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The structure of LP2179, a member of the PF08866 (DUF1831) family, suggests

a novel �+� fold comprising two �-sheets packed against a single helix. A

remote structural similarity to two other uncharacterized protein families

specific to the Bacillus genus (PF08868 and PF08968), as well as to prokaryotic

S-adenosylmethionine decarboxylases, is consistent with a role in amino-acid

metabolism. Genomic neighborhood analysis of LP2179 supports this functional

assignment, which might also then be extended to PF08868 and PF08968.

1. Introduction

The Pfam database (Finn et al., 2008) contains over 2000 domains of

unknown function (DUFs), which are protein families for which the

biological function is unknown and cannot be deduced by homology.

Currently, DUFs are the best source for the discovery of new folds

(Jaroszewski et al., submitted), followed by large families with no

structural representatives. DUF structures provide the first step

towards establishing functional hypotheses and extending our

understanding of the protein universe. In an effort to sample and

understand the diversity of protein-fold and structure space, targets

were selected from Pfam protein family PF08866 (DUF1831). Here,

we report the crystal structure of LP2179, the first structural repre-

sentative of this family, which was determined using the semiauto-

mated high-throughput pipeline of the Joint Center for Structural

Genomics (JCSG; Lesley et al., 2002) as part of the NIGMS Protein

Structure Initiative (PSI; http://www.nigms.nih.gov/Initiatives/PSI/).

The LP2179 gene of Lactobacillus plantarum, a lactic acid-producing

bacterium found in human saliva and intestinal flora, encodes a

protein with a molecular weight of 12.6 kDa (residues 1–113) and a

calculated isoelectric point of 8.9. LP2179 appears to adopt a novel

fold with remote similarities to proteins with a TBP-like fold (TATA-

binding protein), including S-adenosyl-l-methionine decarboxylase

(EC 4.1.1.50), an enzyme implicated in the urea cycle and the cata-

bolism of methionine and amino groups. Analysis of the genomic

neighborhood of DUF1831 homologs reveals the systematic presence

of other enzymes implicated in amino-acid and amino-group meta-

bolism, suggesting a similar role for other members of the DUF1831

family and for two other functionally uncharacterized families that

show partial structural similarity to LP2179.

2. Materials and methods

2.1. Protein production and crystallization

Clones were generated using the Polymerase Incomplete Primer

Extension (PIPE) cloning method (Klock et al., 2008). The gene

encoding LP2179 (GenBank NP_785678, gi:28378786, Swiss-Prot

Q88V95) was amplified by polymerase chain reaction (PCR) from

L. plantarum WCFS1 NCIMB8826 genomic DNA using PfuTurbo

DNA polymerase (Stratagene) and I-PIPE (Insert) primers (forward

primer, 50-ctgtacttccagggcATGGCATACACAACAACGGTTAAAC-



30; reverse primer, 50-aattaagtcgcgttaGTCCGTCGTGAGGATATC-

CCGTTC-30; target sequence in upper case) that included sequences

for the predicted 50 and 30 ends. The expression vector pSpeedET,

which encodes an amino-terminal tobacco etch virus (TEV) protease-

cleavable expression and purification tag (MGSDKIHHHHHH-

ENLYFQ/G), was PCR-amplified with V-PIPE (Vector) primers

(forward primer, 50-taacgcgacttaattaactcgtttaaacggtctccagc-30; reverse

primer, 50-gccctggaagtacaggttttcgtgatgatgatgatgatg-30). V-PIPE and

I-PIPE PCR products were mixed to anneal the amplified DNA

fragments together. Escherichia coli GeneHogs (Invitrogen) com-

petent cells were transformed with the V-PIPE/I-PIPE mixture and

dispensed onto selective LB–agar plates. The cloning junctions were

confirmed by DNA sequencing. Expression was performed in a

selenomethionine-containing medium. At the end of fermentation,

lysozyme was added to the culture to a final concentration of

250 mg ml�1 and the cells were harvested and frozen. After one

freeze–thaw cycle, the cells were sonicated in lysis buffer [50 mM

HEPES pH 8.0, 50 mM NaCl, 10 mM imidazole, 1 mM tris(2-car-

boxyethyl)phosphine–HCl (TCEP)] and the lysate was clarified by

centrifugation at 32 500g for 30 min. The soluble fraction was passed

over nickel-chelating resin (GE Healthcare) pre-equilibrated with

lysis buffer, the resin was washed with wash buffer [50 mM HEPES

pH 8.0, 300 mM NaCl, 40 mM imidazole, 10%(v/v) glycerol, 1 mM

TCEP] and the protein was eluted with elution buffer [20 mM

HEPES pH 8.0, 300 mM imidazole, 10%(v/v) glycerol, 1 mM TCEP].

