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ABSTRACf 

A real-space method is presented for calculating effective pair interactions (EPI) 

in substitutionally disordered alloys, starting from electronic structure information for the con­

stituting elements. The EPI are obtained by averaging over a small number of randomly gen­

erated configurations. The electronic structure is calculated by tridiagonalizing a tight-binding 

(TB) Hamiltonian using the recursion method. Convergence, both as a function of the number 

of configurations and the number of recursion levels, is rapid and the results compare very 

well with other calculations. The advantage of the present scheme is that deviations from lat­

tice periodicity can be taken into account in a completely straightforward way. The EPI are 

essential ingredients in statistical methods for determining alloy phase diagrams. 

PACS Nos. : 71.10.+x, 64.60.Cn, 81.30.Bx 
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L Introduction. 

The electronic structure is the driving force behind a large variety of physical and 

chemical properties of solids1• The phase formation and stability of substitutionally disor­

dered solid solutions are examples of such properties and it is their determination which is the 

object of the present work2• The most successful statistical models depend on the availability 

of reliable approximate expressions for the configurational energy and entropy. These are 

most conveniently formulated in terms of effective pair (and, if necessary, larger cluster) 

interactions. Such interactions can in principle be measured experimentally through diffuse 

intensities in neutron and X-ray scattering3• Several phenomenological approaches have been 

proposed in the past as well4• However, in keeping with a general trend in recent years, the 

possibility of a first-principles calculation of EPI has received increasing attention by various 

groups. Several schemes have been developed and investigated. One possibility is to start 

from density-functional total-energy calculations for the perfectly ordered compounds5.o. 

Alternatively, one can perturb the completely disordered alloy in several ways : by imposing a 

concentration wave7, by means of the generalized perturbation method8 or using embedded 

clusters9•10• All of these methods have closely related free energy expansions11 • The elec­

tronic structure of the disordered compound is most frequently determined within the coherent 

potential approximation (CPA) 12• The CPA is a mean-field theory for the completely random 

alloy and has been shown to be optimal within the single-site approximation. It has been 

applied very successfully to a wide variety of disordered metallic alloys. However, attempts 

to go beyond the single-site approximation suffer from severe analyticity problems. Thus the 

inclusion of shon- or long-range order in the CPA framework is by no means straightforward. 

In the CPA an effective medium is constructed through a self-consistency require­

ment on the scattering operators and the electronic properties are calculated, either by tight­

binding or multiple scattering (KKR) techniques. More generally, any alloy electronic struc­

ture calculation involves these two steps : 'averaging' and band structure determination. In 
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the present work, it is proposed to interchange these steps. That is, one first determines the 

electronic structure for a randomly generated configuration (the only constraint being a fixed 

concentration) and the resulting physical quantities are averaged over a sufficiently large 

number of independent configurations. This procedure can be implemented very efficiently 

using the recursion method13 applied to a tight-binding Hamiltonian as will be discussed 

below. Certainly the idea of configurational averaging is not new14 and everything depends 

on the rate of convergence with respect to the number of configurations needed. Earlier work 

focused mostly on densities of states (DOS), for which it was concluded that it was necessary 

to perform an exact average over the first shell of neighbors in the fcc lattice15• Since this 

involved 144 inequivalent configurations, the method was very time consuming and has not 

been widely used, although the agreement with the CPA was satisfactory as well as the exten­

sion to partially ordered systems16• Moreover, for the bee lattice the scheme could become 

intractable, since it is very likely that exact averages would need to be performed over the 

first and second shell, because the bee structure does not contain any triangles entirely 

confined to nearest neighbors in the the first shell. 

It will be shown in this work that it is not necessary to enumerate all possible 

occupancies of the first shell to obtain accurate EPI, but that a rather small number of 

configurations, say 10, is sufficient. The reason for this faster convergence, compared to 

DOS, is that the EPI are essentially integrated quantities, i.e. total energy differences of 

different pairs in the alloy, and therefore they are less sensitive to local perturbations that con­

seiVe the total number of electrons. An attractive feature of the recursion method is that it is 

not necessary to calculate individual cohesive energies for the different pairs, which would 

lead to a large subtractive cancellation of terms. Rather, it is possible to compute these quan­

tities directly in the recursion formalism and in this way avoid numerical instabilities. 

The feasibility of this new approach has already been illustrated in a previous 

short paper17 for canonical tight-binding parameters and d-bands only. In the present work 
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the underlying formalism is worked out in more detail and the treatment is extended to 

include s- and p-orbitals. In a first group of calculations arbitrary, but realistic, tight-binding 

parameters were selected for an alloy AcBt-i: in which the number of d-electrons N A (NB) was 

equal to 3 (8). These values will henceforth be called 'canonical', a term which should not be 

confused with that used in the context of calculations involving d-bands only17• In a second 

group of calculations first-principles parameters appropriate for the binary system RhcTi1-(; 

were used. The remainder of this paper is organized as follows. Section II sets out the back­

ground and theoretical aspects of the present approach and discusses some numerical details. 

