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ARTICLE

Widespread Allelic Heterogeneity in Complex Traits

Farhad Hormozdiari,1,2 Anthony Zhu,1 Gleb Kichaev,3 Chelsea J.-T. Ju,1 Ayellet V. Segrè,4

Jong Wha J. Joo,1,5 Hyejung Won,6 Sriram Sankararaman,1,7 Bogdan Pasaniuc,7,8 Sagiv Shifman,9,10,*
and Eleazar Eskin1,7,10,*

Recent successes in genome-wide association studies (GWASs) make it possible to address important questions about the genetic archi-

tecture of complex traits, such as allele frequency and effect size. One lesser-known aspect of complex traits is the extent of allelic het-

erogeneity (AH) arising from multiple causal variants at a locus. We developed a computational method to infer the probability of

AH and applied it to three GWASs and four expression quantitative trait loci (eQTL) datasets. We identified a total of 4,152 loci with

strong evidence of AH. The proportion of all loci with identified AH is 4%–23% in eQTLs, 35% in GWASs of high-density lipoprotein

(HDL), and 23% in GWASs of schizophrenia. For eQTLs, we observed a strong correlation between sample size and the proportion of

loci with AH (R2 ¼ 0.85, p ¼ 2.2 3 10�16), indicating that statistical power prevents identification of AH in other loci. Understanding

the extent of AH may guide the development of new methods for fine mapping and association mapping of complex traits.
Introduction

Genome-wide association studies (GWASs) have success-

fully identified many loci associated with various diseases

and traits.1–4 Unfortunately, interpreting the detected asso-

ciated genes is challenging due to two facts. First, most

of the associated variants fall in non-coding regions of

the genome.5–10 Second, for only a handful of GWAS loci

was a causal sequence variant detected that underlies the

trait or disease susceptibility. Therefore, it is challenging

to identify the relevant genes, which is the first step to un-

derstanding the biological mechanisms of the disease.

Detecting the causal variants is complicated by the fact

that most significant associated variants may not be causal,

but instead are in linkage disequilibrium (LD) with un-

known functional variants. In general, sequence variants,

with respect to a trait, can be grouped into three categories.

The first category contains causal variants that have a bio-

logical effect on the trait and are responsible for the associ-

ation signal. The second category contains variants that

are statistically associated with the trait due to high LD

with the causal variants. The third category contains vari-

ants that are not statistically associated with the trait and

are not causal. Fine-mapping methods aim to distinguish

between the two first categories (causal variants versus

correlated variants). One way to link the causal variant

with a particular gene is by colocalization methods that

determine whether a single variant is responsible for

both variation in the trait and variation in expression of

a gene at the same locus (expression quantitative trait

loci, eQTLs).
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Fine-mapping and colocalization methods are designed

to identify the causal variant and the associated gene at a lo-

cus, but in many cases, they assume a single causal variant.

In the presence of multiple causal variants, those fine-map-

ping and colocalization methods11–13 will have a lower

accuracy to detect the true causal variants and genes.

Thus, a fundamental question is howmany different causal

variants are present in a locus.

The presence of multiple causal variants at the same

locus that influence a particular disease or trait is known

as allelic heterogeneity (AH). AH is very common for

Mendelian traits. Clearly, many different mutations in

the same gene may cause loss or gain of function leading

to a specific Mendelian disease. For example, approxi-

mately 100 distinct mutations are known to exist at the

cystic fibrosis locus,14 and even more are present at loci

causing inherited hemoglobinopathies.15 In contrast to

Mendelian traits, the extent of AH at loci contributing

to common, complex disease is almost unknown. Her-

mani et al.16 have shown in their study the existence of

multiple reproducible epistatic effects that influence

gene expression. However, a recent study has shown

that most of these epistatic effects can be explained by a

third variant in that locus.17 Thus, it is of utmost impor-

tance to detect loci that harbor AH in order to avoid

considering them as epistatic interactions.

Identifying the number of causal variants in complex

traits is difficult because of extensive LD and small effect

sizes. The standard approach to identify AH is to use con-

ditional analysis. In conditional analysis, the independent

association of multiple SNPs is tested after conditioning
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on other SNPs, which are more significant. The condi-

tional analysis lacks power because it requires multiple

variants to have a strong effect and to be independently

significant. When several associated variants are highly

correlated, the conditional analysis will not detect multi-

ple independent associations, but we cannot rule out

the existence of AH. Thus, the extent of AH in complex

traits is unknown. AH could substantially influence our

ability to explain the missing heritability and to identify

causal genes.

