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Abstract

Lysophosphatidic acid (LPA) is a pleiotropic phospholipid present in the blood and certain tissues at high concentrations; its
diverse effects are mediated through differential, tissue specific expression of LPA receptors. Our goal was to determine if
LPA exerts lineage-specific effects during normal human hematopoiesis. In vitro stimulation of CD34+ human
hematopoietic progenitors by LPA induced myeloid differentiation but had no effect on lymphoid differentiation. LPA
receptors were expressed at significantly higher levels on Common Myeloid Progenitors (CMP) than either multipotent
Hematopoietic Stem/Progenitor Cells (HSPC) or Common Lymphoid Progenitors (CLP) suggesting that LPA acts on
committed myeloid progenitors. Functional studies demonstrated that LPA enhanced migration, induced cell proliferation
and reduced apoptosis of isolated CMP, but had no effect on either HSPC or CLP. Analysis of adult and fetal human bone
marrow sections showed that PPAP2A, (the enzyme which degrades LPA) was highly expressed in the osteoblastic niche but
not in the perivascular regions, whereas Autotaxin (the enzyme that synthesizes LPA) was expressed in perivascular regions
of the marrow. We propose that a gradient of LPA with the highest levels in peri-sinusoidal regions and lowest near the
endosteal zone, regulates the localization, proliferation and differentiation of myeloid progenitors within the bone marrow
marrow.
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Introduction

Lysophosphatidic acid (LPA) is a phospholipid that mediates a

myriad of biological actions, including cell proliferation, migra-

tion, and survival. LPA species are detectable in biological samples

such as plasma and saliva and are secreted by activated platelets as

a major growth factor in serum [1]. Albumin binds LPA and

protects it from degradation [2]; thus high levels of LPA in serum

create a challenge when testing the effect of LPA on hematopoiesis

using either in vitro or in vivo assays. Autotaxin (ATX) is the key

LPA producing enzyme in plasma and eukaryotic tissues,

mediating removal of choline from lysophosphatidylcholine [3].

Cell membrane lipid phosphate phosphatases (PPAP), most

importantly PPAP2A, attenuate the activity of LPA by dephos-

phorylation [4]. The pleiotropic effects described for LPA are in

part due to differential expression patterns of LPA receptors

(LPAR1-LPAR6) within different tissues [5].

Several studies have demonstrated a role for sphingosine-1

phosphate (S1P), a lipid structurally related to LPA, in increasing

engraftment by augmenting signaling through CXCR4 in

response to stromal derived growth factor-1 (SDF-1) [6]. However,

little is known about the role of LPA signaling during hematopoi-

etic differentiation. A recent study demonstrated LPAR3 is

essential for the induction of erythropoiesis [7], and another

showed that LPA enhances migration of murine lin-sca-1+ckit+
cells, a population that includes hematopoietic stem cells and early

progenitors [8]. Our goal was to investigate the role of LPA during

lineage commitment of human hematopoietic progenitors.

Materials and Methods

Isolation of Human Progenitor Populations
Umbilical cord blood (CB) was collected from normal deliveries,

according to guidelines approved by the University of California

Los Angeles Investigational Review Board. Enrichment of CD34+
cells was performed using the magnetic-activated cell sorting

system (Miltenyi Biotec, Auburn, CA). For fluorescence-activated

cell-sorting (FACS) sorting, CD34+ enriched cells were incubated

with the following anti-human–specific monoclonal antibodies:

CD34 PerCP-Cy5.5, CD38 PE-Cy7, CD123 (interleukin-3

receptor alpha) PE, CD45RA PE-Cy5, FITC-labeled lineage-
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specific antibodies: CD2, CD3, CD4, CD8, CD7, CD10, CD11b,

CD14, CD19, CD56, and glycophorin A (Gly A); all from Becton

Dickinson, San Jose, CA). An unstained (no antibody) control was

used to define negative gates. The following, previously published

immunophenotypic definitions were used to isolate myeloid

progenitors from thawed CB CD34+ enriched cells by FACS:

CD34+CD38-lin-CD45RA-CD123lo (CMP) [9],

CD34+CD10+lin- CLP [10] and CD34+CD38-lin- hematopoietic

stem/progenitor cells (HSPC) [11]. Sorting was performed on a

FACSAria (Becton Dickinson) equipped with five lasers (355, 405,

488, 561, and 633 nm). Isolated populations were analyzed by

FACS to assess post sort purity. For all FACS sorted populations

, 95–99% purity was achieved based on re-analysis.