Section ill is devoted to a discussion of the results for the canonical 3-8 system and the 

binary alloy RhcTi1-(;. EPI obtained by the present method are presented and the convergence 

as a function of the number of levels and the number of configurations is analyzed. As a first 

step towards a phase diagram calculation, heats of mixing for the different. phases in Rhc Ti1-(; 

are computed. The paper concludes with a summary and some comments in Sec. IV. 

II. Formalism. 

A given configuration a of the binary system can be described by the following 

tight-binding Hamiltonian : 

H (a) = LIn ,A>e:<n ,A. I + L In ,A>I3~<m ,J.ll, (2.1) 
n.A. n~) ... ~ 

where n and m are lattice sites and A. and J.1 label the orbitals (A., J.1 = 1, ... , 9 for s-, p- and d­

orbitals). The on-site energies e: depend, strictly speaking, on the local environment in the 

disordered system, but one often makes the approximation to replace them by 'atomic' values 

e; ore: depending on whether site n is occupied by an A or a B atom (diagonal disorder). It 

will be seen, however, that such a simplification would lead to unphysical resultst in the 

present case. The hopping parameters 13~ are likewise restricted to three values I3AA, ~88 or 

I3AB . In the Slater-Koster18 parametrization scheme these are related to the three- and two­

center integrals for the pure elements. Off-diagonal disorder is usually taken into account by 
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geometrically averaging the pure element hopping parameters19 : 

(2.2) 

Several methods are available for obtaining tight-binding parameters for the pure elements. 

Canonical values (for d-bands only) have been used quite successfully to predict ordering ten­

dencies and lead in some cases to remarkable agreement with experiment20.21. A semi­

phenomenological set of parameters has been tabulated by Harrison22. Closer to a first­

principles determination are the values obtained by Papaconstantopoulos23 by a least squares 

fit to LAPW band structures. Potentially the most accurate first-principles results are those 

given directly by the TB-LMTO method of Andersen and co-workers24• In the first part of 

the present work, 'canonical' s-, p- and d-parameters appropriate for a 3-8 system are used, 

while in the second part the binary alloy RhcTi1-c was investigated with the parameters calcu­

lated by Papaconstantopoulos22• The latter system was studied previously using canonical d-

. band parameters2t. 

The recursion method13 provides an algorithm for calculating diagonal matrix ele~ 

ments of the resolvent or Green's function, associated with the Hamiltonian (2.1) and defined 

as 

G(z) = (z - H)-1. (2.3) 

Given a starting state I u0 > one generates a discrete chain of vectors I ui >, which can be con­

structed to be orthonormal, through the following set of operations : 

(2.4a) 

(2.4b) 

(2.4c) 

This prescription essentially transforms the Hamiltonian into (Hermitian) tridiagonal form and 
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thus leads directly to a continued fraction representation for the Green's function matrix ele­

ment <u0 I G I u0 >. If the algorithm is stopped after L steps, L exact levels of the continued 

fraction are obtained. This computational scheme is also closely related to the theory of 

onhogonal polynomials, a fact that can be exploited in the development of stable and efficient 

computer codes25• One of the attractive features of the recursion method is the fact that it 

allows for a direct physical interpretation, apart from its formal mathematical elegance. 

Indeed, it is clear from equations (2.4) that the matrix element after L levels contains the 

exact contributions from all closed paths of L steps starting and ending at the central orbital. 

Thus if one tries to model an infinitely extended system, the recursion algorithm after L steps 

contains contributions only from a central cluster consisting of 0 (L 3) atoms. For numerical 

purposes, this limits the number of atoms that can be modeled and also implies that one is 

always studying a finite system. In order to reduce the necessary amount of computer storage, 

it is possible to decouple the number of levels and the number of atoms in the cluster, a point 

that will be pursued in the next section. In either case, a terminatirrg continued fraction is 

obtained, which yields a number of isolated bound states, appropriate for a finite cluster. For 

most purposes this is an unphysical approximation to the problem under investigation and 

some way needs to be found to eliminate finite size effects by embedding the cluster in an 

infinite medium. Mathematically, this means that a terminator must be appended to the con­

tinued fraction expansion, so as to obtain a Green's function with a branch cut, rather than a 

set of simple poles. The problem of finding a terminator that gives an optimal description of 

the surrounding medium has been studied in many papers (Ref. 26 and references therein) and 

several prescriptions are available. It has been established in our previous paper17 that the 

EPI (for transition metal alloys) are not very sensitive to the exact nature of the terminator 

and therefore the simple quadratic terminator can be used with confidence. This amounts to 

putting all ai, bi with i > L equal to aL, bL, and approximates the density of states of the 

embedding medium with a semi-elliptical band. 

