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SUMMARY

A vexing observation in genome-wide association studies (GWASs) is that parallel analyses in 

different species may not identify orthologous genes. Here, we demonstrate that cross-species 

translation of GWASs can be greatly improved by an analysis of co-localization within molecular 

networks. Using body mass index (BMI) as an example, we show that the genes associated with 

BMI in humans lack significant agreement with those identified in rats. However, the networks 

interconnecting these genes show substantial overlap, highlighting common mechanisms including 

synaptic signaling, epigenetic modification, and hormonal regulation. Genetic perturbations within 

these networks cause abnormal BMI phenotypes in mice, too, supporting their broad conservation 

across mammals. Other mechanisms appear species specific, including carbohydrate biosynthesis 

(humans) and glycerolipid metabolism (rodents). Finally, network co-localization also identifies 

cross-species convergence for height/body length. This study advances a general paradigm for 

determining whether and how phenotypes measured in model species recapitulate human biology.

In brief

Wright et al. identify a conserved molecular network underlying body mass index in humans and 

rats. Genes in this network, which are also associated with body-size phenotypes in mice, describe 

key processes including neuronal, epigenetic, and hormonal regulation. This work advances a 

general paradigm for cross-species GWAS translation.

Graphical Abstract
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INTRODUCTION

Rodents and other model organisms provide unique advantages for investigating the 

molecular basis of human traits and diseases. However, the widespread assumption that 

disease biology is conserved across mammals is primarily based on conjecture and anecdotal 

evidence and remains controversial.1–3 Methods to rigorously assess the validity of animal 

models are urgently needed, particularly for complex polygenic traits. One such trait is body 

mass index (BMI), which is used to diagnose obesity, a condition with a large and growing 

disease burden worldwide.

Complex traits are commonly examined by genome-wide association studies (GWASs), 

which have identified thousands of genetic loci underlying numerous diseases. Despite this 

success, synthesizing the numerous loci identified by GWASs into biologically interpretable 

results remains challenging.4,5 By design, the hypothesis-free nature of GWASs lends 

impartiality; on the other hand, knowledge about the functional relationships between genes 

has enormous potential to improve sensitivity and interpretability.

Model organism data are commonly used to provide a more holistic interpretation of 

GWAS results.6 For example, single-gene knockouts can address ambiguity about which 

variants are causal at a given locus (i.e., the fine-mapping problem), and integration of 

model organism omics datasets can clarify causal biological mechanisms.7,8 However, 

such approaches do not capture the polygenic architecture of complex traits. An attractive 
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alternative is to perform GWASs in heterogeneous model organism populations, which 

is a complementary approach that recapitulates the polygenic nature of complex human 

traits. With this motivation, many GWASs have been performed in rats,9–12 mice,13–16 fruit 

flies,17–19 and other species.20–23

In cases where similar traits have been studied via GWASs in both humans and model 

organisms, it is possible to ask whether the results implicate orthologous genes. Thus far, 

the concordance of genes implicated by separate GWASs in two species has typically been 

limited by incomplete power, differences in the variants that are common in each population, 

and many other factors. Furthermore, the most functionally similar gene in a model species 

can be a family or pathway member rather than the most sequence-similar ortholog.24

One means of coping with these challenges is to leverage biological knowledge networks. 

Biological networks provide prior information on the interactions among genes and, 

therefore, aid the translation of implicated genes’ mechanistic insights into relevant cellular 

processes, cell types, tissues, and dynamics.25–27 We and others have shown that integrating 

genetic data with biological knowledge networks can improve the interpretability of 

findings,28–31 including via studies in model organisms.32,33 We recently expanded on 

these approaches by developing a network “co-localization” framework (NetColoc), which 

evaluates the convergence of two gene sets within a biological network. This approach was 

then used to identify convergent genetic circuits underlying autism spectrum disorder and 

congenital heart disease, which are comorbid.34,35

Here, we explore the network co-localization approach for cross-species translation of 

GWAS results (Figure 1). As proof of concept, we use this approach to study BMI, a highly 

polygenic and medically important trait that has been extensively studied in both humans 

and rodent models.36,37 We show that, while the specific genes identified by human and rat 

GWASs do not show significant overlap, they converge on a conserved molecular interaction 

network. This conserved network provides insight into the shared etiology of BMI across 

mammals, and our approach establishes a general paradigm for assessing the extent to which 

an animal model does, or does not, recapitulate human biology.

RESULTS

GWASs associate different genes with BMI in humans and rats

We obtained genome-wide significant loci from a recent large human GWAS meta-analysis 

for BMI38 (n = 681,275; Figure 2A). Positional mapping of these loci to the human genome 

identified 1,958 significant BMI-associated genes at a Bonferroni-corrected threshold of p < 

2.5 × 10−6. In addition, we performed a separate GWAS for BMI in outbred heterogeneous 

stock (HS) rats, using data from a previous study,37 together with an additional 2,487 

previously unreported HS rats to obtain a single, outbred population (n = 5,660; Figure 2A). 

Outbred HS rats have larger linkage disequilibrium (LD) blocks compared to humans,39 

meaning that a GWAS represents a smaller number of independent tests. Therefore, we 

used a relaxed significance threshold (p < 1.0 × 10−4) for the rat GWAS, identifying 476 

BMI-associated rat genes by positional mapping. Of these, 295 had unambiguous human 

orthologs (Figure S1). We define the significant BMI gene sets for humans and rats as 
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“seed” genes and assume that both sets represent a mixture of true and false positives. 

Overall, we found 29 genes in common between the seed genes for humans and rats, a 

number that was not significantly different than expected by chance for gene sets of this size 

(Figure 2B; p = 0.58, hypergeometric test).

A conserved molecular network underlies BMI across species

We next examined the molecular pathways in which the BMI genes function. For this 

purpose, we used the Parsimonious Composite Network (PCNet), a resource of ~2.7 million 

pairwise associations among human genes.40 PCNet is formulated from a consensus of 

21 physical and functional interaction databases and integrates multiple lines of evidence, 

including protein-protein interactions, mRNA and protein co-expression across tissues, 

literature curation, and other measures. We assigned a human BMI network proximity score 

(NPSh) to each gene using a random walk algorithm41 to compute the normalized number 

of steps through the network to reach that gene from the seed set of 1,958 human BMI 

genes. We repeated this process using the 295 human orthologs of the rat BMI seed genes, 

resulting in a rat BMI network proximity score (NPSr) for each gene. Finally, we calculated 

the product of the two proximity scores to compute NPShr = NPSh × NPSr (Table S1). In this 

way, genes with the highest NPShr tended to be close in the molecular network to BMI seed 

genes from both species, even if they were not seed genes in either species.

We found that NPShr values were significantly higher than expected for permuted sets of 

human and rat genes (p = 1 × 10−3; Figure S2A). We chose to threshold this score (NPShr 

> 3 and NPSh and NPSr each >1; Figures 2B and 2C) to create a highly colocalized 

subnetwork of PCNet that we called the “conserved BMI network.” This network included 

657 genes, which was significantly more than expected by chance (Figure 2D, p = 3 × 

10−8). Thus, although the two BMI GWASs identified different genes in humans and rats, 

the molecular networks encoded by those genes show significant convergence. The 657-gene 

conserved BMI network covered 21 genes that were both human and rat seeds, with an 

additional 207 human seed genes and 92 rat seed genes. These genes represented the most 

interconnected genes from the input sets. The remaining 337 conserved network genes were 

not directly identified by either the human or the rat GWAS but were instead implicated via 

network proximity.

To explore whether network convergence extends to other traits, we performed a similar 

network analysis of human height and its rodent analog, rat body length. These traits have 

been widely phenotyped in both species and are used to calculate BMI, so they are partially 

but not completely correlated with BMI.42 Unlike BMI, the GWAS for human height and 

the GWAS for rat body length identified a significant number of orthologous genes (p = 6 × 

10−11; Figure S2B). However, consistent with our BMI results, we found that the molecular 

networks defined by human height genes and rat body length genes show substantially 

increased agreement, even when controlling for the number of shared genes (p = 3 × 10−20; 

Figures S2C and S2D; STAR Methods).

