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F O C U S O N M O L E C U L A R I M A G I N G
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The International Atomic Energy Agency organized a technical meeting
at its headquarters in Vienna, Austria, in 2022 that included 17 experts
representing 12 countries, whose research spanned the development
and use of radiolabeled agents for imaging infection. The meeting
focused largely on bacterial pathogens. The group discussed and eval-
uated the advantages and disadvantages of several radiopharmaceuti-
cals, as well as the science driving various imaging approaches. The
main objective was to understand why few infection-targeted radiotra-
cers are used in clinical practice despite the urgent need to better char-
acterize bacterial infections. This article summarizes the resulting
consensus, at least among the included scientists and countries, on
the current status of radiopharmaceutical development for infection
imaging. Also included are opinions and recommendations regarding
current research standards in this area. This and future International
Atomic Energy Agency–sponsored collaborations will advance the goal
of providing the medical community with innovative, practical tools for
the specific image-based diagnosis of infection.
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Infections remain a major threat to human health globally (1).
The coronavirus disease 2019 pandemic has highlighted a pressing
need to develop and translate innovative technologies to detect and
treat infectious disease. Even before the onset of the pandemic,
infections ranked third in mortality but first in morbidity among all
human diseases in 2017, primarily affecting younger, healthier
populations (2). There were an estimated 11 million sepsis-related
deaths in 2017, accounting for about 20% of deaths globally, with
the highest incidence reported in developing countries (3). By 2050,
antimicrobial drug-resistant infections are expected to become the
leading cause of death globally and surpass those due to cancer (4).
The potential cost of drug-resistant infections has been estimated to
be as high as $100 trillion worldwide (5). We have also observed a
dramatic rise in hospital-acquired (nosocomial) infections affecting
at-risk patients during the pandemic. Enterobacterales pathogens,
especially K. pneumoniae, and fungi including Aspergillus spp. are
an important cause of secondary pneumonias in hospitalized patients
with coronavirus disease 2019 (6).
Current diagnostic approaches to detecting bacterial infections,

such as microscopy, microbiology, and molecular techniques
(nucleic acid amplification and mass spectrometry), require clini-
cal samples (blood, urine, stool, or cerebrospinal fluid) for cultur-
ing and sensitivity testing and infection-relevant assays. However,
it is increasingly recognized that many different infectious foci
with distinct bacterial burdens, antimicrobial exposures, and local
biology can coexist in the same host (7–9). Clinical samples may
not accurately represent the local biology at infectious sites and
thus are either not sensitive to or not representative of the bacterial
infection (10,11). Surgical resection or biopsy is often the last
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resort for obtaining infected tissues, and because of the associated
morbidity, these techniques are generally limited to the most
accessible lesions identified at a single time point. Additionally,
sampling methods fail to capture the heterogeneity of multiple
lesions existing simultaneously in the same patient, as well as the
temporal changes occurring over the course of the infection and its
treatment.
Available imaging tools used in the clinic for detection of bacte-

rial infections include radiography, ultrasonography, CT, and MRI,
but these imaging tools are based on anatomic changes during dis-
ease, which are delayed compared with the biochemical events
occurring within the affected tissues. Structural abnormalities are
also nonspecific and reflect a combination of both the infectious
agents and the host inflammatory response (12). Molecular hybrid
imaging platforms have proven to efficiently localize pathology and
assist in the clinical management of several diseases (13,14). These
technologies, such as SPECT or PET, can measure molecular path-
ways in situ and are often used in combination with anatomic imag-
ing (PET/CT, PET/MRI, or SPECT/CT). The use of radiolabeled
leukocytes (white blood cells) is considered the gold standard tech-
nique for prosthetic (15), vascular graft (16), and diabetic foot (17)
infections but requires skill and equipment for sterile blood manipu-
lation. Radiolabeled antibodies against granulocyte antigens can
induce human antimouse antibody production in approximately 4%
of patients (18), limiting their use. The glucose analog [18F]FDG
has also been used to image infection but lacks specificity for patho-
gens (19).
Despite these advanced tools, there is no universally accepted

approach to the specific detection of bacterial infections. There-
fore, there is an urgent, unmet need for the development of radio-
pharmaceuticals that can demonstrate the presence of living
pathogens in vivo. However, because of bacterial diversity and the
frequency of polymicrobial infections, developmental efforts have
focused on both radiopharmaceuticals for panbacterial imaging
and radiopharmaceuticals for type- or species-specific imaging.
For potential clinical applications, there are advantages and disad-
vantages to both concepts. Given the breadth of research interests,
in general all approaches have been hindered by a relative lack of
funding (compared with oncology, for example), lack of uniformly
reported data for imaging agents, misconceptions regarding radia-
tion risks, and hurdles in the clinical translation and dissemination
of promising radiopharmaceuticals (12).
In March 2022, the International Atomic Energy Agency