Although most applications of the recursion method involve the determination of 
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the (local) density of states, any observable that can be related to the Green's function (2.3) 

can be calculated recursively27• In particular, the present work is aimed at the calculation of 

effective pair (and cluster) interactions in disordered alloys, quantities that are the main 

ingredients in statistical techniques such as the cluster variation and Monte Carlo method. In 

these treatments, averages are taken involving the density function p( cr), which gives the pro­

bability of finding a specific configuration cr in an ensemble of systems. This function is 

given by: 

(2.5) 

where Z is the partition function : 

(2.6) 

and the trace operator Tr(N) denotes a sum over all configurations of a system with N sites. 

In the work of Sanchez et af28 it has been shown that the state of order of an alloy can be 

expressed in terms of a complete set of orthogonal functions involving various clusters, used 

to approximate the configurational entropy. The function relative to cluster a is defined as : 

(2.7) 

where the cri are pseudo-spin variables(+ 1 if site i is occupied by an A atom, -1 otherwise). 

Any function of the alloy configurations can be expanded in terms of these functions; in par­

ticular the density function (2.5) can be written as : 

p(cr) = z-N [1 + .'.E<I>a(cr)~aJ (2.8) 
(l 

where 

(2.9) 

is one of a hierarchy of linearly independent correlation functions. The internal energy of the 
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alloy system can be written as a functional of the density : 

E [p] = Tr <N>p( cr)E ( cr), (2.10) 

or, after substitution of (2.8) : 

(2.11) 

where 

(2.12) 

is configuration independent, and 

(2.13) 

are the effective cluster interactions. For a pair of atoms, one at site p and one at site q, the 

trace in (2.13) can be broken up into two parts, one over the points p and q, and one over the 

remainder of the configuration, which leads to the final expression : 

(2.14) 

where Vu is the total energy of a pair I (at site p ), J (at site q) embedded in the average 

medium at a given concentration, or explicitly : 

(2.15) 

where E (I ..J ;cr') is the energy of a configuration cr consisting of atom I (J) at site p (q ), 

with the remaining sites denoted by cr'. It is known that the Vu are generally long-ranged 

and cannot be expressed in terms of pair potentials. In a similar fashion one can define triplet 

and higher order interactions, for example : 

1 -
Epqr = g(V AAA - 3V AAB + 3V ABB - Vs88 ), (2.16) 
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in an obvious notation and assuming that all sites are equivalent. Typically these ordering 

energies converge quickly as a function of cluster size and interatomic distance, but the 

expressions (2.14) and (2.16) are not very useful for computer calculations, since one needs 

the difference of nearly equal large numbers. However, it turns out that the 'orbital peeling 

trick' developed by Burke29, following the work of Einstein and Schrieffex-3°, permits a direct 

calculation of the EPI, as will now be shown. 

The total energy of a solid consists of two terms, a one-electron band structure 

contribution Vbs and an electrostatic term Ves, which includes the double counting correction 

and the ionic repulsion. It is usually assumed that upon taking differences like in (2.14) the 

electrostatic contributions cancel out and one is left with solely the one-electron band structure 

term31 . Thus, what is needed to calculate the EPI is an average over all configurations cr, 

with fixed occupancy of sites p and q, of the one electron band structure term : 

E, 

V (cr) = fEn (E ,cr)dE, (2.17) --
where n (E ,cr) is the electronic DOS and Ep is the Fermi-level, assumed to be independent of 

the configuration cr, a point that will be addressed further in this section. 

At this point it is important to specify the choice of the basis set. Often in substi­

tutional impurity problems one assumes a unique set of orbitals at each site and thus the 

impurity is described using the same orbitals as the atom that was removed (Ref. 32 and 

references therein). This may be a bad approximation, in particular if the two atomic species 

that are involved are very dissimilar. However, the adspace-subspace description developed 

by Williams et aJ 33 and extended by Riedingex-34 avoids this shortcoming and provides a more 

general setting for this type of studies. In an EPI calculation two atoms need to be embedded 

and therefore a basis set n is defined as follows: 

(2.18) 
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where ro is the set of atomic orbitals describing the host (the recursion cluster except for the 

sites p and q ), AP, Aq, (Bp, B q) are sets of atomic orbitals for an A (B) atom at site p resp. 

q . In this formalism the Hamiltonian for an A atom at site p and a B atom at site q , for 

example, would be written in block form as: 

H~ 0 0 HAB HAo 
0 H- 0 0 0 A 

HAB = 0 0 H; 0 0 (2.19) 
HBA 0 0 HR HBo 
HoA 0 0 HoB Ho 

where H; and H.8 are the Hamiltonians for the isolated atoms, HX (Hj) are the Hamiltonians 

describing the A (B ) atom at site p (q ), Ho is the Hamiltonian for the host and the other 

matrices couple the different subsystems. This representation is overcomplete, but this intro­

duces no errors, since only one set of orbitals for each site is coupled to the host in each of 

the four cases needed in (2.14). The adspace-subspace description also eliminates the poten­

tial problems due to particle non-conservation : two atoms, namely those that are not coupled 

to the rest of the system, can be thought of as located at infinity. The physical system then 

consists of these two isolated atoms and the full recursion cluster. Thus the total number of 

atoms of each species is the same in all four cases in (2.14). 

