values, which is

one requirement for detection of variable reference faults. Consider the following segment of code:

1 read A,B;
2 X := 2*A;

The three test data (0,0), (3,3), and (-10,-10) satisfy rule 1, for variables A and B, but would not

distinguish a reference to A from a reference to B at node 2. Estimate is not sufficient, therefore,

to originate a potential error for a variable reference fault.

Estimate's rule 2 is directed toward the detection of variable definition faults. A test datum

that satisfies this rule fulfills the origination condition set. The origination condition set, however,

contains another condition, (v -:j:. v), that must be satisfied if (exp -:j:. v) is infeasible. Estimatf! does

not satisfy this other condition, and thus a potential error caused by a variable definition fault may

remain undetected by Estimate. Consider the following example:

1 read A, B, C;
2 if C = A+ B then
3 C := A+B;

19

The condition (a+ b '/:- c), which is the evaluation of (exp '/:- v), is unsatisfiable at node 3. It is

possible, in fact quite likely, however, that the definition at node 3 should be to a variable other

than C, such as to D. To detect such a variable definition fault, the values of C and D must differ

before execution of node 3, a condition not required by Estimate. Thus, Estimate is sufficient to

originate a potential error for a variable definition fault, but it does not guarantee origination for

this class of faults.

Rule 6 is specifically concerned with arithmetic operator faults. Budd notes that test data

satisfying this rule distinguishes between an arithmetic expression and an alternate formed by

replacing the arithmetic operator by another arithmetic operator except for an addition or a sub­

traction operator replaced by a division operator (or vice versa). We agree that Estimate originates

a potential error for any potential arithmetic operator fault in all but the four exceptions just cited.

Estimate, however, is more stringent than necessary. When this rule is unsatisfiable - that is, no

test datum exists such that (exp1 > 2) and (exp2 > 2) - there may exist an undetected potential

error due to an arithmetic operator fault. For instance, consider the following code segment:

1 read X, Y; _
2 if X ~ 2 and Y ~ X then
3 A.:= X*Y;

Note that at node 3, X and Y are restricted to values less than or equal to 2. In this case,

Estimate 's rule is unsatisfiable, and no data must be selected to satisfy rule 6 for this statement.

The expression A := X + Y is an alternate that is not equivalent; there are data within the domain

of the statement for which the two expressions evaluate differently- (e.g., x = 2 and y = 1). Thus,

Estimate is only sufficient to originate a potential error for arithmetic operator faults except for

the four noted exceptions, where Estimate is insufficient. Estimate, however, does not guarantee

origination of a potential error for any arithmetic operator fault.

Let us now consider how Estimate does with transfer conditions. Note first that rule 3 fulfills

and guarantees the transfer conditions through boolean operators.

20

Estimate 's rule 5 is similar to one of the general sufficient transfer conditions shown in Appendix

A, although Estimate does not consider the assumptions noted there. Even if these assumptions

were taken into account, one of these sufficient conditions is not by itself sufficient to guarantee

transfer through a relational operator. Consider· the relational expression in the following:

1 read X,Y;
2 if X *y 2:: 10 then

(where X and Y are of type integer). Suppose X * Y should be X + Y. Test datum (11,1) would

originate a potential error (since 11 + 1 -:/= 11 * 1), and satisfies rule 5 (since X * Y differs from 10 by

a small amount). However, the potential error is not transferred through the relational operators

since both 11+1 and 11*1 are 2:: 10. Thus, Estimate is not sufficient to transfer through relational

operators.

A test datum satisfying Estimate's rule 6 satisfies transfer conditions through all arithmetic

operators but the exponentiation operators. Rule 6, however, is more restrictive than necessary;

when unsatisfiable, it does not guarantee absence of a fault. Consider the arithmetic expression in

the following:

1 read X, Y;
2 if X :::; 2 and Y :::; X then
3 A:=X*Y;

where a potential error originates in x at node 3. No test datum satisfies rule 6 for this node;

however, a test datum such that y -:/= 0 transfers any potential error in x. Thus, Estimate is

sufficient to transfer through most but not all arithmetic operators but does not guarantee transfer.

We are now in a position to determine the ability of Estimate to guarantee revelation of a context

error for the six fault classes. In general, Estimate does not· require data that satisfy origination

conditions to also satisfy transfer conditions, and thus transfer of an originated potential error is

not guaranteed. This is because Estimate does not prescribe any integration of the application of

its rules.

