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Objective: Cognitive practice effects (PEs) can delay detection of progression from
cognitively unimpaired to mild cognitive impairment (MCI). They also reduce diagnostic
accuracy as suggested by biomarker positivity data. Even among those who decline,
PEs can mask steeper declines by inflating cognitive scores. Within MCI samples, PEs
may increase reversion rates and thus impede detection of further impairment. Within
an MCI sample at baseline, we evaluated how PEs impact prevalence, reversion rates,
and dementia progression after 1 year.

Methods: We examined 329 baseline Alzheimer’s Disease Neuroimaging Initiative MCI
participants (mean age = 73.1; SD = 7.4). We identified test-naïve participants who were
demographically matched to returnees at their 1-year follow-up. Since the only major
difference between groups was that one completed testing once and the other twice,
comparison of scores in each group yielded PEs. PEs were subtracted from each test
to yield PE-adjusted scores. Biomarkers included cerebrospinal fluid phosphorylated tau
and amyloid beta. Cox proportional models predicted time until first dementia diagnosis
using PE-unadjusted and PE-adjusted diagnoses.

Results: Accounting for PEs increased MCI prevalence at follow-up by 9.2% (272 vs.
249 MCI), and reduced reversion to normal by 28.8% (57 vs. 80 reverters). PEs also
increased stability of single-domain MCI by 12.0% (164 vs. 147). Compared to PE-
unadjusted diagnoses, use of PE-adjusted follow-up diagnoses led to a twofold increase
in hazard ratios for incident dementia. We classified individuals as false reverters if
they reverted to cognitively unimpaired status based on PE-unadjusted scores, but
remained classified as MCI cases after accounting for PEs. When amyloid and tau
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positivity were examined together, 72.2% of these false reverters were positive for at
least one biomarker.

Interpretation: Even when PEs are small, they can meaningfully change whether some
individuals with MCI retain the diagnosis at a 1-year follow-up. Accounting for PEs
resulted in increased MCI prevalence and altered stability/reversion rates. This improved
diagnostic accuracy also increased the dementia-predicting ability of MCI diagnoses.

Keywords: practice effects, cognitive aging, mild cognitive impairment, Alzheimer’s disease, biomarkers,
dementia progression

INTRODUCTION

Mild Cognitive Impairment Stability and
Reversion
Mild cognitive impairment (MCI) is characterized by cognitive
deficits in the presence of minimal to no impairment in
functional activities (Manly et al., 2008; Albert et al., 2011). MCI
is seen as a risk factor for Alzheimer’s Disease dementia (AD),
particularly when there is a memory impairment either alone (i.e.,
single-domain amnestic MCI) or in combination with deficits in
other domains (i.e., multi-domain amnestic MCI) (Manly et al.,
2008; Albert et al., 2011; Eppig et al., 2020; Thomas et al., 2020).
Individuals diagnosed with MCI are significantly more likely to
progress to AD, and do so at a faster rate than those without MCI
(Mitchell and Shiri-Feshki, 2009; Pandya et al., 2016). Individuals
with MCI who are on the AD trajectory often have AD biomarker
levels in between those diagnosed as cognitively normal (CN) and
those with AD (Edmonds et al., 2015a; Olsson et al., 2016).

Nearly all AD clinical trials have focused on treating
individuals with dementia in an effort to mitigate or reverse the
disease. Unfortunately, the failure rate for these trials is greater
than 99% (Cummings et al., 2014; Anand et al., 2017). As a result,
there has been a shift toward identifying and targeting individuals
at the earliest stages of the disease including at-risk CN and MCI
(Sperling R. et al., 2014; Sperling R. A. et al., 2014; Canevelli et al.,
2016; Anand et al., 2017; Alexander et al., 2021). As noted by
Canevelli et al. (2016), at least 274 randomized controlled trials
were recruiting MCI subjects in 2016. As such, accurate diagnoses
of earlier disease stages are necessary to further the treatment of
AD (Edmonds et al., 2018; Veitch et al., 2019; Eppig et al., 2020).

There is concern regarding stability of MCI diagnosis that
limits its use in clinical and research settings. Although 10–12%
of those with MCI are expected to convert to AD per year, 20–
50% of individuals revert from MCI to CN status within 2–5 years
(Pandya et al., 2016). Over a similar time frame, an estimated
37–67% of individuals retain their MCI diagnosis (Pandya et al.,
2016). One criticism of the MCI diagnosis has centered on the fact
that individuals are more likely to revert to CN or maintain their
MCI status than to convert to dementia each year (Canevelli et al.,
2016). On the other hand, long term follow-ups may be necessary
to more accurately determine the true proportion of those with
MCI who progress to dementia.

Much of the MCI reversion rate literature was published prior
to 2016 and was summarized by three articles (Canevelli et al.,
2016; Malek-Ahmadi, 2016; Pandya et al., 2016). These authors

highlighted the wide range in reversion rates and suggested
that this variability is likely due to multiple factors, including
the heterogeneity of MCI criteria and reversible causes such as
depression (Canevelli et al., 2016; Malek-Ahmadi, 2016; Pandya
et al., 2016). Malek-Ahmadi (2016) and Pandya et al. (2016) also
suggested that reducing reversion rates should be an essential
goal of future MCI methodology studies. Canevelli et al. (2016)
and Pandya et al. (2016) argued that MCI may be an unstable
condition where reversion to normal is expected, and that
its use as a prodromal stage of underlying neurodegenerative
diseases is questionable. Malek-Ahmadi (2016) suggested that the
utility of MCI diagnosis would benefit from further refinement
of statistical methods, the use of sensitive cognitive tests, and
greater utilization of biomarkers. All three reviews concluded
that reversion impairs our ability to treat AD by diluting samples
and reducing study power (Canevelli et al., 2016; Malek-Ahmadi,
2016; Pandya et al., 2016).

Practice Effects and Mild Cognitive
Impairment
Practice effects (PEs) on cognitive tests used to diagnose MCI are
a likely contributor to MCI reversion rates. They mask cognitive
decline by increasing scores at follow-up testing relative to how
an individual would have performed if they were naïve to the test.
PEs are due to familiarity with specific test items (i.e., content
effect), and/or increased comfort and familiarity with the general
assessment process (i.e., context effect) (Calamia et al., 2012;
Gross et al., 2017). PEs in participants without dementia have
been found across retest intervals as long as 7 years, and across
multiple cognitive domains (Ronnlund et al., 2005; Gross et al.,
2015; Elman et al., 2018; Wang et al., 2020). PEs after 3–6 months
have even been observed in those with mild AD who performed
very poorly on memory measures (Goldberg et al., 2015; Gross
et al., 2017). Although PEs may be small in cognitively impaired
samples, we have previously shown that utilizing that information
to change MCI classification increases diagnosis accuracy and
leads to earlier detection of decline (Goldberg et al., 2015; Jutten
et al., 2020; Sanderson-Cimino et al., 2020).