The process involved in an EPI calculation is the interchange of two atoms. Pro­

vided that the Hamiltonian is self-consistent, this will produce a perturbation of the order liN 

on the Fermi-level, which is negligible for all practical purposes. The self-consistency pro­

cedure, which takes into account the charge transfer due to the perturbation, consists of a uni­

form shift of the diagonal elements of the Harniltonian35 : 

(2.20) 

where E:-0 is the atomic energy level, a: is the shift integral, N ,;>... is the total charge 

corresponding to orbital A. at site n and u,;>...,v ~ are the intra- and interatomic Coulomb 
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integrals. In the case of a disordered alloy studied here, one would a priori need to determine 

e~ for each atom. This is clearly an impossible task. The crudest approximation is to con­

sider only two different atomic levels eA and Ff1, independent of the atomic environment. As 

a first improvement on this scheme, one can allow for changes in the potential (e~) only for 

the atoms at the sites p and q . In these two cases Ho does not depend on the nature of the 

atoms at positions p and q . A further refinement of this approach would be to include some 

potential perturbations on the atomic sites surrounding the atoms at p and q. In fact, as will 

be seen in the next section, it turns out that taking e~ independent of the position n yields 

good results for the EPI, but is insufficient for the mixing energies. In the following, it will 

be assumed that the host Hamiltonian Ho is independent of the nature of the atoms at sites p 

and q. 

The electronic DOS is related to the Green's function through the equality 

nu(E) = _.l 1m Tr Gu = _.!. Im Tr (E- Hur1 

1t 1t 
(2.21) 

where Hu. is the Hamiltonian for the full system, of the form (2.19). It is well known that 

this can be written as 

1 a 
nu(E) =- lm -a In det (E - Hu ), 

1t E 
. (2.22) 

which will be the starting point for the numerical calculations. It is now obvious that the EPI 

can be written as : 

E, 

Epq = ! J dz z lm ! Tl(z) -
where Tl(Z) is the generalized phase shift given by : 

det GAA det G8s 
Tl(z) =In-----­

det GAB det GsA 

(2.23) 

(2.24) 
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The Friedel sum rule, which expresses the conservation of the total number of electrons, can 

be written quite generally as : 

EF 

J dz Im ..!!.... Tl(Z) = 0. _ dz (2.25) 

Now integrating by parts in (2.23) and using the Friedel rule one finally finds for the EPI : 

EF 

Epq =-
4
1 

/m J fl(z )dz. 
1t -

(2.26) 

It is obviously out of the question to calculate the full determinants in equation (2.22), since 

they are of the order Nxv, where N is the number of atoms in the cluster and v the number 

of orbitals per site. Since in the exchange of the atoms on sites p and q the perturbation is 

of finite range, the phase shift fl(Z) has a finite size, as can also be seen as follows. From the 

properties of a partitioned matrix it follows that29 : 

det(E- Hu) = det Gjj1 det (E- lfo), (2.27) 

where Gu is the 4vx4v top left block of the matrix (E - Hu )-1. Upon substitution of (2.27) 

in (2.24) one finds : 

det GAA det GBB 
Tl(z) = In 

det GAB det GsA 
(2.28) 

Thus it is not necessary to calculate the determinant of order (N - 4)v det (E - H0 ), which 

otherwise would lead to an unacceptable increase in computer time. 

All that remains is the calculation of the generalized phase shift (2.24) and this 

can be done very efficiently by means of the 'orbital peeling' scheme as will now be dis­

cussed. For short, denote by A any one of the four matrices (E - H11 ): 



A= 

a 12 · · · a l.M 1 a 1M ,- a22----- -- ---------
I 
I 
I 
I 

aM-1,1 1aM-1.2 

aMl : aM2 

,- - - - - - - - -- --
,aM-l.M-1 aM-l.M 
I aM .M-1 :- aMM-
I I 

13 

(2.29) 

with M = Nv and 'principal' submatrices A 1, · · · , AM have been indicated. For any 

1 ~ k ~ M one has, with Dk = det Ak: 

(2.30) 

where gk is the top left element of the inverse of Ak. From this it follows that : 

M 1 
fl~ = det A. 
k=l 

(2.31) 

Using these representations in (2.28) and keeping in mind that common factors cancel, one 

finds : 

4v gtAgf8 
ll(Z) = L In 

k=l gflgfA. 
(2.32) 

Each gf/ is the top left element of a partial Green's matrix, with the designated atom at sites 

p and q. It can be seen that only diagonal elements of the Green's function are needed, but 

that each g£1 must be calculated separately for each of the 4v cases : the 4v orbitals are 

'peeled off' one by one29 and this can be readily included in the recursion framework25 . In 

this method matrix elements gk are obtained, with every row and column of the Hamiltonian 

with an index i < k equal to zero. 