We developed and applied a method to quantify

the number of independent causal variants at a

locus responsible for the observed association signals in

GWASs. Our method is incorporated into the CAVIAR

(causal variants identification in associated regions)

software.18 The method is based on the principle of

jointly analyzing association signals (i.e., summary level

Z-scores) and LD structure in order to estimate the num-

ber of causal variants. Our method computes the proba-

bility of having multiple independent causal variants

by summing the probability of all possible sets of SNPs

for being causal. We compared results from our method

to results produced using the standard conditional

method (CM),19 which tests for independent association

of a variant after conditioning on its significantly associ-

ated neighbors. Using simulated datasets, we illustrate

that CAVIAR tends to outperform CM. We observed a

very low false positive rate for CAVIAR to detect loci

with AH even when the true causal variant is not

included in our dataset. We applied CAVIAR to both

eQTL and GWAS datasets. Our results indicate that in

the Genotype-Tissue Expression (GTEx) dataset,20 4%–

23% of eGenes harbor AH. We observed a high correla-

tion between the number of loci with AH and sample

size. In addition, we replicated a significant fraction of

the loci with AH in three other existing eQTL studies.

We also applied CAVIAR to three GWAS datasets: schizo-

phrenia (SCZ),3 high-density lipoprotein (HDL),21 and

major depression disorder (MDD),22 where we observed

23%, 35%, and 50% of loci (respectively) with strong ev-

idence for AH.
Subjects and Methods

Joint Distribution of Observed Statistics in Standard

GWASs
In this section, we provide a brief description of statistical

tests that are performed in GWASs and the joint distribution of

computed marginal statistics. These statistics are used as an input

to CAVIAR. We consider GWASs on a quantitative trait for n indi-

viduals. Let Y be a vector of (n 3 1) where yi indicates phenotypic

value for the ith individual. Moreover, we genotype all the individ-

uals for all them variants. LetG˛f0;1;2gfn3mg be amatrix of geno-

types for all the individuals where gij is the minor allele count for

the ith individual at the jth variant.We standardize the minor allele

count for each variant to havemean of 0 and variance of 1. We use

Xj to indicate the standardized minor allele count for all the indi-
790 The American Journal of Human Genetics 100, 789–802, May 4,
viduals at the jth variant. We have 1TXi ¼ 0 and XT
i Xi ¼ n as the

genotypes are standardized.

We assume that phenotypic values follow the linear model and

the c variant is the causal variant. Thus, we have:

Y ¼ m1þ bcXc þ e

where m is the phenotypic mean value, bc is the effect size of the

variant Xc, 1 is a (n 3 1) vector of ones, and e is a (n 3 1) vector to

model the environment contribution and error in the measure-

ment. In this model, we assume the error is i.i.d. and follows a

normal distribution with mean of zero and variance of s2e I, where

I is a (n 3 n) matrix of identity and se is the variance scalar of e.

From the model explained above, we have Y � Nðm1þ bcXc; s
2
e IÞ.

We use the maximum likelihood to compute the estimated bc and

se which are denoted by bbc and bse. Thus, we have:

L
�
Y j m; bc;s

2
e

� ¼ j 2ps2
e I j �1

2exp

�
� 1

2s2
e

ðY � m1� bcXcÞT

3 ðY � m1� bcXcÞ
�
;

bm ¼ 1

n
1TY; bm � N

�
m;

s2
e

n

�
;

bbc ¼
XT

c y

n
;
ffiffiffi
n

p bbc

se

� N
�
bc

se

ffiffiffi
n

p
;1

�
:

(Equation 1)

The association statistic for SNP c, denoted by Sc, follows a non-

central t-distribution, which is the ratio of a normally distributed

random variable to the square root of an independent chi-square

distributed random variable. As shown in previous works, if the

number of individuals are large enough,18 we can assume the mar-

ginal statistics follows a normal distribution with mean equal to

lc ¼ bbbs ffiffiffi
n

p
and variance of 1:

Sc � tlc ;nzNðlc;1Þ: (Equation 2)

We assume that variant i is correlated with the causal variant

c and the correlation between the two variants is r where

r ¼ 1
nX

T
i Xc. Then, the marginal statistic estimated at variant i is

equal to the marginal statistics for the causal variant that

is scaled by r. We compute the covariance of the marginal statis-

tics between two variants where the LD between the two vari-

ants is r.