21

value of variable
datum a b z

i 1 3 true
ii 3 1 true
iii 2 2 true
iv 1 2 false
v 2 1 true
vi 3 1 false

Table 6: Sample Test Data Selected by Estimate for (A< B) or Z

When two or more rules are applicable to an expression, Estimate does not dictate any way in

·which these two rules should interact. As an example, consider revelation of a context error for

a potential relational operator fault in the expression (A< B) or Z (assume for simplicity that A

and B are of type integer) in the following:

1 read A~B, Z;
2 if (A < B) or Z then

The test data shown in Table 6 satisfies Estimate's rules 3, 4 and 5 for this expression. Test data

i, ii, and iii satisfy rule 5 for the relational expression containing the operator <. If this relational

operator should have been any other relational operator, this test data would originate a potential

error; for these test data, however, z =true, which will not transfer any potential error. Test data

iii and iv satisfy rule 3 for the outer boolean expression containing or. Data v and vi satisfy rule

4 for the conditional statement. Test data iv and vi are the only data that would transfer any

potential error originated in the relational expression; these data alone, however, are insufficient' to

guarantee origination of a potential error for the potential relational operator fault. If, for example,

the < should be ~, no selected datum both originates and transfers a potential error caused by this

fault. Thus, Estimate does not guarantee revelation of a context error for this potential relational

operator fault.

The prescription of rule integration is lacking even in the repeated use of a single rule, as

illustrated in the application of rule 3 to the boolean expression (X and Y) or Z in the following

22

value of variable
datum x y z

true false true
ii false true true
iii true true false
iv false false true

Table 7: Sample Test Data Selected by Estimate for (X and Y) or Z

code:

1 read X, Y, Z;
2 if (X and Y) or Z then

The test data shown in Table 7 satisfies Estimate's rule 3 for the conditional expression in this

example. Test data i and ii satisfy rule 3 for the inner boolean expression containing the operator

and. Test data iii and iv satisfy rule 3 for the outer boolean expression containing or. If the inner

operator should have been an or, test data i and ii would originate a potential error. For these

test data, however, z =true, which will not transfer any potential error. Test data iii and v are the

only data that would transfer a potential error originated at the inner expression, but for these test

data, the values x and y would not originate a potential error. Thus, Estimate does not guarantee

revelation of a context error for a potential boolean operator fault.

When origination of a potential error is guaranteed for a class of potential faults, revelation of

a context error is guaranteed by Estimate only when the transfer conditions are trivial. In general,

this occurs when the smallest expression containing the potential fault is the outermost expression

in the node. The transfer conditions are always trivial for a variable definition fault. Since Estimate

is sufficient to originate a potential error for this class, it is also sufficient to reveal a context error.

Recall, however, that Estimate does not guarantee origination for this class.

23

4.2 Howden's Fault-based Functional Testing

Howden's Fault-based Functional Testing (FFT) [How82,How85,How87) is a test data selection

criterion whereby test data is selected to distinguish between a component and alternative compo­

nents generated by application of component transformations- e.g;, substitution ofone variable

for another. Howden considers six transformations, which may be applied to various program

components, and includes test data selection rules geared toward the detection of these transfor­

mations. Although Howden's transformations are presented quite: differently than the six fault

classes, each of these transformations result in one of the faults classes. The rules below specify

test data intended to distinguish between a program component and· alternatives· generated by the

transformations. These rules must be met by a test data set T to satisfy Howden's FFT.

Rule 1 For each reference to a variable V at node n, T contains a single test datum ta E DOMAIN
(n) such that for each other variable V

...,L-3 a. V r V •

Rule 2 For each assignment V := EXP at node n, T contains a test datum ta E DOMAIN. (n)
such that:

a. v =/= exp.

Rule 3 For each boolean expression bop(EX P1, EX P2, ... , EX Pi) at each node n, T contai:p.s
test data t1, t2, ... , t2i E DOMAIN (n) such that {t1, t2, ... , t 2i} covers all possible combinations
of true and false values for the subexpressions EX P1, EX P2 , ••• , EX Pn.

Rule 4 For each relational expression EX P1 rop EX P2 , at each node n, T contains test data
ta, tb, tc E DOMAIN (n) such that:

a. exp1 - exp2 = -€ (where-Eis the negative difference of smallest satisfiable magnitude);

b. exp1 - exp2 = O;

c. exp1 - exp2 = +E (where Eis the positive difference of smallest satisfiable magnitude}.

Rule 5 For each arithmetic expression EXP at node n, T contains test data ta,, tb E DOMAIN
(n) such that:

a. the expression is executed;

b. exp=/= O;

3 Howden proposes a more restrictive rule that is specifically concerned with array references. Since this rule is
subsumed by rule 1, it does not provide any additional error detection capabilities and we do not include it here.

24

Rule 6 For each arithmetic expression EXP, where k is an upper bound on the exponent in the
exp, at node n, T contains test data t1, t2, ... tk+l E DOMAIN (n) such that {t1, t2, ... tk+i} is any
cascade set of degree k + 1 in DOMAIN (n).

Howden's FFT guarantees origination of a potential error for boolean and relational operator

faults. Rule 3 satisfies the origination condition set for boolean operator fault, and rule 4 satisfies

the origination condition set for relational operator fault.