Hematopoietic Cultures
Cocultivation on the murine stromal line OP9 [12]was used

to test for B lymphoid and myeloid differentiation. Freshly

sorted CD34+ cord blood cells (500–1500 cells) were seeded

onto established non-irradiated OP9 stromal cells (American

Type Culture Collection, Manassas, VA) in 96-well or 48-well

flat-bottomed plates. Cells were grown in a modified medium

(DMEM/F12, Invitrogen, Carlsbad, CA) supplemented with 5%

fetal bovine serum (Invitrogen, Carlsbad, CA) treated with

charcoal to remove LPA, 50 mM 2-mercaptoethanol (Sigma-

Aldrich), penicillin/streptomycin (Gemini Bio Products, Calaba-

sas, CA), IL-7 (5 ng/mL, R&D Systems, Minneapolis, MN),

Flt3 ligand (FL, 5 ng/mL, R&D), and thrombopoietin (TPO,

5 ng/mL, R&D). This cytokine combination is permissive for

both lymphoid (B-cells) and myeloid (monocytic, granulocytic

and megakaryocytic) lineages. Every 3 days thereafter, half the

medium was replaced with fresh medium. Lysophosphatidic acid

18:1 Oleoyl-LPA (Tocris Bioscience, MA) was reconstituted in

70% ethanol and added to the fresh culture medium at final

concentrations 0.1, 1 or 10 uM initially to determine optimal

dose response. All subsequent experiments used a concentration

of 1 mM LPA. Cells were cultured for 4 weeks followed by

harvesting, immunostaning with fluorochrome labeled antibodies

and immunophenotypic analysis of cultured cells. Sphingosine-1-

Phosphate and Ki-16425 were purchased from Tocris Biosci-

ence and reconstituted in 4% fatty acid free albumin (Sigma

Aldrich, St Louis, MO) solution in phosphate buffered saline or

70% ethanol respectively following the manufacturer’s instruc-

tions.

Immunophenotypic Analysis of Cultured Cells
FACS analysis of cultured cells was performed on an LSR II

instrument (Becton Dickinson) by direct immunofluorescence

staining with human specific monoclonal antibodies after incuba-

tion in 1.2% human intravenous immunoglobulin (IVIG; Cutter,

Berkley, CA). Lineage-specific differentiation was determined

using the following antibodies: CD45-APC Cy7, CD34-PE Cy7,

CD41a-PE Cy5, CD66b-PE, GlyA-APC or -PE, CD19-PE, APC

or Percp-Cy5.5, and CD14 PE or FITC (all from Becton

Dickinson). The following immunophenotypes were used to

identify terminally differentiated lymphoid and myeloid cells from

culture: monocytes (CD14+CD45+), granulocytes

(CD66b+CD45+), megakaryocytes (CD41a+CD45-GLYA-) and

B-cells (CD19+CD45+) (Fig. 1A). For long term (4 week) culture

experiments, the total number of cells per well in each condition

was determined by trypan blue microscopy, and the number of

differentiated cells was calculated based on % of each lineage

phenotype by FACS multiplied to a total cell number in each well.

Cell Migration Experiments
Migration assays were carried out in 24 well Transwell plates

from Costar with 6.5 mm diameter and 8.0 mm pore size. Freshly

sorted CMP, CLP or HSPC (1,000 cells each) were seeded into the

upper chamber in DMEM/F12 supplemented with 5% charcoal

treated serum with no growth factors in the presence or absence of

LPA (1 uM) in the lower chamber. Migration was assessed based

on the number of total cells on the bottom of the lower chamber

after 12 hours, determined separately for each cell type using

bright field microscopy. Independent experiments were carried

out using progenitor populations isolated from 3 different donors.