Cov

 ffiffiffi
n

p bbi

s
;
ffiffiffi
n

p bbc

s

!
¼ 1

ns2
XT

i VarðYÞXc ¼ r:

We compute the joint distribution of the marginal statistics for

two variants i and j as follows:�
Si
Sj

�
� N

��
li
lj

�
;

�
1 rij
rij 1

��
; (Equation 3)

where lj ¼ rli if the variant i is causal and the variant j is not

causal or li ¼ rlj if the variant j is causal and the variant i is not

causal.
Computing the Likelihood of Causal Configuration
We can extend the joint distribution of marginal statistics for

two variants to a more general case. Assume we have m variants

and the pairwise correlation between each variant is denoted

by S. Let S ¼ ½S1; S2; S3;/Sm�T be the vector of marginal statistics
2017



obtained for each variant. The joint distribution of the marginal

statistics for all the m variants is computed as

ðS j LÞ � N ðSL;SÞ; (Equation 4)

where L is (m 3 1) is a vector of normalized effect sizes and

li is the normalized effect size of the ith variant. We introduce

a parameter C that indicates the causal status of each variant.

Each variant can have two possible causal status. We have

ci ¼ 1 if the ith variant is causal and ci ¼ 0 if the ith variant is

not a causal variant. We define a prior probability on the vector

of effect size L for a given causal status using a multivariate

normal distribution,

ðL j CÞ � N ð0;ScÞ; (Equation 5)

where Sc is a (m 3 m) matrix. The off diagonal elements of

Sc are set to zero. The diagonal elements are set to s or zero.

We set the ith diagonal element to s if the ith variant is causal

and we set the ith diagonal element to zero if the ith variant is

not causal. Thus, the joint distribution follows a multivariate

normal distribution,

ðS j CÞ � N ð0;Sþ SScSÞ : (Equation 6)

Computing the Number of Independent Causal Variants

in a Locus
In this section, we provide the formula to compute the probabil-

ity of having i causal variants in a locus. We compute the proba-

bility of having i causal variants in a locus by summing over all

the possible causal configurations where only i variants are

causal. Let Nc indicates the number of causal variants in a locus.

We have,

PrðNc ¼ i j SÞ ¼
P

j c j ¼iPðS j CÞPðCÞP
C˛CPðS j CÞPðCÞ (Equation 7)

where P(C) is the prior on the causal configuration C, C is the

set of all possible causal configurations, including the configura-

tion of all the variants that are not causal, and jC j indicates the

number of causal variants in the causal configuration C. The

numerator in the above equation considers all possible causal

configurations that have i causal variants, and the denominator

is a normalization factor to ensure that the probability definition

holds.

In this paper, we use a simple prior for a causal status. We

assume that the probability of a variant to be causal is indepen-

dent from other variants and that the probability of a variant

to be causal is g. Thus, we compute the prior probability as

PðC�Þ ¼Qgjci j ð1� gÞ1�jci j . We utilize different values for g as

shown in Figure S2. In our experiment, we set g to 0.001.23–25

It is worth mentioning that, although we use a simple prior

for our model, we can incorporate external information such

as functional data or knowledge from previous studies. As a

result, we can have variant-specific prior where gi indicates

the prior probability for the ith variant to be causal. Thus,

we can extend the prior probability to a more general case,

PðC� jG ¼ ½g1;g2;/g[�Þ ¼
Q
g
jci j
i ð1� giÞ1�jci j .

Reducing the Computational Complexity for Computing

the Likelihood of a Causal Status
Unfortunately, the time complexity to compute the likelihood of a

causal status using Equation 6 is O(m3). In this section, we provide
The Ame
a sped-up process that reduces the time complexity to O(m2k),

where k is the number of causal variants (k is the number of vari-

ants that their causal status is 1). The number of causal variants is

smaller than the total number of variants in a locus ðk � mÞ.
Thus, we can speed up the likelihood computation by a factor

of ðm=kÞ.
According to Equation 6, to compute the likelihood of a causal

status, we must compute the quantity

ð2pÞ�m
2 det j Sþ SScS j �1

2exp

	
� 1

2
STðSþ SScSÞ�1S



(Equation 8)

where detj: j denotes the determinant of a matrix. First, we speed

up the exponential part. Thus, we have:

STðSþ SScSÞ�1S ¼ STS�1ðIm3m þ ScSÞ�1S (Equation 9)

where STS�1 is independent from the causal status and can be

computed once and used many times. As a result, the most time-

consuming part is to compute ðIm3m þ ScSÞ�1. We set elements

of Um3k and Vk3m such that ScS ¼ UV. Let ai indicate the

index of ith causal variant. We set elements of V as follows:

Vði; jÞ ¼ rai ;j. Let Uðai; iÞ ¼ s, and we set the rest of elements of

U to zero. Thus, we have:

ðIm3m þ ScSÞ�1 ¼ ðIm3m þ UVÞ�1 (Equation 10)

We use the Woodbury matrix identity formula to compute the

inverse. We have

ðAþ UEVÞ�1 ¼ A�1 � A�1U
�
E�1 þ VA�1U

��1
VA�1: (Equation 11)