Rule 1 is obviously directed toward detection of variable reference faults, and a test datum that

satisfies this rule does satisfy the origination condition set. This rule, however, is more restrictive

than required for this class of faults; it requires a single test datum to distinguish between the

potentially incorrect variable reference and all other variable references. This rule may not be

satisfiable although the origination condition set is feasible. In ·this case, a non-equivalent alternate

may not be distinguished. Consider, for example, the reference to X at node 3 in the following

module fragment:

1 read-X, Y,.Z;
2 if (X = Y) or (X = Z) then
3 A:= 2 * X;

The origination condition set requires that a test set T contains a test datum such that x -:/= y and

a test datum such that x =f. z to distinguish an incorrect reference to X at this statement fro~

possibly correct references to Y or Z. FFT, on the other hand, requires a single test datum such

that x =f. y and x -:/= z. In this example, it is possible to satisfy the origination condition set with

two test data, such as (1,1,2) and (1,2,1), but it is not possible to satisfy the FFT requirement

which requires a single test datum. In this case, FFT will not necessarily distinguish a reference

to Y or a reference to Z from a reference to X, although neither reference is equivalent. FFT is

sufficient to originate a potential error, therefore, but does not guarantee origination for variable

reference faults.

FFT's rule 2 is the same as Estimate's rule 2, which is directed toward detection of variable

definition faults. As noted in the discussion of Estimate, a test datum satisfying this rule will

originate a potential error for a variable definition fault. This rule alone is incomplete, however,

since it does not guarantee absence of a potential fault when it is unsatisfiable. Thus, FFT is

sufficient but does not guarantee origination for this class.

25

Rule 5 and 6 are the only rules specifically directed toward exercising arithmetic expressions.

For a potential error for a potential arithmetic operator fault that exchanges an addition operator

for a subtraction operator (and vice versa), rule 5 will guarantee origination of a potential arithmetic

operator fault. For other arithmetic operator faults, this rule is insufficient. Rule 6 is insufficient

to guarantee origination of a potential error due to a potential arithmetic operator fault. This is

because such a fault may change the degree of the arithmetic expression. Consider the arithmetic

expression in node 2 of the following:

1 read X, Y;
2 A:= X + Y;

Rule 6 requires a cascade set of degree 2 for this expression. One such set is {(010), (2, 2)}.

This set of test data, however, does not distinguish the expression X + Y from the alternate X * Y.

Next, consider the ability of FFT to transfer a potential error. Rule 3 selects data that satisfies

the boolean transfer condition and guarantees transfer through boolean operators.

FFT's rule 4 is similar to the sufficient transfer conditions for relational operators. For these

transfer conditions to be sufficient, the two assumptions noted in the table in. Appendix A must

also hold. FFT does not consider these assumptions. Hence, even when FFT's relational operator

rule is satisfied, a potential error may not transfer through a relational operator. Consider transfer

of a potential error in the arithmetic expression in node 2 through the relational operator 2: in the

following.

1 read X, Y;
2 if X * Y > 10 then

Suppose X *y should be X +Y, wh€re X and Y are integers. The test data (3,3), (2,5), and (11,1)

satisfy FFT rule 4. In all three cases, while a potential error originates, the potential error and the

potentially correct expression share the same relationship to the right-hand-side of the relational

expression, and no potential error transfers. Thus FFT is insufficient to transfer a potential error

through a relational operator.

26

Rule 5 satisfies the transfer conditions for all arithmetic operators but the exponentiation

operator. Consider the following module fragment:

1 read X, Y;
2 A:= X**Y;

where a potential error originates in Y. The test datum (1,2) satisfies FFT's rule 5; however, a

potential error in Y does not transfer through the exponentiation operator with x = 1. Rule 6

does not apply because a proper cascade set cannot be selected when the degree of the expression

is unknown. FFT, therefore, only partially guarantees transfer through arithmetic operators.

As with Estimate, FFT does not require that a rule that satisfies origination be related to a

rule that satisfies transfer. Thus, origination and transfer are not guaranteed to be satisfied by

the same test datum, and hence revelation of a context error is not guaranteed. As with Estimate,

this may happen both when the same rule applies for origination as for transfer and when different

rules apply. Consider the same example expressions as in the discussion of Budd's Estimate.

Consider the relational expression (A< B) or Z (where A and B are of type integer). The test

data shown in Table 8 satisfies FFT for the relational expression as well as the boolean expression

in this example. Test data i, ii, and iii satisfy rule 4, while test data iv, v, vi, and vii satisfy rule

3. Test data v and vii are the only data that could transfer a potential error originated in the

relational expression; these two data alone, however, are insufficient to guarantee origination of a

potential error for relational operator fault. If, for example, the < operator is incorrect and should

be ::::;; , no datum in the set both originates as well as transfers a potential error caused by the

potential relational operator fault. Thus, FFT does not reveal a context error for this potential

relational operator fault.

Now consider the boolean expression ((X and Y) or Z) which would be written by FFT as

or(and(X, Y), Z). The test data in Table 9 satisfies FFT for both boolean expressions contained in

the example expression. Test data i, ii, iii, and iv satisfy rule 3 for the expression and (X, Y). Test

data v, vi, vii, and viii satisfy rule 3 for the expression or (EXP, Z), where EXP= and(X, Y).