Cell Proliferation and Apoptosis Analyses
Freshly sorted CMP, CMP or HSPC were seeded into 48 well

plates (5,000 cells per well) on OP9 cells, with DMEM/

supplemented with 5% charcoal treated serum, with no growth

factors in the presence or absence of LPA (1 uM) and cultured for

48 hours without medium change to measure the effect of LPA on

proliferation and apoptosis. Prior to harvesting, cells were

incubated with bromodeoxyuridine (BrdU) (10 uM) for 30

minutes. Harvested cells were fixed, permeabilized, and stained

with FITC or APC conjugated antibody against BrdU. Unstained

cells were used to set negative gates. Apoptosis rates in progenitor

populations wasere assessed using FACS-based Annexin V assay

(BD Bioscience). Equal numbers (3000 of CD45 gated hemato-

poietic cells recovered from culture) of each population was

analyzed for BrdU incorporation or Annexin V binding using

FACS analysis.

Immunocytochemistry
Specimens of adult sponge bone (3 individual specimens) were

provided by the UCLA Translation Pathology Core Laboratory.

All specimens were from patients with no hematopoietic disorders.

Fetal bones (16–18 weeks of pregnancy) were obtained from

Novogenix (Los Angeles, CA) fixed in 4% paraformaldehyde

(Sigma-Aldrich, St. Lois, MO, in PBS). Fixed tissues were

embedded in paraffin, sectioned and subjected to histological

immunohistochemical analyses. The murine stromal cell lines

MS5 and OP9 (American Type Culture Collection (ATCC,

Rockville, MD, USA) or primary human bone marrow derived

mesenchymal stromal cells (passage 2–3) (AllCells Inc, Emeryville

CA) were seeded into chamber slides (BD Bioscience) in DMEM/

F12 (Invitrogen) medium supplemented with 20% fetal bovine

serum. The next day, cells were fixed with 4% paraformaldehyde

and subjected immunohistochemical analysis. Polyclonal antibod-

ies against autotaxin, PPAP2a and CD146 were purchased from

Abcam Inc. (Cambridge, MA) Secondary horse radish peroxidase

(HRP) conjugated IMPRESS anti-rabbit and anti-mouse antibod-

ies and 3, 39-diaminobenzidine (DAB) substrate (Vector Labs)

were used for the visualization of positively labeled regions. Images

were acquired using the Zeiss Axiovision software version 4.8 Carl

Zeiss Microscope (Carl Zeiss, Germany) equipped with Apo-

Tome.2: Modules for Axio Imager.2 and Axio Observer with 40x

(1.3 numerical aperture (NA)) and 63x (1.4 NA) oil-immersion

objectives.

Quantitative Real-time PCR
Total RNA was extracted from cells (,5,000 sorted cells were

used for each population) using the RNeasy Micro Kit, and

converted to cDNA using the Omniscript RT Kit (kits were from

Qiagen Sciences, Maryland, USA). Total RNA concentration for

all samples was within 5–20 ng/ml range as determined by
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Nanodrop analysis. No template amplification was carried out

prior to cDNA synthesis.

Next, SYBR Green RT-PCR amplification and detection was

performed using an ABI Prism 7900 HT (Applied Biosystems) as

previously described. The comparative Ct method for relative

quantification (22DDCt) was used to quantitate gene expression

according to Applied Biosystems’ recommendations [7900 HT

Real-Time fast and SDS enterprise and database user guide]. Expression of

target genes was normalized to the level of the house-keeping gene

RPL-7 and expressed relative to a calibrator (sample in each set

with lowest expression). All primer sequences were obtained from

Harvard University Primer Bank (http://pga.mgh.harvard.edu/

primerbank) Primer sequences used for QPCR are available on

request.