We set A to Im3m and E to Ik3k, so the left side of the Woodbury

matrix identity formula converts to ðIm3m þ ScSÞ�1. From the right

side of the Woodbury matrix identity formula, we have:

ðIm3m þ ScSÞ�1 ¼ ðIm3m þ UVÞ�1 (Equation 12)

¼ I�1
m3m � I�1

m3mU
�
I�1
k3 k þ VI�1

m3mU
��1

VIm3m (Equation 13)

¼ Im3m � UðIk3 k þ VUÞ�1V (Equation 14)

where ðIk3k þ VUÞ�1 requires inverting a (k 3 k) matrix that is

much faster than inverting a (m 3 m) matrix.

Similarly, the naive method to compute detjSþ SScS j requires
O(m3). We utilize the Sylvester’s determinant identity that is as

follows:

det j Im3m þ UV j ¼ det j Ik3 k þ VU j : (Equation 15)

Thus, instead of computing the determinant of a (m 3 m) ma-

trix, we can compute the same value by computing the determi-

nant of a (k 3 k) matrix. We have

det jSþ SScS j ¼ det jS j det j Im3m þ ScS j (Equation 16)

¼ det jS j det j Im3m þ UV j (Equation 17)

¼ det jS j det j Ik3 k þ VU j : (Equation 18)

In the above equation, we can compute detjS j once and use it

for different causal statuses. In addition, the computational

complexity of detjIk3k þ VU j is O(k3). Thus, the time complexity

to compute detjSþ SScS j is O(k3).
rican Journal of Human Genetics 100, 789–802, May 4, 2017 791



Conditional Method
A standard method to detect allelic heterogeneity (AH) is the

conditional method (CM). CM is an interactive process. In each

iteration of CM, we identify the SNP with the most significant as-

sociation statistics. Then, conditioning on that SNP and all SNPs

that are selected in previous steps, we re-compute themarginal sta-

tistics of all remaining variants in the locus. After the first iteration

of CM, we consider a locus to have AH when the re-computed

marginal statistics for at least one of the variants is more signifi-

cant than a predefined threshold. Similarly, we consider a locus

to not have AH when the re-computed marginal statistics of all

variants is not significant. The predefined threshold is referred to

as the stopping threshold for CM. We set the stopping threshold

to be ð0:05=mÞ (stopping threshold is based on p value). Thus,

we perform CM until there is no significant variant in a locus.

This standard method can be applied to either summary statistics

or individual-level data. GCTA-COJO19 performs conditional anal-

ysis while utilizing the summary statistics.

When applying CM to individual-level data, we re-compute the

marginal statistics by performing linear regression where we add

the set of variants that are selected as covariates. We utilize the

LD between the variants, which we obtain from a reference data-

set, when applying CM to summary statistics data. In this case,

we re-compute the marginal statistics for the ith variant as follows:

Znew
i ¼

�
zi � zjrij

�ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2ij

q (Equation 19)

when we have selected the jth variant as causal. Let zi indicate the

marginal statistics for the ith variant and rij the genotype correla-

tions between the ith and jth variants.
Datasets
We obtained the summary statistics for GTEx eQTL dataset (release

v6p, dbGaP: phs000424.v6.p1). We estimated the LD structure

using the available genotypes in the GTEx dataset. We considered

44 tissues and applied our method to all eGenes in order to detect

loci that harbor allelic heterogeneity. eGenes are genes that have at

least one significant eQTL (p value < 10�5). The number of indi-

viduals ranges from 70 to 361 depending on the tissues of interest.

We obtained the summary statistics of blood eQTL for 373 Euro-

pean individuals from the GEUVADIS (Genetic European Varia-

tion in Disease) website. We approximated LD structure from the

1000G European population. We applied our method to the

2,954 eGenes in GEUVADIS to detect AH loci.

We obtained the summary statistics from the MuTHER (Multiple

Tissue Human Expression Resource) website and utilized the skin

and fat (adipose) tissues.MuTHERdataset consist of 856 individuals.

We then approximated LD from the 1000G European population.

We obtained 1,433 eGenes for skin and 2,769 eGenes for adipose.