Test data ii and iii would originate a potential error if the and should be or, but for these test

data, z =true, and any potential error does not transfer through the outer or. Test data vi and

27

value of variable
datum a b z

i 1 2 true
ii 2 1 true
iii 2 2 true
iv 1 3 true
v 1 3 false
vi 3 1 true
vii 3 1 false

Table 8: Sample Test Data Selected by FFT for (A< B) or Z

variable value
datum x y z

1 true true true
ii true false true
iii false true true
iv false false true
v true true true
VI true true false
vii false false true
viii false false false

Table 9: Sample Test Data Selected by FFT's for (X and Y) or Z

28

viii would transfer a potential error in X and Y since z =false. Neither of these test data, however,

satisfies the origination condition set for the nested expression. Thus, FFT criterion does not

guarantee revelation of a context error for a potential boolean operator fault.

In sum, Howden's FFT guarantees revelation of a context error when origination of a potential

error is guaranteed for a class of potential faults and the transfer conditions are trivial. Only for

variable definition fault are the transfer conditions always trivial. FFT is sufficient to originate a

potential error for this class and hence is sufficient to reveal a context error.

4.3 Foster's Error-Sensitive Test Case Analysis

Foster's error-sensitive test case analysis ESTCA [Fos80,Fos83,Fos84,Fos85] adapts ideas and tech­

. niques from hardware failure analysis such as "stuck-at-one, stuck-at-zero" to software. He has

presented his rules in a number of articles. Where there is inconsistency, we will evaluate the most

recently published applicable rules. A test data set T satisfies Foster's ESTCA if the rules outlined

below are satisfied.

Rule 1 For each variable V input at node nv, and for each variable W input at node nw, T
contains test datum, ta E DOMAIN(nfinat) such that:

a. the value input for V is not equal to the value input for W

Rule 2 For each variable V input at node n and some edge(n, n'), T contains test data ta, tb E
DOMAIN (n') such that the value input for V at node n is:

a. Va> O;

b. Vb < 0.

where Va and Vb have different. magnitude (if v is restricted to only positive or negative values, Va

and Vb need only be of different magnitude).

Rule 3 For each logical unit L 4 of each boolean expression EXP = (... L . ..) at node n, let
EXP' = (... •L .. .), T contains test data ta, tb E DOMAIN (n) such that:

a. l = true and exp' = •exp 5 ;

b. l = false and exp' = -,exp.

Rule 4 For each relational expression EXP1 rop EXP2 at each node n, T contains test data
ta, tb, tc E DOMAIN (n) such that:

4 A logical unit is either a logical variable, a relational expression or the complement of a logical unit.
5 that is, substituting •L in EXP complements the value of EXP.

29

a. exp1 - exp2 = -E (where -E is the negative number of smallest magnitude representable
for the type of exp1 - exp2);

b. exp1 - exp2 = O;

c. exp1 - exp2 = +E (where E is the positive number of smallest magnitude representable for
the type of exp1 - exp2).

Rule 5 For each assignment V := EXP at node n and for each variable W referenced in EXP,
T contains a test datum ta E DOMAIN (n) such that:

a. w has a measurable effect on the sign and magnitude of exp.

Foster's ESTCA contain no rules that approach the origination condition sets for either a

potential variable reference fault or a potential variable definition fault.

Foster's ESTCA guarantees origination of a boolean operator fault. Rule 3 considers a boolean

expression in terms of logical units. A logical unit is a variable or relational expression that

is one of the operands or is a subexpression of one of the operands· of a boolean expression

(EX P1 bop EX P 2). ESTCA requires selection of test data such that each such logical unit takes

on the value true (and the value false) and complementing the logical'unit complements the entire

boolean expression. This rule satisfies the origination condition sets for boolean operator faults.

To see this, notice that for any boolean expression EX P1 bop EX P2, thr.ee test data are selected,

(exp1, exp2) = (T,F), (F,T), and (T,T) if bop is and, or (F,F) if bop is or. This test data satisfies

origination condition sets for a boolean operator fault. Thus, EST CA guarantees origination of a

potential error for the class of boolean operator faults.

Consider now the clas_s of relational operator faults. When satisfiable, EST CA 's rule 4 results

in data such that exp1 > exp2, exp1 = exp2, exp1 < exp2. Thus, test data satisfying this rule

will originate a potential error for potential relational operator faults. This rule, however, is more

stringent than required an~ may be unsatisfiable while the origination condition set is feasible.

Consider the relational expression in node 4 in the following code segment:

30

1 read X,Y;
2 if X mod 2 = 0 and Y mod 2 = 0 then

3 if X > Y then

4 endif
5 endif

ESTCA's rule 4 is unsatisfiable at node 3 since the values of X and Y must differ by at least 2.

There is data within the domain of node 4, however, that would satisfy the origination condition set

for the relational operator and originate a potential error. Thus, ESTCA is sufficient to originate a

potential error for relational operator faults but does not guarantee origination of a potential error

for relational operator faults.