The MCI classification methods, particularly in research,
almost always rely on use of cut-off scores to define cognitive
impairment (Winblad et al., 2004; Jak et al., 2009). The same
cut-off is typically applied at baseline and follow-up visits. If
an individual with MCI at baseline experiences a PE greater
than their cognitive decline, then they may be pushed above the
threshold for impairment despite having no change or even a
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slight decline in their actual cognitive ability. Even if there was
no change in cognitive capacity, this individual would likely be
misclassified as CN at follow-up, appearing to revert when in fact
they still have MCI. The impact of PEs on MCI reversion rates
has not been explicitly studied, but it is often suggested when
reversion rates are discussed (Malek-Ahmadi, 2016; Thomas
et al., 2020).

Present Study
In the present analyses, we utilized a sample of Alzheimer’s
Disease Neuroimaging Initiative (ADNI) participants who were
diagnosed as MCI at baseline. We sought to (1) calculate
1-year follow-up cognitive classifications using PE-unadjusted
and PE-adjusted scores, (2) compare reversion rates and
diagnostic stability between PE-unadjusted and PE-adjusted
classifications, and (3) provide criterion validity for the PE-
adjusted classifications through baseline biomarker data and time
until first dementia diagnosis. We hypothesized that the PE-
adjusted scores would reveal false reverters, i.e., participants at
follow-up who were classified as CN via PE-unadjusted scores
but MCI via PE-adjusted scores. By retaining these participants
in the MCI pool, we expected the PE-adjusted classifications to
result in improved diagnostic stability and decreased reversion
rates. Also, we expected the biomarker profile and the time until
first dementia diagnosis of the false reverters to be more similar to
the stable MCI participants than to true reverters (i.e., individuals
classified as CN at follow-up based on both PE-adjusted and PE-
unadjusted scores). Finally, in a post hoc analysis, we modeled the
impact of PE adjustment on studies concerned with progression
to dementia, a common outcome in clinical drug trials and
research studies.

MATERIALS AND METHODS

Participants
Data used in the preparation of this article were obtained
from ADNI1. The ADNI, led by Principal Investigator
Michael W. Weiner, MD, was launched in 2003 as a public-
private partnership. The primary goal of ADNI has been to
test whether serial magnetic resonance imaging, positron
emission tomography, other biological markers, and clinical
and neuropsychological assessment can be combined to
measure the progression of MCI and early AD. For up-to-date
information, see www.adni-info.org. Participants from the
ADNI-1, ADNI-GO, and ADNI-2 cohorts were included.

Mild cognitive impairment was diagnosed using the Jak-
Bondi approach (Jak et al., 2009; Bondi et al., 2014; Edmonds
et al., 2018). Participants were classified as single domain MCI
(amnestic, dysexecutive, or language-impaired) if their scores
on 2 tests within the same cognitive domain were both greater
than 1 SD below normative means. They were diagnosed as
multi-domain MCI if they met the criteria for single domain
MCI in more than one cognitive domain (e.g., impaired on both
memory tasks and language tasks). The Jak-Bondi approach to

1adni.loni.usc.edu

MCI classification is favorable when compared with Petersen
criteria with regard to the likelihood of progression to dementia,
reversion rates, and proportion of biomarker-positive cases
(Bondi et al., 2014; Edmonds et al., 2018).

We identified 344 individuals who were classified as MCI at
baseline. Of those 344, 329 returned for a 12-month follow-
up visit and also completed all cognitive measures at both
assessments. Mean educational level of returnees was 16.4 years
(SD = 2.9), 61.4% (n = 202) were female, and mean baseline age
was 73.1 years (SD = 7.4).

Procedures
Six cognitive tests were examined across the approximately
12-month test–retest interval. Episodic memory tasks included
the Wechsler Memory Scaled-Revised, Logical Memory Story
A delayed recall, and the Rey Auditory Verbal Learning Test
(AVLT) delayed recall. Language tasks included the Boston
Naming Test and Animal Fluency. Attention-executive function
tasks were Trails A and Trails B. The American National Adult
Reading Test provided an estimate of premorbid IQ. Only
participants who had complete test data and completed the same
version of tests at the baseline and 12-month visits were included.

Z-scores were calculated for the PE-adjusted and -unadjusted
scores based on independent external norms that accounted for
age, sex, and education for all tests except the AVLT (Shirk et al.,
2011). The AVLT was z-scored based on the ADNI participants
who were CN at baseline (n = 889) because we were unable to find
appropriate external norms for this sample that also accounted
for age, sex, and education. AVLT demographic corrections were
based on a regression model that followed the same approach
as the other normative adjustments. Beta values were multiplied
by an individual’s corresponding age, sex, and education. The
products were then removed from the AVLT raw scores. These
adjusted AVLT scores were then z-scored.

Baseline biomarkers included cerebrospinal fluid amyloid-
beta (Aβ), phosphorylated tau (p-tau), and total tau (t-tau).
The ADNI biomarker core (University of Pennsylvania) used
the fully automated Elecsys immunoassay (Roche Diagnostics).
Sample collection and processing have been described previously
(Shaw et al., 2009). Cutoffs for biomarker positivity were2:
Aβ+: Aβ < 977 pg/mL; p-tau+: p-tau > 21.8 pg/mL; t-tau+:
t-tau > 270 pg/mL (Hansson et al., 2018; Elman et al., 2020).
There were 226 returnees with biomarker data.

Dementia was diagnosed according to ADNI criteria: (1)
Memory complaint by subject or study partner that is verified
by a study partner; (2) Mini-Mental State Examination score
between 20–26 (inclusive); (3) Clinical Dementia Rating score of
either 0.5 or 1; (4) An impaired delayed memory score on the
Logical memory test: ≤ to 8 for 16 or more years of education;
≤ to 4 for 8–15 years of education; or ≤to 2 for 0–7 more
years of education; (5) National Institute of Neurological and
Communicative Disorders and Stroke–Alzheimer’s Disease and
Related Disorders Association criteria for probable AD (Petersen
et al., 2010). No participants met these criteria at baseline or at
the 12-month follow-up.