We used the high-density lipoprotein cholesterol (HDL-C)

trait.21 We considered only the GWAS hits, which are reported

in a previous study. We applied ImpG-Summary26 to impute the

summary statistics with 1000G as the reference panel. We used

the 1000G European population to estimate the LD. HDL-C con-

sists of around 100,000 individuals. We used the 37 loci that is re-

ported in previous study,21 which have at least one significant

variant (genome-wide significance level of 5 3 10�8), as an input

to CAVIAR. Following common protocol in fine-mapping

methods, we apply CAVIAR to loci that have at least one statisti-

cally significant variant.
792 The American Journal of Human Genetics 100, 789–802, May 4,
We analyzed the recent GWASs on major depression disorder

(MDD)22 and schizophrenia.3 Themajor depression disorder study

has 2 and the schizophrenia study has 108 loci identified to

contain at least one significant variant. We utilized the summary

statistics provided by each study and approximated the LD using

the 1000G populations. SCZ consists of 36,989 case subjects and

113,075 control subjects, and MDD consists of 5,303 case subjects

and 5,337 control subjects.

Data Simulation
Simulating Genotypes

We first simulated genotypes using HAPGEN2,27 where we utilized

the 1000G CEU population as initial reference panels. We simu-

lated 1,000 individuals. We focus on the chromosome 1 and the

GWAS variants that are obtained from the NHGRI catalog.28 We

filter out monomorphic SNPs and SNPs with low minor alley fre-

quency (MAF % 0.01).

Simulated Summary Statistics with No Epistasis Interaction

We simulated the summary statistics using LD structure and effect

size for causal variants. It is known that summary statistics follows

a MVN distribution ðS � NðSL;SÞÞ. The mean of statistics is SL

and the variance of statistics is S. As mentioned above, S is the

LD structure and L ¼ ½l1; l2; ::lm� is the true effect size used to

simulate data. For variants that are non-causal, we set the effect

size to zero. This process of simulating summary statistics is used

in our previous studies.18,29–33 Effect size for the causal variants

is set to obtain the desired power. In our simulated datasets, effect

size is computed for the genome-wide significant level ða ¼ 10�8Þ.
We use binary search to compute the value of the effect size for a

desired statistical power. The statistical power is defined as

Power ¼ 1� 1ffiffiffiffiffiffi
2p

p
Z F�1ð1�a=2Þþli

F�1ða=2Þþli

e�
1
2
x2dx

¼ F
�
F�1ða=2Þ þ li

�þ 1� F
�
F�1ð1� a=2Þ þ li

�
where a is the significant threshold. Moreover, F and F�1 denote

the cumulative density function (CDF) and inverse of CDF for the

standard normal distribution.

We use false positive (FP) and true positive (TP) as metrics to

compare different methods. FP indicates the fraction of loci that

harbor one causal variant and are incorrectly detected as loci

that harbor AH. TP indicates the fraction of loci that harbor AH

and are correctly detected.
Simulating Summary Statistics with Epistasis Interaction

We simulated the genotypes similar to the case where we have no

epistasis interaction, which is mentioned above. Then, we simu-

lated phenotypes using the following model:

Y ¼ xixjbij þ e; (Equation 20)

where xi and xj indicate the standardized genotypes for ith and jth

variants, respectively. Moreover, bij is the epistasis interaction

effect size. We set bij such that we obtained the desired heritability

for the simulated phenotype. Then, we computed the marginal

statistics for each variant utilizing the linear regression single

variant testing.
Results

Overview of Identifying Allelic Heterogeneity

Our method utilizes the shape of marginal statistics (statis-

tics obtained fromGWASs such as z-score) and the patterns
2017



A B

C

Figure 1. Overview of CAVIAR for Detecting Allelic Heterogeneity Regions
(A and B) The marginal statistics for a locus where we have implanted one causal variant. In (A), SNP33 is causal and in (B), SNP23 is
causal.
(C) The same locus where both SNP23 and SNP33 are causal.
In these figures, the x axis is the negative logarithm of the p values for each locus to indicate the strength of the marginal statistics. The
gray triangle below each figure indicates the LD pattern. Each square indicates the correlation between two variants, and the magnitude
of the correlation is shown by the color intensity of the square. The darker the square, the higher the correlation between two variants.
of LD to detect whether or not there is evidence for AH.

In Figures 1A and 1B, we illustrate a simple example with

no AH. However, we can guess that the region shown in

Figure 1C harbors AH; here, we observe two high indepen-

dent peaks in the region. Unfortunately, detecting AH is

less intuitive in regions that are more complicated.

The input to our method is the LD structure of the locus

and the marginal statistics for each variant in the locus.

The LD between each pair of variants is computed from

genotyped data or is approximated from HapMap or

1000G data.34,35 We use the fact that the joint distribution

of the marginal statistics follows a multivariate normal dis-

tribution (MVN)18,30,36,37 to compute the posterior proba-

bility of each subset of variants being causal, as described

below. Then, we compute the probability of having i inde-

pendent causal variants in a locus by summing the proba-

bility of all possible subsets of size i (sets that have i causal

variants). We consider a locus to be AH when the probabil-

ity of having more than one independent causal variant is

more than 80%.