(IAEA) organized a technical meeting titled “The Status of Radio-
labeled Molecules for Infection and Inflammation Imaging” in
Vienna, Austria, to evaluate and address these challenges. This
summary should be used as a road map for advancing research in
this field, understanding the potential clinical use of radiopharma-
ceuticals and their role in clinical decision-making, and most
importantly motivating funding agencies and industry to support
and develop pathogen-specific imaging technologies. Although the
focus of this meeting was bacterial infection, the conclusions ren-
dered may be expanded and tailored to nonbacterial pathogens
whose detection via nuclear imaging is increasingly reported in
the peer-reviewed literature.

CLINICAL MOTIVATIONS

With the advance of medical imaging technologies, there has
been a sustained interest in developing new tools to detect and
monitor bacterial infections noninvasively—particularly in nuclear

medicine. Ideally, nuclear imaging probes should have high sensi-
tivity and specificity for a wide range of pathogens, with enough
tissue penetration to reach infected areas despite poor vascular
supply while providing quantitative signals proportionate to the
bacterial burden. They should also be chemically stable in blood
and tissues; safe, with acceptable radiation exposure; and manu-
facturable at a reasonable expense (20,21). However, this magic
bullet is not feasible for all imaging applications since disease
location, type of pathogen, presence of comorbidities, chronicity
of infection, and therapeutic interaction may influence the diagnos-
tic accuracy of a given technique.
Therefore, analogous to the development of imaging agents in

oncology, pathogen-specific imaging will greatly benefit from hav-
ing multiple complementary agents with applicability to different
clinical conditions. Several radiopharmaceuticals should be devel-
oped targeting variable pathways, allowing differentiation between
infection and sterile inflammation and characterization of individual
or classes of pathogens (e.g., gram-positive vs. gram-negative bac-
teria). A collaborative multidisciplinary environment with expert
perspectives is essential, as is sharing information regarding how to
best conduct imaging studies, interpret data, and include appropri-
ate controls. A central agency (e.g., the IAEA) with a global focus
represents an ideal platform to share this information and conduct
multicenter comparisons. To allow replication of experiments at
different sites, transparency in experimental methods for both pre-
clinical and clinical studies is required, as well as willingness by
the researchers to distribute data and standardize reporting.
The bacterial imaging field, both for SPECT and for PET, has

grown significantly from 2000 to 2019, followed by a reduction in
publications during the coronavirus disease 2019 pandemic, based
on articles found via PubMed from 2001 to 2022 by searching
“bacteria AND imaging AND scintigraphy/PET AND [year].”
This refocusing of research effort may reflect a new focus on coro-
navirus disease 2019–related diagnostics, a pandemic-related loss
of resources needed to conduct this type of research, or most likely
both. Therefore, it is essential to reinvigorate this field, particularly
with our new knowledge of infections—their transmission, mor-
bidity, and mortality.
With respect to pathogen-specific imaging, it is important to

learn from our previous mistakes. One of the first agents to be
clinically translated for infection imaging was [99mTc]ciprofloxa-
cin, commercially known as Infecton (Draxis). Although it was
rapidly evaluated in hundreds of infected patients with promising
results, these initial hopes were dashed when subsequent clinical
studies (22–24) showed poor specificity of [99mTc]ciprofloxacin
for bacterial infections. The panel at the IAEA agreed that from
the beginning [99mTc]ciprofloxacin was a poorly chosen and vali-
dated tracer for numerous reasons, including its limited affinity for
bacteria (reflected by fast efflux rates from affected tissues) and
binding to both bacteria and mammalian cells (25,26). This was a
valuable lesson in the need to thoroughly characterize bacteria-
specific imaging agents to confirm their mechanism of action and
specificity before investing extensive resources in their clinical
translation. In this case, in vitro tests were not satisfactory (27–29)
and heterogeneity of clinical studies limited their credibility. These
studies had variable imaging indications, divergent gold standards,
and poor controls and proved challenging to interpret (23,30–33).
To attract industry investment in new imaging technologies,