We also examined the network co-localization of rat BMI genes with human GWAS results 

for four negative control traits that had SNP heritability similar to human BMI (0.15 < h2 

< 0.35) but were not genetically correlated with BMI or height (genetic correlation |rg| < 
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0.1): allergic rhinitis symptoms, forced expiratory volume per second, smoking status (never 

smoked cigarettes), and presence of non-cancerous neoplasms. The rat BMI genes did not 

show significant network convergence with the genes identified by the negative control traits 

(Figures 2E and S2E). Because PCNet is a human interaction network, we also tested the 

network co-localization of the human and rat BMI seed genes within a molecular network 

consisting of 16,787 rat genes and 277,852 high-confidence rat interactions sourced from the 

STRING database.43 We observed comparable network conservation with this rat network 

(Figure S2E; p = 2 × 10−4; STAR Methods).

The conserved BMI network implicates distinct gene communities and functions

We observed that genes in the conserved BMI network were not uniformly connected but 

were organized within densely interacting communities (Figure S3A). To identify these, 

we used multiscale community detection, which yielded a hierarchical map of 61 gene 

communities, which we term the “BMI systems map” (Figure S3B). This map contained 

the 642 genes (98%) that were part of the conserved BMI network’s largest connected 

component. We found that 27 communities in this map could be confidently annotated 

with enriched gene functions (Figure 3A) and that these functions were more numerous 

and specific than those identified for the entire conserved network or for sets of seed 

genes alone. We observed 331 significant annotations after filtering, compared to 45 for the 

conserved network, 59 for the human seed genes, and zero for the rat seed genes. Many of 

the annotations identified for the seed genes were captured via the annotated BMI systems 

map, particularly those relating to synaptic signaling and cellular morphogenesis. However, 

the hierarchical systems map identified additional and more specific functions, such as 

catecholamine synthesis and transport, demethylation, and monoamine transport (Table S2). 

The largest branch of the BMI systems map (by the number of genes covered) centered 

on nervous system development and physiology, with distinct sub-communities including 

G-protein-coupled receptor (GPCR) signaling, neurotransmitter secretion, and muscle 

development and function. A second major branch concerned nucleic acid and chromosomal 

processes, including mRNA transcription and protein translation. The remaining branches 

included functions such as chromatin regulation via demethylation, cell differentiation, and 

communities of mitogen-activated protein (MAP) kinases.

To validate this BMI systems map, we consulted the extensive catalog of mouse 

mutation experiments maintained by the Mouse Genome Database44 (MGD). MGD records 

nearly 364,000 various phenotypic changes after whole-body or tissue-specific genetic 

perturbations in mice, which we used to assess the functional role of genes within the 

BMI systems map. Focusing on body size and composition phenotypes, we found that 

mouse orthologs of 39% of genes within the conserved BMI network had been associated 

with at least one body-size phenotype in mice. We observed that these validated genes 

were concentrated within particular branches of the BMI systems map, spanning 14 distinct 

communities in which disruption to community genes leads to MGD phenotypes related 

to body size or composition in mice (Figure 3B). Within these branches, we observed 

stronger enrichments for smaller, more specific systems, and, across the hierarchy, we 

found differentiation between communities associated with postnatal and prenatal body-size 

phenotypes.
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The strongest enrichment for postnatal body size and composition in mice was observed 

for genes in the GPCR signaling and response regulation community (GSR, n = 11 genes), 

where disruptions to nine genes led to BMI-related phenotypes in mice (Figure 3C). The 

MGD-validated genes included some that have been extensively studied in the context of 

BMI, such as genes for brain-derived neurotrophic factor BDNF, melanocortin receptor 

MC4R, and the hormone precursor proopiomelanocortin POMC. While these genes were 

identified in the human BMI GWAS, they lacked equivalent associations in the rat GWAS. 

In contrast, the MGD-validated prolactin-releasing hormone receptor (PRLHR) was not 

associated with human BMI, but its rat ortholog (Prlhr) was associated with BMI in the rat 

GWAS (p = 1 × 10−12). Beyond seed genes, we observed three network-implicated genes 

that were validated in MGD. For example, neither NPFFR1 nor its rat ortholog Npffr1 
were directly identified by their respective GWAS, but NPFFR1 has been associated with 

insulin-like growth factor 1 (IGF-1) levels in humans,45 and constitutive inactivation of 

Npffr1 has been associated with increased susceptibility to weight loss in mice.46 As with 

the GSR community, we observed that network-implicated genes substantially contributed 

to body-size enrichments throughout the BMI systems map, illustrating the power of our 

network approach to connect and expand the results of human and rat BMI GWASs (Figures 

3D and S3C).

In addition to body-size phenotypes, genetic disruptions in specific communities were 

enriched for related tissue and behavioral phenotypes (Figure 4). For example, disruptions to 

genes in the GSR community led to changes in mouse hormone levels (odds ratio [OR] = 

25, p = 3 × 10−7), glucose homeostasis (OR = 16, p = 8 × 10−6), consumption behavior (OR 

= 13, p = 5 × 10−5), neuron physiology (OR = 13, p = 6 × 10−5), and other relevant mouse 

traits. Given that these same disruptions also affect postnatal body size and composition, the 

GSR community provides a conserved pathway by which diverse genetic alterations cause 

key hormone and behavioral changes that, in turn, give rise to gross morphological changes 

affecting overall body size and mass.

Other notable BMI systems included muscle system and calcium signaling (MSC; Figures 4 

and S4A), in which genetic perturbations affect muscle morphology leading to abnormal 

body size and composition, as well as chromatin regulation via demethylation (DM) 

communities (Figure S4B), in which mutations cause defects in skeletal and cellular 

differentiation and changes to hormone levels. Notably, at least 50% of the MGD-validated 

genes in these communities were implicated by the network analysis rather than by the 

initial human and rat GWASs. For example, the MSC community successfully recovered 

the X chromosome gene DMD, named for its role in Duchenne muscular dystrophy, a 

condition with a high prevalence of comorbid obesity.47 DMD and Dmd were not identified 

by either the human or rat GWAS due to the exclusion of sex chromosomes, but DMD 
has been previously linked to BMI in humans and weight changes in mice.48–50 The core 

DM community (DM3) included distinct demethylase genes identified by the human and 

rat GWASs, as well as four network-implicated demethylases (KDM5A, KDM6A, KDM6B, 

and KDM8), which have been linked to body-size phenotypes in mice51–56 (Figure 5A).

Finally, we observed four communities that did not have clear associations with known 

biological functions but showed enrichment for genes associated with BMI-relevant 
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phenotypes in mice (Figure 5B); these communities had contributions from both seed 

and network-implicated genes (Figures 5C and S3C). For example, the C914 community 

(n = 7; Figure S4C) contained seed genes axin-1 (AXIN1) and hedgehog acyltransferase 

(HHAT), as well as network-implicated genes plectin (PLEC) and the SKI-like proto-

oncogene (SKIL). Disruptions to their mouse orthologs Axin1, Hhat, Plec, and Skil led 

to changes in prenatal and postnatal body size, and the gene community was linked to 

developmental effects on skeletal, nervous, and cardiovascular system morphology in mice 

(Figure 5D). We observed further impacts on skeletal and limb morphology in mice via 

disruptions to genes in community C908 (n = 8; Figure S4D), which was nested within a 

larger community involved in regulating cellular differentiation. C908 includes four SOX 

transcription factors: two seed genes (SOX5, SOX6) and two network-implicated genes 

(SOX3, SOX8). SOX transcription factors have been associated with hyperinsulinemia 

in obese mice.57,58 Increased expression of SOX6 may predispose individuals to obesity 

through the promotion of adipogenesis,59 and Sox8-deficient mice have significant weight 

reduction in adulthood due to adipose tissue degeneration.

Divergent BMI mechanisms across species

Apart from the conserved BMI network, we also identified non-overlapping BMI networks 

distinct to each species. We used the previously calculated NPSh and NPSr values to find 

genes highly proximal to seed genes of one species but not the other (Figures 6A and S5), 

yielding human-specific (n = 925 genes) and rat-specific (n = 688 genes) networks (Figure 

6B). While the conserved BMI network was significantly enriched for genes expressed in 

human and mouse brain tissue (Figures 6C and 6D), no brain specificity was observed 

for the species-specific networks, indicating that these networks are functionally distinct 

from the conserved BMI network. The rat-specific network was most strongly enriched 

for orthologs expressed in human adipose tissue (q = 1 × 10−3), while the human-specific 

network showed little tissue specificity across human and mouse tissues. In contrast, the 

human-specific network contained a significant number of genes associated with body-size 

phenotypes in mice, while the rat-specific network did not (phuman = 0.02, prat = 0.82, 

Figure S6A). The MGD-validation rate for the human-specific network was comparable to 

the conserved network (p = 0.02), which had the highest validation rates for human and rat 

seed genes, then rat seed genes, then network-implicated genes (Figure S6A).