It is important to note that only 4 atoms need to be 'peeled'. Obviously a cancel­

lation of terms occurs from the matrices H; and HB' since these are diagonal and not coupled 

to the system. Thus for each pair (/ J ), one has two atoms to peel, but it is possible to show 

that because of the symmetry in the definition of the EPI, for each pair (/ .,./) only one atom 
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needs to be 'peeled'. To this end one defines G(X-Yii) as the term obtained by 'peeling' for 

a pair X ....,y the orbitals for the X atom on site i wh~re X and Y are A , B or a vacancy, 

det G AA det GBB 
denoted by V and i =1,2 referring to site p and q respectively. The term------­

det GAB det GBA 

in the phase shift can then be written symbolically as : 

G(A-Ail) + G(V-A/2) + G(B-B/1) + G(V-B/2) 

- G(A-B/1)- G(V-B/2)- G(B-A/1)- G(V-A/2) 

= G(A-A/1) + G(B-B/1)- G(B-A/1)- G(A-B/1) 

(2.33) 

Thus this quantity is computed by 'peeling' only on the atom at position 1 for each of the 

four possible configurations. 

The choice of the Fermi level and the description of the Hamiltonian used pose 

delicate questions in the case of a disordered alloy. One cannot simply assume that the on­

site energies depend only on the nature of the ato~s in the disordered alloy and use the tight-

binding parameters for the pure elements (ej, eX, e~-z. and e~', and likewise for the B atoms), 

since coupling A and B will introduce changes in these energies. In the present work a rigid 

shift 8 of the pure compound values for one species, say B , will be assumed. That is, the 

values of the on-site energies for the A -atoms will be left unchanged from those of the pure 

element, while the B -values are taken to be e8 + 8, eG + 8, e~-z. + 8, e;' + 8. Thus for a 

given concentration one ·has to determine this parameter 8 as well as the Fermi level Ep. 

Since a fully self-consistent calculation is not feasible for the disordered case, as discussed 

previously, these values have been calculated for the pure elements as well as the ordered 

structures (AB, A yB and AB 3) under the assumption of local charge neutrality. If, for a given 

structure, two or more atoms of a given type are present (like the two inequivalent B sites in 

the DO 3 structure with composition AB 3), an average is made. For other concentrations (in 

the disordered state) 8 and Ep are found by interpolating between the values for the pure 

compounds. In general, a linear variation of E F and 8 with concentration is obtained, compa-
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tible with. a Taylor's expansion truncated after the second term. 

For the calculation of EPI this scheme gives satisfactory results. Mixing energies, 

however, are differences of integrated quantities and it turns out that this approach needs to be 

refined. The mixing energy for the completely disordered state, for example, is given by : 

EF EF 

M:::S(c) = c< f EnA (E)dE> + (1 -c)< f En 8 (E)dE>- (1 - c )EA - c£8 , (2.34) 

where EA and £8 are the cohesive energies of the pure elements. The first two terms in this 

expression are computed by means of configurational averaging in a manner completely simi­

lar to the EPI. That is, the one-electron band structure term is calculated, with a given site 

first occupied by an A atom and then by a B atom. It turns out that a simple rigid shift of 

the on-site energies gives insufficient accuracy as far as mixing energies are concerned. A 

first improvement is to allow for a shift of the Fermi level on the central atom, so as to satisfy 

some property, for example, since charge transfer is small in metallic systems, one can impose 

local neutrality. This approach can be understood by the following argument : the small shift 

of the Fermi level arises because of the replacement of an atom30• In such a case no perturb­

ing potential exists to screen the electronic charge displaced because of the exchange of 

atoms. The shift in the Fermi level is small and can be considered within a perturbation 

framework. To first order it is equivalent to having an unknown perturbing potential on the 

site under consideration. Rather than introducing such an adjustable parameter, the Fermi 

level shift is calculated self-consistently in the present scheme. Finally, it must be pointed out 

that further improvements can be made by applying the perturbation method developed by 

Foulkes and HaydockZ7, but this is outside the scope of the present work. 

IlL Results. 