We would like to emphasize that using only summary

statistics and LD information is insufficient for differenti-
The Ame
ating tightly linked variants. For example, if two variants

are in perfect pairwise LD (correlation of 1), it is impossible

to detect with just the summary statistics whether only

one of the variants is causal or both are causal. Therefore,

our estimates are just a lower bound on the amount of

loci with AH for a given complex trait.

CAVIAR Is More Accurate than Existing Conditional

Method

In order to assess the performance of our method, we

generated simulated datasets. We used HAPGEN2,27 a

widely used software, to generate a case-control study us-

ing the European population obtained from the 1000G.

Then, we implanted one or two causal variants in a re-

gion and generated marginal statistics for each variant

(described in the Subjects and Methods). We applied

CAVIAR to all the simulated datasets to detect loci that har-

bor AH. We generated two datasets. In the first dataset, we

set power to detect the causal variants at 10%, 30%, 50%,

or 70%. In the second dataset, we set power to detect the

causal variants at 20%, 40%, 60%, or 80%. We compared

our results with the conditional method (CM).We use false
rican Journal of Human Genetics 100, 789–802, May 4, 2017 793
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Figure 2. ROC Curve for CAVIAR and CM
We implant one causal variant to compute the false positive (FP) rate. FP indicates loci that harbor one causal variant; however, these loci
are detected as AH. We implant two causal variants to compute the true positive (TP) rate. TP indicates loci that harbor AH and are
detected correctly. We range the effect size such that the power at the causal variant is 20%, 40%, 60%, and 80% at the genome signif-
icant level 10�8. We obtain these results from simulated data with no epistasis interaction. We simulated data using 1,000 individuals
and set g to 0.001.
positive (FP) and true positive (TP) as metrics for compari-

son. FP indicates the fraction of loci with one causal

variant that are incorrectly detected as loci with AH. TP in-

dicates the fraction of loci with AH that are correctly de-

tected. We found that our method has higher TP compared

to CM for the same FP rate. Figures 2 and S1 illustrate the

ROC curves for the first and second simulated datasets.

In all these experiments, we set g to 0.001.

It is possible that the most significant variant is not

causal.18,30 In some cases, there may exist more than one

causal variant in a locus; however, a variant that is in tight

LD with the two causal variants tends to have higher mar-

ginal statistics.18 This phenomenon is recently known as

‘‘ghost effect.’’38 In fact, in the above simulation when

we simulate more than one causal variant in a locus, we
794 The American Journal of Human Genetics 100, 789–802, May 4,
observed a ghost effect in few loci. However, the chance

of a ghost effect occurring in simulated data is small.

Thus, we extend our simulation to address this issue. We

simulated data where we have more than one causal

variant and generated cases only where a ghost effect oc-

curs in a locus. We simulated cases where the power to

detect the first causal variant is 50% and the power to

detect the second causal variant ranges between 10%,

30%, 50%, and 70%. We observed that CAVIAR tends to

have high recall rate even when the locus has ghost effect

(see Table S1).

CAVIAR running time depends on the number of vari-

ants (m) in a locus and themaximumnumber of causal var-

iants allowed. In our simulation, we set the maximum

number of causal variants as six. In a locus with 50 variants
2017
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Figure 3. CAVIAR Has Low FP Even When the True Causal
Variant Is Not Collected
Thus, most loci that are detected by CAVIAR to harbor AH aremost
probably true. x axis indicates the prior probability of causal
variant (g). We set g to 0.01, 0.005, 0.001, 0.0005, 0.0001,
0.00005, 0.000001, and 0.000005.
where the maximum number of causal variants is 6,

CAVIAR takes 26 min to finish. CAVIAR runs in less than

3 min for loci with 50 variants where the maximum num-

ber of causal variants is set to 5 or fewer (see Table S2).

These results are obtained by running CAVIAR on a

MacBook Air with 1.4 Ghz Intel Core i5 CPU. CAVIAR

memory footprint is less than 1 Gb.

CAVIAR Has a Low False Positive even When the Causal

Variant Is Not Included

In the previous section, we show CAVIAR has an extremely

low FP and a high TP rate in detecting loci with AH. In the

simulated data, the causal variant was included. However,

in real datasets we cannot guarantee that information will

exist for all the causal variants. One possible reason for de-

tecting a locus as AH could be that the actual causal variant

is not included or tagged in the data. In this section, we

show that loci detected by CAVIAR with AH are rarely due

to the fact that the actual causal variant is not included.