Results

LPA Stimulates Myeloid Differentiation
To dissect the role of LPA on human hematopoiesis we

began by analyzing how LPA affects differentiation of un-

fractionated CD34+ progenitors, a heterogeneous population

that includes hematopoietic stem cells and multi-lineage

progenitors (HSPC), as well as myeloid and lymphoid-commit-

ted progenitors. CD34+ cells were co-cultured on a stromal

monolayer in medium containing 5% LPA-depleted serum [13],

with or without addition of exogenous LPA and in the presence

of thrombopoietin, Flt3 Ligand and IL-7, cytokines that allow

generation of both myeloid and B lymphoid cells (Fig. 1A, 2A).

To determine the optimal stromal layer for these experiments,

we analysed expression of ATX, the enzyme which mediates

synthesis of LPA, in 3 stromal cell types commonly used for

hematopoietic cell support in vitro: OP9 [12], MS5 stroma [14]

and primary bone marrow derived mesenchymal stromal cells

(BM MSC). OP9 demonstrated very low levels of ATX

suggesting that this line has minimal production of endogenous

LPA in culture (Fig. 1B). In contrast to OP9, both MS5 and

primary BM MSC showed readily detectable levels of ATX

protein expression (Fig. 1B). Based on the pattern of ATX

production in the tested stromal lines we used OP9 cells for all

our co-culture experiments. We next tested the effect of

different LPA concentrations (0.1, 1 and 10 uM) on lineage

differentiation from CD34+ cord blood cells. Generation of

CD14+ monocytes was significantly enhanced in the presence of

1 and 10 mM of LPA while 0.1 uM of LPA had little or no

effect (Fig. 2A). LPA was thus used at a concentration of 1 uM

for further detailed experimentation.

The addition of LPA in culture generated significantly more

myeloid cells (CD66b+ granulocytes and CD14+ monocytes)

and CD41a+ megakaryocytes from CD34+ cells compared to

controls (otherwise identical culture conditions without LPA

added). In contrast B lymphocyte output was not altered by the

presence of LPA, and the number of CD34+ progenitors

Figure 1. In vitro system for differentiation of hematopoietic cells. A. In vitro differentiation of un-fractionated CD34+ progenitors co-
cultured on a stromal monolayer in medium containing 5% LPA-depleted serum in the presence of thrombopoietin, Flt3 Ligand and IL-7, cytokines
that allow generation of both myeloid (CD45+CD14+ monocytes, CD45+CD66b granulocytes and CD45negCD41a+ megakaryocytes) and B lymphoid
cells: CD45+CD10+ CD19neg or CD45+CD10+CD19+. Control panel represents unstained cells. B. Autotaxin protein expression in commonly used
stromal lines: MS5, OP9 and human bone marrow-derived mesenchymal stromal cells. Positive signal is shown in brown color (DAB). Magnification
20X. Images were acquired using the Zeiss Axiovision software version 4.8 Carl Zeiss Microscope (Carl Zeiss, Germany).
doi:10.1371/journal.pone.0063718.g001
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persisting after 4 weeks was not significantly changed (Fig. 2B).

LPA induced similar effects on CD34+ cells isolated from

human bone marrow to those from cord blood (not shown).

These data suggest that LPA has a selective and significant

effect on myeloid differentiation.

We next explored the specificity of observed stimulatory effects

of LPA on differentiation of CD34+ hematopoietic progenitors.

Addition of the sphingosine-1-phosphate, a lipid molecule

structurally similar to LPA, did not show any significant pro-

myelopoietic effects (Fig. 2C). LPA receptor antagonist Ki-16425

almost completely abolished stimulatory effects of LPA on CD34+
cell differentiation further confirming specificity of the LPA

mediated stimulation of myelopoiesis (Fig. 2C).

To further understand the mechanisms by which LPA induced

myeloid differentiation, we explored LPA receptor expression on

specific hematopoietic stem and progenitor populations. Real time

RT-PCR was performed on freshly isolated CD34+CD38-lin- cells

(enriched for HSPC), CD34+lin-CD45RA-IL3Ralo common

myeloid progenitors (CMP), and CD34+lin-CD10+ common

lymphoid progenitors (CLP) (a population with predominantly B

cell potential [15] (Fig. 3A). Expression of all six LPA receptors

was higher in CMP than either HSPC or CLP (p,0.05 for LPAR

1,2,4 and 6).

