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The origin of life must have been preceded by Darwin-like
evolutionary dynamics that could propagate it. How did
that adaptive dynamics arise? And from what prebiotic
molecules? Using evolutionary invasion analysis, we develop
a universal framework for describing any origin story for
evolutionary dynamics. We find that cooperative autocatalysts,
i.e. autocatalysts whose per-unit reproductive rate grows as
their population increases, have the special property of being
able to cross a barrier that separates their initial degradation-
dominated state from a growth-dominated state with
evolutionary dynamics. For some model parameters, this
leap to persistent propagation is likely, not rare. We apply
this analysis to the Foldcat Mechanism, wherein peptides fold
and help catalyse the elongation of each other. Foldcats are
found to have cooperative autocatalysis and be capable of
emergent evolutionary dynamics.
1. Introduction
It is not known how life arose from prebiotic matter 3.5 billion
years ago. It has not been replicated in a laboratory. In the
absence of experiments, there is a role for theory and modelling
to help generate hypotheses. On the one hand, there have been
speculations about ‘chicken-or-egg’ questions: ‘What bio-like
molecules might have come first?’ Maybe life started as an RNA
World [1–7]; a Lipid World [8–16]; an Amyloid World [17–22]; or
Metabolism Came First, where some biochemical reactions
did not require enzyme catalysts [23–27]. Alternatively, the first
step towards life could have involved two or more bio-like
molecules [28–35].

We reason instead about what driving forces and dynamics
would have led to sustained bio-like propagation [36–41]. Why
was there any tendency at all to create biology? What process
might have led polymers (such as lipids, RNA, DNA or
proteins) to have specific sequences or assemblies that perform
biological functions? While physical and chemical processes
tend toward equilibria and degradation according to the Second
Law of Thermodynamics, biology is driven by input resources
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to survive, evolve and innovate. How did a dead regime dominated by degradation, dilution and

transience become a living regime dominated by propagation, evolution and persistence?
Arguably, a Darwin-like evolutionary process must have preceded the origin of life. As a metaphor,

computers cannot operate until they have an operating system. A widely accepted definition of living
system—due to NASA [42]—is that ‘life is a self-sustaining chemical system capable of Darwinian
Evolution’. The italics are ours, emphasizing the implication that since life cannot be defined in the
absence of its adaptation dynamics, then some form of that dynamics must have been operating at or
before the origin of life. Life cannot originate until it can propagate. This prebiotic evolution-like
process could then act as the driving force that steered prebiotic chemistry toward biology [38,40,43],
instead of toward ‘asphaltization’ or other dead-ends [44–47]. The question of the origin of life then
becomes a search for the origin of some dynamical evolutionary mechanism or process.

To identify a dynamical origins mechanism requires an analysis at two levels: a macro and micro
consideration. At the macro level, we seek the broadest possible statement about what types of
fluctuations occurring within an unstable degradation-dominated world could drive a transition to a
stable growth-dominated world, independent of any particular microscopic model instantiation of it.
At the micro level, we then seek a molecular mechanism that can satisfy this macro criterion for
transition to dynamical persistence, and which also has minimal free parameters, is physical, and is
prebiotically plausible.

We begin with the macro analysis. We apply a universal framework called ‘first invasion’ analysis
that can be used to probe any proposed origin story for evolutionary dynamics, no matter what its
underlying thesis in molecular physics about the origin of life. In short, we are looking for dynamical
principles of ‘bootstrapping’, i.e. of how prebiotic physical and chemical processes dominated by
degradation, dilution and decay could transform to stably persistent positive-feedback autocatalysis.
2. First invasion analysis shows three scenarios
The beginnings of some form of evolutionary dynamics must have been when an autocatalyst1 (or
autocatalytic set [48–51]) was able to establish a persistent population of itself. Evolutionary selection
would then act on the variation among the characteristics of the autocatalysts and ‘remember’ the best
traits by enhancing them in the population via competition for resources [36,38,52]. Without a
persistent population, there is no way for evolutionary dynamics to lock-in its good discoveries and
commence its hallmark fitness-ratcheting process.

Suppose an autocatalyst is discovered by a prebiotic chemical process; what would be its fate? Would
it grow into a persistent population and establish evolutionary dynamics, or would it decay away before
it could do so? Evolutionary invasion analysis [53–57] is a mathematical method for determining whether
an individual (the invader), when inserted into a pre-established community, will multiply or die out.
The origin of evolution was the ‘first successful invasion’, the first time where a small population of
autocatalysts tried to grow into an environment and succeeded. Therefore, we use an evolutionary
invasion analysis to model it, even though the invasion occurs in an environment with no
pre-established autocatalysts.

In invasion analysis, the initial population of the invading species is taken to be small enough that it
does not perturb the existing community. In a thermodynamics metaphor, this is like a system connected
to an infinite thermal bath that it cannot change. In this unperturbing limit, the environment is fixed, so
there is only a single dynamical population A(t). In the most general terms, the population will be
governed by one differential equation dA/dt = g(A), where the function g depends on the known
environmental dynamics. We assume that the timescale of environmental changes is longer than the
molecular timescales; while not essential, this simplification allows us to treat g(A) as a constant
function (without it, we have g(A, t), where the time dependence is presumed to be known). The
invasion analysis limit, which we focus on here, is when A→ 0. We discuss various models of the full
resource dependence that extend our analysis to larger values of A, as well as the applicability of our
invasion analysis approximation, in appendix C, which also outlines the types of population
dynamics models that are the starting point for our analysis.
1
An agent A, such as a molecule, is an autocatalyst if it accelerates the production of more of itself from some resource materials B, A +
B→ 2A. For autocatalytic sets, a collection of agents {A} can be used with only small changes to the mathematics. A cooperative
autocatalyst is, for example, one with reproductive reaction 2A + B→ 3A, so that the mass-action reaction rate depends on higher
powers of A than linear.
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Figure 1. Three possible potential landscapes for invasion. (a) Introduced into a favourable environment, the invader population grows
(until it is limited by the amount of resources; see figure 7). (b) Introduced into an unfavourable environment, the population is pushed
down to zero. (c) Degradation at low population; growth at high population. The force changes sign at the potential maximum.
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In general, the population A(t) obeys a minimization principle, which we will use to analyse its
dynamics. If we define

VðAÞ ¼ �
ðA
0
dx gðxÞ, ð2:1Þ

then dV(A(t))/dt = (dV/dA)(dA/dt) =−(g(A(t)))2≤ 0 and the population A(t) will tend toward a value
that minimizes V(A) while on the path defined by dA/dt = g(A). This potential landscape is a
Lyapunov function for the dynamics of the autocatalyst [58]. Stable steady states are minima of V,
because at its minima dV/dA =−g(A) = 0, and d2V/dA2 =−dg/dA > 0 guarantees a restoring force
(−dV/dA) pointing back to the steady-state value. For a population A(t) to persist and undergo
evolution, there only needs to be one such non-zero minimum, where it will sit indefinitely.

In the limit ofA→ 0, there are only three relevant categories of potential functions, which are visualized
in figure 1. Any function V(A) as defined in equation (2.1), when viewed in the small A limit, will fall into
one of these three categories. (a) Favourable. The invader is introduced into a favourable environment and
grows until it is limited by resources. The non-equilibrium-driven supply of resources sustains a force −
dV/dA (black arrow) that pushes the population of A higher. (b) Unfavourable. The environment is
unfavourable and the population of A dies out. (c) Metastable with a tipping point. For the small initial
population, the invader population does not grow, but for higher populations it does. There is a tipping
point that is the transition from a regime of decay to a regime of persistent growth.