The formalism described in the previous section has been applied to calculate 

nearest neighbor and next nearest neighbor EPI' s in the fcc and bee lattice for two types of 
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transition metal alloy systems. In the first group of calculations, in which the configurational 

averaging method was tested for convergence and other general properties, 'canonical' s-, p­

and d-orbitals were considered for a fictitious 3-8 system. To this end arbitrary, but realistic, 

tight binding parameters were taken to represent a disordered AcB l-c alloy in which the 

number of d-electrons N A (N B ) was equal to 3 (8). As a consequence all results are 

expressed in canonical units (c. u.). Subsequently, the binary alloy RhcTi1-c, which is one 

example of such a system, was investigated using the tight-binding values tabulated by 

Papaconstantopoulos23• Off-diagonal disorder was treated by means of Shiba's prescription 

(2.2). Note, however, that this is an approximation that need not be made in a real-space 

method, provided that hopping parameters for the ordered compound AB are known. The 

configurational average < · · · >u was calculated by generating random configurations (at 

fixed concentration) and averaging the resulting EPI, a procedure that has been shown to con­

verge quickly17• 

In the remainder of this paper, EPI obtained by configurational averaging will be 

presented and their general propertie~ discussed. A unique 8 and Ep, function of the concen­

tration c, will be considered for the canonical 3-8 alloy. However, for the purpose of illustra­

tion the EPI will be plotted as a function of the position of the Fermi level. Strictly speaking, 

since a constant value of 8 has been used, the results are only valid at the exact Fermi level 

for the 3-8 alloy. It seems reasonable though to assume that the general trends in the EPI will 

be found in this way and this approach also provides a general check on the method. 

As noted before, the computing time grows very quickly as a function of the 

number of levels in the continued fraction. To illustrate this point, Fig. 1 shows results for 

the nearest neighbor EPI in the fcc structure with canonical 3-8 values and cA = 0.25. It can 

be seen that the necessary cpu time (plotted in arbitrary units) grows exponentially with 

increasing number of levels. This rapid growth puts a serious limit on the number of levels 

for which the recursion scheme is computationally tractable. Next, Fig. 2 shows the same 
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nearest neighbor EPI as a function of the number of configurations (N) and the number of lev­

els (L). It can be seen that the convergence as a function of N is very fast : the results for N 

= 10 and N = 20 are virtually identical. As a function of L, the asymptotic value seems to be 

approached quite closely for L = 7 or 8. These results are similar to those found before17 and 

exhibit the same trends. The uncertainty in the EPI after averaging over 10 configurations is 

approximately 1 % and improved accuracy can be obtained by increasing the number of lev­

els, rather than the number of configurations. It is interesting to note that the self-consistency 

parameters, i.e. the Fermi-level Ep and the on-site energy shift a.?; (which are functions of the 

number of levels), have a considerable influence on the EPI's. The solid curve is obtained by 

using seven recursion levels, but with the self-consistency parameters corresponding to eight. 

The resulting EPI (obtained by averaging over identical random configurations in all cases) 

deviates strongly from that obtained for 7 and 8 levels, with the appropriate E F and a.?;. 

Similar calculations were made for a bee alloy, taking into account interactions up to third 

neighbors. The results show that for an fcc alloy with first and second neighbor interactions, 

7 levels of the continued fraction are necessary, while for the bee alloy only 6 levels are 

needed. In general the error is of the order of 0.01 eV and depends only weakly on the actual 

values of the EPI. Thus it appears that the uncertainty in the EPI obtained by configurational 

averaging is an absolute one. Finally it also needs to be pointed out that the convergence as a 

function of the number of levels is faster for a disordered system than for an ordered one (see 

also Fig. 3). 

From the foregoing it can be concluded that increasing the number of levels in the 

continued fraction expansion leads to improved accuracy, but that this is accompanied by a 

prohibitive increase in computer time. Therefore it is logical to decouple the number of levels 

and the number of atoms in the cluster and it will now be shown how this can be done. To 

determine the set of coefficients in the continued fraction, one can use the 'zebra' developed 

by Dreysse and Riedinger37• This procedure builds a cluster organized into shells in such a 

way as to guarantee that the resulting structure has the minimal size compatible with the 
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number of levels used. In this way no additional sources of error are introduced. It has been 

conjectured37 that the size of the cluster grows as L d where d is the spatial dimension. In 

particular, for d = 3 this term is equal to ~ L 3, where 't is given by : 

(3.1) 

sn is the. number of sites in the shell n and ~2 is the second order finite difference operator. 

For an fcc lattice with hopping parameters up to first or second neighbors, 't takes the values 

20 and 36, respectively. For the bee lattice with hopping parameters up to first, second or 

third neighbors, the corresponding values are 12, 24 and 80, respectively. In order to use 

tight-binding parameters determined from ab initio calculations, it is necessary to include 

second neighbor interactions in the fcc lattice and third neighbors in the bee. This leads to a 

considerable increase in the size of the clusters used. An exact cluster, for the fcc lattice for 

example, with a unique point as seed for L levels, taking into account first and second neigh­

bor interactions, would give 2xL exact levels if only first neighbors were considered. Figure 

3 reports results for the EPI of the ordered AB compound (with canonical 3-8 parameters) on 

the fcc lattice with first and second neighbors, as a function of the number of levels and the 

size of the cluster used (with Ep and o fixed at their values for 8 levels). The cluster size 

was determined by considering Lc exact levels for nearest neighbor hopping only. It can be 

seen that the results obtained with clusters exact for 4 to 8 levels are almost indistinguishable. 