The eluate was buffer-exchanged with TEV buffer (20 mM HEPES

pH 8.0, 200 mM NaCl, 40 mM imidazole, 1 mM TCEP) using a PD-10

column (GE Healthcare) and incubated with 1 mg of TEV protease

per 15 mg of eluted protein. The protease-treated eluate was run over

nickel-chelating resin (GE Healthcare) pre-equilibrated with HEPES

crystallization buffer (20 mM HEPES pH 8.0, 200 mM NaCl, 40 mM

imidazole, 1 mM TCEP) and the resin was washed with the same

buffer. The flowthrough and wash fractions were combined and

concentrated to 10 mg ml�1 by centrifugal ultrafiltration (Millipore)

for crystallization trials. LP2179 was crystallized by mixing 200 nl

protein solution with 200 nl crystallization solution in a sitting-drop

format over a 50 ml reservoir volume using the nanodroplet vapor-

diffusion method (Santarsiero et al., 2002) with standard JCSG

crystallization protocols (Lesley et al., 2002). Crystals from two

different crystallization conditions were used for data collection and

structure determination. The crystallization reagent yielding a cube-

like crystal (0.1 � 0.1 � 0.1 mm) used for MAD phasing consisted of

20.0%(w/v) PEG 6000 and 0.1 M Bicine pH 9.0 as the precipitant. A

long rod-like crystal (0.3 � 0.1 � 0.1 mm) used for refinement was

obtained using 0.2 M NaCl, 20.0%(w/v) PEG 8000 and 0.1 M CAPS

pH 10.5. Crystallization was carried out at 277 K for both conditions.

Glycerol was added to both crystals as a cryoprotectant to a final

concentration of 15%(v/v). Initial screening for diffraction was

carried out using the Stanford Automated Mounting system (SAM;

Cohen et al., 2002) at the Stanford Synchrotron Radiation Light-

source (SSRL, Menlo Park, California, USA). Both sets of diffraction

data were indexed in the orthorhombic space group P212121 (Table 1).

The oligomeric state of LP2179 was determined using a 0.8 � 30 cm2

Shodex Protein KW-803 column (Thomson Instruments) pre-cali-

brated with gel-filtration standards (Bio-Rad).

2.2. Data collection, structure solution and refinement

Multiple-wavelength anomalous diffraction (MAD) data were

collected at the Advanced Photon Source (APS, Argonne, Illinois,

USA) on beamline 23-ID-D at wavelengths corresponding to the

high-energy remote (�2), inflection (�3) and peak (�4) of a selenium

MAD experiment. Higher resolution data from a different crystal

were collected at the Advanced Light Source (ALS, Berkeley, Cali-

fornia, USA) on beamline 8.2.2. The data sets were collected at 100 K

using a MAR Mosaic 300 detector (APS) and an ADSC Quantum-

315 CCD detector (ALS). The MAD data were integrated and

reduced using XDS and then scaled with the program XSCALE

(Kabsch, 1993). The higher resolution (�1) data were integrated and

reduced using MOSFLM (Leslie, 1992) and then scaled with the

program SCALA (Collaborative Computational Project, Number 4,

1994). Phasing of the MAD data was performed with SOLVE

(Terwilliger & Berendzen, 1999; four selenium sites per asymmetric

unit, mean FOM = 0.52) and automated model building was

performed with ARP/wARP (Cohen et al., 2004). The resulting model

was used for model completion and refinement against the higher

resolution (�1) data with Coot (Emsley & Cowtan, 2004) and

REFMAC 5.2 (Murshudov et al., 1999). Data reduction and refine-

ment statistics are summarized in Table 1.