2http://adni.loni.usc.edu/methods
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Replacement-Participants Approach to
Practice Effects
Although review papers have noted that PEs can exist even
when there is longitudinal decline in observed performance,
as expected within a sample at risk for AD (Salthouse, 2010),
few have empirically demonstrated that claim (Goldberg et al.,
2015). In such situations, Calamia et al. (2012) suggested
that the most suitable approach is to utilize replacement
participants (Rönnlund and Nilsson, 2006). To our knowledge,
the replacement-participant approach has only been utilized in
two samples (Ronnlund et al., 2005; Elman et al., 2018). In
this method new participants are recruited for testing at follow-
up who are demographically matched to returnees. The only
difference between the groups is that replacements are taking the
tests for the first time whereas returnees are retaking the tests.
As age is one of the matching factors, any age-related decline
should be equal across the groups. Therefore, comparing scores at
follow-up between returnees and replacement participants (with
additional adjustment for attrition effects) allows for detection
of PEs when observed scores remain stable and—unlike other
methods—even when they decline. In both scenarios, scores
would have been lower without repeated exposure to the tests
(Ronnlund et al., 2005; Elman et al., 2018).

The goal of the replacement method is to obtain follow-up
scores at retest that are free of PEs and comparable to normative
data (which assume no presence of PEs). Some researchers have
used PEs in other ways, such in short-term retest paradigms (Duff
et al., 2011, 2014; Duff, 2014; Duff and Hammers, 2020). The goal
of this approach is to predict future decline and the likelihood of
progressing to MCI or dementia (Jutten et al., 2020). Rather than
predict decline, the goals of the replacement method are: (1) to
detect decline at a given point in time that has been masked due
to PEs, and (2) to revise the diagnosis of CN or MCI based on
cognitive scores that have been appropriately adjusted to reflect
the estimated magnitude of masked decline. Furthermore, only
the replacement method has been empirically shown to calculate
PEs when there is observable decline over time (Calamia et al.,
2012; Elman et al., 2018). This attribute of the method makes it
uniquely appropriate for samples that are impaired at baseline
and/or are expected to decline over time (Calamia et al., 2012).
Also, unique to this method is the fact that it allows for a change
in how early MCI may be diagnosed.

Practice Effect Calculation
Because replacement participants were not part of the original
ADNI study design, we created what we refer to as the pseudo-
replacement method of PE adjustment. We have fully described
this method previously in an examination of individuals who
were cognitively normal at baseline (Sanderson-Cimino et al.,
2020). Briefly, a bootstrap approach (5,000 resamples, with
replacement) was used to calculate PE values for each cognitive
test. At every bootstrap iteration, a subsample of returnees was
randomly selected (25% of sample) from the total number of
individuals who had a baseline and 12-month follow-up visit.
We then removed these selected returnees from the overall
baseline pool, leaving a subset of potential “pseudo-replacement

participants” that included returnees not chosen at that iteration
and those who did not return for a follow-up (approximately 75%
of the sample). From this potential replacement pool, a set of
pseudo-replacements was matched to selected returnees on age
at returnee follow-up, sex, years of education, and premorbid IQ
using one-to-one matching and propensity scores (R package:
MatchIt) (Ho et al., 2018). Additional t-tests and chi-squared tests
ensured that returnees and pseudo-replacements were matched at
a group level (ps > 0.8). Thus, this sample of pseudo-replacement
participants was demographically identical to the returnee
subsample. In a traditional replacement participants method of
PE-adjustment returnees and non-returnees are combined into a
“baseline” subsample that excludes replacements. In this method,
we used a “proportional baseline” subsample that included the
baseline scores for the returnees chosen at that iteration as
well as all other subjects not chosen to be pseudo-replacements
(approximately 75% of sample). However, the removal of the
pseudo-replacements from the sample led to an artificially high
portion of lower-performing baseline participants since the
pseudo-replacements perform at a similar level to returnees at
baseline. To correct for this issue, we calculated the retention
and attrition rates for that visit in the overall sample. Because the
PE for each test was calculated individually, we used test-specific
retention and attrition rates, which resulted in a slight variation
in rates; the average retention rate was 66% (65–70%) and the
average attrition rate was 34% (30–35%). We then used these rates
in the creation of the proportional baseline mean (see below).
Of note, due to the bootstrapping and matching procedure,
the number of participants in each group (i.e., returnees and
replacements) varied but was always greater than 80 participants.

The equations below were used to calculate the PE:

Difference score = ReturneesT2 − Pseudo-ReplacementsT1

Attrition effect = ReturneesT1 − Proportional BaselineT1

Practice effect = Difference score − Attrition Effect

Where ReturneesT2 represents the mean score of the returnee
sample at their second assessment, Pseudo-replacementsT1
represents the mean score of the pseudo-replacement sample (by
definition, at their first assessment), and ReturneesT1 represents
the mean score of returnees at their first assessment. The
Proportional BaselineT1 was a weighted mean calculated by
multiplying the returnee baseline scores by the test-specific
retention rate (65–75%) and the remaining portion of the
subsample by the test-specific attrition rate (30–35%%). The
difference score represents the sum of the PE and the attrition
effect. The attrition effect accounts for the fact that individuals
who return for follow-up are typically higher-performing or
healthier than those who drop out. Subtracting the attrition effect
from the difference score prevents over-estimation of the PE
(Ronnlund et al., 2005; Elman et al., 2018). Use of a proportional
baseline that retains the test-specific retention and attrition rates
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prevents overestimation of the attrition effect as removing the
pseudo-replacements from this sample artificially lowers the
baseline mean score. The PE for each test was calculated by
subtracting the attrition effect from the difference score.

Statistical Analysis
After calculation, the PE for each test was then subtracted
from each individual’s observed (unadjusted) follow-up test score
to provide PE-adjusted raw scores. Cohen’s d was calculated
for each PE by comparing PE-unadjusted and PE-adjusted
scores. Adjusted raw scores at follow-up were converted to
z-scores, which were used to determine PE-adjusted diagnoses.
Stated differently, a score was labeled as impaired if the
follow-up PE-adjusted score was greater than 1 SD below the
average demographic-corrected mean. To evaluate the impact
PE-adjustment had on cognitive classification, McNemar χ2

tests were used to compare differences in the proportion
of individuals classified as having MCI before and after
adjusting for PEs. To assess criterion validity of the PE-
adjusted diagnoses, McNemar χ2 tests were used to compare
the number of biomarker-negative reverters and biomarker-
positive stable MCI participants when using PE-adjusted versus
PE-unadjusted scores.