These three behaviours are expressed by a general Taylor-expanded version of the ODE for A(t):

dA
dt

¼ gðAÞ � ðg1 �DÞAþ g2A2; ð2:2Þ

where g1 is a growth rate, D is a decay or degradation rate and g2 is the rate coefficient for a lowest-order
nonlinear cooperativity effect. These terms are all that are needed to capture the three fates of the
autocatalyst population shown in figure 1. The corresponding potential function of this simple model is

VðAÞ ¼ ðD� g1ÞA2

2
� g2A3

3
: ð2:3Þ

Case (a) is when g2≥ 0 and g1 >D, case (b) has g2≤ 0 and g1 <D, and case (c) has g2 > 0 and g1 <D. Case (c)
requires a cooperative autocatalyst. Here, we are defining cooperativity in the same way it is defined in
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binding polynomials. For example, haemoglobin binds to a second oxygen ligandmore tightly when a first

oxygen is already bound to it [59–61]. In our situation, cooperativity means the autocatalyst gets better
at making itself as its population goes up: the birth rate is (g1 + g2A)A, where both constants are
positive. Our term cooperativity is a shorthand for positive cooperativity, i.e. where g2 > 0, not negative
cooperativity. We note that cooperativity is not a guaranteed property of any autocatalyst that prebiotic
chemistry could have discovered: appendix C discusses further when autocatalysts are considered
cooperative for the purposes of the invasion analysis approximation and when the approximation holds
(i.e. when resource begin to matter again). Case (c) cannot be realized by non-cooperative invaders.
Case (b) is non-cooperative (g2 = 0) or negatively cooperative (g2 < 0), and the dynamics of case (a) do
not change if the positive cooperativity is removed because the first term of the Taylor expansion is
sufficient. We should note here that g1, g2 and D are constants because of our assumption that
environmental changes are slow; when environmental changes matter, each of these just becomes a
(known) function of time, so that the potential landscape that the autocatalyst sees can change. It is only
the current potential landscape that determines the autocatalyst’s behaviour, since the ODE dynamics
are first order in time. We emphasize again that no matter the underlying mechanism or origin of life
model of the invading autocatalyst, these three cases can be applied: they are the only possible behaviours.

The deterministic behaviour of case (a) of figure 1 is to give a persistent population of autocatalysts
undergoing evolutionary dynamics, while cases (b) and (c) predict that the autocatalysts will die out and
there will be no evolution. However, the real dynamics are not deterministic. Cases (a) and (b) do not
change when noise is added, but case (c) does. The population A(t) will move around stochastically
about its deterministic path. Furthermore, the environment itself is fluctuating. Mathematically, this
manifests as fluctuations in the quantities g1, g2 and D of equation (2.2). Graphically, this means that the
location of the peak of the potential barrier of figure 1c itself can shift. Through these combined motions,
case (c) autocatalysts can hop the potential barrier between decay (left side of the barrier) and growth
(right side of the barrier). Once it is on the right side, the population will have a sustained driving force
toward even higher population levels far away from the barrier, establishing a persistent population that
is able to evolve. So, cases (a) and (c) can describe an origin of evolution, while case (b) cannot.

2.1. Using first invasion analysis to probe origin stories
The first invasion analysis described above is completely general, capable of assessing any particular
model of origins of life, as we will now argue. It encompasses previous approaches applied to specific
models of prebiotic RNA templated polymerization [62,63], a prebiotic disorder-to-order transition
[64,65], and other origin of life replicator dynamics models with bistability [66–68]. In particular, we
have generalized these models by placing them in a widely applicable ecological framework of the
first invasion, distilling out the singular importance of cooperative autocatalysis, and identifying that
such dynamics gives rise to evolution’s origin. Our main specific application of the first invasion
analysis framework will be to the Foldcat Mechanism of peptides in the next section, but in appendix
C, we also illustrate its applicability to a simplified model of templated polymerization.

For evolution to emerge from prebiotic chemistry, an autocatalyst must eventually be discovered that
is case (a) or case (c). There is no way to begin evolutionary dynamics without discovering the
autocatalyst that can evolve (the driving force needs a medium to act on), and the only ways to
introduce it are via cases (a) and (c). Origin stories that fit case (a) are of the ‘right place at the right
time’ nature. Prebiotic chemistry would have discovered an autocatalyst in an ideal environment that
favoured its growth over decay. The origin story must then explain how that perfect match between
environment and autocatalyst was produced using only prebiotic chemistry.

We are interested inmechanisms that are case (c) because these cooperative autocatalysts are able to cross
the potential barrier to growth even in unfavourable environments.Moreover, as demonstrated in the specific
model of [62,63], this event only needs to happen in one spatially localized place, from which the
autocatalysts can diffuse elsewhere into other environments, causing potential barrier crossings wherever
they go. Autocatalysts that are non-cooperative, that is, they are case (a) in some places and case (b) in
others, cannot do this. Adding more autocatalysts to a case (b) environment cannot flip it into a self-
sustaining population; it will always require diffusion from the favourable environment. Diffusion of
autocatalysts into a case (c) environment causing a barrier hopping, however, can ignite a self-sustaining
population of the autocatalyst that no longer relies on the diffusion of autocatalyst inward. Thus, case (c)
has an ‘any place at any time’ nature. If a cooperative autocatalyst is repeatedly re-introduced into the
same case (c) environment, it will inevitably hop the potential barrier if given enough time and attempts
(depending on the barrier hopping probability and the rate of re-introduction, this amount of time could
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Figure 2. The Foldcat Mechanism. Short peptides of hydrophobic (H ) and polar (P) monomers are synthesized on the ‘Founding
Rock’ catalyst (green). A few long chains fold to stable structures with catalytic-competent surfaces. These can elongate other chains,
giving positive feedback of chain-length growth.
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be unphysically long, however). Think of it as a biased coin-flip, where the probability of heads is the non-
zero probability of hopping the potential barrier. Given enough flips, there will eventually be a heads.
Cooperative autocatalysts have a chance, or even a likelihood, of survival even in very poor
environments. Cooperativity allows for a much broader range of conditions for the emergence of evolution.

3. The Foldcat Mechanism and its emergent evolutionary dynamics
We now give a model at the micro level. The Foldcat Mechanism, described previously [36,38,40,69],
postulates that the synthesis of random short-chain peptides leads to small populations of longer protein
molecules that can both fold and catalyse chemical reactions [28,48,70–73]; see figure 2. Short random HP
(hydrophobic/polar, referring to the two types of monomers) peptides are synthesized, catalysed at first
through some macroscale object, like clays or minerals which, as shorthand, we call the Founding Rock.
A small fraction of those chains are longer, collapsing into compact conformations with a hydrophobic
core. Some of these stable folders have reactive surfaces. Indicated here as having hydrophobic sticky
‘landing pads’, these chains act as catalysts that grab other peptides and hydrophobic monomers in
juxtaposition, accelerating elongation of the client chain (by up to several orders of magnitude according
to some estimates [74]). We call chains that fold and catalyse elongation foldcats. Here, we analyse the
Foldcat Mechanism by invasion analysis to ask if that mechanism admits of parameters that could
enable the disorder-to-order bootstrapping transition needed for the origins of evolution.

A key question in the origins of life is what fitness might have been before there were cells, in a world
that contained only molecules. Through what mechanisms or actions could molecules become self-
serving? In the Foldcat Mechanism, the initial fitness ratcheting that selects winners from losers is
simply molecular persistence in the environment. Polymer chain sequences that fold more stably will
survive longer. And, chains that are autocatalytic (helping to elongate others) drive to further increase
the populations of molecules that are long and autocatalytic.