To investigate potential species-specific BMI-mediating pathways, we created an expanded 

cross-species BMI network, including all genes with high proximity to human or rat 

GWAS seed genes (Figure 6A). We then formed an expanded systems map from this 

network (Figure S6B) and identified communities with an over-representation of conserved, 

rat-specific, or human-specific genes (Figure 6E). In this way, we highlighted functional 

systems influencing BMI that are affected by common genetic variation in a species-specific 

manner. For rats, we found 12 communities containing a significant number of rat-specific 

genes, representing processes such as water homeostasis, cytokine-mediated signaling, and 

glycerolipid metabolism. Similarly, for humans, we observed five communities enriched for 

human-specific genes, including processes such as biosynthesis of carbohydrate derivatives 

and DNA damage response. Within the human- and rat-specific communities, only the 

human-specific cytoplasmic translation branch contained a significant number of genes 
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associated with body-size phenotypes in mice (Figure S6C). The fact that this branch had 

overlapping functions with the conserved network (chromosome organization) indicated 

that, while cytoplasmic translation may affect body size across species, it may be more 

strongly associated with human BMI.

DISCUSSION

Understanding the shared etiology of a trait across species is crucial for leveraging the 

many experimental advantages of animal models. Rodent models have long been used to 

clarify monogenic and polygenic regulation of BMI and obesity.60–65 Likewise, outbred 

rodent populations are also being used for genome-wide studies of complex traits such 

as BMI,11,16,37,66,67 building on successes in human populations. However, similar to the 

challenge of translating GWAS results between different human populations,68 cross-species 

translation is confounded by numerous factors, both logistical and genetic. Logistical 

factors include the confounding impact of the environment on human genetic studies 

and the opaque alignment between model organism paradigms and human traits. Genetic 

limitations include the incomplete power of GWAS, the potential lack of common variation 

in genes important for the trait under study, differences in genomic architecture, difficulty 

in determining the causal gene from loci implicated by GWASs, and imperfect knowledge 

of gene orthology between species. All these factors limit the translation of genetic findings 

across species.

Here we have demonstrated that network biology provides a foundation for addressing these 

limitations, clarifying the extent to which genetic findings in rodent species recapitulate 

those of human genetic studies. Using a network co-localization framework (NetColoc), we 

showed that variants affecting different genes in the human and rat populations converge on 

a conserved BMI network (Figures 2B, 3A, and S3). In doing so, we successfully extended 

this approach beyond the original application (to compare two human traits) to analyze a 

putatively similar trait in two different species.34 In addition to connecting the disparate 

gene sets from humans and rats, our network approach expands the set of implicated genes 

in each species; these network-implicated genes validate well in mouse genetic studies and 

are critical for understanding functional roles within the conserved BMI network.

The conserved BMI network shows that BMI shares common etiology between rats and 

humans and provides an opportunity to explore the similarities and differences in BMI 

regulation in the two species. The structure of the conserved BMI network reveals distinct 

communities of genes that correspond to distinct underlying mechanisms of BMI common 

to humans and rats, with particular emphasis on nervous system processes (Figures 3A, 3B, 

and 4). Many of the systems are corroborated by known mechanisms of BMI in humans 

or rodents, but the conservation of such systems between species was not obvious from 

the independent GWAS results. For example, the regulation of hormones such as leptin 

and insulin is a well-studied mechanism underlying obesity due to its role in metabolism 

and hunger signaling.69,70 While human and rat BMI GWAS identified genes encoding 

different hormone receptors and signaling proteins, the proximity of these genes in the 

molecular interaction network identifies the conserved role of neuronal hormone signaling. 

The well-studied monogenic obesity genes BNDF, MC4R, and POMC were only identified 
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by human GWAS, but such genes are likely important BMI factors in both species; for 

example, knockout mutations in Mc4r produce obesity phenotypes in rats.71

The BMI systems map also highlights key hierarchical relationships among functions; 

for example, gene communities involved in hormone regulation (GSR), regulation of 

phosphatase activity (RPA), and muscle development and signaling (MSC) all fall within 

the broader community of synaptic signaling (SS) (Figure 3A). Genes in this community 

strongly mediate nervous system physiology in mice, particularly via the mediation of 

protein-protein interactions at the synapse,72,73 and synaptic signaling has also been 

highlighted in rat and human adiposity regulation.66 Together with the brain-specific 

expression of many genes within the conserved BMI network (Figure 6C), these results 

indicate a central role for nervous system processes in connecting the convergent biology of 

BMI across species.

It is also crucial to appreciate the differences between species when considering the 

implications of rodent models in the study of BMI and obesity. While, in some contexts, 

the conservation of processes such as hormone regulation and muscle development will be 

sufficient to translate findings, the differences in genes affected by common variants may be 

consequential for specific applications. It remains to be seen whether species differences in 

BMI-associated genes are due to differential functional impacts of genetic variants, higher 

portions of false-positive results, population structure, or a combination thereof.

Limitations of the study

While the identification of a conserved BMI network from non-overlapping GWAS 

results from two species demonstrates the utility of a network approach for cross-species 

translation, there are several limitations of note. First, BMI is an imperfect measure of 

body composition since it does not differentiate between tissue types or assess metabolic 

factors. Nevertheless, it is widely used as a normalized body mass metric in humans and 

rats and therefore provides a convenient, high-powered, polygenic, and heritable trait for 

cross-species study.

Second, the human and rat populations do not perfectly represent BMI in their respective 

species. The human population only represents individuals of European ancestry, and the 

HS rats, while genetically diverse for a model species, are laboratory animals that do not 

capture all genetic diversity in domestic and wild rats. Third, some of the disparity between 

the human and rat GWAS results may be attributed to the difference in population size 

between the human and rat GWASs and the process of mapping loci to genes. A relaxed 

significance threshold for the rat GWAS helps address the sample size and LD disparity but 

may introduce a greater proportion of false positives. Further, mapping loci to genes based 

on genomic proximity may introduce false positives and can identify multiple genes from a 

single significant locus. In humans, the nearest gene is thought to be causal about 70% of 

the time74–76; however, the more extensive linkage present in the currently available rodent 

mapping populations may make this nearest-gene approach less accurate. In this respect, we 

have previously demonstrated that a network approach is robust to up to 80% false positives 

and boosts signal from potentially noisy inputs.35
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Finally, our conversion of rat genes to human orthologs and the use of a human interaction 

network may introduce bias. Although many genes and cellular processes are similar 

between humans and other mammals, the mapping of orthologous genes is imperfect, and 

gene and protein interaction patterns can vary between species due to the rewiring of 

regulatory and protein-protein interaction networks.33,77,78 For this reason, work is ongoing 

to generate independent molecular interaction networks for mammalian species, including 

mice,79 rats,80 and cattle.81 Network rewiring of interactions also occurs in different tissues 

and cell types.77,82,83 In this study, we used a single global network, meaning we may have 

missed processes specific to certain contexts.

While future improvements to our methodology and the underlying data will undoubtedly 

improve our ability to understand cross-species convergence, this work has demonstrated 

that existing techniques and molecular network knowledge bases already have substantial 

power to translate GWAS findings from one species to another. We demonstrated that our 

approach can extend to additional phenotypes beyond BMI and that cross-species network 

convergence of genetic results is specific to the phenotypes of interest rather than a general 

property of the method or mammalian genetics as a whole (Figures 2E and S2E). This study 

can thus act as a road map for future investigations of phenotypes shared across different 

species. As the quantity, quality, and variety of data generated from model species increase, 

approaches such as this one have a key role to play in clarifying the translational potential of 

these various model species across a spectrum of traits related to human health and disease.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to the 

lead contact, Trey Ideker tideker@ucsd.edu.