In an attempt to detect faults in arithmetic expressions, ESTCA's rule 5 requires selection of

test data such that variables in arithmetic expressions have a measurable effect on the sign and

magnitude of the result. Although the meaning of this rule.is. ambiguous, it clearly does not imply

the origination of a potential error for an arithmetic operator fault. It is possible for variables in

an arithmetic expression to have a measurable effect on the sign and magnitude of the result yet

still evaluate the same for alternate arithmetic operators in the expression. ESTCA does not, we

conclude, guarantee origination of a potential error for arithmetic operator faults.

Let us now consider the satisfaction of transfer conditions. ESTCA's rule 3 satisfies trans-

fer conditions through boolean operators. The requirement that complementing the logical unit

complements the entire expression is equivalent to selecting test data that satisfies the transfer

conditions.

Rule 4 is similar to the general sufficient transfer conditions through relational operators. Like

Howden, however, Foster does not consider the assumptions that must hold for these conditions to

be sufficient for transfer. Moreover, rather than specifying E to be the smallest satisfiable difference,

Foster fixes E at the smallest representable magnitude. As a result, the ability of ESTCA to

transfer a potential error through a relational operator is further limited. Consider, for example,

the relational expression in the module fragment below, where a potential error originates within

the arithmetic expression in node 3.

31

1 read X, Y, Z;
2 if X mod 2 = 0 and Y mod 2 = 0 then

4 endif
5 endif

Again, the condition at node 2 causes rule 4 to be unsatisfiable at node 3, and hence, no data need

be selected that satisfies rule 4. There is data in the domain of node 3, however, that could transfer

a potential error originated within the arithmetic expression. Suppose the reference to X at line

3 should reference Z. The test datum (4, 4, 1) originates a potential error for this potential fault

and transfers the potential error through the _relational operator. Thus, ESTCA is insufficient to

transfer a potential error through a relational operator.

Rule 5 attempts to disallow the effect of a variable or subexpression to be masked out by other

operations in the statement. While the specifics of how this rule is applied are unclear, one might

interpret this as requiring transfer of a potential error through arithmetic operators. Under the

broadest interpretation, therefore, ESTCA guarantees transfer through arithmetic operators.

As with the other criteria, Foster fails to prescribe integration between ESTCA rules that

satisfy origination and those that satisfy transfer. Rule 3, however, does guarantee revelation

of a context error for boolean operator faults. As seen above, this rule satisfies the origination

and transfer conditions for relational operator faults. In addition, when applied to the outermost

boolean expression, this rule selects a single datum for each nested binary boolean expression

that originates a potential error due to a potential fault in the associated boolean operator and

transfers that potential error to the outermost expression. To see this, consider any expression

EXP = EX P1 bop EX P2. Some test datum selected for logical units within EX P1 fulfills the

origination condition for potential boolean operator faults in EX P1 . Complementing a test datum

selected for a logical unit that is a subexpression of EX P1 must complement the value exp. To

force this, if bop = and then exp2 =true, or if bop = or then exp2 =false. Thus, for any test

datum selected for a logical unit that is a subexpression of EX P1, EX P2 will take on a value that

will transfer any potential error originated within EX P1 to the outer expression EXP. Therefore,

32

ESTCA 's boolean operator rule satisfies origination as well as transfer conditions simultaneously

and hence guarantees revelation of a context error for boolean operator faults.

4.4 Summary of Analysis

Table 10 summarizes the analysis of the three test data selection criteria. The entry insufficient

means that the criterion does not include a rule that satisfies the condition. The entry sufficient

means that the criterion includes a rule that when satisfied fulfills the condition when satisfied.

The entry partially sufficient means that the criterion includes a rule that is sufficient to distinguish

many but not all of the alternates or transfer through many but not all of the operators. The entry

guarantees means that the criterion includes a rule that satisfies the conditions when the conditions

are feasible, while partially guarantees means the criterion includes a rule that satisfies many but

not all of the conditions when feasible.

We have analyzed the ability of three test data selection criteria to guarantee revelation of a

context error for six classes of faults. Our analysis shows that none of these criteria is adequate

for this fault classification and indicates two major weaknesses of the criteria. First, each criterion

includes rules that are sufficient but not necessary to originate or transfer an error. When such a

rule is not satisfiable, an undetected fault in the class may remain even though test data has been

selected to satisfy the criterion. Hence, these techniques do not guarantee detection of these faults.

This weakness is primarily due to the creation of rules that are too narrow and the failure of the

authors to consider what data is necessary when these restrictive rules are not satisfiable. Second,

the authors failed to propose ways in which their rules should be integrated. Each criterion includes

rules that guarantee origination of potential errors for some classes of faults and rules that guarantee

computational transfer of potential errors through some operators, yet no criterion explicitly forces

the rules guaranteeing transfer to be satisfied by the data selected for the rule that guarantees

origination. Thus, in most cases, none of the criteria guarantee that a context error is reveal€d for

any of the six classes of faults. The one exception is ESTCA, which guarantees detection of any

boolean operator fault.