Time until first dementia diagnosis in months from baseline
was also used to validate PE-adjusted diagnoses. Cognitive data
used to diagnose dementia by ADNI were not adjusted for PEs.
Wilcoxon rank sum tests were used to compare groups due
to the non-normal distribution of months until first dementia
diagnosis. It was expected that those who reverted to CN
status at follow-up would progress to dementia more slowly
than those who remained classified as having MCI. As such,
if PE adjustment improved diagnostic accuracy by correctly
relabeling some false reverter (based on PE-unadjusted scores)
as MCI, then a comparison between MCI and CN groups should
show a larger and more statistically significant difference when
using PE-adjusted scores than when using PE-unadjusted scores.
PE-adjustment should also alter a comparison between those
who truly revert and the false reverters, with false reverters
progressing faster than true reverters. The following four time-
until-dementia comparisons were tested: PE-adjusted MCI versus
PE-adjusted CN; PE-unadjusted MCI versus PE-unadjusted CN;
False reverters versus PE-unadjusted MCI; and False reverters
versus PE-adjusted CN.

We also expected that the false reverters (based on PE-
unadjusted scores) would have a biomarker profile more similar
to the stable MCI participants than the true reverters. Thus, we
calculated rates of biomarker positivity for diagnostic groups
(Stable MCI and reverters) first using PE-unadjusted scores and
then with PE-adjusted scores.

In post hoc analyses, Cox proportional hazard models
compared progression to dementia between those who were
diagnosed as MCI at follow-up and those who reverted to CN.
All models used classification (Stable MCI vs. reverters) as the
independent variable of interest and months from baseline until
first dementia diagnosis as the dependent variable. Covariates
were age and education. Models were completed first with PE-
unadjusted scores and then with PE-adjusted scores.

Time-to-dementia analyses included a full model and three
timeframe-restricted models: 16–150 months (full sample data),
16–24, 16–36, and 16–48 months. The models with restricted
timeframes attempted to demonstrate how predictive the
classification was for studies with shorter follow-up periods.
Because, in these hypothetical studies, we could not know if a
participant progressed to dementia past the specified timeframe,
each model was right-censored with time to event defined as time
to first dementia diagnosis or time to last follow-up within the
restricted time period. As this project utilized existing data, the
maximum follow-up period was set to 150 months because that
was the longest available timeframe within ADNI.

RESULTS

PEs were non-zero for 5 of the 6 measures (Table 1) and ranged
in magnitude (Cohen’s d = 0.06–0.26). PE-adjustment resulted in
23 more participants (+9%) classified as MCI at 1-year follow-
up than when using PE-unadjusted scores (272 vs. 249). Of
the 23, 16 (+9%) were classified as single-domain MCI and 7
participants classified as multi-domain MCI (+9%). Regarding
specific cognitive domains, PE-adjustment resulted in 24 more
participants (+11%) classified with memory impairment (233
vs. 209), 6 more participants (+9%) classified with attention-
executive impairments (73 vs. 67), and 5 more participants (+7%)
classified with language impairments (72 vs. 67). Full results are
presented in Table 2.

The overall 1-year stability of MCI (lack of reversion to
CN) was raised by 7% when adjusting for PEs (PE-adjusted
stability rate = 82.7%; PE-unadjusted stability rate = 75.6%).
Across groups (single-domain MCI, multi-domain MCI) and
within each cognitive domain (memory, attention-executive, and
language), PE adjustment increased the number of participants
who retained their baseline diagnosis of MCI (Range: +2 [+3%]
to +22 [+11%]). In particular, there were significantly more
participants who remained in the impaired range at follow-up on
memory when using PE-adjusted data versus PE-unadjusted data
(+11%; 201 vs. 223). A similar significant result was also found
when considering stability of single-domain MCI (+12%; 147 vs.
164). Table 3 provides full stability results.

The overall reversion rate (i.e., being classified as CN at follow-
up) was 24.3% (n = 80) using PE-unadjusted scores and 17.3%
(n = 57) using PE-adjusted scores. This indicates that adjusting
for PEs resulted in a 28.8% reduction in the overall reversion
rate. Table 4 describes how PE adjustment affects reversion
rates across diagnostic subgroups and cognitive domains. Among
those with single-domain MCI at baseline, adjusting for PEs
reduced reversion rates by 27.4% (53 vs. 73 reverters). Regarding
specific cognitive domains, adjustment reduced the reversion rate
among those with baseline memory impairments by 33.3% (44
vs. 66). Adjustment also decreased reversion rates among the
remaining cognitive domains (attention-executive and language)
as well as among those who were multi-domain MCI at
baseline (reversion to CN rate reduction range: 6.5–13.3%),
but this equated to only a small change in the number of
participants (ns < 5).
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TABLE 1A | Descriptive statistics among participants at baseline and 1-year-follow-up.

Memory Attention/executive function Language

Raw mean score (SD) RAVLT Logical memory Trails A Trails B Boston naming Category fluency

Full sample baseline 1.55 (2.61) 5.81 (3.57) 39.27 (20.85) 106.14 (66.90) 27.82 (3.76) 15.88 (4.76)
Full sample follow-up 2.17 (3.09) 6.39 (4.55) 39.39 (20.67) 106.44 (74.67) 28.15 (4.10) 15.29 (5.51)

The “Full Sample” rows refer to the means (standard deviations) of all participants at baseline and at follow-up.

TABLE 1B | Descriptive statistics and calculated practice effects for tests among participants classified as mild cognitive impairment at baseline.