Another key question at the origin of life is how catalysts could become mobile and programmable.
For example, if the Founding Rock was a mineral surface, it would be spatially immobilized and
macroscopic. Moreover, it would only catalyse specific reactions, under specific conditions, with no
mechanism for tuning its activity. Proteins are biology’s catalysts: they are microscopic, freely
diffusing, and able to be adjusted (through changes in their sequence) to different environments and
functions. The discovery of proteins would be a major event in the origin of life, because catalysis
could now move around and be captured in proto-cells [37].

We will show that, as cooperative autocatalysts, foldcats allow for case (c) of the first invasion
analysis. They can hop the potential barrier to achieve a persistent population. In doing so, they
‘untether’ from the Founding Rock’s stationary catalysis and are able to sustain their own population
as long as they are given an environmental supply of amino acids (discovery of the biological
pathways for creating amino acids would be a later development). Mobilizing peptide elongation
allows for proteins to spread in their environment, as described for case (c) autocatalysts in the
previous section, and begin the process of discovering new catalytic pathways.

There has not been a direct experimental test of the Foldcat Mechanism, but there is experimental
evidence for the ideas of folding persistence as the first evolutionary driving force [75–81] and
hydrophobic amino acids driving peptide ligation [16,20,82]. Amino acids and short peptides have been
generally regarded as existing on the early Earth [28,83–95]. And, reasons have been given for why the
most likely first steps entailed proteins, or proteins plus RNA, and not RNA alone [28,31,40,72,96].
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catalyse elongation of other chains (k1 and k2) and (ii) folded chains degrade more slowly because their folded cores are protected
from solvent (k3). For analytical forms, see appendix A.
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3.1. Two cooperativities: folding slows degradation; catalysis accelerates elongation
This mechanism entails two contributions to autocatalytic cooperativity: namely, that folded chains
degrade slower than unfolded ones because they have protected cores, and that some foldcats serve as
catalysts to accelerate the production of longer chains. This mechanism bootstraps to produce longer,
more folded, more catalytic molecules. Because of their cooperative feedback, the more foldcats that
arise, the higher the rate of producing long, stable, catalytically active chains.

Figure 3 shows the two cooperativity factors of the Foldcat Mechanism. Figure 3a is the baseline
model powered by the Founding Rock and a supply of monomers: it makes many short chains, fewer
medium-length chains, and even fewer long chains. The concentrations of monomers flowing into
each chain bin (short, medium, long, folder, foldcat, etc.) can be visualized by the filling of buckets.
Each bucket drains into the next bucket on the right, and its chains degrade out of the bottom of the
bucket at a fixed rate. The resulting population distribution is plotted above the buckets. Figure
3b shows the speed-ups that the Foldcat Mechanism provides beyond the Founding Rock: (i) foldcats
(bucket three) elongate chains that are their direct precursors (bucket 2) into foldcats with a rate k1,
(ii) foldcats elongate the precursors of their precursors (bucket 1) into the foldcat precursors (bucket 2)
with rate k2 and (iii) the buckets to the right degrade slower because these chains are longer and more
folded, with the rate of slowing related to k3. The first of these three activities is regular autocatalysis;
the latter two are cooperative. The result of the foldcat enhancements is the red population
distribution, which gives orders of magnitude more long chains when compared to just the Founding
Rock’s distribution. Analytical forms of both of these population distributions, as well as the example
parameters used, are given in appendix A.
3.2. Dynamical model of the Foldcat Mechanism
To keep things simple and focus on how a population of adaptive foldcats could establish itself via the
‘first invasion’ framework, we do not include chain sequence or chain length information in our first
model presented here2 (although we do include some chain length and sequence information in
our models of appendices A and B, to be discussed more later). Our goal is to demonstrate how a
foldcat-like autocatalyst with the types of cooperative feedback illustrated in figure 3 gives a region of
case (c) metastability behaviour. The basic reactions in our model are that monomer M is supplied at
a rate αM and decays at a rate dM M, while non-foldcat chains r are created at a rate αr and decay at a
2
By taking this perspective, we are treating foldcats like an autocatalytic set [48–51]. We are just monitoring the total population of
foldcats, of any sequence, averaging over any sequence specificity.
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rate dr r. Then, we have the elongation reactions, which are catalysed both by the Founding Rock and by

our foldcats A: (i) r +M→A (non-foldcat is elongated into a foldcat), (ii) r +M→ r (non-foldcat is
elongated and still is not a foldcat), (iii) A +M→A (foldcat is elongated and is still a foldcat), and
(iv) A +M→ r (foldcat is elongated and is no longer a foldcat). Elongation reaction i has mass-action
rate constant Ki(A), which has a Founding Rock and foldcat contribution. The full set of differential
equations describing the Foldcat Mechanism is

dr
dt

¼ ar � drrþ K4ðAÞAM� K1ðAÞrM,

dM
dt

¼ aM � ½dM þ rðK1ðAÞ þ K2ðAÞÞ þ AðK3ðAÞ þ K4ðAÞÞ�M,

and
dA
dt

¼ K1ðAÞrM� K4ðAÞAM�DA:

9>>>>>>=
>>>>>>;

ð3:1Þ

After a few simplification steps (see appendix D for details), equation (3.1) becomes a single equation
in A(t):

dA
dt

¼ k1A
1þ k1A

þ k1k2A2

ð1þ k1AÞð1þ A=AsÞ � A: ð3:2Þ

All variables are now dimensionless. The parameters of this mechanism are the non-cooperative
reproduction rate k1, which is the rate at which foldcats elongate non-catalytic chains into foldcats; the
cooperative reproduction rate k2, which is the rate at which foldcats create their direct precursors
(a foldcat minus one monomer) from monomers or shorter non-catalytic chains; and an additional free
parameter As, which is the Michaelis (saturation) constant of the creation of direct precursors from
monomers or shorter non-catalytic chains. As described in appendix D, k1 is a re-defined,
dimensionless version of the parameter K1, and k2 arises as part of the function αr. The parameters k1
and k2 act as visualized in the bucket metaphor of figure 3. In terms of the first invasion analysis
parameters of equation (2.2), Taylor expanding both of the first two terms of equation (3.2) gives D = 1
(definition of the dimensionless time parameter, see appendix D), g1 = k1 and g2 ¼ k1k2 � k21.
Surprisingly, even if k2 > 0, there is a region of negative g2. Even though the nature of the
cooperativity may seem straightforward, the range of parameters for which the system is cooperative
may be unexpected, and a full analysis like that of appendices C and D is needed.

The corresponding potential function for the Foldcat Mechanism equation (3.2) is

VðAÞ ¼ A2

2
� A� AAsk2 � A3

s k1k2 lnð1þ A=AsÞ
1� Ask1

� ð1� Ask1 þ Ask2Þ lnð1þ k1AÞ
k1ðAsk1 � 1Þ : ð3:3Þ

Using the three classes of behaviour from figure 1, we can create a phase diagram for foldcats from
equation (3.3); see figure 4. The interpretation of this phase diagram is as follows: first, nature
discovers foldcats in some environment; then, the values of the parameters k1, k2 and As are computed
for that environment, putting foldcats at one fixed point on the phase diagram; finally, the region in
which the point falls determines the foldcats’ fate. Each case from figure 1 is represented: one region
predicts pure growth (blue), one is pure death (yellow) and one is bistability (green). How quickly the
creation of foldcat precursors saturates (magnitude of As) determines the extent of the figure 1c
metastability region of foldcat discovery.