This is confirmed in table I, which contains results for the bee lattice with third neighbor 

interactions. From this it can be concluded that the cluster size must be such as to guarantee 

L exact levels for first neighbors only, in the range of levels considered here ( 6-10). Using 

such a 'truncated' cluster leads to an important gain in time : up to a factor of 4. Typically 

the number of atoms in the cluster is around 600 (instead of 4000-8000). 

Next, Fig. 4 shows the nearest neighbor EPI for the canonical 3-8 case in the fcc 

structure at three different concentrations as a function of bandfilling. These results were 
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obtained by averaging over 10 configurations, using 8 levels in the continued fraction expan­

sion. The number of nodes is in agreement with the values given by general theorems36 and 

the curves have a similar overall shape, with a 'phase-separating' region at the band edges 

and an 'ordering' region near the center of the band (see also Ref. 17). It was also found that 

the local density of d-states on a Rh and Ti site has a bandwidth between 0. and 1. Changing 

the concentration did not affect the d bandwidth very much, so that it can be concluded that 

the EPI are mainly related to the d-orbitals. (This does not imply that the s- and p-orbitals 

are unimportant; for example they certainly affect the shape of the EPI.) Also note that only 

the position of the first node is affected by changing the concentration. Pair interactions 

involving more distant atoms are plotted in Fig. 5. As expected, the number of nodes 

increases, while the magnitude of the EPI decreases, with increasing separation of the atoms 

involved (note the change in scale, compared to Fig. 4). To sum up, at this stage, it was 

found in agreement with previous results17 for d-orbitals only, that configurational averaging 

converges quickly and that 10 configurations are sufficient to obtain convergence. The 

number of levels is a crucial factor as far as computer time is concerned. Typically, a max­

imum of 8 levels is necessary and an important speed-up can be obtained by using 'truncated' 

clusters. 

In order to study the influence of the environment on the EPI, three sets of 

configurations were generated. In the first one, the only constraint was the overall concentra­

tion of the recursion cluster, while in the second group the first coordination shell of the pair 

was also held at the fixed overall concentration and in the third group this constraint was 

imposed in every concentric shell around the central pair. In all cases adjustments were made 

by appropriate rounding of the shell ·occupancies to ensure that the total number of atoms was 

conserved. The resulting EPI are drawn as a function of the number of configurations (at a 

fixed concentration cA = 0.25) in Fig. 6(a) and as a function of bandfilling (averaged over 12 

configurations, for 8 exact levels of the continued fraction) in Fig. 6(b). Although the 

influence of the ordering constraints is clearly visible in Fig. 6(a), the differences are 
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relatively small : a few percent between the first two cases, and approximately 20 % in the 

case of concentric shells with constant compositions. It can be seen in Fig. 6(b) that the posi­

tions of the nodes are the same and only the extreme values are affected. Note also that the 

bandfilling selected corresponds to a Fermi level near the maximum in Fig. 6(b) so that devia­

tions will be rather larger than on the average. 

Next a group of calculations was performed for the binary alloy RhcTi1-c with the 

orthogonal two-center tight binding parameters tabulated by Papaconstantopoulos23 • Fig. 7 

shows nearest neighbor fcc and nearest and next nearest neighbor bee EPI as a function of 

concentration for this system. From these EPI one can determine the energy of mixing for the 

two structures as follows20 : 

M/n(c) = E~is(c)- E{in(c) + M!rd(c), (3.2) 

in which elastic and vibrational contributions, as well as volume changes, have been 

neglected. The different energy contributions involved are : 

E/in(c) = (1- c)E~ + cE!J, (3.3) 

1. e. a linear interpolation between the cohesive energies of the pure elements in the crystal 

structure I, E/us is the cohesive energy of the completely disordered state given in (2.34), 

obtained by configurational averaging of the band structure term (2.17) and M~rd is the 

configurational part of the mixing energy, related to the EPI by : 

(3.4) 

where V h is the EPI between an atom and its hth neighbor and 

(3.5) 

where nh is the coordination number and nf8 the number of BB pairs both corresponding to 
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the hth neighboring site. The energy of mixing corresponding to the EPI in Fig. 7 are shown 

in Fig. 8, for the bee (upper curve) and fcc (lower curve) structure respectively. As noted 

before, the calculation of the term E~is(c) must be performed very carefully. In (3.2) E~is and 

E /in are large numbers and their difference is very sensitive to the position· of the Fermi level. 

In order to ensure sufficient accuracy one can adopt the method discussed before involving a 

small shift of the Fermi energy. The correction introduced by this small variation leads to a 

negligible change to the EPI (less than 0.01 eV). A phase diagram calculation using these 

results is in progress and will be reported upon elsewhere. 