2.3. Validation and deposition

Analysis of the stereochemical quality of the model was accom-

plished using AutoDepInputTool (Yang et al., 2004), MolProbity

(Davis et al., 2004), SFCHECK 4.0 (Collaborative Computational

Project, Number 4, 1994) and WHATIF 5.0 (Vriend, 1990). Protein
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Table 1
Summary of crystal parameters, data-collection and refinement statistics for
LP2179 (PDB code 2iay).

Values in parentheses are for the highest resolution shell.

�1 Se �2 MADSe �3 MADSe �4 MADSe

Data collection
Space group P212121 P212121

Unit-cell parameters (Å) a = 36.29,
b = 47.90,
c = 58.01

a = 36.41, b = 47.99, c = 57.83

Wavelength (Å) 0.9798 0.9493 0.9794 0.9793
Resolution range (Å) 28.9–1.2

(1.23–1.20)
29.0–1.3

(1.36–1.33)
29.0–1.4

(1.41–1.37)
29.0–1.4

(1.41–1.37)
No. of observations 181436 69961 63756 63463
No. of unique reflections 29115 21577 19702 19718
Completeness (%) 90.4 (50.7) 90.4 (49.2) 90.2 (46.3) 90.3 (47.2)
Mean I/�(I) 16.4 (2.1) 13.3 (2.0) 12.9 (2.0) 12.9 (1.7)
Rmerge on I† (%) 6.9 (20.4) 6.2 (38.8) 6.2 (37.9) 7.2 (46.7)
Rmeas on I‡ (%) 7.3 (26.7) 7.3 (52.4) 7.3 (51.1) 8.5 (63.1)

Model and refinement statistics
Resolution range (Å) 28.9–1.2
No. of reflections (total) 29080§
No. of reflections (test) 1488
Completeness (%) 90.1
Data set used in refinement �1 Se
Cutoff criterion |F | > 0
Rcryst} 0.120
Rfree} 0.147

Stereochemical parameters
Restraints (r.m.s.d. observed)

Bond angles (�) 1.65
Bond lengths (Å) 0.016

Average isotropic B value (Å2) 8.86
ESU†† based on Rfree (Å) 0.038
Protein residues/atoms 114/944
Water molecules/other solvent 195/2

† Rmerge =
P

hkl

P
i jIiðhklÞ � hIðhklÞij=

P
hkl

P
i IiðhklÞ. ‡ Rmeas =

P
hkl ½N=ðN � 1Þ�1=2

�
P

i jIiðhklÞ � hIðhklÞij=
P

hkl

P
i IiðhklÞ (Diederichs & Karplus, 1997). § Typically, the

number of unique reflections used in refinement was slightly less that the total number
that were integrated and scaled. Reflections were excluded owing to systematic absences,
negative intensities and rounding errors in the resolution limits and unit-cell
parameters. } Rcryst =

P
hkl

�
�jFobsj � jFcalcj

�
�=
P

hkl jFobsj, where Fcalc and Fobs are the
calculated and observed structure-factor amplitudes, respectively. Rfree is the same as
Rcryst but for 5.1% of the total reflections chosen at random and omitted from
refinement †† Estimated overall coordinate error (Collaborative Computational
Project, Number 4, 1994; Tickle et al., 1998).



quaternary-structure analysis used the PISA server (Krissinel &

Henrick, 2007). Fig. 1(c) was adapted from an analysis using PDBsum

(Laskowski et al., 2005) and all other figures were prepared with

PyMOL (DeLano Scientific). Atomic coordinates and experimental

structure factors for LP2179 at 1.20 Å resolution have been deposited

in the PDB under accession code 2iay.