Materials availability—This study did not generate new unique reagents.

Data and code availability

• All data analyzed in this paper are publicly available. Accession numbers 

are listed in the key resources table. Rat genotype and phenotype data have 

been deposited at the European Variation Archive (Project: EVA: PRJEB63638, 

Analyses: ENA: ERZ19474633). All networks and systems maps generated in 

this study are available as a network set on the Network Data Exchange (NDEx: 

https://doi.org/10.18119/N97G8T). Gene-level GWAS summary statistics are 

included in Tables S4 and S5.

• All code used for analysis and data visualization is freely available in public 

repositories. All original code is publicly available at GitHub: https://github.com/

sarah-n-wright/CrossSpeciesBMI as of the date of publication and has been 

deposited at Zenodo (Zenodo: https://doi.org/10.5281/zenodo.7868889).

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

Wright et al. Page 11

Cell Rep. Author manuscript; available in PMC 2023 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/sarah-n-wright/CrossSpeciesBMI
https://github.com/sarah-n-wright/CrossSpeciesBMI


EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The N/NIH heterogeneous stock (HS) rats colony was initiated by the NIH in 1984 using 

the following eight inbred founder strains: ACI/N, BN/SsN, BUF/N, F344/N, M520/N, 

MR/N, WKY/N, and WN/N,101 which have previously been shown to differ significantly for 

adiposity traits.11 Rats were housed in micro-isolation cages in a conventional facility using 

autoclaved bedding (sani-chips from PJ Murphy). They were provided reverse osmosis water 

chlorinated to 2–3 ppm, and had ad libitum access to diets as listed below.

The rats used for this study are part of a large multi-site project focused on genetic 

analysis of behavioral phenotypes related to drug abuse (www.ratgenes.org), and are a 

larger updated cohort from previously published.37 HS rats bred at NMcwi:HS colony 

(RRID:RGD_2314009) (Medical College of Wisconsin (MCW), WI) were sent to three 

institutions throughout the United States: University of Tennessee Health Science Center 

(TN), University at Buffalo (NY), and University of Michigan (MI). The NMcwi:HS 

breeding colony consisted of 64–96 breeding pairs, bred from 8 founder inbred strains 

(the number of breeding pairs varied over the course of the experiment). No more than 

2 siblings were sent to the same Project, and these siblings had different sex. Rats were 

shipped at 3–6 weeks of age, and each site received multiple shipments over five years 

(10/27/2014–03/07/2019). In these datasets, the information was aggregated from multiple 

projects across different centers, leading to four cohorts, with siblings present in different 

phenotyping centers. Rats in TN were fed Teklad Irradiated LM-485 Mouse/Rat Diet; rats 

in NY were fed Envigo Teklad 18% Protein Rodent Diet, and rats in MI were fed Labdiet 

Picolab Laboratory Rodent Diet Irradiated.

Rats were exposed to a different battery of behavioral testing at each site (Table S3), 

followed by euthanasia, which occurred at different ages at each site. All phenotypes 

presented in this paper were collected at the time of euthanasia, in roughly equal numbers of 

male and female rats. Briefly, in MI, rats were housed in trios, exposed to a single modest 

dose of cocaine (15 mg/kg) each day for five days, and then euthanized, weighed, and body 

length was measured 4–7 days after the final cocaine exposure (89 s.d. 6 days of age). In 

NY, rats were housed in pairs, tested for multiple behaviors over 16 weeks, exposed to a 

modest dose of cocaine (10 mg/kg) once daily for three days, and then euthanized, weighed, 

and body length was measured 7–10 days after the last dose of cocaine (198 s.d. 13 days of 

age). In TN, there were two separate cohorts: breeders (sent from MCW) and experimental 

rats (bred in TN). Female breeders had mostly one, sometimes two litters and underwent 

no behavioral testing. After breeding was completed, males and females were euthanized, 

weighed, and body length was measured (169 s.d. 34 days of age). The experimental rats 

were tested for multiple behaviors, exposed to nicotine (self-administration, resulting in a 

range of doses) for 12 days, and euthanized, weighed, and body length was measured 10 

days after the final dose of nicotine (73 s.d. 12 days of age). All protocols were approved 

by the Institutional Animal Care and Use Committees (IACUC) for each of the relevant 

institutions.
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METHOD DETAILS

HS rat phenotyping—Several days after the completion of behavioral experiments (males 

and females), rats were fasted overnight (17 ± 2 h), and body weight was measured. Under 

anesthesia (pentobarbital at MI and NY, isoflurane at TN), the rats were measured for body 

length (from nose to base of the tail (tail length not included in the measurement of the body 

length)), which we then used to calculate body mass index. BMI was calculated as: (body 

weight/body length2) × 10. Several tissues were dissected and weighed, including spleens, 

which were used for DNA extraction. All protocols were approved by the Institutional 

Animal Care and Use Committees (IACUC) for each of the relevant institutions.

HS rat DNA sequencing—HS rat DNA was extracted from spleen tissue using the 

Agencourt DNAdvance Kit (Beckman Coulter Life Sciences, Indianapolis, IN). All genomic 

DNA quality and purity was assessed by NanoDrop 8000 (Thermo Fisher Scientific, 

Waltham, MA). Sample DNA, PstI barcoded adapters, and NlaIII Y-adapters were combined 

in a 96-well plate and allowed to evaporate at 37°C overnight. The PstI adapter barcode 

is “in-line,” such that each sequencing read from a given sample contains both the PstI 

overhang sequence (4bps) and a unique adapter sequence (4–8bps) prior to the beginning of 

the insert sequence. Sample DNA and adapters were reeluted on day two with a PstI/NlaIII 

digestion mix and incubated at 37°C for 2 h to allow for complete digestion. Ligation 

reagents were then added and incubated at 16°C for 1 h to anneal the adapters to the DNA 

fragments, followed by a 30-min incubation at 80°C to inactivate the enzymes. Sample 

libraries were purified using a plate from a MinElute 96 UF PCR Purification Kit (QIAGEN 

Inc., Hilden, Germany), vacuum manifold, and ddH2O. Once re-eluted, libraries were 

quantified in duplicate with Quant-IT PicoGreen (Thermo Fisher Scientific, Waltham, MA) 

and pooled to the desired level of multiplexing (i.e., 12, 24, or 48 samples per library). Each 

pooled library was then concentrated by splitting the pooled volume across 2–3 wells of the 

MinElute vacuum plate and resuspending the library at desired volume for use in the Pippin 

Prep. The concentrated pool was quantified to ensure the gel cassette was not overloaded 

with DNA (0.5mg). The pool was then loaded into the Pippin Prep for size selection (300–

450 bps) using a 2% agarose gel cassette on a Pippin Prep (Sage Science, Beverly, MA). 

Size-selected libraries were then PCR amplified for 12 cycles to add the Illumina sequencing 

primers and increase the quantity of DNA, concentrated again, and checked for quality on 

an Agilent 2100 Bioanalyzer with a DNA 1000 Series II chip (Agilent Technologies, Santa 

Clara, CA). Bioanalyzer results were used to ensure sufficient library concentration and to 

identify excessive primer dimer peaks. Each library was run on a single flow cell lane on 

an Illumina HiSeq 4000 with 100bp single-end reads at the Institute for Genomic Medicine 

(IGM) Genomics Center (University of California San Diego, La Jolla, CA).