The simple model of equation (3.2) demonstrates the cat part of the Foldcat Mechanism’s
cooperativity. The other form is the fold part. Since our equation (3.2) does not have sequence or chain
length information, this type of cooperativity has to be put in by hand (but it arises natively in
the more detailed models of appendices A and B). To see the fold cooperativity, we should change the
decay term in equation (3.2):

� A ! � A� k3A2

1þ A2=B2
s

� �
, ð3:4Þ

where k3 relates to the magnitude of the foldcats’ ability to decrease the decay constant, and Bs, like As

above, characterizes the saturation of the foldcats’ degradation fighting effect. The parameter k3 is
visualized in figure 3. Note that the saturating parameters As and Bs are necessary: without them, our
model would not capture all of the foldcats’ possible dynamics. In this sense, the model of foldcats
we put forth here is the minimal one (only one additional parameter is needed for each form of
cooperativity) that captures the foldcats’ type of bootstrapping physics shown in figure 3. In the terms
of the invasion analysis parameters of equation (2.2), adding decay cooperativity only changes g2 to
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g2 ¼ k1k2 � k21 þ k3. Also, k3 and Bs have a constraint that the term in parentheses in equation (3.4) must
always be positive. This requires that B2

s k
2
3 , 4. The main effect of the decay cooperativity will be to

increase the size of the bistability region in figure 4, cutting further into the yellow case (b) decay
region. The full potential function for foldcats with both cooperative catalysis (k2) and cooperative
chain stability (k3) is given in appendix D.
3.3. Persistence drives the emergent evolution of the Foldcat Mechanism
To show that our conclusions about the Foldcat Mechanism from equation (3.2) do not change when
information about the sequences or chain lengths is added back in, and to obtain information about
the time-dependent dynamics of the Foldcat Mechanism, we simulated a modified version of our
Foldcat Mechanism model which lumped chains into length and sequence ‘bins’. Figure 5 shows the
computed time course of this modified model for the parameters given in appendix B. The model
predicts a series of epochs: first to appear are short random peptides; later are longer chains, which
are enriched in folders and foldcats. Almost all the early production are short useless peptides that
degrade back to monomers. It is a dynamical process in which small seedlings of order arise from a
sea of disorder, much like modern evolutionary dynamics. Most early molecules are random, short
and unproductive. Incrementally advantageous molecules rarely arise within this large sea of options,
but when they do further advantages follow from them, and so on, until ultimately a large global
advantage has been built up. Throughout the process, the ‘persistence’ of chains—that is, their fold
stability and elongation activity—continually increases. Persistence acts as the fitness for this
evolution-like dynamics. Interestingly, we note that the searching behaviour demonstrated in figure 5
is also similar to a previously studied model of protein folding itself as local first, global later [98].
It is a two-step discovery process: first is random search by the Founding Rock, which is then
superseded by a driven search by the foldcats.

In this particular simulation, parameters were chosen so that the Foldcat Mechanism was in the case
(a) region of figure 4. This binned model does have the same cooperativities visualized in figure 3, so
cases (b) and (c) exist as well. In decay scenarios, the light blue ‘small foldcat’ curve would stay near
zero concentration, and the dynamics would stop with the first epoch generated by the Founding
Rock search step. However, the Founding Rock would continually rediscover foldcats with some small
rate. Since the foldcats are cooperative, if stochastics were taken into account, the small population of
foldcats would fluctuate, possibly leading to the explosion in foldcats demonstrated in figure 5 and
the later epochs that followed. If the Founding Rock was given enough time to act, the probability of
foldcats jumping the potential barrier would approach unity, meaning that the emergence of evolution
is a likely property of the Foldcat Mechanism.
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3.4. From persistent foldcats to biology-like inheritance: next steps in the origin of life
We have only addressed a small sliver of how biology arose from chemistry, despite it being among the most
mysterious and important open scientific questions. How did persistent autocatalysis arise, leading from
polymer chain sequence disorder to order? We now examine the putative steps in this process. (i) Any
such mechanism must start from a premise of some pre-existing non-equilibrium environmental
process—a driving process that is arguably physico-chemical, is arguably prebiotic, and is capable of
producing monomers. Here, we assume amino acid production. (ii) Any such mechanism must assume
that the environmental process can ‘keep the match lit’ long enough for the system to ‘keep its own fire
going’. That is, the Founding Rock production must be stably persistent until molecular autocatalysts
become untethered from the Founding Rock and carry further evolution on their own. We have
demonstrated how a population of autocatalytic foldcats could emerge from this non-equilibrium-
powered environment by virtue of their cooperativity. (iii) Any mechanism must explain how different
monomer sequences have different persistences. In our case, differential persistences come from polymer
folding. As argued in the previous subsection, these foldcats would initially be driven towards higher
persistence, folding stability and catalytic activity by an evolution-like selection force.

(iv) Any mechanism must set the stage for how and why ‘the rest of biology’ would follow along
either subsequently or concurrently. What would be the further advantage of acquiring cellular
encapsulation, coupling proteins with nucleic acids, forming a genetic code, developing lineages and
heritability, creating biochemical pathways and networks, and producing its own amino acids and
energy storage? In the present picture, once there is a physico-chemical basis for fitness—namely
through folding persistence—then any other emergent functionalities can add or subtract value, and
fitness now becomes more general. Encapsulation into cells and heritability through a genetic code are
huge multipliers of persistence. To summarize these points: once persistence has been established, the
next important milestones for life would be fidelity in replication (moving towards biology’s system of
nucleic acid gene encoding and heredity) and robustness against environmental changes (moving
towards cellular encapsulation and biological metabolism/adaptivity).

What can our current model say about faithful replication? In the Foldcat Mechanism as we have
studied it here quantitatively, only the functional information of folding and catalysis needs to be
passed on for the population to persist. Some sequence information will naturally be passed on,
however. The Foldcat Mechanism is inherently biased to preferentially add reactive monomers (ones
that stick to landing pads) to growing chains [69]. Such preferences for monomers, or separately for
the types of chains that get elongated (potentially even self-preference), constantly work to change the
population distribution of foldcat chains, pushing towards more faithfully reproducing foldcats.

However, molecules that function as stores of information have different properties from those that
function as molecular machines and catalyse reactions [38,46]. Separation of responsibilities via
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specialization allows for better execution of both tasks. Therefore, proteins alone are less ‘fit’ (or less

persistent) than a combined system of proteins and nucleic acids. The simplest argument for how and
why biology would develop from a foldcat world is that evolution, via its drive for persistence (e.g. in
favouring stabilizing RNA–protein binding [29,99]), was able to act on interacting populations of
proteins and ribosomes in order to develop something like a proto-ribosome and a preliminary
genetic code [28,100]. The increase in fidelity due to these developments would raise the persistence
of the protein chains and turn the persistence fitness ratcheting principle into a form closer to
biological evolution’s fitness ratcheting.

(v) Finally, we speculate that the development of a specific genetic code, with protein functionalities
specified rather precisely, would have been a later development. We envision a disorder-to-order process:
at first, there are just vague general autocatalytic sets; only later does it become more precise.
l/rsos
R.Soc.Open
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4. Conclusion
The question we have raised in this paper is how prebiotic non-catalytic degradation-prone reactions
could have transitioned to autocatalytic persistent growth processes towards biology. Of necessity, this
requires explaining the molecular bases of cooperativities and their bootstrapping origins from simpler
processes. Our invasion analysis here elucidates the macro constraints that a micro model must satisfy.
But simply choosing macro parameters that predict a transition would not be an explanation of
origins. An explanation of origins requires a plausible microscopic model that has a physical basis in
molecular physics, minimal parameters, and tenable grounding in prebiotic processes. The foldcat
hypothesis is found to satisfy these criteria. As random peptides grow longer, they fold, protecting
their cores from degradation, and they catalyse the elongation of other chains, accelerating further
growth of the population of peptides. It gives a plausible platform for the origins of biological
evolution: a persistent population of autocatalytic foldcats feels further evolutionary selection
pressures—on its catalytic activity, chain stability and ‘reproductive’ fidelity—that can continue the
development of biology-like life.
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Appendix A. Analytical theory of the Foldcat Mechanism
The Foldcat Mechanism has previously been explored through computational simulations [38,69]. Here,
we give an analytical approximation to it. Assume we have a monomer u1—supplied3 at rate α and
decaying at rate Du1—and that polymerization is able to occur, u1 + uj→ uj+1 with rate ku1uj. We will
not track all of the individual rates of chains breaking apart; instead, we will just assume that there is
some rate d(n)un that chains completely fall apart (by assuming that chains just decay to nothing, we
are getting a lower bound on the number of chains at each level). An ODE model of this reaction
system is

du1
dt

¼ a�Du1 � 2ku21 �
X1
n¼2

kunu1

and
dun
dt

¼ kun�1u1 � kunu1 � dðnÞun:

9>>>=
>>>;

ðA1Þ

Solving equation (A 1) is not easy in the general case, but we can use some tricks at steady state.
Interpreted the usual way, u1 would be a function of all of the parameters of the problem: α, D, k, etc.
3

These supply and decay terms help combat the phenomenon of asphaltization [44], where all of the material would get locked up in
non-functional compounds, by constantly supplying amino acids to begin the search over sequence space anew. As long as the search
continues, there will be a probability of finding interesting chains that can cause a case (c) transition to an evolutionary state.
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However, we can instead say that u1 at steady state is known and solve for the corresponding α using the

rate equation for u1. It is then easy to solve for each un recursively:

un ¼ ku1
ku1 þ dðnÞ un�1: ðA2Þ

We can subsequently rewrite un non-recursively using a product:

un ¼ u1
Yn
j¼2

ku1
ku1 þ dðjÞ

� �
: ðA3Þ

For any set d( j ) > 0, u1 is the max of the distribution in equation (A 3), and the population of chains
falls off with increasing length. The Flory distribution [97],

Fn ¼ að1� aÞn�1, ðA4Þ
gives the fraction Fn of chains of length n and is characterized by the parameter awhich is the probability
that one of a monomer’s two connections is the end of the chain it is in. What values of the decay
constants d( j ) would turn our distribution un with a given u1 into the Flory distribution with a given
a and total population U? Setting U ¼ P

un, so that we are looking for the form un =U Fn, we can
divide consecutive terms un+1/un = Fn+1/Fn, to find

dðnÞ ¼ ku1
a

1� a

� �
, ðA5Þ

a constant. If we plug this result back into the distribution un, we find that

un ¼ u1ð1� aÞn�1: ðA6Þ
We see that U = u1/a, as it should. Since the Flory distribution is a special case of our un for a given choice
of decay constants, we call equation (A 3) the generalized Flory distribution.

If we want to know the fraction of all monomers in chains of length n in the Flory model (equivalent
to the mass or weight distribution), we get

Fn,weight ¼ na2ð1� aÞn�1: ðA7Þ

To find the total amount of monomers in chains of length n in the generalized Flory model, we just
multiply in an n:

un,weight ¼ nu1
Yn
j¼2

ku1
ku1 þ dðjÞ

� �
: ðA8Þ

A.1. Folding enhances the fraction of large chains

The Flory distribution is exponentially suppressed at large chain length. What about polymers that can
fold into stable configurations? For simplicity, we will consider the reaction un O fn, with folding rate
kf(n)un and unfolding rate ku(n)fn. We will assume that elongation only happens to unfolded chains.
Making this assumption, the monomer rate equation does not change, so we find

dun
dt

¼ ku1ðun�1 � unÞ � dðnÞun þ kuðnÞfn � kf ðnÞun

and
dfn
dt

¼ kf ðnÞun � kuðnÞfn � df ðnÞfn:

9>>=
>>;

ðA9Þ

To compare to the Flory distribution, we put fn to steady state:

dun
dt

¼ ku1ðun�1 � unÞ � dðnÞ þ df ðnÞkf ðnÞ
kuðnÞ þ df ðnÞ

� �
un

and fn ¼ kf ðnÞ
kuðnÞ þ df ðnÞ un:

9>>>=
>>>;

ðA10Þ

The form of the un rate equation is now the same as in the case without folding, where only the decay
constants have been modified. The total amount of polymer is

pn ¼ un þ fn ¼ 1þ kf ðnÞ
kuðnÞ þ df ðnÞ

� �
un: ðA11Þ
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Using the generalized Flory distribution, we can plug in to find

pn ¼ 1þ kf ðnÞ
kuðnÞ þ df ðnÞ

� �
u1

Yn
j¼2

ku1
ku1 þ dðjÞ þ df ðjÞkf ðjÞ=ðkuðjÞ þ df ðjÞÞ : ðA12Þ

We should note that this pn cannot be directly compared to the generalized Flory distribution
because the mapping between u1 and α is different. The correct comparison would be to look at the
two with the same α, not the same u1. However, in the realistic case where df(n)≪ d(n), we can ignore
its contribution to the un rate equation. The result is that un is exactly the generalized Flory
distribution result, and that pn = (1 + (kf(n)/ku(n)))un. Here, the mapping between u1 and α is the same,
so we can directly compare. The enhancement over the generalized Flory distribution depends solely
on the ratio of folding to unfolding, which can increase the population of polymer by orders
of magnitude.

A.2. Foldcats further beat the Flory distribution

We now introduce foldcats, as in [69]. As we mentioned before, we will not track polymer sequence here.
Instead, we will continue to use only length information in our ODEs. Unlike in [69], we are thus not
limited in the number of polymers we can track. To deal with the issue of tracking the exponentially
growing number of sequences as a function of chain length, Guseva et al. introduced a dilution term
that kept the total number of chains manageable for their simulation. This dilution completely wiped
out the enhancement of folding alone that we reported above after simplifying equation (A12). In our
model, we can keep the decay rates general.

Adding foldcats to our model of folding, equation (A 9), is simple. Assume that a fraction qfc(n) of the
folded polymers fn are foldcats. Then, the total number of foldcats is C ¼ P

q fcðnÞfn. If foldcats catalyse
the elongation of unfolded chains with a rate kcCu1un, then we can replace the rate constant k in our
equations with the quantity R = k + kcC. Our full model is then

du1
dt

¼ a�Du1 � 2Ru21 �
X1
n¼2

Runu1,

dun
dt

¼ Ru1ðun�1 � unÞ � dðnÞun þ kuðnÞfn � kf ðnÞun

and
dfn
dt

¼ kf ðnÞun � kuðnÞfn � df ðnÞfn:

9>>>>>>>=
>>>>>>>;

ðA13Þ

We should once again look for the steady-state distribution. We cannot immediately proceed as
before, because R now depends on the entire distribution un. We no longer get a recursive solution. As
before, however, we can recognize that the constants qfc(n) are not what we care about. We can instead
swap them out for knowing the level of foldcats C. We have a valid solution for some qfc(n) as long as
C � P

fn. Just as we traded the supply rate α for the more important parameter u1, we now trade qfc(n)
for the more important C. In doing so, we get the folding solution of equation (A 12), except with k
replaced by R. In principle, we could also solve this system of equations self-consistently; we do not do
this analysis here.

To compare the foldcat model to the generalized Flory distribution with and without folding, we
must simply make sure we have the same α for all three. This is done in figure 6, which shows the
fraction of chains at each length for random Founding Rock polymerization only (Flory distribution,
black), folding (blue) and foldcats (red). The presence of foldcats allows for many orders of magnitude
more long chains in the population. The total number of chains increases in the folding and foldcat
cases as well. The parameters used to create this figure, which were just examples chosen to illustrate
the foldcat effect, are shown in table 1. These same parameters were used to create figure 3 in the
main text.