3. Results and discussion

3.1. Overall structure

The crystal structure of LP2179 (Fig. 1a) was initially determined

to 1.33 Å resolution using the multiple-wavelength anomalous

dispersion (MAD) method and was further refined to 1.20 Å reso-

lution using data collected from a different crystal. Data-collection,

model and refinement statistics are summarized in Table 1. The final

model includes 114 residues (i.e. the residual Gly0 from the expres-

sion tag followed by residues 1–113 of LP2179), one glycerol mole-

cule, one chloride ion and 195 water molecules in the asymmetric

unit. The side chains of Lys8, Lys59 and Lys86 were not modeled

owing to poor electron density. The Matthews coefficient (VM;

Matthews, 1968) is 2.0 Å3 Da�1 and the estimated solvent content is

37.2%. The Ramachandran plot produced by MolProbity (Davis et

al., 2004) shows that 98.2% and 100% of the residues are in favored

and in favored and additionally allowed regions, respectively.

LP2179 forms a single domain composed of two antiparallel

�-sheets packed against a long C-terminal helix H3 (Fig. 1). A second

helix, H1, links strand �2 from the first �-sheet (order 127), which is

assembled from the two N-terminal and the C-terminal �-strands,

to the second �-sheet (order 3456) and packs parallel to H3.

Pre-SCOP classifies LP2179 as a novel fold termed LP2179-like

(http://www.mrc-lmb.cam.ac.uk/agm/pre-scop/999384.html). Analysis

of the crystallographic packing of LP2179 using the PISA server

(Krissinel & Henrick, 2007) and analytical size-exclusion chromato-

graphy in combination with static light scattering indicate that a

monomer is the likely quaternary form.

3.2. Comparison with other structures

A search with FATCAT (Ye & Godzik, 2004) revealed a remote

structural similarity of LP2179 to members of the YugN-like family

(PF08868), which are characterized by a TBP-like fold (http://

www.mrc-lmb.cam.ac.uk/agm/pre-scop/55944. html). Superposition of

LP2179 onto ABC2387 (PDB code 2pww; U. A. Ramagopal, J.

Freeman, C. Lau, R. Toro, K. Bain, L. Rodgers, J. M. Sauder, S. K.

Burley & S. C. Almo, unpublished work), a YugN-like homolog from

Bacillus clausii, clearly reveals that both proteins share the same fold

and topology over all of the helices and strands �3–�5 from the

second �-sheet (strands �3–�6; Fig. 2a). The structural similarity

involves a main-chain r.m.s.d. of 2.5 Å over 81 residues, although the

structural communications

Acta Cryst. (2010). F66, 1205–1210 Bakolitsa et al. � LP2179 1207

Figure 1
Crystal structure of LP2179 from L. plantarum. (a) Stereo ribbon diagram of the LP2179 monomer color-coded from the N-terminus (blue) to the C-terminus (red). Helices
H1–H3 and �-strands (�1–�7) are indicated. (b) Diagram showing the secondary-structure elements of LP2179 superimposed on its primary sequence. The labeling of
secondary-structure elements is in accord with PDBsum (http://www.ebi.ac.uk/pdbsum), where �-helices are sequentially labeled (H1, H2, H3 etc), �-strands are labeled
(A, B, C etc.) according to the �-sheets to which they are assigned, �-turns and �-turns are designated by Greek letters (�, �) and �-hairpins by red loops. For LP2179, the
�-helices (H1–H3), �-sheets (A, B) and �-turns (�) are indicated. Selenomethionine residues used for phasing are labeled MSE.



sequence identity is only 7%. Similar values are obtained for

GK1089, another YugN homolog from Geobacillus kaustophilus

(PDB code 2r5x), with an r.m.s.d. of 2.9 Å and 10% sequence identity

over 87 aligned residues. Both YugN-like homologs show an inter-

ruption in the regular hydrogen-bonding pattern of strand �6 in the

�-sheet, resulting in two shorter, collinear strands that hydrogen

bond separately to �5. However, as the TBP-like fold is characterized

by a �-�-�4-� topology, the main topological difference between the

two families involves the first �-sheet in LP2179, which is replaced in

YugN-like homologs by a �-strand that forms part of the single

�-sheet (Fig. 2a). The H2 helix, which is absent in both YugN-like and

DUF1885 homologs, might constitute an additional difference, but

owing to its short size (one helical turn) and its involvement in crystal

contacts (Asp88–Arg1070 and Phe85–Arg1070) it might not represent

a biologically relevant conformation of this region in solution.