Data acquisition—The summary statistics for human body mass index and height 

were obtained from the GIANT Consortium (GIANT consortium data files), computed 

via a meta-analysis of GWAS results representing an average of 681,275 (BMI) and 

693,529 (height) individuals of European ancestry.38 Summary statistics for all human 

negative control traits were obtained from the Neale Lab Round 2 UK Biobank (UKB) 

GWAS42 (http://www.nealelab.is/uk-biobank). Phenotype codes are as follows: FEV1: 

forced expiratory volume per second (20153_irnt), AR: allergic rhinitis symptoms (6152_9), 
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SMOK: smoking status - never smoked cigarettes (20116_0), Neo: non-cancer neoplasms 

(C3_OTHER_SKIN). Negative control traits were selected to have a substantial number 

of implicated human genes n > 150 , a similar SNP heritability to BMI 0.15 < ℎ2 < 0.35 , 

and minimal genetic correlation with BMI rg < 0.1 . These estimates were obtained 

from the UKB Heritability browser (https://nealelab.github.io/UKBB_ldsc/h2_browser.html) 

and UKB Genetic Correlation browser (https://ukbb-rg.hail.is/), both generated by the 

Neale Lab.42 Bulk human-rat ortholog mapping from HGNC Comparison of Orthology 

Predictions (HCOP)102,103 was downloaded from the European Bioinformatics Institute 

(http://ftp.ebi.ac.uk/pub/databases/genenames/hcop/) on June 26, 2022. Mouse genotype-

phenotype associations and the Mammalian Phenotype Ontology were downloaded from the 

Mouse Genome Database44 (http://www.informatics.jax.org/) on April 24, 2022. Datasets 

acquired: Phenotype-Genotype Associations (MGI_PhenoGenoMP.rpt); Marker Information 

(MRK_List2.rpt); Human Ortholog Mapping (MRK_List2.rpt); Mammalian Phenotype 

Ontology84 (MPheno_OBO.ontology). Specific mappings between conserved BMI network 

genes and BMI-relevant phenotypes in MGD can be found in Table S1. Stable versions 

of Mouse Genome Database reference data used in this study are contained in the code 

repository (Zenodo: https://doi.org/10.5281/zenodo.7868889).

Molecular interaction networks—The Parsimonious Composite Network40 (PCNet 

v1.3) was obtained from the network data exchange (ndexbio.org), NDEx: 4de852d9–

9908-11e9-bcaf-0ac135e8bacf. PCNet is a molecular interaction resource formed from 

integrating 21 interaction databases that contain various evidence types, including physical 

protein-protein, genetic, co-expression, and co-citation evidence. Each interaction in PCNet 

is supported by at least two of the component databases, a threshold chosen to maximize 

the ability of PCNet to perform gene set recovery tasks via network propagation. All 

human genes and human orthologs of rat genes were mapped to the nodes of PCNet via 

gene symbols. Rat interactome data was downloaded from STRING43 (v11.5, https://string-

db.org/cgi/download.pl) and filtered to only interactions in R. norvegicus. We defined high-

confidence interactions as those with a combined score >700 and mapped all network node 

identifiers to rat gene symbols using STRING’s protein information (10116.protein.info. 

v11.5.txt.gz). All rat genes and rat orthologs of human genes were mapped to the nodes of 

the high-confidence rat interactome via rat symbols.

QUANTIFICATION AND STATISTICAL ANALYSIS

HS rat genotyping, variant calling & imputation—The PstI adapter barcodes 

were used to demultiplex FASTQ files into individual sample files. Demultiplexing was 

completed using FASTX Barcode Splitter v0.0.13 (http://hannonlab.cshl.edu/fastx_toolkit/, 

RRID: SCR_005534). Reads were discarded if they could not be matched with any barcode 

(maximum of 1 mismatch allowed) or they lacked the appropriate enzyme cut site. Samples 

with less than two million reads after demultiplexing were discarded. Read quality was 

assessed using FastQC v0.11.6.85 Reads were trimmed of the barcode, adapter sequences, 

and low-quality base pairs at the ends of reads using FASTX Clipper/Trimmer/Quality 

Trimmer tools v0.0.13 (http://hannonlab.cshl.edu/fastx_toolkit/, RRID: SCR_005534). A 

base quality threshold of 20 was used and reads shorter than 25bp were discarded.
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The R. norvegicus genome assembly rn6 was used as the reference genome for read 

alignment with the Burrows-Wheeler Aligner v0.7.5a (BWA)86 using the mem algorithm. 

We then used GATK IndelRealginer v3.587 to improve alignment quality by locally 

realigning reads around a reference set of known indels in 42 whole-genome sequenced 

inbred rat strains, including the eight HS progenitor strains.104

Variants were called, and genotype likelihoods were computed at variant sites using ANGSD 

v0.911, under the SAMtools model for genotype likelihoods (ANGSD-SAMtools).88,89 

Further, using ANGSD-SAMtools, we inferred the major and minor alleles (-domajorminor 

1) from the genotype likelihoods, retaining only high confidence polymorphic sites (-

snp_pval 1e-6), and estimated the allele frequencies based on the inferred alleles (-domaf 1). 

We discarded sites missing read data in more than 4% of samples (–minInd). Additionally, 

we tested multiple thresholds for minimum base (-minQ) and mapping (-minMapQ) 

qualities. Variants for X- and Y chromosomes were not called. Prior to GWAS, SNPs in 

high linkage disequilibrium were removed using PLINK v1.990,91 with an r2 cutoff of 0.95.

Beagle v4.192 was used to improve the genotyping within the samples without the use of 

an external reference panel. Missing and low-quality genotypes were imputed by borrowing 

information from other individuals in the dataset with high-quality information at these 

same variant sites. To verify the quality of the “internally” imputed genotypes prior to 

imputing SNPs from the 42 inbred strain reference panel104 we checked concordance rates 

for the 96 HS animals with array genotypes, examined the TSTV ratio, and assessed whether 

the sex as recorded in the pedigree records agreed with the sex empirically determined 

by the proportion of reads on the X chromosome out of the total number of reads. We 

also identified Mendelian errors using the –mendel option in PLINK and known pedigree 

information for 1,136 trios from 214 families within the HS sample. Using the fraction of 

the trios that were informative for a given SNP and the equation 1−(1−2p(1−p))3, where p 

represents the minor allele frequency of the allele, we formed curves for the distributions 

of the expected number of Mendelian errors for both SNPs and samples and chose the 

inflection points as thresholds for the number of Mendelian errors allowed.

Only variants previously identified in the eight HS founder strains were retained as we 

expected the polymorphisms in our samples to be limited to the variation present in 

the founders.104,105 Estimated haplotypes from our dataset for imputation with multiple 

different reference panels were calculated previously,106 and were applied to this dataset.

For imputation, we used a reference panel calculated previously106 from a combination 

of existing sequencing and array genotyping data from the HS rat founder and other 

inbred laboratory rat strains.104 Genotype data underwent QC and were phased by Beagle 

into single chromosome haplotype files. Imputation by IMPUTE2 was performed in 5Mb 

windows using the aforementioned reference panels and genetic maps. Final genotypes for 

all samples are reported in EVA: PRJEB63638.

HS rat genome-wide association—Each trait within each research site was quantile-

normalized separately for males and females; an approach similar to using sex as a covariate. 

Other relevant covariates (including age, batch number, and dissector) were identified for 
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each trait, and covariate effects were regressed out if they were significant and if they 

explained more than 2% of the variance (BMI covariates: age and test center for all rats; 

additionally for TN, experimental or breeders, and TN experimental: behavioral experiment, 

Technician JS, and for TN breeder: Technician XH. Body length covariates: age, test center 

for all rats; additionally for TN experimental: Technician JS, TN experiment, and for TN 

breeders: age, Technician XH). Residuals were then quantile-normalized again, after which 

the data for each sex and site were pooled prior to further analysis. This approach removed 

mean differences due to sex; however, it did not attempt to model gene-by-sex interactions. 

By quantile-normalizing the three centers separately, we also addressed the numerous and 

confounded differences among the three cohorts, such that quantitative trait loci (QTLs) 

identified in the current study are resistant to environmental influences that differed among 

the sites. Raw phenotypes and post-regression quantile-normalized values for body length 

without tail and body mass index without tail are reported in EVA: PRJEB63638.

The software GCTA94 was used to perform the GWAS analysis. First, we pre-calculated 

a genetic relatedness matrix (GRM) from autosomal chromosomes (–autosome –make-grm-

bin). We then performed the GWAS with a linear mixed model (–mlma), using the GRM 

to account for complex family relationships within the HS rat population (–mlma-subtract-

grm). This method employs a Leave One Chromosome Out (LOCO) method to avoid 

proximal contamination.107,108

Rat SNP-to-gene mapping—We assigned gene-level significance values by taking the 

lowest p value of any GWAS variant within a ± 10kb region encompassing each gene 

region. For each gene’s set of assigned SNPs, the SNP with the lowest p value was assigned 

as the lead SNP for that gene and used to assess the significance of the gene (Table 

S4). Using a threshold of p < 1×10−4, we defined sets of rat seed genes significantly 

associated with rat body mass index (BMI) and rat body length (without tail; BL). For 

BMI, 20,079 top SNPs were assigned to 23,884 rat genes, with 3,108 being assigned to 

more than one gene. After significance filtering, 413 lead SNPs were assigned to 476 genes, 

with 54 SNPs being assigned to more than one of the 476 significant genes identified. 