IV. Summary and conclusions. 

This paper has addressed the calculation of effective pair interactions in binary 

alloys, quantities that are essential to understand the statistical thermodynamics of these sys­

tems on a first principles basis. It has been shown that these EPI can be calculated accurately 

and reliably by means of direct averaging over random configurations. To this end the for­

malism set out previously17 has been extended in order to include s- and p-orbitals in a recur­

sion method approach to a realistic tight-binding Hamiltonian. The feasibility of this scheme 

depends crucially on the use of the orbital peeling trick to calculate cohesive energy 

differences directly. Since no reciprocal space transformation is made, the present method is 

ideally suited to treat problems with broken symmetry, such as partially ordered structures, or 

low-symmetric configurations, in particular surfaces and interfaces. For completely disordered 

systems, the results compare very well to those obtained within the coherent potential approxi­

mation17, although the present method is more time consuming since in the CPA only one 

recursive cycle needs to be performed once the effective medium is set up. On the other 

hand, since the configurational averaging method repeats the same set of instructions for each 

random configuration, it is very well suited for parallel implementation on computers with an 

SIMD architecture. It is also important to note that the present method takes ensemble aver­

ages (in an approximate way) of the appropriate physical quantities, rather than calculating 
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these quantities for an 'averaged' configuration. The former approach is of course the correct 

one in classical statistical mechanics. 

The main difficulties in the present description of a disordered system arise 

because of charge transfer. They involve a shift in the on-site energies and the determination 

of the Fermi level. Simple procedures to take these effects into account have been presented 

here, but further extensions are straightforward, if necessary. A considerable saving in com-

puter time can be obtained by decoupling the number of levels from the number of atoms in 

the recursion cluster. Numerical simulations indicate that it is sufficient to take the number of 

atoms in the cluster appropriate for nearest neighbor hopping parameters only, even if further 

neighbor interactions are present. A further conclusion of this work is that 10 configurations 

and a maximum of 8 levels are sufficient to guarantee an uncertainty of a few percent in the 

magnitude of the EPI. The main emphasis of the present paper has been on the formalism 

and general checks of convergence and other properties, and to this end 'canonical' tight-

binding parameters have been used. However, some preliminary results are included for the 

system Rhc Ti l-c, using the first-principles values obtained by a fit to an LAPW band struc­

ture. A further discussion of these EPI and the resulting phase diagram will be given in a 

forthcoming paper. 
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Figure Captions. 

Fig. 1 Cpu-time (in arbitrary units) for a full EPI calculation as a function of the number 

of levels (L ) in the continued fraction. 

Fig. 2 Nearest neighbor EPI (in canonical units) in the fcc structure for canonical 3-8 

values with cA = 0.25, as a function of the number of configurations (N ) and the 

number of levels (L ). Solid curve : L = 7, but with self-consistency parameters for 

L = 8. In all cases the same set of random configurations was used. 

Fig. 3 Nearest neighbor EPI (in c.u.) in the fcc structure for canonical 3-8 values with 

cA = 0.25, as a function of the number of levels (L ) with fixed cluster size. The cluster 

size is chosen so as to be exact for nearest neighbor hopping only at a given number of 

levels L . The results for L = 4-8 are indistinguishable. c c 

Fig. 4 Nearest neighbor EPI (in c.u.) in the fcc structure for canonical 3-8 values as a 

function of bandfilling, at concentration cA = 0.25 (short dashed line), 0.50 (solid line) 

and 0.75 (long dashed line). 

Fig. 5 Further neighbor EPI (in c.u.) in the fcc structure for canonical 3-8 values with 

c A = 0.25 as a function of bandfilling : solid line : second neighbor, long dashed line : 

third neighbor and short dashed line : fourth neighbor. Note the change in scale com­

pared to Fig. 4. 

Fig. 6 Nearest neighbor EPI (in c.u.) in the fcc structure for canonical 3-8 tight-binding 

parameters with cA = 0.25 for various prescriptions to generate the configurations (see 

text) : 

(a) as a function of the number of configurations (N). 

(b) as a function of bandfilling. 

Full line : fixed concentration in every shell; short dashed line : fixed concentration in 

... 
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first shell and long dashed line : fixed overall concentration. 

Fig. 7 EPI for Rhc Ti l-c as a function of the Rh concentration. Filled squares : nearest 

neighbor EPI in the fcc structure, open squares : nearest neighbor EPI in the bee struc­

ture, and filled circles : next nearest neighbor EPI in the bee structure. The curves are 

drawn to guide the eye. 

Fig. 8 Energy of mixing of Rhc Ti l-c in the bee (upper curve) and Jcc (lower curve) 

structure as a function of concentration . 
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Table I. 

Position of the Fermi level for different 'truncated' cluster sizes in the bee lattice with 

third neighbor interactions. The Fermi level Ep is computed for 8 exact levels of the 

continued fraction, with a cluster exact for Lc levels. Also given are the number of sites 

in each cluster and the computation time (in arbitrary units). 

2 

3 

4 

5 

8 

0.68212 

0.68369 

0.68444 

0.68465 

0.68468 

sites 

192 

538 

1158 

2132 

7978 

time 

255 

417 

754 

1138 

1940 
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