Appendix B. A binned version of the chain-length-only foldcat model is a two-step process
driven by chain persistence
Instead of using the full foldcat model of equation (A 13) to find the time-dependent behaviour of the
Foldcat Mechanism, we used a binned model. We tracked ten species: monomers u1, then chains
that do not fold at all u, chains that can fold f, and foldcats c, the three of which could each have



10–6

Flory
fold only
foldcat

po
pu

la
tio

n 
fr

ac
tio

n 10–15

10–24

10–33

10–42

0 20
chain length

40
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Table 1. Parameters used for figures 3 and 6. Units were normalized so that u1 = 1 for the Flory distribution (determines
concentration units) and d(2) = 1 for the Flory distribution (determines time units). Folding was chosen to peak around n = 5,
giving the bumps in the red and blue curves of figure 6.

concentration units u1 = 1

time units 1/d(2) = 1

d(n) d(2) + (n− 2)

k 1

df(n) 0

kf(n) exp½�ðn� 5Þ2�
ku(n) expð�nÞ þ expðn� 13Þ
kc 1.8

C 4.145

u1, foldcat dist. 0.1

D 0.01

implied α 2.72

fraction of folding chains that are foldcats 0.047
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lengths short s, medium m, and long l. Our categories were u1, us, um, ul, fs, fm, fl, cs, cm and cl.
To compensate for losing specific length information, the elongation reactions were now assumed to
be probabilistic. For example, when a us is elongated, there is some probability pusus that is stays a us,
some probability pusfs that it becomes an fs, some probability puscm that it becomes a cm, and so on.
Elongation was assumed to be able to change the category to any other either at the same level (e.g. s
goes to s) or at the next higher level (e.g. s goes to m and m goes to l). Of course,

P
j pkj ¼ 1 is the

normalization condition.
The full model, then, included non-equilibrium supply of monomer, decay of every species back into

monomers using an average nk monomers recovered for decays of chains of length k, joining of two u1
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into a us, and the probabilistic elongation of each species that we described above. The ODEs for this

binned model are

du1
dt

¼ a�Du1 þ nsðdusus þ d fsfs þ dcscsÞ þ nmðdumum þ d fmfm þ dcmcmÞ þ nlðdulul þ d flfl þ dclclÞ
� ðku þ kuccTÞðus þ um þ ul � 2u1Þu1 � ðkf þ k fccTÞðfs þ fm þ flÞu1 � ðkc þ kcccTÞðcs þ cm þ clÞu1,

dus
dt

¼ ðpusus � 1Þðku þ kuccTÞusu1 þ p fsusðkf þ k fccTÞfsu1 þ pcsusðkc þ kcccTÞcsu1 � dusus þ ðku þ kuccTÞu21,
dum
dt

¼ pusumðku þ kuccTÞusu1 þ p fsumðkf þ k fccTÞfsu1 þ pcsumðkc þ kcccTÞcsu1
þ ðpumum � 1Þðku þ kuccTÞumu1 þ p fmumðkf þ k fccTÞfmu1 þ pcmumðkc þ kcccTÞcmu1 � dumum,

dul
dt

¼ pumulðku þ kuccTÞumu1 þ p fmulðkf þ k fccTÞfmu1 þ pcmulðkc þ kcccTÞcmu1
þ ðpulul � 1Þðku þ kuccTÞulu1 þ p flulðkf þ k fccTÞflu1 þ pclulðkc þ kcccTÞclu1 � dulul,

dfs
dt

¼ pusfsðku þ kuccTÞusu1 þ ðp fsfs � 1Þðkf þ k fccTÞfsu1 þ pcsfsðkc þ kcccTÞcsu1 � d fsfs,

dfm
dt

¼ pusfmðku þ kuccTÞusu1 þ p fsfmðkf þ k fccTÞfsu1 þ pcsfmðkc þ kcccTÞcsu1
þ pumfmðku þ kuccTÞumu1 þ ðp fmfm � 1Þðkf þ k fccTÞfmu1 þ pcmfmðkc þ kcccTÞcmu1 � d fmfm,

dfl
dt

¼ pumflðku þ kuccTÞumu1 þ p fmflðkf þ k fccTÞfmu1 þ pcmflðkc þ kcccTÞcmu1
þ pulflðku þ kuccTÞulu1 þ ðp flfl � 1Þðkf þ k fccTÞflu1 þ pclflðkc þ kcccTÞclu1 � d flfl,

dcs
dt

¼ puscsðku þ kuccTÞusu1 þ p fscsðkf þ k fccTÞfsu1 þ ðpcscs � 1Þðkc þ kcccTÞcsu1 � dcscs,

dcm
dt

¼ puscmðku þ kuccTÞusu1 þ p fscmðkf þ k fccTÞfsu1 þ pcscmðkc þ kcccTÞcsu1
þ pumcmðku þ kuccTÞumu1 þ p fmcmðkf þ k fccTÞfmu1 þ ðpcmcm � 1Þðkc þ kcccTÞcmu1 � dcmcm,

dcl
dt

¼ pumclðku þ kuccTÞumu1 þ p fmclðkf þ k fccTÞfmu1 þ pcmclðkc þ kcccTÞcmu1
þ pulclðku þ kuccTÞulu1 þ p flclðkf þ k fccTÞflu1 þ ðpclcl � 1Þðkc þ kcccTÞclu1 � dclcl,

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ðB1Þ
where cT = cs + cm + cl is the total number of foldcats, ku is the rate of elongation of a u (similarly for kf and
kc), and kuc is the rate of catalysed elongation of a u (similarly for kfc and kcc).

There are some heuristics that we used to guide our choices of the values of the (very many)
undetermined parameters of this model. Foldcats should be like folders in decay and elongation.
It should be easier to elongate an unfoldable chain than a folder or foldcat—ku or kuc are bigger than
their counterparts. On the flip side, unfoldable chains should decay faster. The probability of staying
in the same category upon elongation should be highest, while the probability of going to the
unfoldable category from either f or c should be small and decrease with chain length. The number of
monomers released per chain at each size should be of the order of the previous category’s average
length plus the inverse of the probability of jumping up a category upon elongation. Our full list of
constants used to make figure 5, which demonstrated the persistence-driven two-step nature of the
random Founding Rock search followed by the directed foldcat search, is shown in table 2.
Appendix C. Analysing the limits of the invasion analysis approximation and the eventual
resource limitation in various models
Our first objective is to see how the invasion analysis that produces figure 1 eventually reaches a stable
steady-state population of autocatalysts (autocats) because of resource limitations. The starting point will
be the resource competition equations

dr
dt

¼ a� drr� kðAÞAr

and
dA
dt

¼ kðAÞAr�DA,

9>>=
>>;

ðC1Þ

for one autocat A on one resource r, as developed previously (e.g. [36,38,101,102]). A full resource-
dependent population model like the one in equation (C 1) is the most basic starting point for any



Table 2. Parameters used for the binned foldcat model. Values were determined using the heuristics described in the text. Units
were normalized so that u1(0) = 1 (concentration units) and u1(0)/α = 1 (time units).