A search with FFAS (Jaroszewski et al., 2005) showed no significant

sequence similarity of LP2179 to any protein family other than

PF08866. However, significant sequence similarity (FFAS score �11

with 20% sequence identity) was observed between ABC2387 and

RBSTP2229, a member of the protein family PF08968 (DUF1885)

from B. stearothermophilus. Like the YugN-like homologs,

RBSTP2229 also exhibits a TBP-like fold. A structural superposition

of ABC2387 (PDB code 2pww) with RBSTP2229 (PDB code 1t6a)

shows a backbone r.m.s.d. of 2.8 Å over 57 residues. Over the same

residue range, LP2179 has a backbone r.m.s.d. of 3.3 Å with

RBSTP2229 (Fig. 2b). However, the length and orientation of helix

structural communications
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Figure 2
LP2179 exhibits structural similarity to members of the YugN-like family, DUF1185 and S-adenosylmethionine decarboxylases. Stereoviews of the structural superposition of
LP2179 (PDB code 2iay, in blue) with (in gray) (a) a YugN-like homolog from B. clausii (PDB code 2pww), (b) a DUF1885 homolog from B. stearothermophilus (PDB code
1t6a) and (c) S-adenosylmethionine decarboxylase proenzyme (TM0655) from Thermotoga maritima (PDB code 1vr7). N- and C-termini are indicated for LP2179 and are
indicated with primes (N0, C0) for other structures.



H1 in RBSTP2229 (pointing outwards from the structure instead of

packing against the central �-sheet) differs substantially from that

observed in ABC2387 and LP2179, while the subsequent �-strand is

positioned differently with respect to helix H3 in all three structures

(Figs. 2a and 2b). Among these TBP-like variants, LP2179 is unique in

that the N- and C-terminal �-strands are combined to form an

additional �-sheet that is situated between the central �-sheet and

helix H3. However, both YugN-like and DUF1885 homologs display

shorter variants of this secondary-structure element in the same

region (YugN-like homologs contain a single �-strand; DUF1185

forms a C-terminal hairpin), raising the possibility that this region

might represent a locus in this family for structural and possibly

functional drift (Krishna & Grishin, 2005).

Structural similarities of LP2179 to prokaryotic S-adenosyl-

methionine decarboxylases (AdoMetDCs; EC 4.1.1.50) were also

observed. Superposition of LP2179 onto the AdoMetDC from

Thermotoga maritima results in a backbone r.m.s.d. of 3.3 Å over 82

residues with 3% sequence identity (Fig. 2c). Similar values (an

r.m.s.d of 3.3 Å over 67 residues with 3% sequence identity) were

obtained for the AdoMetDC from Aquifex aeolicus (PDB code 2iii).

As with the YugN-like homologs, prokaryotic AdoMetDCs share a

similar fold and topology as LP2179 that includes the main �-sheet

(�3–�6) and helices (H1–H3) in addition to the C-terminal �-strand

(�7) of LP2179. The main differences involve the arrangement of the

N- and C-terminal �-strands in prokaryotic AdoMetDCs that

hydrogen bond to form a single six-stranded antiparallel �-sheet, as

opposed to the two separate sheets in LP2179, and a C-terminal helix

that is absent in LP2179 (Fig. 2c).

Structural comparison between these four Pfam families reveals

the conservation of a core �-�-�4-� (TBP-like) fold with �-strand

additions at the N- or C-terminus or both. In LP2179, a strand is

added at both the N- and C-termini, while YugN-like homologs

contain an extra �-strand at the N-terminus (topology �2-�-�4-�) and

PF08968 homologs contain an additional �-strand at the C-terminus

that follows a circular permutation of the core fold (topology �-�4-�-

�2). AdoMetDCs contain an additional �-strand at the C-terminus

that hydrogen bonds to the N-terminal strand to form an antiparallel

six-stranded �-sheet (topology �-�-�4-�-�).