We simulate datasets where we implant one causal

variant in a locus and generate marginal statistics in a

method similar to the previous section. Next, we remove

the causal variant from our analysis and use the remaining

variants in the locus as an input to CAVIAR. We observe

the FP is extremely low (FP < 0.015), even when the causal

variant was not included in the analyzed data (see Figure 3).

Our conclusion is that CAVIAR may fail to detect AH in

some loci, but a very small proportion of loci where we de-

tected AH are incorrect.
The Ame
SettingCAVIARParameters toDetect Loci thatHarborAH

There are two main input parameters for CAVIAR,

excluding the summary statistics of a locus: the prior prob-

ability that a variant is causal (g) and AH posterior proba-

bility (AHPP) threshold. We consider a locus to harbor

AH when the summation of posterior probability for two

and more causal variants exceed AHPP threshold. To select

g and AHPP, we simulated data as mentioned above for

different ranges of causal variants. We simulated datasets

where the power to detect the causal variants is 10%,

30%, 50%, or 70%. In all these simulations, we implanted

one or two causal variants and computed the FP and TP.

The results of these experiments are shown in Figures S2–

S11. We observed that to obtain extremely low FP and

high TP, the best range for g is 0.01 to 0.0001, where

AHPP is set to 0.7 to 0.8.We set the g to 0.001 from our pre-

vious results in fine-mapping.18,30 Thus, we can apply

CAVIAR to perform fine-mapping as well as to detect the

loci that harbor AH. Furthermore, to be extremely strin-

gent, we set AHPP to 0.8.

In addition, when we set AHPP to 0.8, we vary g among

0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.000001,

and 0.000005. We observed that for different values of g,

CAVIAR tends to have extremely low FP (FP % 0.001) and

high TP. The result for this experiment, when the power

to detect the causal variants is 50%, is shown in Figure S12.

CAVIAR Is Robust to Out-of-Sample LD Structure

The LD structure can be computed from raw genotypes

when they are available (in-sample LD). However, in most

datasets, we do not have access to the raw genotypes.

Thus, we approximate the LD utilizing the 1000G34,35 or

HapMap39 datasets. Estimating the LD structure from a

reference panel is known as out-of-sample LD.

In this experiment, we want to investigate the effect of

using misspecified LD structures. We simulated the mar-

ginal statistics by utilizing the LD structure (LDmatrix) ob-

tained from HAPGEN2. Next, we simulate the marginal

statistics and generate a misspecified LD by adding stan-

dard Gaussian noise, Nð0; tÞ, to each element of the orig-

inal LD matrix. We use the simulated marginal statistics

and the misspecified LD as an input to CAVIAR. We simu-

lated 10,000 loci with one causal variant to compute the

FP, and we simulated 10,000 loci with two causal variants

to measure TP. We vary the variance of the Gaussian noise

(t) between 0.01, 0.02, 0.05, 0.1, 0.2, 0.25, and 0.3. In this

experiment, we observed low FP and high TP for CAVIAR

results. The result for this experiment is shown in

Figure S13. It is worth mentioning that the probability of

observing a t greater than 0.1 is extremely low.

CAVIAR Accurately Detects the Number of Causal

Variants in a Locus when All the Variants Are Collected

In the previous sections, we have shown that CAVIAR is ac-

curate in detecting loci that harbor AH. An additional

benefit of our method is that it can accurately detect the

number of causal variants in a locus. We simulated the
rican Journal of Human Genetics 100, 789–802, May 4, 2017 795



Power

A B C

0.2 0.3 0.4 0.5 0.6 0.7 0.8

1 Causal

R
ec

al
l R

at
e

2 Causals CM
CAVIAR

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 Causals

Power
0.2 0.3 0.4 0.5 0.6 0.7 0.8

Power
0.2 0.3 0.4 0.5 0.6 0.7 0.80.

0
0.

2
0.

4
0.

6
0.

8
1.

0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0
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The x axis is the power of causal variants,
and the y axis is the accuracy to detect
the number of causal variants in a locus.
We implanted one, two, and three causal
variants. We compute the recall rate as
the fraction of simulations where the
number of causal variants in a locus is
predicted correctly. Recall rate of each
method for different number of causal var-
iants: (A) one causal variant, (B) two causal
variants, and (C) three causal variants. We
vary the statistical power to detect the
causal variant among 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, and 0.8.
phenotypes similar to the previous sections. In these

experiments, we implanted one, two, and three causal var-

iants in a locus. We set the effect size of the causal variant

such that the statistical power to detect all causal is 20%,

30%, 40%, 50%, 60%, 70%, and 80%. In these experi-

ments, power is the total probability to detect all causal

variants. In this case, we have k causal variants, and we

want the statistical power to be p. We set the effect size

of k causal variants such that the summation of the power

for all causal variants is equal to p. We use 1,000 individ-

uals in our experiments.