α 1 kf 0.008 pusus 0.864 pfsus 0.01 pcsus 0.0055

ns 15 kfc 0.25 pusfs 0.10 pfsfs 0.718 pcsfs 0.01

nm 50 kc 0.008 puscs 0.03 pfscs 0.27 pcscs 0.983

nl 100 kcc 0.25 pusum 0.005 pfsum 0.0001 pcsum 0.0002

ku 0.02 D 5 × 10−5 pusfm 0.0007 pfsfm 0.0012 pcsfm 0.0003

kuc 1 time units u1(0)/α puscm 0.0003 pfscm 0.0007 pcscm 0.001

pumum 0.718 pfmum 0.001 pcmum 0.0055 pulul 0.5 pclul 0.0001

pumfm 0.22 pfmfm 0.679 pcmfm 0.01 pulfl 0.43 pclfl 0.07

pumcm 0.06 pfmcm 0.318 pcmcm 0.983 pulcl 0.07 pclcl 0.9299

pumul 0.0007 pfmul 0.0001 pcmul 0.0002 pflul 0.001 concentration

units

u1(0)

pumfl 0.001 pfmfl 0.001 pcmfl 0.0003 pflfl 0.929

pumcl 0.0003 pfmcl 0.0009 pcmcl 0.001 pflcl 0.07
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‘first invasion’ analysis. The resource r is supplied at a rate α, decays with rate constant dr, and is eaten by
the autocats with rate constant k(A). The autocats decay with rate D. Setting the resource to steady state,
dr/dt = 0, and plugging back into the differential equation for A gives

dA
dt

¼ kðAÞA a

dr þ kðAÞA�DA

¼ ðakðAÞ=drÞA
1þ ðkðAÞ=drÞA�DA:

ðC2Þ

Note that setting the resource to steady state does not contradict the separation of timescales between the
system’s dynamics and environmental changes that we referred to in the text: we only assume that α and
dr are slowly varying functions of time, not necessarily that they are slow compared to the autocat’s
dynamics (that is, our assumption was on their derivative, not their value). It is generally expected
that, to get the single ODE for A(t) needed for the invasion analysis, resources will be put to their
instantaneous steady-state values. We now define k1 + k2 A = (k(A)α/dr) by Taylor expanding k(A).
While we expanded k(A) to second order here, there is no reason why k2 should be non-zero. In each
individual model, it must first be argued that the cooperativity exists, and a mechanism for it must be
given, before taking k2≠ 0. This discussion must take place before applying the invasion analysis. Our
ODE for the autocat population in this case is

dA
dt

¼ k1Aþ k2A2

1þ ðk1Aþ k2A2Þ=a�DA: ðC3Þ

We can see that the parameter α, which characterizes the non-equilibrium driving of the system by
resource supply, determines when the invasion analysis is valid. When α≫ k1 A + k2 A2, we can
Taylor expand equation (C 3) to find exactly equation (2.2) with g1 = k1 and g2 ¼ k2 � k21=a. This is only
one example; the actual formula for the parameter that determines when the invasion analysis is
valid, or for g1 and g2, will depend on the specific mechanism involved (the interplay between the
autocatalyst and the resource, as well as the non-equilibrium driving). The Foldcat Mechanism model
of equation (3.2) from the main text, for example, has the condition that A≪As and k1 A≪ 1, and we
will give further examples shortly. To move to unitless variables, we take time to be measured in
units of 1/D and concentration to be measured in units of α/D. Our unitless parameters would be
~A ¼ DA=a, ~k1 ¼ k1=D, and ~k2 ¼ k2a=D2. Dropping the tildes, we find

dA
dt

¼ k1Aþ k2A2

1þ k1Aþ k2A2 � A: ðC4Þ
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Figure 8. Phase diagram of cases (a) growth, (b) decay and (c) bistability when varying the two dimensionless parameters k1,
which is the rate of non-cooperative reproduction, and k2, which is the rate of cooperative reproduction, for the potential
landscape equation (C 5).
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Figure 7. Growth stops when resources are fully subscribed, but then evolution takes over. Situations (a,c) as in figure 1, but now
with resource limitations included. Figure 1 is the small A limit of this one. Each population saturates at a persistent, finite value, at
which point evolution acts (through e.g. the Darwinian evolution machine, the DEM [36]) to ratchet up the fitness (black arrow
pointing down and to the right).
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The invasion analysis limit is now (k1 A + k2 A
2)≪ 1. The corresponding potential landscape is

VðAÞ ¼ A2

2
� A� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4k2 � k21
q arctan

k1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2 � k21

q
2
64

3
75� arctan

k1 þ 2Ak2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2 � k21

q
2
64

3
75

0
B@

1
CA: ðC5Þ

For cases (a) and (c) as defined in figure 1, we get the full resource-limited dynamics in figure 7.
In each case, the population settles to a persistent level when the resource is fully used. When A
has a persistent population, evolution acts to increase the fitness (move to higher population
and lower potential). The invasion analysis figures are the zoomed-in portion near A = 0. Case (b)
can be considered to be a part of the case (c) plot of figure 7 if the potential barrier does not occur
within the invasion analysis regime (our next analysis). The phase diagram for this model is shown
in figure 8.

Now that we know when the invasion analysis is valid, we turn to finding when the autocatalyst
would be cooperative in the invasion analysis regime. To do this, we need to find the potential barrier
maximum of equation (2.2) and compare it to the parameter that determines when the invasion
analysis is valid. In general, we will call this parameter B (for the previous model, we found B = α; for
foldcats, B ¼ maxfAs, 1=k1g). If the minimum is greater than B, then the autocatalyst is not
cooperative: the only way to fluctuate into the funnel of the persistent state is to leave the invasion
analysis regime (presumably a very rare event because of the size of fluctuations needed). We will not
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plug in explicitly for B; instead, we will only use the parameters defined in the main text. Our starting

point is setting equation (2.2) equal to zero. The minimum location is

A0 ¼ D� g1
g2

: ðC6Þ

For our model, then, a cooperative autocat is defined by A0 ¼ ðD� g1Þ=g2 & B, where B is found using
the specific mechanism as we illustrated above.

If we are considering a cooperative autocatalytic process with two separate resources put to steady
state for the linear and quadratic ‘birth’ terms, then instead of equation (C 4) and (C 5), we could use

dA
dt

¼ k1A
1þ A=B

þ k2A2

1þ A2=C2 �DA, ðC7Þ

with corresponding potential landscape

VðAÞ ¼ DA2

2
� ðk1Bþ k2C2ÞAþ k2C3 tan�1 A

C

� �
� k1B2 ln

B
Bþ A

� �
: ðC8Þ

Now, cooperativity in the invasion analysis regime would be characterized by A0 & B and A0 & C. Both
constraints would have to be satisfied for an autocatalyst to be considered case (c).

Finally, we will consider a templated polymerization model. We have templated polymerizers A,
monomers M, and non-catalytic polymers r. The reactions are A + r +M→ 2 A + r (incorrect copying of
an inactive chain to make an active chain), 2 A +M→ 3 A (correct copying of an active chain to make
another active chain), A + r +M→A + 2 r (correct copying of a non-autocatalytic chain), and 2A +M→
2 A + r (incorrect copying of an autocatalytic chain). Note that the second of the reactions, producing
3A, is the cooperative one (e.g. consider its mass-action rate, which is proportional to A2). The full
ODE model of these reactions, including the non-equilibrium-driven supply terms4 αr and αM, would be

dr
dt

¼ ar � drrþ k1ArMþ k4A2M,

dM
dt

¼ aM � dMM� ðk1 þ k2ÞArM� ðk3 þ k4ÞA2M

and
dA
dt

¼ k2ArMþ k3A2M�DA,

9>>>>>>=
>>>>>>;

ðC9Þ

where k1 is the mass-action rate of faithful copying of an r, k2 is the rate of unfaithful copying of an r, and
k3 and k4 are the rates of faithful and unfaithful copying of an A, respectively. By assumingM and r attain
their steady states with A = 0, we can find that the maximum of the potential barrier for the templated
polymerizers would appear at