33

Budd's Estimate Howden's FFT Foster's ESTCA
Origination
1. Constant Reference Fault guarantees guarantees guarantees
2. Variable Reference Fault insufficient sufficient insufficient
3. Variable Definition Fault sufficient sufficient insufficient
4. Boolean Operator Fault guarantees guarantees guarantees
5. Relational Operator Fault guarantees guarantees sufficient
6. Arithmetic Operator Fault partially partially insufficient

sufficient guarantees
Transfer
1. Assignment Operator guarantees guarantees guarantees
2. Boolean Operator guarantees g·uarantees guarantees
3. Relational Operator insufficient insufficient insufficient
4. Arithmetic Operator partially partially guarantees

sufficient guarantees
Revelation
1. Constant Reference Fault insufficient insufficient insufficient
2. Variable Reference Fault insufficient insufficient insufficient
3. Variable Definition Fault sufficient sufficient insufficient
4. Boolean Operator Fault insufficient insufficient guarantees
5. Relational Operator Fault insufficient insufficient insufficient
6. Arithmetic Operator Fault insufficient insufficient insufficient

Table 10: Analysis Summary

34

5 Conclusion

In this paper, we use the RELAY model of error detection to evaluate the error detection capabilities

of other testing techniques. This analysis demonstrates how the rules of a test data selection

criterion must be carefully designed and tightly integrated to reveal an error for any potential fault

by showing how other techniques have failed to accomplish this precision. Without this precise

analysis, it is easy to arrive at test data selection rules that do not guarantee the detection of a

fault and may not even be sufficient to do so. Using RELAY, we have evaluated where previous

criteria have failed in this regard.

We feel that this analysis of other techniques demonstrates four points that distinguish RELAY

from other work:

1. Relay develops conditions that are both necessary and sufficient to reveal an error;

2. Relay distinguishes between origination of a potential error in the smallest subexpression that
contains. a potential fault and the computational transfer of that potential error to parent
expressions;

3. RELAY acknowledges the need to transfer a potential error through data flow to reveal an
output error;

4. RELAY provides a specific framework in which all these components fit.

Let us address the significance of each of these points in turn.

RELAY specifically directs the determination of conditions that are both necessary and suf­

ficient to reveal an error. As shown by the analysis, many other fault-based testing techniques

select test data that are sufficient to originate a potential error for some fault classes. When these

techniques are not satisfiable, however, an undetected fault in the class may remain. Hence, these

techniques do not guarantee detection of these faults. Because RELAY considers both the neces­

sary and sufficient conditions, it does guarantee detection. When a revealing condition for a fault

class is not satisfiable, in the RELAY model, we know that a potential fault in the class is not a

fault but rather is an "equivalent discrepancy".

RELAY determines origination conditions for the smallest subexpression containing a fault. It

then considers additional computational transfer conditions necessary to reveal a potential error in

parent expressions. Some researchers, such as Foster, have presented techniques that are capable

35

of originating an error in the smallest subexpression, but have not considered the additional con­

ditions necessary to cause a larger expression to evaluate incorrectly. Other researchers, such as

Budd, have recognized the need for a larger expression containing a fault to evaluate incorrectly.

They, however, have not detailed specifically the conditions necessary to cause such transfer, nor

have they defined the relationship of origination to transfer. RELAY specifically defines such a

relationship and details general transfer rules. Other researchers, such as Howden, have examined

conditions required to reveal faults in larger expression. The problem here is that the rules de­

veloped are specific for certain classes of expressions, e.g., constant reference fault in polynomial

expressions. As a result, although a constant reference fault can occur in a variety of types of

expressions, the rule is not generally applicable. Further, RELAY's separation of origination and

transfer conditions provides a framework for error detection that is easily extended. When a new

fault class is considered, RELAY requires that the origination condition set for the class be devel­

oped. Applicable transfer conditions from other classes are applied independently, however, and

thus require no changes. Techniques that consider larger expressions must develop the "revealing"

condition for that entire expression class. We feel that proving properties about origination condi­

tions of a fault class is less complicated than proving properties about the revealing conditions for

expression classes.

A third major distinction of RELAY is its consideration of data fl.ow transfer. While some

techniques that consider classes of faults that may occur in larger expressions may select test

data that is capable of producing a context error, they do not (for the most part) consider what

is required for a context error to transfer to output. Hence, these techniques do not guarantee

generation of an output error. Techniques that are directed toward the detection of faults in

larger expressions effectively achieve data fl.ow transfer by applying their rules to path expressions

developed through symbolic evaluation. This approach, however, is only applicable to faults on

paths that produce particular expression classes; this limitation is discussed above. Our data fl.ow

work is still in preliminary stages and several problems, such as data fl.ow through loops, are left

to solve. We intend to elaborate on the data fl.ow transfer conditions in future papers.

The final significant contribution of RELAY is that it provides a general yet applicable frame­

work that describes how a potential fault introduces a potential error and then how it can transfer

36

through a module. We believe that RELAY provides a cleaner, clearer view of fault-based testing

than other approaches to date and that it is a sufficiently more powerful approach. This is clearly

demonstrated in our analysis which indicates that none of the previously proposed techniques

examined is capable of guaranteeing detection of a context error for the selected fault classes.