Memory Attention/executive function Language

Raw mean score (SD) RAVLT Logical memory Trails A Trails B Boston naming Category fluency

Proportional baseline 1.59 (2.61) 1.92 (3.68) 40.28 (22.75) 109.76 (75.03) 27.66 (4.16) 15.51 (4.82)
Returnees baseline 1.58 (2.61) 2.00 (3.56) 39.88 (21.73) 107.45 (68.16) 27.77 (3.94) 15.70 (4.81)
Returnees follow-up 2.45 (3.07) 2.84 (4.51) 39.30 (22.19) 107.73 (76.53) 28.11 (4.51) 15.02 (5.46)
Replacements follow-up 1.67 (2.57) 1.86 (3.72) 41.35 (22.63) 114.40 (74.90) 27.37 (4.51) 15.11 (4.81)
Attrition effect −0.01 [−0.13, 0.16] 0.09 [−0.10, 0.43] −0.40 [−1.57, 0.89] −2.31 [−6.64, 2.27] 0.11 [−0.14, 0.33] 0.43 [0.15, 0.72]
Practice effect 0.80 [−0.33, 3.08] 0.89 [−0.41, 3.33] −1.64 [−5.65, 2.41] −4.36 [−19.16, 9.57] 0.63 [−0.21, 1.53] NA
Cohen’s d 0.26 0.20 −0.07 −0.06 0.14 NA

Groups are based on the average performance across all 5,000 bootstrapped iterations. Means are based on transformed data that was reverted back to raw units.
“Proportional baseline” refers to a weighted mean that combines the returnee baseline group and a group that included all subjects not selected to be Returnees or
Replacements in that bootstrapped iteration. “Returnee Baseline” refers to baseline test scores for the subset of participants who returned for the 12-month follow-up
visit (ns > 80) and were selected at that iteration. “Returnee Follow-Up” refers to 12-month scores for the same subset of returnees who were selected for that iteration.
“Replacement Follow-up” refers to the pseudo-replacement scores (ns > 80). The scores for memory tasks indicate the number of words remembered at the delayed
recall trials. Scores on the attention/executive functioning tests indicate time to completion of task. On these tasks, higher scores indicate worse performance. Scores on
the Boston Naming Task indicate number of correct items identified; scores on Category Fluency indicate number of items correctly stated. Practice effects and attrition
effects are in raw units with the 2.5 and 97.5 percentiles in brackets. As such, the negative practice effects and attrition effects for the Trails tasks demonstrates that
practice decreased time (increased performance). Cohen’s d is given for the difference between PE-adjusted and unadjusted scores of returnees at follow-up. RAVLT,
Rey Auditory Verbal Learning Test.

TABLE 2 | Classification prevalence at baseline and follow-up.

Any MCI M MCI S MCI Memory impairment Attention/EF impairment Language impairment CN

Baseline 329 75 254 267 77 70 0

Unadjusted 249 79 170 209 67 67 80

Adjusted 272 86 186 233 73 72 57

Difference +23 +7 +16 +24 +6 +5 −23

% difference 9.23% 8.86% 9.41% 11.48% 9.00% 7.46% 28.75%

χ2; p-value 21.0; p < 0.001 5.1; p = 0.02 7.5; p = 0.006 22.0; P < 0.001 3.2; p = 0.07 3.2; p = 0.07 21.0; p < 0.001

Presents the number of participants who met criteria for mild cognitive impairment (MCI). The “unadjusted” and “adjusted” rows refer to diagnoses at the follow-up visit.
The “Any MCI” column presents the count of participants who meet criteria for MCI in any domain, combining those who are impaired in only one domain (single-domain
MCI: S MCI) and those who are impaired in 2 or 3 domains (multiple-domain MCI: M MCI). The impairment columns present the count of participants who were impaired
in each domain, regardless of whether they are impaired in another domain. Individuals who do not meet criteria for impairment (i.e., classified as Cognitively Normal; CN)
are displayed in the “CN” column.
The Difference row displays how many more participants meet criteria for that classification or impairment when adjusting for practice effects (i.e., Adjusted count –
Unadjusted count). The percent listed in this row displays the percent increase/decrease when accounting for practice effects: difference/Unadjusted count. McNemar
χ2 tests were used to evaluate the impact of practice-effect adjustment on classification or impairment count; p-values are presented.

We also compared how PE-adjusted and PE-unadjusted
classification affected rate of progression to dementia. Of the
329 returnees, 159 progressed to dementia (48% of sample).
As shown in Table 5, those who were diagnosed as MCI at
follow-up and progressed to dementia during the study were first
diagnosed in approximately the same time frame, regardless of
PE consideration (median = 25.0 months). Those who reverted to
CN and later progressed to dementia did so more slowly than the
stable MCI groups (PE-unadjusted median = 37.3 months; PE-
adjusted median = 60.3 months). In PE-unadjusted groups, based

on Mann–Whitney U tests, there was no significant difference
in time until first dementia diagnosis between stable MCI and
reverter participants (W = 1703; p = 0.177). However, in the same
comparison based on PE-adjusted scores, those in the stable MCI
group progressed significantly faster than those who reverted to
CN (W = 1240; p = 0.017).

Ten of the false reverters (6.2%) progressed to dementia.
These participants progressed to dementia in a similar time
frame as the those diagnosed with MCI via PE-unadjusted scores
(median = 30.03 months). The false reverters progressed to
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TABLE 3 | Impact of practice effects on classification stability and progression.

Stable M MCI Stable S MCI Progression to M MCI Stable impairment

Memory Attention/EF Language

Unadjusted 45 147 34 201 46 42

Adjusted 49 164 37 223 48 44

Difference +4 +17 +3 +22 +2 +2

% difference 8.89% 11.56% 8.82% 10.94% 4.35% 4.76%

χ2; p-value 2.25; p = 0.13 11.13; p < 0.001 1.3; p = 0.25 20.0; p < 0.001 0.5; p = 0.48 0.5; p = 0.48

Displays the number of individuals classified as impaired at follow-up via practice effect-unadjusted scores and -adjusted scores. The “Stable M MCI” column provides
the count of participants who met criteria for multiple domain mild cognitive impairment (M MCI) at baseline and at follow-up. The “Stable S MCI” provides the same
information about individuals with single domain MCI (S MCI). Individuals who progressed from S MCI at baseline to M MCI at follow-up are displayed in the “Progression”
column. The “Stable Impairment” section describes the number of individuals who retained an impairment in a specific cognitive domain at follow-up, regardless of
whether they met criteria for an impairment in another domain at either visit. The Difference row displays how many more participants meet criteria for that classification
or impairment when adjusting for practice effects (i.e., Adjusted count – Unadjusted count). The percent listed in this row displays the percent increase in stability when
accounting for practice effects: difference/Unadjusted count. McNemar χ2 tests were used to evaluate the impact of practice-effect adjustment on classification or
impairment stability; p-values are presented.