attention should be paid to their potential profitability at all stages
of development. For example, the preservation of intellectual
property via patents is essential and often overlooked. Indeed,
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patented radiotracers can be more easily acquired and produced by
pharmaceutical companies, reducing the risk of competing tech-
nologies. A lack of intellectual protection will likely discourage
industry investment, even if the science itself is promising.

DEVELOPMENT OF PATHOGEN-SPECIFIC IMAGING
METHODS

The discussion at the IAEA focused on the development of
infection-targeted radiopharmaceuticals, including the basic in vitro
and in vivo studies needed to validate their clinical relevance.

Infrastructure Requirements
An important consideration in developing any imaging agents is

the required infrastructure, with the safe handling of infectious agents
representing a special challenge. For any radiopharmaceutical, rele-
vant technologies include a cyclotron or radionuclide generator,
shielded fume hoods (i.e., hot cells), a radioactivity-counting instru-
ment (e.g., a g-counter), high-performance liquid chromatography,
and preclinical scanning equipment (PET or SPECT). For clinical
translation, quality control evaluation including identity testing, pyro-
gen evaluation, radiochemical evaluation (yield, purity), and chemi-
cal stability is required. Staff with radiochemistry and regulatory
expertise imply potentially high costs, which can be a limitation for
the development of new agents. Considerations for handling patho-
gens and biosafety training are critical for conducting these studies.
However, groups focused on radiochemistry are not familiar with
regulations surrounding pathogens, as they have traditionally focused
on cancer and neurologic disorders. Additional infrastructure chal-
lenges are related to infections with drug-resistant pathogens requir-
ing special regimes for patient care and cleaning of hospital spaces
(waste management) and hospital beds (isolation areas).

Conception and Planning—Identifying the Target
Infectious diseases are widely heterogeneous illnesses associated

with microorganisms that cause disease in humans. Although there is
considerable overlap in the pathogenic mechanisms of these microor-
ganisms and the host response to them, the intrinsic characteristics of
these pathogens are highly variable. Bacteria, viruses, fungi, and para-
sites are genetically, biochemically, and metabolically different. Addi-
tionally, reference laboratory strains can be significantly different
from pathogenic strains. For example, reference laboratory E. coli
strains—the uropathogenic CFT073, enterohemorrhagic EDL933, and
laboratory strain MG1655—all display a
mosaic genome structure that can compose
up to 40% of their genes (34). Therefore, it
is fundamental to identify the target patho-
gen and its clinical presentation when plan-
ning to develop pathogen-specific imaging
agents. The specific characteristics of the
agent will vary depending on the target, and
the use of clinical strains during the initial
studies may be crucial.
Developing new infection-targeted agents

depends both on the clinical need and on
understanding of the mechanism the tech-
nology uses to generate image contrast. Bac-
teria (prokaryotes) are evolutionary and
phylogenetically distinct from eukaryotic
cells. These basic differences provide op-
portunities to leverage fundamental bio-
chemical differences between bacteria and

mammalian cells—that is, energetic pathways, nucleic acid use,
and cell surface components for the discovery of novel molecules
that could be developed into pathogen-specific agents. Although
initial efforts to develop pathogen-specific radiopharmaceuticals
were based on radiolabeled antibiotics, recent approaches have
focused on radiopharmaceuticals that are incorporated by the cell
wall or are metabolized by microbe-specific pathways. For exam-
ple, D-methyl-[11C]methionine and other positron-labeled D-amino
acids have targeted bacterial peptidoglycan (Fig. 1) (35–38), whereas
2-deoxy-2-[18F]fluoro-D-sorbitol detects bacteria via the unique
metabolism of sorbitol by Enterobacteriaceae (Fig. 2) (39,40). For a
more thorough understanding of the target, collaboration with micro-
biologists and infectious disease physicians is helpful. Generally,
attention to the literature and careful screening (including in silico)
can identify the targets most relevant to probe design (41). Using
an artificial intelligence approach in the selection of potentially
pathogen-specific radiopharmaceuticals can make radiopharmaceuti-
cal agent development more efficient (42).