We continue to extend our model of error detection and to evaluate its capabilities by in­

stantiating it for other classes of faults. In addition, we are applying this analysis method

to other testing criteria. One direction of future research is the RELAY analysis of error­

based (rather than fault-based) testing techniques, such as Cohen's and White's Domain Testing

[WC80,CHR82], and path selection techniques, such as the variety of Data Flow Path Selection

techniques [RW85,Nta84,LK83,CPRZ86]. We expect that this will provide us with insight into the

relationship of faults and errors in programs. Moreover, we hope to address the strengths and

weaknesses of the two very different approaches to testing.

37

Appendix A

A.1 Origination Conditions

constant referenced origination condition set]
C true J

Table A-1: Origination Condition Set for Constant Reference Fault

variable referenced origination condition set
v {[v :/= v I V is a variable other than V

that is type-compatible with VJ}

Table A-2: Origination Condition Set for Variable Reference Fault

assignment origination condition set
V:=EXP {[(v f= v) or (exp f= v) I V is a variable other than V

that is type-compatible with VJ}.

Table A-3: Origination Condition Set for Variable Definition Fault

operator origination condition set
not { [true] }
null { [true] }
and {[exp1 =I- exp2]}
or {[exp1 =I- exp2]}

Table A-4: Origination Condition Sets for Boolean Operator Faults

38

operator origination condition set sufficient condition set

< {[exp1 = exp2], [exp1 > exp2], {[exp1 = exp2], [exp1 > exp2]}
[exp1 ::; exp2], [exp1 f= exp2]}

< {[exp1 = exp2], [exp1 < exp2], {[exp1 < exp2], [exp1 = exp2]}
[exp1 ~ exp2], [exp1 f= exp2]}

=I= {[exp1 > exp2], [exp1 2: exp2], {[exp1 < exp2], [exp1 > exp2]}
[exp1 ::; exp2], [exp1 < exp2]}

= {[exp1 ::; exp2], [exp1 < exp2], {[exp1 < exp2], [exp1 > exp2]}
[exp1 > exp2], [exp1 ~ exp2]}

> {[exp1 f= exp2], [exp1 > exp2], {[exp1 = exp2], [exp1 > exp2]}
[exp1 ::; exp2], [exp1 = exp2]}

> {[exp1 f= exp2], [exp1 ~ exp2], {[exp1 < exp2], [exp1 = exp2]}
[exp1 < exp2], [exp1 = exp2]}

Table A-5: Origination Condition Sets for Relational Operator Faults

operator origination condition set

+ {[(exp1 + exp2) f= (exp1 op exp2)]
I op=, *,/,div,**}

- {[(exp1 - exp2) f= (exp1 op exp2)]
I op= +,*,/,div,**}

* {[(exp1 * exp2) f= (exp1 op exp2)]
I op=+,-,/, div,**}

I {[(expif exp2) f= (exp1 op exp2)]
I op= +,-,*,div,**}

div {[(exp1 div exp2) f= (exp1 op exp2)[
I op=+,-,*,/,**}

** {[(exp1 **exp2) f= (exp1 op exp2)]
I op=+,-,*,/, div}

Table A-6: Origination Condition Sets for Arithmetic Operator Fault

39

A.2 Transfer Conditions

operator expression transfer condition
V := EXP-:/= V := EXP true

Table A-7: Transfer Condition Through Assignment Operator

operator expression transfer condition
not not(exp1) -:/= not(expi) true
and exp1 and exp2 -:/= exp1 and exp2 exp2 =true
or exp1 or exp2 -:/= exp1 or exp2 exp2 =false

Table A-8: Transfer Condition Through Boolean Operators

operator expression transfer conditions

+ exp1 + exp2 -:/= exp1 + exp2 true
- exp1 - exp2 -:/= exp1 - exp2 true
- exp2 - exp1 -:/= exp2 - exp1 true

* exp1 * exp2 -:/= exp1 * exp2 exp2 -:/= 0

I expif exp2 -:/= exp1/ exp2 exp2 -:/= 0

I exp2/ exp1 -:/= exp2/ exp1 true

** exp1**exp2 =/. exp1**exp2 (exp2 -:/= 0) and (exp1 -:j:. -exp1 or exp2 mod 2-:/= 0)

** exp2**exp1 -:/= exp2**exp1 (exp2 -:/= 0) and (exp2 -I 1)
and (exp2 =/= -l or exp1 mod 2 -I exp1 mod 2:)

Table A-9: Transfer Conditions Through Arithmetic Operators

40

operator expression

<

>

>

transfer conditions
(exp1 <exp2 and exp1'2_exp2) or

(exp1 '2_exp2 and exp1 <exp2)
(exp1~exp2 and exp1>exp2) or

(exp1 >exp2 and exp1 ~exp2)
(exp1 = exp2 and exp1 =/; exp2) or

(exp1 =/; exp2 and exp1 = exp2)
(exp1 =/; exp2 and exp1 = exp2) or

(exp1 = exp2 and exp1 =/; exp2)
(exp1>exp2 and exp1~exp2) or

(exp1 ~exp2 and exp1 >exp2)
(exp1 '2_exp2 and exp1 <exp2) or

(exp1 <exp2 and exp1 '2_exp2)