Rat genes were then mapped to human orthologs using the HCOP102,103 search tool 

(https://www.genenames.org/tools/hcop/), which incorporates orthology information from 

16 databases. We required that the ortholog be present in at least three databases to map 

a gene. To plot the position of rat seed genes in the rat genome (Figure S1), each gene’s 

genomic range ±10kb was plotted in a single column per chromosome, and manually 

aligned to each chromosome. Due to variable genomic ranges listed for some genes, the 

smallest start site and greatest end site from those listed in Table S4 were used to define the 

genomic range.

Human SNP-to-gene mapping—We generated gene-level significance values (Table S5) 

from the SNP-level summary statistics for each human trait using the PASCAL algorithm95 

using default parameters. This approach assigns SNPs to a gene if they fall within a window 

of ±50kb of the gene region and then calculates an aggregate p value after correcting for 

linkage disequilibrium. To model the expected distribution of SNP p values, an SNP-by-SNP 

correlation matrix is formed from the 1,000 Genomes Project109 reference data for European 
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individuals (1KG-EUR) for all n SNPs in the gene region and used as the basis of a 

multivariate normal null distribution, allowing calculation of z-scores for each SNP. A 

weighted sum of χ1
2-distributed random variables is used to model the sum of all z-scores 

within a gene region, with the resulting gene p value of the sum of chi-squared statistics 

calculated using the Davies algorithm (or Farebrother algorithm) for weighted sums of 

independent χ1
2-distributed random variables.110,111 Following a Bonferroni correction of the 

PASCAL p values, we defined sets of trait-associated genes using a threshold of q < 0.05.

Network propagation and co-localization—We used the Python package 

NetColoc34,35 (https://pypi.org/project/netcoloc/) for network propagation and co-

localization. The sets of significant trait-associated genes from GWAS were used as “seed” 

genes for network propagation using a Random Walk with Restart41 algorithm. This 

algorithm models the diffusion of heat along the edges of a network from an initial set 

of “hot” seed genes. In each iteration, a unit of heat is added to each seed gene, and the 

heat diffuses from each gene to its neighbors. To conserve the total heat within the system, 

a constant fraction of heat dissipates from each gene with each iteration. The heat diffusion 

process converges to a closed-form solution35 described by Equation 1:

F = (I − αW )−1(1 − α)Y 0 (Equation 1)

Where F  is the stable heat vector for all nodes, Y 0 is the vector of seed genes, W  is 

the column-normalized adjacency matrix of the network (PCNet), and α ∈ 0, 1  is the 

dissipation constant. Following network propagation with α = 0.5, we calculated a network 

proximity score (NPS) for each gene in the network by comparing the observed results to a 

null distribution. The null distribution was formed by propagating 1,000 randomly selected 

seed gene sets. Each set was sampled to preserve the size and degree distribution of the 

original input set. As previously implemented,112 we binned all genes in the network by 

degree with a minimum of 10 nodes per bin. For each gene g, the NPS was calculated as a Z
score comparing the observed heat at that gene Fg, S after network propagation of gene set S, 

to the mean of the null distribution heats at that gene F g, rand as given by Equation 2:

NPSg, S =
log Fg, S − 〈log F g, rand 〉

σ log F g, rand

(Equation 2)

Where  denotes the mean of a vector, and σ denotes the standard deviation of a vector. All 

heat values are log-transformed to ensure the distributions are approximately normal.

NetColoc recommends fewer than 500 input seed genes given the sample space of PCNet 

(~18,000 genes). Therefore, we employed a weighted sampling procedure for any trait 

having more than 500 significantly associated genes. We sampled 500 genes from the set 

of all significant genes (weighted by −log10p from GWAS) and ran the propagation analysis 

from this subset. After 100 repetitions, the 75% percentile NPS score was selected to 

approximate a consensus score for each gene.
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From input seed genes for humans and rats, we independently calculated NPSh (human) and 

NPSr (rat) for each trait. We then defined a gene as colocalized between two species if it 

had high proximity to inputs in both species. Therefore, we defined the combined network 

proximity NPShr as the product of the independent species scores in Equation 3:

NPSℎr = NPSℎ ∘ NPSr (Equation 3)

We repeated this approach using our high-confidence rat interaction network from 

STRING43 (v11.5). All human input seed genes were mapped to rat gene symbols using the 

bulk download human-rat ortholog mapping from HCOP.102,103 Where multiple complete 

mappings existed for a gene, the one supported by the most databases was selected.

Definition of the conserved BMI network—From NPShr, we selected genes with 

high proximity scores in both species to define the conserved cross-species network using 

thresholds: NPShr > 3, NPSh > 1, and NPSr > 1 (Figure S5A). To calculate the significance of 

the network co-localization, we compared the conserved network size and the mean NPShr

to a permuted null distribution. We permuted the labels of NPSr 10,000 times, and each 

time calculated the mean NPShr across all genes and the number of genes passing the above 

thresholds. For genes present in both the human and rat input sets, labels were permuted 

separately to maintain the higher expected distribution for these genes. The significance of 

the conserved network size and mean NPShr was calculated by Z-test.

Definition of the species-specific BMI networks—We also defined human-specific 

(n = 925 genes) and rat-specific (n = 688 genes) BMI networks to investigate the biology 

underlying BMI in only one species (Figures S5B and S5C). We used modified individual 

and combined NPS thresholds to capture genes with high NPS in only one species. For 

the individual thresholds on NPSh and NPSr, we set cutoffs based on the NPS distributions, 

calculated from non-seed genes. For the same-species threshold (e.g., the threshold on 

NPSr for defining the rat-specific network), we required that the NPS be a minimum of 

one standard deviation above the mean in that species. Therefore, for the human-specific 

network, we required NPSh > 1.5, and for the rat-specific network, we required NPSr > 1. 

For the other-species threshold (e.g., the threshold on NPSh for defining the rat-specific 

network), we required that the NPS be below the mean of all scores in that species, resulting 

in a threshold of NPSr < 0 for the human-specific network and NPSh < 0.5 for the rat-

specific network. We further defined combined thresholds as NPSr NPSh − 1 < − 2 for the 

rat-specific network and NPSh NPSr − 1 < − 4 for the human-specific network. Compared to 

the NPShr > 3 threshold for the conserved network, the shift in directionality captured genes 

with high NPS in one species but not the other, and the NPS−1 transformation allowed the 

inclusion of genes with slightly positive, but below the mean, NPS in the other species. We 

set the combined thresholds (−2 and −4) to generate subnetworks of comparable size (500–

1000 genes) to the conserved network, resulting in a stricter threshold for the human-specific 

threshold (Figure S5D). Finally, we defined an expanded network comprising all genes with 

an NPS score one standard deviation above the mean in at least one species (NPSh > 1.5
or NPSr > 1) to enable the analysis of the conserved and species-specific networks under a 
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common framework (n = 6025). By design, this expanded network contained the conserved, 

rat-specific, and human-specific networks as subnetworks.

Gene set enrichment analysis—Sets of genes were assessed for biological function by 

quantifying significant enrichment in Gene Ontology (GO) Biological Process terms using 

gProfiler.97 The gProfiler g:GOSt method maps genes to functional terms and assesses the 

statistical significance of functional enrichment. We maintained communities with 1) at least 

five genes, 2) at least three genes mapped to a GO term of size 50–1,000 genes, and 3) an 

FDR-corrected gene-set enrichment p value <1×10−3. Enrichment results for seed genes and 

network sets are included in Table S2.