Compound Screening and Radiochemistry
Once the bacterial target has been identified, the next step is to

obtain lead molecules, which may require a conventional compound
screen, structure-based design, modification of molecular probes
developed for other imaging techniques, or radiosynthesis of metab-
olite analogs (43,44). Using an unbiased screening approach is
essential to the discovery of candidates for pathogen-specific imag-
ing. Screening of candidate compounds should be performed in
whole bacterial cell cultures since working with an isolated target
ignores critical determinants of clinical performance, such as cell
wall penetration.
Multiple comprehensive reviews have been published on the

radiochemistry of pathogen-specific imaging radiopharmaceuticals
(43,45,46). However, many publications in this field lack the mini-
mal requirements to allow validation and reproducibility of the
described radiochemistry methodology. When a new agent is
described, information regarding its radiochemical purity, radio-
chemical yield, molar activity, stability, and metabolism is neces-
sary to allow other researchers to evaluate the presented approach
and potentially reproduce it. Molar activity is particularly impor-
tant to report and evaluate to address the presence of competing
cold materials in a radiopharmaceutical sample. Numerous other
considerations are relevant to the chemical specifics of the probe.

FIGURE 1. D-methyl-[11C]methionine PET/MR images of 61-y-old man with bilateral hip prostheses
and confirmed C. acnes infection of left hip. Left bar represents SUV color scale, and right bar repre-
sents MRI color scale. (A, B, and C) Coronal MR, PET, and PET/MR images, respectively. Arrows
indicate infected joint in A and area of radiotracer uptake surrounding joint in B and C. (D–F) Axial
MR, PET, and PET/MR images. Arrows depict sinus tract communicating with skin in D and regions
of radiotracer uptake in E and F. (Adapted from (35).)
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For example, with radiometal modification of antibodies or related
protein formats (i.e., single-domain antibodies), stoichiometry
should be evaluated and reported. Both retention of activity and
stability of conjugated antibodies should be determined. To rule
out in vivo transchelation of 99mTc, a cysteine challenge study
may be considered. Basic radiopharmaceutical design criteria are
beyond the scope of this discussion, but a summary has been pro-
vided in a previous review (47).

In Vitro Testing
Evaluating uptake of radiopharmaceuticals by bacteria in vitro is a

critical aspect of their validation. Since certain radionuclides both are
costly and have short half-lives (e.g., 11C for PET), the in vitro study
of radiopharmaceutical analogs can begin with b-emitting nuclei
(14C, 3H) and scintillation counting (41), stable isotope MR spectros-
copy (48) (e.g., 13C, 1H, 2H, and 19F), or mass spectroscopy (49).
The essential validation of a new radiotracer concept is when it has
been successfully labeled and incubated with bacterial cultures to
detect specific incorporation (37). These studies are usually con-
ducted with bacterial cultures in the growth or exponential phase,
although of course other assessments are possible. After bacterial
washing and detection of retained radioactive signals, a gross assess-
ment of tracer retention can be made by the percentage of tracer
retained, that is, the percentage uptake. However, these data should
be normalized to bacterial count, which is not obtained via an esti-
mate (e.g., an E. coli culture with an optical density of 1 measured at
a wavelength of 600nm represents 8 3 108 organisms) but by serial
dilutions and plating to determine the number of colony-forming
units to be reported. The most relevant controls include the use of
heat-killed organisms and blocking using a nonradiolabeled version
of the radiopharmaceutical. These blocking, or competition, studies

can be used to explore the effect of molar
activity on radiotracer performance. Finally,
several pathogenic species, as well as multi-
ple strains of the same species, should be
included in these analyses. In addition to
clinical isolates, commercially available
bacteria should be used to allow reproduc-
tion of results by other groups.
Several in vitro studies are infrequently

performed or use variable experimental con-
ditions. For example, some investigators
perform efflux studies whereby after bacte-
rial radioactivity retention, the cells are
washed and the subsequent loss of radioac-
tivity over time is determined (50). There is
also variability in the medium used, and
some components may compete with exoge-
nous radiopharmaceuticals for bacterial
incorporation. At this point, there is no stan-
dard medium used although investigators
should consider appropriate mimicry of the
nutrient makeup of the human body.