LPA Stimulates the Migration, Proliferation and Survival
of Myeloid but not Lymphoid Progenitors
Functional studies were next performed to define the effects

of LPA stimulation on lineage-specific progenitors. In a

transwell migration assay, LPA selectively stimulated the

migratory potential of CMP but had no detectable effect on

either HSPC or lymphoid progenitors (Fig. 3B). Cell prolifer-

ation after 48 hours of LPA stimulation (measured by BrdU

uptake) was significantly increased in CMP but not HSPC or

CLP (Fig. 3C). In addition, LPA reduced apoptosis of CMP but

had no effect on either HSPC or CLP (Fig. 3D). Of note, all

migration assays were performed in stroma-free conditions and

therefore represented direct effects of LPA on hematopoietic

progenitors.

ATX and PPAP2A are Differentially Expressed in Human
Bone Marrow
Published data suggest that the hematopoietic niche is spatially

organized between the endosteal region and the sinusoidal

perivascular zones [16,17,18]. As myeloid and lymphoid commit-

ment from HSPC is regulated in large part by differential signals

emanating from the microenvironment, it is plausible that these

lineages develop in spatially distinct compartments within the bone

marrow. Indeed, some studies have indicated that myeloid cells

accumulate in perisinusoidal regions before they enter systemic

circulation [16,18], and others that pre-B cells migrate and

accumulate in close proximity to osteoblasts [17], The mechanisms

controlling this separation of lymphoid and myeloid cells in the

bone marrow niche are not known.

In view of our findings that LPA induces migration and growth

specifically of myeloid progenitors, we hypothesized that LPA

might play a role in the compartmentalization of the bone marrow

niche. As LPA levels cannot be assayed in situ directly, we studied

the expression and the spatial localization within adult bone

marrow of ATX and PPAP2A, the enzymes responsible for

synthesis and degradation of LPA respectively.

In adult bone marrow, PPAP2A was highly expressed by

osteoblasts throughout the endosteal zone (Fig. 4A–h). PPAP2A

was largely absent in the perivascular region (Fig. 4A–g) with the

exception of vessels near the endosteal zone where perivascular

cells form ‘‘stromal bridges’’ with osteoblasts (Fig. 4A–h). Little or

no ATX expression was found in the osteoblastic region of adult

human bone marrow (Fig. 4A–j). However, ATX was highly

expressed by CD146+ perivascular stromal cells of blood vessels

(Fig. 4A–i).