Construction of multiscale systems maps—We generated a multiscale systems map 

of the conserved BMI network using the Hierarchical community Decoding Framework 

(HiDeF)96 algorithm as implemented in Cytoscape’s Python package CDAPS.113 HiDeF 

is an efficient hierarchical community detection method that makes use of persistent 

homology to identify structures at all scales simultaneously. First, the interaction network 

is reformulated as a fully connected similarity network and scanned across a range 

of modularity resolutions to identify densely connected network communities using a 

Louvain algorithm for community detection. At high resolutions, community detection 

tends to identify a larger number of small communities, whereas at low resolutions it 

tends to identify a smaller number of large communities. From this pool of all candidate 

communities, persistent communities are then defined as those that are redundantly 

identified across resolutions based on pairwise Jaccard similarities. Finally, the communities 

are organized into a hierarchical structure by finding those that are partially or fully nested 

within others based on the containment index (CI, Equation 4) which measures the overlap 

between communities v and w.

CI(v, w) = s v ∩ s w
s w (Equation 4)

If CI v, w  is greater than a threshold σ, then an edge is added in the hierarchy from v to 

w. Any redundant relations are then reduced to produce the final multiscale hierarchy. To 

identify the conserved BMI systems map, we implemented HiDeF with maximum resolution 

set to 10, and all other parameters set to defaults. The resulting communities were annotated 

based on significantly enriched GO Biological Processes using gProfiler,97 followed by 

manual curation (See gene set enrichment analysis). For communities containing multiple 

seed genes colocated on the same chromosome arm within 250kb, we verified that these 

seed genes were drawn from multiple independent loci (Table S6) to ensure that systems did 

not over-represent a single locus.

We performed the same hierarchical community detection and annotation procedure for the 

expanded BMI network, retaining all communities with more than ten genes to form the 

expanded BMI Systems Map. For each community, we calculated the enrichment of genes 

from each of the conserved, rat-specific, and human-specific networks via a hypergeometric 

test followed by Benjamini-Hochberg correction of p values.
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Mouse variant validation—We accessed mouse knockout, knock-in, and mutation 

data from the Mouse Genome Database,114 including genotype-phenotype associations 

mapped to the Mammalian Phenotype Ontology84 (MPO), similar to the analysis previously 

published.34,35 We extracted mouse genes from the listed alleles, including the target 

genes from conditional genotypes, and mapped them to human orthologs using MGD’s 

marker and ortholog mappings. We used a set of BMI-relevant phenotypes within the 

MPO (MP:0001697 - abnormal embryo size; MP:0010866 - abnormal prenatal body size; 

MP:0003956 - abnormal postnatal body size; MP:0005451 - abnormal body composition) to 

assess relevance to BMI. For the full conserved network and each community, we reported 

the odds ratio of the number of genes linked to a phenotype in the MGD and tested this 

value for enrichment using a Fisher’s Exact Test. The validation rate of genes within a 

network was defined as the number of genes associated with at least one BMI-relevant 

phenotype divided by the number of genes with at least one normal or abnormal phenotype 

reported in MGD. The MPO is hierarchical, so we considered all genes associated with 

a phenotype to be associated with all parent phenotypes in the MPO hierarchy. When 

performing multiple simultaneous tests, we used the Benjamin-Hochberg (BH) correction to 

calculate adjusted q values with FDR = 0.05.

We tested all communities in the conserved and expanded systems maps for the enrichment 

of genes with mouse orthologs associated with BMI-relevant phenotypes in MGD. For the 

conserved systems map, we chose communities with the highest significant odds ratios 

p < 0.05  for at least one BMI-relevant phenotype for further investigation. To assess the 

functional effects of the gene communities, for each phenotype term, we calculated the 

positive predictive value (PPV ) from the set of genes in the community (community), and the 

set of genes associated with the phenotype in MGD (phenotype) as:

PPV pℎenotype = ∣ community ∩ pℎenotype ∣
∣ pℎenotype ∣ (Equation 5)

We took a top-down approach from the root “mammalian phenotype” term (MP:0000001). 

At each level of the hierarchy, we kept all child terms with PPV cℎild > PPV parent and performed 

a Benjamini-Hochberg correction on the enrichment p values for the set of child terms for 

each parent phenotype. A representative subset of higher-level terms was selected to enable 

readability in the phenotype enrichment heatmaps (Figures 4 and 5D).

Tissue enrichment—To assess the tissue-specific expression of genes in the 

conserved and species-specific networks, we used the Tissue-Specific Enrichment 

Tool (TSEA,98 http://genetics.wustl.edu/jdlab/tsea/) and the TissueEnrich99 tool (http://

tissueenrich.gdcb.iastate.edu/). We used TSEA to calculate the enrichment of gene sets for 

selective expression in 25 tissue types based on human GTEx115 data, and defined an FDR-

corrected p value threshold of q < 0.05 as a significant enrichment. We used TissueEnrich 

to calculate the enrichment of mouse orthologs of gene sets for tissue-specific genes in 17 

mouse tissue types based on mouse ENCODE data.116 We defined significant enrichments 

as those with an FDR-corrected p value threshold of q < 0.05.
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Network visualization—We generated all hierarchy and network figures using 

Cytoscape.100 Tree and radial layouts were used as the basis for all hierarchy figures 

(Figures 3A, 5B, 6E, S3B, and S6B), and a spring-embedded layout algorithm was used to 

determine the layouts of network and subnetwork figures (Figures 3C, 4A, 5A, S3A, and 

S4). For communities in systems maps, node graphics were used to display the source of 

the genes, and node size was used to indicate the number of genes. For gene networks, node 

color was used to indicate the source of genes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Disparate genetics in humans and rats converge on a conserved molecular 

network

• A systems map of 27 interacting gene communities defines shared BMI 

biology

• Conserved BMI genes are linked to mechanisms of BMI via the Mouse 

Genome Database

• Neuronal pathways are a critical shared mechanism of BMI in humans and 

rodents
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Figure 1. Generation of a cross-species conserved BMI systems map
GWAS results for human BMI (top, blue) and rat BMl (bottom, purple) are independently 

propagated through a molecular interaction network (PCNet) to measure the proximity of all 

genes to the input sets. Colocalized genes are identified as genes that are proximal in the 

network to BMI seed genes in both species (orange). Within this subset, nested communities 

of densely connected genes are identified to generate a hierarchy of systems representing 

the shared biology of BMI across humans and rats. A toy network is shown for illustrative 

purposes.
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Figure 2. Convergence of rat and human BMI GWAS results at the gene and network level
(A) GWAS Manhattan plots for human BMI (left, light blue) with a maximum displayed 

log(p) = 100 and rat BMI (right, purple) with a maximum displayed −log(p) = 12.

(B) Left, Venn diagram representing the gene-level overlap of GWAS results after mapping 

to human genes; dark blue represents the 29 orthologous genes implicated in both species. 

Right, Venn diagram of genes passing network proximity score (NPS) thresholds after 

network co-localization. NPSh > 1 (light blue); NPSr > 1 (purple); NPSh > 1 and NPSr > 

1 (dark blue); NPSh > 1, NPSr > 1, and NPShr > 3 (conserved network, orange stripes). 

Overlap p values were calculated via hypergeometric test.
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(C) Human and rat NPS for all non-seed genes, with genes passing all thresholds for the 

conserved BMI network (NPShr >3, NPSh >1, and NPSr > 1) shown in orange. Dotted 

horizontal and vertical lines indicate the single-species thresholds.

(D) Observed (orange arrow) versus expected (gray distribution) size of the conserved BMI 

network following 10,000 permutations of NPSr labels, with p value calculated via Z test.

(E) The observed-to-expected ratio of colocalized network size for rat BMI with human 

BMI (left orange bar) and two negative control comparisons (gray). FEV1,forced expiratory 

volume per second; AR, allergic rhinitis symptoms. Vertical bars indicate 95% confidence 

intervals. See also Figure S2 and Table S1.
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Figure 3. The conserved BMI systems map
(A) The conserved BMI network as a hierarchy of interacting gene communities. Nodes 

represent individual gene communities, with size indicating the number of genes (minimum 

five, maximum 642). Edges indicate smaller communities that are nested within larger 

communities. Pie charts indicate the fraction of community genes that are human seed 

genes, rat seed genes, seed genes in both species, or network-implicated genes. Systems are 

annotated based on significantly associated Gene Ontology (GO) Biological Process terms. 
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Only annotated communities and those necessary to connect annotated communities are 

shown.

(B) Enrichment of each annotated community in (A) for genes associated with four 

BMI-related phenotypes (defined as postnatal body size, prenatal body size, embryo size, 

and body composition) in the Mouse Genome Database (MGD). Colored points show 

the nominally significantly enriched communities (Fisher’s exact test), with all other 

communities in light gray.