In Vivo Validation
Once the in vitro characterization of a

probe has been completed, subsequent vali-
dations in animal models are frequently
performed. Regulatory requirements for the
development of animal models of infections
vary considerably across different countries

and institutions. If excessive, these can be an additional burden to
researchers (51). Animal models and relevant controls are well sum-
marized in the consensus report by Signore et al. (52). When choos-
ing an animal model, it is important to thoroughly understand the
human infection that is being studied, as well as the strengths and
limitations of a given model. The European Association of Nuclear
Medicine recently published useful guidelines for choosing the
appropriate animal model for preclinical experiments (53). In most
cases, the models used should recapitulate human pathologies.When
tracer sensitivity to different pathogens is being compared, a dual
infection model (e.g., a mouse infected with 2 pathogens) (38) or
separate carefully generated cohorts (e.g., in comparing [99mTc]hy-
drazinonicotinamide polymyxin B accumulation in Pseudomonas
aeruginosa and Staphylococcus aureus) may be used (Fig. 3) (54).
The volume of distribution, metabolism, excretion, vascular leakage,
etc., are also key variables that should be considered before choosing
a specific model.
Determining and standardizing the readouts used to quantify

signals from pathogen-specific agents in animal models are also
key to comparing different agents and reproducing the reported
findings. For example, for PET imaging of bacterial infections, the
agent should be injected at a time point when the infection has
been allowed to incubate for a sufficient time (e.g., 8–24 h) to
resemble human pathology when inflammatory response peaks
and bacteria are in different metabolic states. Determination of
the stability of the agent in blood (or tissues if applicable) at the
time of imaging should also be reported. Because of replication,
the bacterial burden injected at a given site is much lower than
found hours later. Therefore, the bacterial burden at the site evalu-
ated should be determined immediately after imaging has been
performed.

FIGURE 2. [18F]FDS PET study of 67-y-old man with squamous cell carcinoma of lung and K.
pneumoniae pneumonia. On left, 3-dimensional minimum-intensity projection is shown, with arrow
indicating [18F]FDS signal in infected tissues. On right, transverse CT, PET, and PET/CT images (from
top to bottom) indicate minimal [18F]FDS signal in right-sided cancerous lesions (arrow). (Adapted
from (40).)
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The use of animal models beyond rodents in development of
imaging research has also been suggested (53,55). The rabbit
stands out among nonrodent mammals used in research because of
its relatively small size, short gestation period (29–31 d), and
potential for timed mating and superovulation (56). Myriad imag-
ing studies have reported the successful use of rabbit infection
models (57–59). Given ethical concerns, using nonhuman primates
(macaques, baboons, marmosets, and African green monkeys) in
biomedical research is usually allowed only in research areas for
which no alternative is available (60,61); however, research on
nonhuman primates regularly necessitates special facilities and
expertise. Although expensive, nonhuman primates are invaluable
tools to study complex infection pathogenesis (simian HIV or
tuberculosis) (62) and are suitable for preclinical imaging studies
(63,64), in particular for tracer biodistribution or radiation dosime-
try (65–67), translational research on human respiratory infections,
and pharmaceutical drug development (68–70). Beyond these
common animals, the study of species-specific diseases might
involve pigs, cats, dogs, cattle, horses, fish, and birds (71,72).
Distinguishing infection from inflammation depends on the typical

host response via initiation of the innate immune system followed by
an adaptive response targeting the pathogen (19,73). Frequently,
inflammation may persist despite infection control (74). Inclusion of
appropriate controls is an important determinant when developing spe-
cific infectious imaging agents. Whenever possible, contralateral limb
or skin site controls, as demonstrated by the tissue cage model (75),
can be used to test the specificity of the agent and further distinguish
between infectious and sterile inflammation. Therefore, a rational pre-
clinical screen should be designed to, first, understand the kinetics of
the test molecular imaging agent in sterile (76–78) as well as infectious
(39,79) animal inflammation models and, second, understand target
organ function to compare the sensitivity of the imaging agent in ani-
mal models of infection and sterile inflammation. The imaging agents
should be validated with the capability for dual or hybrid imaging plat-
forms such as SPECT/CT, PET/CT, and PET/MRI (80).