TABLE 4 | Practice effect-adjustment and reversion rates.

Reverters M MCI Reverters S MCI Reversion in specific domain

Memory Attention/EF Language

Count

Unadjusted 30 73 66 28 31

Adjusted 26 53 44 26 29

Difference −4 −20 −22 −2 −2

χ2; p-value 2.25 p = 0.13 18.1 p < 0.001 20.0 p < 0.001 0.5 p = 0.48 0.5 p = 0.48

Reversion rate

Unadjusted 40.5% 28.7% 24.7% 36.3% 44.3%

Adjusted 35.1% 20.9% 16.5% 33.8% 41.4%

Difference −5.4% −7.8% −8.2% 2.6% 2.9%

% change in reversion 113.3% 127.4% 133.3% 17.1% 16.5%

The “Count” section displays the number of participants who reverted from a classification or impairment based on practice effect-unadjusted and -adjusted data. Those
who reverted from multi-domain mild cognitive impairment (M MCI) at baseline to either single domain MCI (S MCI) or cognitively normal are displayed in the “Reverters M
MCI” column. Those who were classified as S MCI at baseline and reverted to cognitively normal at follow-up are listed in the “Reverters S MCI” column. The “Reversion
in Specific Domain” section refers to individuals who had a baseline impairment in a domain (memory, attention/executive functioning, or language) but not at follow-up;
participants in these columns may be impaired in other domains at either baseline or follow-up. The Difference row displays how many fewer participants reverted when
adjusting for practice effects (i.e., Adjusted count – Unadjusted count). McNemar χ2 tests were used to evaluate the impact of practice-effect adjustment on classification
or impairment reversion; p-values are presented.
The “Reversion Rate’ section lists the reversion percent for each column by dividing the counts provided above by the baseline prevalence of each classification shown
in Table 1. For example, 74 people were classified as M MCI at baseline and 30 reverted at follow-up when using unadjusted data. Therefore, the reversion rate for the
unadjusted M MCI reverters was 30/74. The difference row subtracts the reversion rate using Unadjusted data from the rate using Adjusted data. The “% change in
reversion” row shows the percent change in reversion rate by dividing the difference by the unadjusted reversion rate: e.g., 113.3 = 5.4/40.5.

TABLE 5 | Progression to dementia.

Full sample N = 159 Stable MCI Reverters False reverters N = 10

Months until DX Unadjusted N = 141 Adjusted N = 151 Unadjusted N = 18 Adjusted N = 8

Mean 37.48 36.17 36.32 47.77 59.44 38.44

Median 25.28 24.98 24.98 37.28 60.28 30.03

SD 21.90 20.66 20.66 28.68 33.34 21.70

Presents the time in months until first dementia diagnosis (DX) among those who converted to dementia. Of the 329 participants 159 have progressed to dementia
(“Full Sample”). Participants were classified as “Stable MCI” if they retained their mild cognitive impairment (MCI) classification at follow-up; participants were classified
as “Reverters” if they were classified as cognitively normal at follow-up. Classifications were made using practice effect-unadjusted (“Unadjusted”) and practice effect-
adjusted (“Adjusted”) data. Those who were classified as MCI by the practice effect-adjusted data but not the unadjusted data are referred to as “False reverters”. Values
are bolded to emphasize that the False reverters appear to be similar to the Stable MCI group in time to first dementia diagnosis.
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dementia more quickly than those who were classified as CN
based on PE-adjusted scores at follow-up. There was not a
significantly different rate of progression to dementia between
false reverters and PE-adjusted CNs, or between false reverters
and PE-unadjusted MCI based on Mann–Whitney U tests
(ps > 0.17).

When false reverters were removed by adjusting for PEs,
the median time until first dementia diagnosis was increased
(+23 months). To further investigate this finding, we performed
post hoc Cox proportional hazard models to compare progression
to dementia from 12-month follow-up between those who
were diagnosed as MCI at follow-up and those who reverted
to CN. Across all models, the hazard ratio associated with
increased risk of dementia progression among stable MCI
participants was nearly twice as large when adjusted for
PEs compared to PE-unadjusted diagnoses (average hazard
ratio: PE-adjusted = 8.9, PE-unadjusted = 4.2; average percent
increase = 110%). Figures 1, 2 displays hazard ratios and
survival curves for all models. Supplementary Figure 1 provides
additional Kaplan–Meier curves and risk tables for progression to
dementia by diagnosis group.

There were 226 participants with baseline biomarker data. As
shown in Table 6A, regardless of PE adjustment, approximately
70% of those who were diagnosed as MCI at follow-up were
Aβ positive and 70% were P-tau positive at baseline. Similarly,
regardless of PE adjustment, about 60% of reverters were Aβ

positive and 45% were P-tau positive. There were 18 false
reverters with biomarker data. The false reverter group had an Aβ

positivity of 55% and a P-tau positivity of 40%. Table 6B displays
the biomarker positivity rates for each classification group based
on amyloid and P-tau positivity (i.e., A−/T−, A+/T−, A−/T+,
and A+/T+). Regarding the false reverters, 72% (13/18) were
positive for at least one biomarker.

DISCUSSION

The validity and utility of MCI criteria are weakened by high
reversion rates, which have been a longstanding problem for
MCI as a construct (Pandya et al., 2016). As a result, some
practitioners are hesitant to use MCI as an early indicator of AD,
despite the field’s goal of identifying and treating those on the AD
trajectory as early as possible (Sperling R. A. et al., 2014; Canevelli
et al., 2016; Pandya et al., 2016; Alexander et al., 2021). Among
individuals in the ADNI sample who were diagnosed with MCI
at baseline, adjusting for PEs led to a significant reduction in
reversion to CN over 1 year (28.8% reduction in reversion rate).
This meant that classifications were more stable across time,
particularly for those with baseline amnestic MCI.