Table A-10: Transfer Conditions Through Relational Operators

operators sufficient transfer conditions
<,~,=,=/;,>,'2. exp2 - exp1 = E,

exp2 - exp1 = -E,

exp2 - exp1 = 0

Table A-11: General Sufficient6 Transfer Conditions Through Relational Operators

6 For sufficient transfer conditions through relational operators, f is the smallest magnitude positive difference
between exp2 and exp1 and -f is the smallest magnitude negative difference; note that +f and -f may be of
different magnitude. In addition, these conditions are only sufficient under the assumption that the relation between
exp1 and exp1 is the same for each of the three test data selected to satisfy all three f-conditions listed in the table.
In addition, these conditions are not sufficient unless f is the smallest positive difference between exp1 and exp2 and
is no greater than the smallest positive difference between exp1 and exp2. If any of these f- conditions is infeasible,
absence of a fault is not guaranteed by satisfaction of the remaining f-conditions.

41

References

[Bud81] Timothy A. Budd. Mutation analysis: Ideas, examples, problems and prospects. In
B. Chandrasekaran and S. Radicchi, editors, Computer Program Testing, pages 129-
148. North-Holland, 1981.

[Bud83] Timothy A. Budd. The portable mutation testing suite. Technical Report TR 83-8,
University of Arizona, March 1983.

[CHR82] Lori A. Clarke, Johnette Hassell, and Debra J. Richardson. A close look at domain
testing. IEEE Transactions on Software Engineering, SE-8(4):380-390, July 1982.

[CPRZ86] Lori A. Clarke, Andy Podgurski, Debra J. Richardson, and Steven J. Zeil. An investi­
gation of data flow path selection criteria. In Proceedings of the ACM SIGSOFT/IEEE
Workshop on Software Testing, pages 23-32, Banff, Canada, July 1986.

[Fos80] Kenneth A. Foster. Error sensitive test case analysis (estca). IEEE Transactions on
Software Engineering, SE-6(3):258-264, May 1980.

[Fos83] Kenneth A. Foster. Comment ori. the application of error-sensitive testing strategies to
debugging. ACM Software Engineering Notes, 8(5):40-42, October 1983.

[Fos84] Kenneth A. Foster. Sensitive test data for logical expressions. ACM Software Engineer~
ing Notes, 9(3), July 1984.

[Fos85] Kenneth A. Foster. Revision of an error sensitive test rule. ACM Software Engineering
Notes, 10(1), January 1985.

[Ham77] Richard G. Hamlet. Testing programs with the aid of a compiler. IEEE Transactions
on Software Engineering, SE-3(4):279-290, July 1977.

[How78] William E. Howden. Introduction to the theory of testing. In Edward -Miller and
William E. Howden, editors, Tutorial: Software Testing and Validation Techniques,
pages 16-19. IEEE, New York, 1978.

[How82] William E. Howden. Weak mutation testing and completeness of test sets. IEEE Trans­
actions on Software Engineering, SE-8(2):371-379, July 1982.

[How85] William E. Howden. The theory and practice of functional testing. IEEE Software,
2(5):6-17, September 1985.

[How87] William E. Howden. Functional Program Testing and Analysis. McGraw-Hill, 1987.

[LK83] Janusz W. Laski and Bogdan Karel. A data flow oriented program testing strategy.
IEEE Transactions on Software Engineering, SE-9(3):347-354, May 1983.

[Mor84] Larry J. Morell. A Theory of Error-Based Testing. PhD thesis, University of Maryland,
April 1984.

[Nta84] Simeon C. Ntafos. On required element testing. IEEE Transactions on Software Engi­
neering, SE-10(6):795-803, November 1984.

42

[RT86] Debra J. Richardson and Margaret C. Thompson. A new model of error detection. Tech­
nical Report 86-64, Computer and Information Science, University of Massachusetts,
Amherst, December 1986.

[RW85] Sandra Rapps and Elaine J. Weyuker. Selecting software test data using data flow in­
formation. IEEE Transactions on Software Engineering, SE-11(4):367-375, April 1985.

[WC80] L.J. White and E.I. Cohen. A domain strategy for computer program testing. IEEE
Transactions on Software Engineering, SE-6(3):247-257, May 1980.

[Wey81] Elaine J. Weyuker. An error-based testing strategy. Technical Report 027, Computer
Science, Institute of Mathematical Sciences, New York University, January 1981.

[Wey82] Elaine J. Weyuker. On testing nontestable programs. The Computer Journal, 25(4),
1982.

[Zei83] Steven J. Zeil. Testing for perturbations of program statements. IEEE Transactions on
Software Engineering, SE-9(3):335-346, May 1983.

43