ATP
0 ¼ drdMD� k2araM

k3aMdr
: ðC10Þ

We could proceed as previously, putting the resources r and M to steady state then comparing ATP
0 to

the concentration parameter that determines when we can Taylor expand the rate equation for A, but the
expressions for rSS and MSS are unwieldy (although we should note that if r is presumed to be constant,
and the processes k1 and k4 are ignored, then equation (C 9) reduces to equation (C 4)). Instead, we will
approximate. We note that the invasion analysis approximation is when r≈ αr/dr and M≈ αM/dM. That
is, only the zeroth-order term of the Taylor expansion of r and M in powers of A contributes. Explicitly,
this expansion is r = αr/dr + grA and M = αM/dM + gMA for some constants gr and gM. The invasion
analysis approximation holds at the potential barrier maximum if grATP

0 dr=ar & 1 and
gMATP

0 dM=aM & 1. Setting the first two ODEs of equation (C 9) to steady state using only terms up to
linear order in A gives

gr ¼ k1araM

d2r dM

and gM ¼ ðk1 þ k2ÞaraM

d2Mdr
,

9>>>=
>>>;

ðC11Þ
4
In general, αr should be a complicated function of M. We will ignore that. It actually does not affect the invasion analysis that we do
here, since M is approximately constant anyway. We assume the use of monomers to make r is rolled into the decay term dM.
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so that the conditions for a cooperative autocat are

k1aMATP
0

drdM
& 1

and
ðk1 þ k2ÞarATP

0

drdM
& 1:

9>>=
>>;

ðC12Þ
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Appendix D. The foldcat-like cooperativity model
First, we should see why foldcat catalysis is actually cooperative in the first place. For templated
polymerizers, it is easy to see that the reaction 2A +M→ 3A has a mass-action rate proportional to A2,
giving the cooperativity. On the other hand, foldcats catalyse elongation reactions. One such reaction
would be a foldcat A taking a non-catalytic chain r and adding a monomer M to it to make a resultant
chain that is another foldcat: A + r +M→ 2A. Alternatively, a foldcat can elongate a foldcat and keep it as
a foldcat, 2A +M→ 2A. In the latter reaction, there is no net change in the number of foldcats. In the
former, one foldcat is added, but the mass-action rate of reaction is only proportional to Ar. At first
glance, then, it seems like foldcats are not cooperative, since there is no factor of A2. However, foldcats
also catalyse the formation of r from only M. Thus, the amount of precursor r should be a function of A;
Taylor expanding r(A) = r0 + r1A gives the extra factor of A necessary for cooperativity in foldcat dynamics.

We will now write down a full toy model of the Foldcat Mechanism just as we did for templated
polymerization in the previous appendix section. We will then simplify this model to the form that
we worked with in the main text. Our basic reactions, which we will simplify further below, are
that monomer M is non-equilibrium supplied at a rate αM and decays at a rate dMM, while non-
catalytic chains r are created at a rate αr and decay at a rate drr. Then, we have the elongation
reactions, which are catalysed by the Founding Rock and by our foldcats A: (1) r +M→A (non-foldcat
is elongated into a foldcat), (2) r +M→ r (non-foldcat elongated and still is not a foldcat), (3) A +M→
A (foldcat is elongated and is still a foldcat) and (4) A +M→ r (foldcat is elongated and is no longer a
foldcat). Elongation reaction i has mass-action rate constant Ki(A). The full ODE model is

dr
dt

¼ ar � drrþ K4ðAÞAM� K1ðAÞrM,

dM
dt

¼ aM � ½dM þ rðK1ðAÞ þ K2ðAÞÞ þ AðK3ðAÞ þ K4ðAÞÞ�M

and
dA
dt

¼ K1ðAÞrM� K4ðAÞAM�DA:

9>>>>>>=
>>>>>>;

ðD1Þ

Foldcats also cause the creation of chains r from just monomer, so αr = αr(A, M ). This observation5 is
key for the cooperativity of foldcats. If we now suppose that M =M0/(1 +A/As) has a saturating form as
the resource from equation (C 2) does, where the quantity As determines when the foldcats’ creation of r
can go no faster and M0 is the amount of monomer when no foldcats are present, then we can make
further progress. We will use the linear approximation for the rate of creation of r: αr(A, M ) = α +
α2AM/M0 = α + α2A/(1 +A/As).

To keep things simple, we only want to use this form ofM in the function αr(A,M ); we do not want to
use it when it is multiplying a rate of elongation. That is, we want the zeroth-order expansion M≈M0 to
be sufficient for the terms with Ki in our model. This simplification requires that the first-order corrections
(e.g. M0K1(A)Ar/As for the K1 term) to the elongation rates defined by the Ki are much smaller than the
first-order correction to αr. Said differently, we are assuming that our main process is the creation of r
from M via the rate αr, and that the elongation reactions are themselves already first-order corrections
to this reaction. This assumption is reasonable physically because we are only interested in the region
when foldcats are first introduced, so that their effect is small. Making these approximations, we find
the reactions

dr
dt

¼ aþ a2A
1þ A=As

� drrþ K0
4ðAÞA� K0

1ðAÞr

and
dA
dt

¼ K0
1ðAÞr� K0

4ðAÞA�DA,

9>>=
>>;

ðD2Þ
5
In a more detailed model that kept track of sequence as well, the important point is that foldcats create sequences that can be elongated
into foldcats, not just that foldcats create dimers from monomer as here.
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where we have absorbed the constant amount of monomer M0 into the definitions of the functions

Ki
0 (A) =M0Ki(A). We are most concerned with foldcat untethering from the Founding Rock, so we

make some further assumptions. Founding Rock terms in Ki
0 (A) would be constants, while foldcat

terms are, in the first approximation, proportional to A. We drop the constant terms. Further, we
assume the reaction (4) that elongates foldcats into non-foldcats is very rare, so we drop it altogether.6

Upon defining α2 = αk2, we find the ODEs

dr
dt

¼ aþ ak2A
1þ A=As

� drr� K0
1Ar

and
dA
dt

¼ K0
1Ar�DA:

9>>=
>>;

ðD3Þ

Setting the non-catalytic chains r to steady state finally gives the dynamical equation for the foldcats:

dA
dt

¼ aþ ak2A
1þ A=As

� �
K0
1A

dr þ K0
1A

�DA: ðD4Þ

Further simplification is now possible by redefining k1 = K1
0/dr, which eliminates the parameter dr, and by

choosing units in which α = 1 and D = 1. This choice is equivalent to measuring time in units of 1/D and
measuring concentration in units of α/D. Finally, we are left with the rate equation considered in the
main text in terms of only dimensionless variables:

dA
dt

¼ k1A
1þ k1A

þ k1k2A2

ð1þ k1AÞð1þ A=AsÞ � A: ðD5Þ

The parameters of our model are k1, which is related to the rate at which foldcats elongate non-catalytic
chains into foldcats; k2, which is related to the rate at which foldcats create their direct precursors
(a foldcat minus one monomer) from monomers or shorter non-catalytic chains; and As, which is the
Michaelis constant of the creation of direct precursors from monomers or shorter non-catalytic chains.

To include the cooperative effects of increased chain stability, we can change the decay term as
indicated in the main text, slowing the decay by a new term that has saturation constant Bs. The full
ODE is

dA
dt

¼ k1A
1þ k1A

þ k1k2A2

ð1þ k1AÞð1þ A=AsÞ � A� k3A2

1þ A2=B2
s

� �
, ðD6Þ

where the term in parentheses is constrained to be positive (this requirement puts a constraint on k3 and
Bs, namely that B2

s k
2
3 , 4). The full potential function for foldcats with both types of cooperativity is

VðAÞ ¼ A2

2
� A� AAsk2 � A3

s k1k2 lnð1þ A=AsÞ
1� Ask1

� ð1� Ask1 þ Ask2Þ lnð1þ k1AÞ
k1ðAsk1 � 1Þ � AB2

s k3 þ B3
s k3 arctan

A
Bs

� �
:

ðD7Þ
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