Pathologically, AD is characterized by a progressive change
in amyloid beta and tau protein levels in the brain (Anand
et al., 2017). Although there is conflicting evidence regarding
the temporal staging of AD biomarkers and cognitive symptoms
(Braak et al., 2011; Jack et al., 2013; Edmonds et al., 2015b;
Veitch et al., 2019; Elman et al., 2020), it is likely that in
most cases abnormal levels of amyloid beta are first reached,
followed by abnormal levels of tau, which in turn affect cognition

(Dubois et al., 2016; Jack et al., 2017, 2018). In our analyses,
approximately half of the false reverters were amyloid positive
while around a third were tau positive. Nearly three-quarters
of the false reverters were positive for at least one of the
two biomarkers. A comparison across all three groups – true
reverters, false reverters, and stable MCI – suggests that the false
reverters may be an intermediate/mixed biomarker group. Some
of the false reverters who were biomarker negative (A−/T−) may
have MCI that is unrelated to AD. However, it is also possible
that even some of the false reverters who were biomarker negative
may still be on the AD trajectory. We previously showed, for
example, that after controlling for tau, cognitive function in A−
individuals in the ADNI sample predicted progression to A+
status (Elman et al., 2020). Overall, the PE-adjustment reduced
the number of reverters, resulting in more stable MCI diagnoses
and may be identifying more people who are beginning to show
clinically significant levels of AD biomarkers.

Use of a robust normal sample partially addresses PEs as
the cut-off for MCI diagnosis varies at each timepoint based
on the distribution of scores among participants who remain
CN across all visits (Edmonds et al., 2015a; Eppig et al., 2017;
Thomas et al., 2017, 2019). In a similar ADNI subsample,
use of robust norms found a 1-year reversion rate of 15.8%
(Thomas et al., 2019), which is similar to the rate found in the
present study (17.3%). Whether the rates would be similar in
different studies remains an open question. Using robust normal
instead of normative data means that gauging impairment is
based on what is a “super-normal” group that is, essentially, by
definition, non-representative. This non-representativeness will
be compounded further if the sample itself is not representative.
For example, the robust normal group in ADNI is the highest
functioning subgroup of what is already a very highly educated
sample. In this approach there is no accounting for how PEs
may be affecting classification into the robust normal group
itself. It is possible that some individuals in that group might
actually be classified as having MCI at some follow-up if their
scores were adjusted for PEs at each time point based on a
replacement participants approach. Moreover, PE estimation can
be overestimated if attrition effects are not considered (Ronnlund
et al., 2005; Elman et al., 2018). PEs based on a robust normal
group may be inflated as compared to PEs within the overall
sample because, by definition, this group does not have attrition
(Eppig et al., 2017; Thomas et al., 2017). Finally, comparison
of results from the present study with that of our prior study
(Sanderson-Cimino et al., 2020) shows that it is important to
differentiate the cognitive status of individuals at baseline because
the magnitude of PEs differs for individuals who are CN at
baseline versus those who have MCI at baseline.

Proponents of MCI as a diagnostic entity note that individuals
with the diagnosis are more likely to progress to AD, and do so at
a faster rate than CN individuals (Mitchell and Shiri-Feshki, 2009;
Pandya et al., 2016). Those critical of MCI’s validity note that,
while MCI is associated with AD, individuals with MCI are more
likely to revert to CN over time than to progress to AD (Canevelli
et al., 2016). Here we found that the false reverters progressed
to dementia at approximately the same rate as individuals who
were classified as MCI at both time points. In contrast, those who
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FIGURE 1 | Full Cox proportional models for time until first dementia diagnosis by PE-unadjusted and PE-adjusted 12-month diagnoses. Cox proportional hazard
models compared progression to dementia between those who were classified with mild cognitive impairment at follow-up (Stable MCI) and those who reverted to
cognitively normal (Reverters). Models used classifications (Stable MCI vs. Reverter) as the independent variable of interest; months from baseline until first dementia
diagnosis as the dependent variable; and all variable data (16 – months from baseline). Covariates were age and education, fixed at the average level within the
sample (age: 73.1 years; education: 16.4 years). The left graph bases diagnoses on the PE-unadjusted 12-month data; the right graph uses diagnoses based on the
PE-adjusted 12-month data. Each model presents a hazard ratio (HR; [CI]) that indicates how much more likely the Stable MCI group was to convert to dementia
compared to the Reverters. Wald tests and likelihood-ratio tests (LRT) are also included with associated p-values to denote the significance of the HR. The Y-axis of
each model provides the survival probability and the X-axis of each model provides the time frame until dementia conversion.

were classified as CN (i.e., true reverters) at follow-up progressed
to dementia more slowly than the false reverters. These results
are consistent with the notion that misclassification of these false
reverters, caused by the failure to account for PEs, is weakening
the predictive ability of MCI. This point is echoed by the time-
to-dementia diagnosis of the reverter group. Removing the false
reverters from the reverter group increased the time until first
dementia diagnosis among those classified as CN by almost
2 years (37.28 versus 60.28 months).

Although adjusting for PEs slightly altered the median
time until first dementia diagnosis, statistical comparisons
between groups were non-significant. To further investigate
these findings, we completed Cox proportional hazard models.
Using PE-unadjusted data, we found that the stable MCI
group converted to dementia significantly faster than the (false)
reverter group, as expected. When models were completed
with PE-adjusted data, we found that the hazard ratios
sharply increased, suggesting that the PE-adjusted classifications
improved differentiation between the (true) reverters and the
stable MCI participants. Not accounting for PEs may thus
obscure true effects or push significance above threshold,
influencing subsequent interpretation.

Interestingly, hazard ratios were less different between
PE-adjusted and PE-unadjusted models when analyses were
completed over the full 150-month timeframe (HRs: 6.0. versus
3.7) compared to shorter time frames (24-month HRs: 8.9 versus
3.6; and 36-month HRs: 11.6 vs. 4.8). These results are consistent

with the idea that PE adjustment leads to earlier detection
of at-risk participants, which would be particularly important
for studies with shorter follow-up periods. Importantly, clinical
drug trials for AD typically involve shorter follow-up periods,
so increasing the number of individuals expected to progress
to dementia during the trial period will increase sensitivity to
treatment effects. Therefore, failure to account for PEs may have a
large impact on the design of treatment studies and interpretation
of their results. Earlier detection of at-risk individuals is also of
obvious importance for clinical care.

Strengths and Limitations
All participants completed the logical memory test at a screening
assessment, baseline, and 12-month visit; all other tests were
completed only twice. Therefore, it is possible that the PE for
logical memory is misestimated. However, as the effect size of the
logical memory PE is similar to that of the other memory task
(AVLT), it seems likely that our estimate is still valid.