It is widely accepted that protein structure is more conserved than

amino-acid sequence, suggesting that structural relationships

between proteins might provide information that is not available

from sequence alone (see review by Kolodny et al., 2006). Both the

PF08866 (DUF1831) and PF08868 (YugN-like) protein families are

currently functionally uncharacterized. AdoMetDC is a pyruvoyl-

dependent amino-acid decarboxylase that is involved in methionine

metabolism and is essential for polyamine biosynthesis (Pegg et al.,

1998). The structure of prokaryotic AdoMetDC proenzyme (Toms et

al., 2004) reveals that despite the lack of any detectable sequence

similarity between the eukaryotic and prokaryotic forms of the

enzyme (13% sequence identity), the two structures can be super-

imposed with an r.m.s.d. of 2.0 Å for 156 backbone residues. The

catalytic site residues are also conserved (Toms et al., 2004).

The AdoMetDC proenzyme undergoes an autocatalytic intra-

molecular self-cleavage reaction that generates a pyruvoyl group in a

loop between two �-strands (�3 and �4 in Fig. 2c). Although the

catalytic residues (Ser and Glu) of the AdoMetDC proenzyme are

not conserved in LP2179 and YugN-like or Pfam08968 homologs,

sequence alignment reveals the conservation of charged and aromatic

residue clusters between LP2179 and YugN-like homologs (Fig. 3). In

the respective structures, these clusters occur along the first two

strands and intervening loop of the central �-sheet (�3 and �4 in

Figs. 1a and 2c) surrounding the AdoMetDC catalytic site and may

serve a similar functional role.

3.3. Genomic neighborhood analysis

The genomic neighborhood (http://string.embl.de) of LP2179

shows a high degree of confidence in a predicted functional

association with cysteine desulfurase (LP2180, score 0.81) and

methylthioadenosine nucleosidase (LP2181, score 0.64). Cysteine

desulfurase (EC 2.8.1.7) catalyzes the production of alanine from

cysteine, while methylthioadenosine nucleosidase (EC 3.2.2.16) also

participates in the metabolism of amino groups. These two enzymes

are found in the genomic context or neighborhood of every member

of the DUF1831 family, supporting a role for DUF1831 in amino-acid

metabolism.

In Gram-positive bacteria, such as the Bacillus genus, amino-acid

metabolism is directly coupled to several other metabolic pathways,

including trans-sulfuration, polyamine synthesis and recycling, the

activated methyl cycle and quorum sensing (Lebeer et al., 2007). As

previously indicated, AdoMetDC is a central regulator of these

pathways. Modified amino acids, such as homocysteine, or their

catabolic products, such as polyamines, can serve both pathogenic

and probiotic roles. In pathogenic bacteria, polyamines and homo-

cysteine are involved in biofilm formation (Shah & Swiatlo, 2008;

Abraham, 2006), with polyamines also being implicated in bacterio-

cin production and protection from acid and oxidative stress (Shah &

Swiatlo, 2008). The probiotic role of lactobacilli has been well

documented (Ryan et al., 2008); their antimicrobial activity results

from the production of bacteriocins and antifungal peptides (De

Vuyst & Leroy, 2007). Further work will be required to determine

whether the fold similarities observed between the Bacillus protein

families described in this paper translate into similarities in function

and whether this function might involve a probiotic role.

The availability of more DUF1831 sequences and structures might

shed light on the evolutionary history of this intriguing protein family.
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Figure 3
Sequence alignment of LP2179 and members of the YugN-like family. UniProt abbreviations are as follows: Q88V95_LACPL, gene locus lp_2179 from L. plantarum;
Q5WFD8_BACSK, gene locus ABC2387 from B. clausii; Q5L106_GEOKA, gene locus GK1089 from G. kaustophilus. Residues are shaded by identity (black) and similarity
(gray).



The information presented here, in combination with further

biochemical and biophysical studies, should yield valuable in-

sights into the functional role of LP2179. Models for LP2179

homologs can be accessed at http://www1.jcsg.org/cgi-bin/models/

get_mor.pl?key=2iayA.

Additional information about the protein described in this study is

available from TOPSAN (Krishna et al., 2010) http://www.topsan.org/

explore?PDBid=2iay.

4. Conclusions

The first structural representative of the DUF1831 family reveals a

potential new fold with remote similarities to TBP-like structures.

This similarity, in combination with genomic context analysis, leads us

to propose an involvement in amino-acid metabolism that might also

be extended to two other families of unknown function.
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