An accurate analysis of the preclinical
images is fundamental to determine the via-
bility of the candidate agent for pathogen-
specific imaging. The most used approach
to determining the region (or volume) of in-
terest via images is intrinsically operator-
dependent. Therefore, efforts should be made
to minimize bias (e.g., using the CT instead
of the PET images to determine the region of
interest). A frequently used unit to represent
imaging results in PET/SPECT is SUVmean,
which considers average signals in a region
of interest, corrected for the dose-decay–
adjusted injected dose and the weight of the
animal. Other methods of data quantification
are available, and researchers should explain
the methodology used for the analysis. Care-
ful dissection and ex vivo analyses of all
tissues should be performed via a radiation-
detecting instrument (i.e., g-counter). Accu-
rate identification of infected and noninfected
tissues can be used to generate an uptake
value, normalized to mass (i.e., percentage
injected dose per gram). The tissues can be
subsequently homogenized and plated to nor-

malize the data for the number of viable bacteria (colony-forming
units); this type of analysis is essential for evaluating the sensitivity of
a radiopharmaceutical or comparing the sensitivity of different tracers.

TRANSLATION AND THE FUTURE

The general process of translating new nuclear medicine tech-
nologies has been explored in numerous reviews (81,82) and in
the context of dedicated workshops, such as that organized by the
National Institute of Biomedical Imaging and Bioengineering
(National Institutes of Health) (83). The basic approach involves
the approval of both government and institutional regulatory bod-
ies, toxicology studies as required, radiochemical optimization,
and first-in-humans studies usually initiated for dosimetry evalua-
tion. For any tracer, a major challenge is securing the funding to
accomplish this work, given administrative expenses and the high
cost of radiopharmaceutical production. Many researchers at the
meeting felt these costs diminished the number of patients who
could reasonably be scanned using a new tracer—thus limiting the
conclusions obtained. A second challenge is the difficulty of prov-
ing the utility of infection-targeted radiopharmaceuticals in rigor-
ous, multicenter studies. Even for researchers who wish to share
and collaborate, securing the funding required for this effort is dif-
ficult. Finally, infection-targeted tracers face particular barriers to
widespread clinical adoption, described below.

There Is Currently Limited Engagement of Stakeholders
To be successful, physicians in numerous disciplines need to

consider infection imaging essential to clinical practice. The col-
laboration of radiologists, nuclear medicine physicians, infectious
disease doctors, surgeons (especially orthopedic surgeons and neu-
rosurgeons), and other specialists will be essential in driving this
field forward. In addition, partnerships with industry, including
commercial radiopharmacies, are crucial to rendering these tech-
nologies profitable and sustainable.

FIGURE 3. Representative planar g-camera images of 2 mice infected with 109 colony-forming
units of P. aeruginosa (A) (green arrow and circle) and S. aureus (B) (red arrow and circle) vs. contra-
lateral thigh, injected with only hydrogel (yellow arrows and circles) as control. Images were acquired
6h after injection of 3.7 MBq of [99mTc]-hydrazinonicotinamide polymyxin B. Radiolabeled antibiotic
binds only to gram-negative bacteria, thus highlighting presence of P. aeruginosa but not of gram-
positive S. aureus. (Adapted from (54).)
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Current Patient Studies Are Not Sufficiently Convincing
The latest generation of microbe-specific tracers is highly com-

pelling, but few carefully conducted patient studies support their
use. Infectious disease is a broad topic, requiring time for research-
ers to produce relevant data in patients.

Infection-Targeted Nuclear Medicine Tools Do Not Fit into an
Existing Clinical Workflow
Access to nuclear medicine tools may be limited for the diagno-

sis of infection in the acute care setting. Most radiotracers cannot
be synthesized on demand even during the regular operating hours
of a radiopharmaceutical facility and, as a result, can often be used
only when the patient is already undergoing antimicrobial therapy
due to the urgency of treatment in acute infections. This is a sig-
nificant limitation to first-in-humans studies, as imaging results
can be confounded by the effects of the therapeutic regimen.

CONCLUSION

Meetings such as that recently sponsored by the IAEA are essen-
tial in identifying ways for researchers and physicians to better
diagnose and treat bacterial infections. The remarkable progress
made over the last decade indicates that the successful application
of new molecular imaging tools in the clinic will profoundly impact
patient care.
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