Our time until dementia analyses did not account for death.
Of the 329 participants included in these analyses, 33 passed away
before study completion (10.0%). The modal time until death was
48-months past baseline visit (n = 8; 24% of deaths). Importantly,
all participants who passed away were diagnosed as stable MCI
(impaired at baseline and follow-up) by both the PE-adjusted and
PE-unadjusted datasets. As such, although mortality may have
impacted results, this effect was equal within the PE-adjusted and
PE-unadjusted analyses.
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FIGURE 2 | Full Cox proportional models for time until first dementia diagnosis by PE-unadjusted and PE-adjusted 12-month diagnoses. Cox proportional hazard
models compared progression to dementia between those who were classified with mild cognitive impairment at follow-up (Stable MCI) and those who reverted to
cognitively normal (Reverters). All models used classifications (Stable MCI vs. Reverter) as the independent variable of interest and months from baseline until first
dementia diagnosis as the dependent variable. Covariates were age and education, fixed at the average level within the sample (age: 73.1 years; education:
16.4 years). Models in the top row display results completed with PE-unadjusted scores; models in the bottom row display results completed with the PE-adjusted
scores. Each row designates the time frame for each model measured in months from baseline. Time frames were restricted to demonstrate how predictive the
classification was for studies with various follow-up periods. As these hypothetical studies would not know if a participant converted to dementia past their follow-up
period, those who converted after the endpoint of that specific model were censored (i.e., recoded as non-converters). Each model presents a hazard ratio (HR; [CI])
that indicates how much more likely the Stable MCI group was to convert to dementia compared to the Reverters. Wald tests and likelihood-ratio tests (LRT) are also
included with associated p-values to denote the significance of the HR. The Y-axis of each of the 6 models provides the survival probability and the X-axis of each
model provides the time frame until dementia conversion.

The ADNI sample was not designed to be a population-
representative study. It represents a population of older adults
likely to volunteer for clinical trials, and consists primarily of
white, highly educated individuals who may be at a higher
genetic risk for dementia than typical Americans. Results of
the present study may not be applicable to other studies with
different sample characteristics or retest intervals. Additionally,
age and education have been shown to impact PEs (Calamia
et al., 2012; Gross et al., 2017). We strongly believe that the exact
PE values found in this study should not be applied to other
samples, particularly if they involve CN individuals with different
demographics (i.e., age and education). However, a strength of
the replacement-participants method of estimating PEs is that it
is always tailored to the sample, including age and education, as
well as the retest interval being studied. For example, in addition
to the 1-year interval in the present study, the replacement-
participants method has been used successfully in studies with

intervals as long as 5–6 years (Ronnlund et al., 2005; Elman
et al., 2018). Participant demographics and cognitive tests are
always matched. Retest intervals may vary across studies, but
PEs are calculated for the specific interval(s) used within a given
study. Therefore, we explicitly recommend against using these
PE estimates in other studies. Rather we encourage others to
utilize the method within their study to more accurately generate
PEs given their specific demographics, measures, and test–
retest interval. The cost of including replacement participants
might seem prohibitive, but it is actually a relatively small
component in a large-scale study (Elman et al., 2018; Sanderson-
Cimino et al., 2020). Elsewhere, we have shown that it could
save millions of dollars in a large clinical trial because MCI
is detected earlier, resulting in reductions in study duration
and necessary sample size (Sanderson-Cimino et al., 2020). As
shown in the present study, the method can be adapted to
large studies that did not include replacements in their original
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TABLE 6A | Amyloid, total tau, and phosphorylated tau across classification groups.

Full sample N = 226 Stable MCI Reverters False reverters N = 18

Unadjusted N = 166 Adjusted N = 184 Unadjusted N = 60 Adjusted N = 42

Amyloid
Count 160 124 134 36 26 10
% 70.8% 74.7% 72.8% 60.0% 61.9% 55.6%
T-tau
Count 123 101 106 22 17 5
% 54.4% 60.8% 57.6% 36.7% 40.5% 27.8%
P-tau
Count 145 118 125 27 20 7
% 64.2% 71.1% 67.9% 45.0% 47.6% 39.9%

Presents the number of participants (Count) and percent of sample (%) for three cerebrospinal fluid biomarkers: amyloid beta (Abeta), Tau, and phosphorylated tau (Ptau).
Of the 329 participants, 226 had full biomarker data, which is presented in the “Full Sample” column. Participants were classified as “Stable MCI” if they retained their mild
cognitive impairment (MCI) classification at follow-up; participants were classified as “Reverters” if they were classified as cognitively normal at follow-up. Classifications
were made using practice effect-unadjusted (“Unadjusted”) and practice effect-adjusted (“Adjusted”) data. Those who were classified as MCI by the practice effect-
adjusted data but not the unadjusted data are referred to as “False reverters.” The percent sample (%) was determined by dividing the number of biomarker-positive
subjects in a cell by the total number of participants with that classification; e.g., 74% = 117/158.

TABLE 6B | Combined amyloid and tau positivity profiles.

Full Stable MCI Reverters False

Sample Unadjusted Adjusted Unadjusted Adjusted Reverters n = 18

A−T−
Count 39 22 27 17 12 5
Percent 17.3% 13.3% 14.7% 28.3% 28.6% 27.8%
A + T−
Count 42 26 32 16 10 6

Percent 18.5% 15.7% 17.4% 26.7% 23.8% 33.3%
A−T+
Count 27 20 23 7 4 3
Percent 11.9% 12.0% 12.5% 11.7% 9.5% 16.7%
A + T+
Count 118 98 102 20 16 4

Percent 52.2% 59.0% 55.4% 33.3% 38.1% 22.2%
A+ and/or T+
Count 187 144 157 43 30 13

Percent 82.7% 86.7% 85.3% 71.7% 71.4% 72.2%

Presents the number of participants (Count) and percent of sample (%) for combinations of cerebrospinal fluid biomarker positivity: biomarker-negative (A−/T−), amyloid-
positive and tau-negative (A+/T−), amyloid-negative and tau-positive (A−/T+), amyloid and tau positive (A+/T+), and positive for any biomarker (A+ and/or T+).

design. However, building it into the original study design is
clearly preferable.

CONCLUSION

Here we have shown that a replacement method of PE
adjustment significantly altered how we understand follow-
up status in individuals who have already been diagnosed
with MCI at the baseline assessment. Our results indicate
that the replacement-participants method of adjustment for
PEs results in fewer MCI cases reverting to CN, and
improved predictability of progression to dementia. In sum,
the results provide further support for the importance of
accounting for PEs on cognitive tests in order to reduce
misdiagnosis and increase earlier detection of progression to
MCI or dementia.
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