(C) The GPCR signaling and response regulation community (GSR) subnetwork. Node color 

indicates the source of genes in the subnetwork (top) and associations with any of the four 

BMI-related phenotypes in mice (bottom).

(D) Sources of all MGD-validated genes for communities significantly enriched for body-

size-associated genes in (B). MGD-validated genes were defined as genes linked to at least 

one BMI-related phenotype in MGD. See also Figures S3, S6A, and Table S1.

Wright et al. Page 33

Cell Rep. Author manuscript; available in PMC 2023 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Functional effects of perturbations to conserved BMI systems in mice
Reproduction of the conserved BMI systems map (top) with gene communities significantly 

enriched for mouse BMI-related traits in green (p < 0.05, Fisher’s exact test). Heatmap 

(bottom) shows the enrichment of communities within the system map for body-size and 

non-body-size traits in mice, selected to capture the spectrum of phenotypes affected by the 

systems map (STAR Methods). The OR is shown for any community-phenotype associations 

that were nominally significant (p < 0.05) via a Fisher’s exact test. Phenotypes are grouped 

based on the Mammalian Phenotype Ontology (left). See also Table S1.
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Figure 5. Investigation of gene communities within the conserved BMI systems map
(A) Subnetwork of genes in demethylation community 3 (DM3). Node color indicates 

the source of the genes (left) and associations with any reported BMI-related abnormal 

phenotypes (postnatal body size, prenatal body size, embryo size, or body composition) in 

MGD (right).

(B) Enrichment of systems map communities for genes associated with the four BMI-related 

traits in mice via MGD. Colored points highlight significant enrichments (Fisher’s exact 

test) for unannotated communities. Light gray indicates unannotated communities that are 
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not significantly enriched, and dark gray indicates annotated communities with significant 

enrichment, as shown in Figure 3B.

(C) Sources of all MGD-validated genes for communities significantly enriched for body-

size-associated genes in (B). MGD-validated genes were defined as genes linked to at least 

one BMI-related phenotype in MGD.

(D) Unannotated communities within the conserved BMI systems hierarchy (top) with 

enrichments for selected phenotypes in mice (heatmap, bottom). Odds ratios for all 

nominally significant (p < 0.05, Fisher’s exact test) enrichments are shown. See also Figures 

S3, S6A, and Table S1.

Wright et al. Page 36

Cell Rep. Author manuscript; available in PMC 2023 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Identification of divergent processes underlying BMI in humans and rats
(A) Definition of species-specific subnetworks from NPSh and NPSr showing genes that 

were not seed genes in either species. Cutoffs for the expanded network are indicated with 

dotted lines (NPSh, blue; NPSr, purple). The expanded network includes all nodes in the 

human-specific, rat-specific, and conserved network, as well as all dark gray nodes; all other 

nodes are indicated in light gray. Networks are defined as human specific (NPSh > 1.5, 

NPSr < 0, NPSh(NPSr−1) < −4), rat specific (NPSh < 1, NPSr > 1, NPSr(NPSh−1) < −2), or 

conserved (NPSh > 1, NPSr > 1, NPShr > 3).
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(B) The number of genes in the conserved and species-specific subnetworks (x axis) colored 

by the source of the genes.

(C) Tissue enrichment for species-specific and conserved subnetwork genes in human GTEx 

data, with p values false discovery rate (FDR) corrected (STAR Methods).

(D) Tissue enrichment for species-specific and conserved subnetwork genes in mouse 

ENCODE data, with p values FDR corrected (STAR Methods).

(E) Subset of the expanded systems map containing communities enriched for species-

specific or conserved genes (q < 0.05, hypergeometric test). Pie charts show the fraction of 

genes from the conserved and species-specific networks. Systems are annotated based on 

associated GO Biological Process terms. See also Figures S5, S6, and Table S1.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

GWAS summary statistics (Human 
BMI, height)

Yengo et al.38 https://portals.broadinstitute.org/collaboration/giant/index.php/
GIANT_consortium_data_files

Rat genotypes and phenotypes (Rat 
BMI, body length)

This paper EVA: PRJEB63638 (Project); ENA: ERZ19474633 (Analysis)

Rat gene-level summary statistics 
(BMI, body length)

This paper Table S4

Human gene-level summary statistics 
(BMI, Height)

This paper Table S5

Control GWAS summary statistics Neale Lab42 http://www.nealelab.is/uk-biobank;
Zenodo:
https://doi.org/10.5281/zenodo.7186871

PCNet Interactome (v1.3) Huang et al.40 Ndexbio.org, NDEx: 4de852d9-9908-11e9-bcaf-0ac135e8bacf

STRING High Confidence Rat 
Interactome

Szklarczyk et al.,43 this paper Ndexbio.org, NDEx: 880c7d8c-f5ad-11ec-ac45-0ac135e8bac

Conserved Human-Rat BMI Network This paper Ndexbio.org, NDEx: https://doi.org/10.18119/N9102V

Conserved Human-Rat BMI Systems 
Map

This paper Ndexbio.org, NDEx: https://doi.org/10.18119/N9RG73

Human-Specific BMI Network This paper Ndexbio.org, NDEx: https://doi.org/10.18119/N9MS56

Rat-Specific BMI Network This paper Ndexbio.org, NDEx: https://doi.org/10.18119/N9H03K

Expanded BMI Systems Map This paper Ndexbio.org, NDEx: https://doi.org/10.18119/N9C89C

Expanded BMI Network This paper Ndexbio.org, NDEx: https://doi.org/10.18119/N9W90Z

Mouse genotype-phenotype 
associations

Blake et al.44 https://https://www.informatics.jax.org/downloads/

Mammalian Phenotype Ontology Smith and Eppig84 https://https://www.informatics.jax.org/downloads/

Experimental models: Organisms/
strains

Heterogeneous Stock (HS) Rats Medical College of Wisconsin, 
WI

MCW: NMcwi:HS #2314009; RRID

Software and algorithms

CrossSpeciesBMI v.1.0.0 This paper Zenodo: https://doi.org/10.5281/zenodo.7868889

FASTX-Toolkit v0.0.13 Hannon Lab, 2010 RRID: SCR_005534; http://hannonlab.cshl.edu/fastx_toolkit/

FastQC v0.11.6 Babraham Bioinformatics85 RRID: SCR_014583; http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/

Burrows-Wheeler Aligner (BWA) 
v0.7.5a

Li and Durbin86 RRID: SCR_010910; http://bio-bwa.sourceforge.net/

GATK v3.5 McKenna et al.87 RRID: SCR001876; https://software.broadinstitute.org/gatk/

ANGSD-SAMtools Korneliussen et al.88 & Durvasula 
et al.89

RRID: SCR_021865; https://github.com/ANGSD/angsd;

PLINK v1.9 Purcell et al.90 & Chang et al.91 RRID: SCR_001757; https://www.cog-genomics.org/plink/

BEAGLE v4.1 Browning and Browning92 RRID: SCR_001789; http://faculty.washington.edu/browning/
beagle/beagle.html

IMPUTE2 Howie et al.93 RRID: SCR_013055; https://mathgen.stats.ox.ac.uk/impute/
impute_v2.html
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REAGENT or RESOURCE SOURCE IDENTIFIER

GCTA Yang et al.94 https://yanglab.westlake.edu.cn/software/gcta/#Overview

PASCAL Lamparter et al.95 https://www2.unil.ch/cbg/index.php?title=Pascal

Python 3.9.13 N/A https://www.python.org/downloads/release/python-3913/

NetworkX 2.8.4 N/A RRID: SCR_016864; https://networkx.org/

NetColoc v0.1.6.post1 Rosenthal et al.34 https://pypi.org/project/netcoloc/0.1.6.post1/

HiDeF v1.0.0 Zheng et al.96 https://apps.cytoscape.org/apps/cycommunitydetection

Gprofiler Raudvere et al.97 RRID: SCR_006809; https://biit.cs.ut.ee/gprofiler/

TSEA Dougherty et al.98 http://genetics.wustl.edu/jdlab/tsea/

TissueEnrich Jain and Tuteja99 http://tissueenrich.gdcb.iastate.edu/
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