To investigate whether the spatial distribution of LPA-

generating and -metabolising enzymes was age specific and/or

related to bone marrow involution and fat deposition associated

with aging, ATX and PPAP2A expression was analysed in human

fetal (16–18 week old) bone marrow (Fig. 4B). Consistent with the

pattern observed in adult bone marrow, high levels of PPAP2A

and no/little ATX expression were seen in the endosteal region

(Fig. 4B–h,j), whereas ATX expression was clearly present in

Figure 2. LPA stimulates generation of myelopoietic lineages from cord blood CD34+ progenitor cells. A. Dose response of CD34+ cord
blood FACS sorted cells to increasing concentration (0.1, 1, 10 uM of LPA). Detection of CD14+ monocytes was used as readout of activity. Mean 6
standard deviation (SD), Mean 3 *p,0.05 compared to control cells. B. LPA stimulated generation of myeloid (monocytes, granulocytes and
megakaryocytes), but not lymphoid (B-cell) differentiation from CD34+ cells. Freshly sorted CB CD34+ cells were cultured on OP9 stroma for 4 weeks
in medium supplemented with 5% LPA-depleted (charcoal treated) serum and growth factor combinations permissive for both myeloid and
lymphoid differentiation in the absence (CON= control) or presence of LPA (1 uM). The total number of cells per well in each condition was
determined by counting in hematocytometer, and the number of cells of each immunophenotype (shown on the y-axis) was calculated based on %
of each lineage phenotype by FACS multiplied to total cell number in each well. Shown is Mean 6 standard deviation (SD), N = 4 independent
experiments, *p,0.05. C. Stimulatory effects of LPA on myelopoiesis can be ablated using LPA receptor antagonist Ki16425. Myelopoietic
differentiation of CD34+ cord blood cells was assessed by the generation of CD14+CD45+ monocytes at 7 days of culture. Concentration of tested
compounds: LPA and S1P –1 uM, Ki16425–5 uM. Cord blood samples from 4 donors were analyzed independently and results shown as Mean 6 SD.
** P,0.01, * P,0.05. CON=Control.
doi:10.1371/journal.pone.0063718.g002
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perivascular regions of blood vessels (Fig. 4B–i). Thus spatial

distribution of ATX and PPAP2A during fetal hematopoiesis is

similar to that seen in adult.

Discussion

Although numerous studies have investigated the hematopoietic

stem cell niche, relatively few have been specifically focused on the

localisation of more mature hematopoietic cells within the bone

marrow. Injection of radiolabelled pre-B cells to mice with severe

combined immunodeficiency lacking lymphoid cells demonstrated

that most of the injected cells migrated into the bone marrow and

homed near osteoblasts [17] selectively occupying microenviron-

ments near the surrounding bone. In contrast, myeloid cells have

been described as concentrated in close proximity to sinusoids

[16]. Moreover megakaryocytes can invaginate into the luminal

space of sinusoids where they give rise to terminally differentiated

platelets migrating directly into the circulating blood [18]. The

exact mechanisms regulating hematopoietic cell compartmental-

isation in the bone marrow niche are not clear. It is plausible to

predict that regulatory gradients are needed to separate different

hematopoietic lineages in the bone marrow and also provide

migration signals for differentiated blood cells prepared to enter

systemic blood circulation. The spatial expression of ATX and

PPAP2A suggests that the highest levels of LPA in this system will

appear in the close proximity to the small blood vessels where LPA

molecules diffuse directly from blood plasma. High levels of LPA

would also be predicted in perivascular regions near larger

microvessels (20–100 mkm in diameter) where ATX is expressed.

In close proximity to osteoblasts, especially those located remotely

from microvessels, levels of LPA would be expected to be minimal

due to the high PPAP2A activity and minimal expression of ATX.

S1P, another member of the lysophospholipid family, has

previously been demonstrated to play a role in both HSPC and

lymphoid compartmentalization [8]; high levels of S1P in

peripheral blood compared with the bone marrow tissue create

a gradient that promotes migration of B-cell progenitors from the

bone marrow to secondary lymphoid organs [19]. Disruption of

this gradient abrogates HSPC mobilization following AMD3100

treatment thus proposing a critical role for bioactive lipid gradients

Figure 3. Myeloid progenitors are functional targets of LPA. A. LPA receptor mRNA expression in hematopoietic stem-progenitor cells
(HSPC), common lymphoid (CLP) and myeloid progenitors (CMP) by qPCR. N= 4 independent experiments; *p,0.05. B. Migration in TranswellH
experiments in the presence or absence of 18:1 Oleoyl-LPA, 12 hours after seeding of HSPC, CMP or CLP. C. Proliferation of each cell type shown
measured by 48 hour BrdU uptake. Y axis shows % of BrdU positive cells) D. Apoptosis of each cell type measured by the Annexin V assay (Y axis-
shows the % of Annexin V positive cells). Mean 6 SD; N= 3 independent experiments; *p,0.05.
doi:10.1371/journal.pone.0063718.g003
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in hematopoietic cell migration [20]. The data presented here,

identify LPA as a regulator of migration, growth and survival of

myeloid progenitors. We propose that LPA provides a novel

mechanism through which anatomical partitioning of the bone

marrow microenvironment creates spatial regulation of myeloid

differentiation during hematopoiesis.
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