As CAVIAR provides probability values for different

number of causal variants, we consider a locus to have i in-

dependent causal variants where the probability of having
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i causal variants is the maximum probability for different

numbers of causal variants. We allow up to six causal vari-

ants when applying CAVIAR. In the case of CM, the num-

ber of causal variants in a locus is equivalent to the number

of conditional steps that we perform until the p value of all

variants is higher than ða=mÞ (Bonferroni correction),

where m is the total number of variants in a locus and

a is 0.05. We compute the recall rate as the fraction of sim-

ulations where amethod correctly predicted the number of

causal variants in a locus. In Figure 4, we plot the recall rate

of CAVIAR and CM in detecting the number of causal var-

iants. We observe that, in comparison to CM, CAVIAR has

a much higher recall rate in detecting the true number of

causal variants in a locus.
1500 2500

1500 2500

1500 2500

Sample Size

Effect size 0.06

Effect size 0.09

Effect size 0.2

Figure 5. CAVIAR Distinguishes between
Epistatic Interaction and Allelic Heteroge-
neity
The x axis is the sample size that we vary
between 500, 1,000, 1,500, 2,000, 2,500,
and 3,000 individuals. The y axis is the false
positive (FP) rate. We simulated datasets
where we have epistatic interaction and
compute the FP as the number of cases
where CAVIAR incorrectly detects these
loci to harbor AH. Shown are the FP
for different effect sizes of the epistatic
interaction.
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(A) Linear relationship between the
amount of AH and sample size. Each red
circle indicates a different type of tissue
from the GTEx dataset. The size of each
red circle is proportional to the number of
genes that harbor a significant eQTL
(eGenes).
(B–D) Significant overlap between AH
estimations for different eQTL datasets,
shown for (B) blood (p ¼ 7.9 3 10�97),
(C) skin (p ¼ 4.9 3 10�63), and (D) adipose
(p ¼ 1.1 3 10�69) tissue. p values are
computed using a hypergeometric test that
is implemented in the SuperExactTest43

software.
CAVIAR Distinguishes between Epistatic Interaction and

Allelic Heterogeneity

It is possible to incorrectly detect a locus with AH due

to the epistatic interaction in that locus. In this section,

we utilize simulated data to illustrate that CAVIAR rarely

detects AH in loci where the true genetics architecture

is epistasis. We simulated different datasets where we

implanted epistatic interactions between two randomly

selected variants in a locus. Then, we generated simulated

phenotypes using the linear additive model (described in

the Subjects andMethods).We vary the number of individ-

uals in each dataset among 500, 1,000, 1,500, 2,000,

2,500, and 3,000. In addition, for each dataset, we vary

the effect size among 0.01, 0.02, 0.03, 0.04, 0.05, 0.06,

0.07, 0.08, 0.09, 0.1, and 0.2. For each simulated dataset,

we simulated 5,000 different marginal statistics. CAVIAR

has an extremely low false positive rate in these experi-

ments (see Figure 5). In Figure 5, we show the results for

the effect size of 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1,

and 0.2. The results for effect size of 0.01, 0.02, and 0.03

are not shown because the FP is zero for these values. As

a result, CAVIAR detects only a small fraction of epistatic

interactions as AH. It is worthmentioning that the amount

of epistatic interactions for different traits is very low.

Thus, these results indicate that the loci that harbor AH

and are detected by CAVIAR are not artifacts of epistatic

interaction.

Prevalence of Allelic Heterogeneity in eQTL Datasets

We used four datasets to examine the extent of AH in eQTL

datasets (GTEx,20 GEUVADIS,40 MuTHER,41 and Wester
The American Journal of Human
et al.42). In the GTEx dataset,20 we

have access to 44 tissues. In each tissue,

we have around 22,000 genes (probes).

We obtained the marginal statistics

and genotypes from the GTEx proj-

ect20 for each gene in all tissues.

Then, we filtered out genes lacking at

least one significant SNP. We set the

significant cut-off threshold to a
p value of 10�5. Genes that have a significant cis-eQTL

SNP are known as eGenes.We applied ourmethod to detect

AH loci only to eGenes. We found that 4%–23% of the

eGenes show evidence for AH (with probability >80%)

(Figure 6, Table 1). In addition, we applied the CM to the

same set of eGenes. We observed that 50%–80% of loci de-

tected by the CM to have AHwere also detected by CAVIAR

(see Table 1). Furthermore, we observed that CM detects

13.6%–44% of loci detected by CAVIAR as AH.

The number of eGenes detected in a tissue depends on

the statistical power to detect a significant variant associ-

ated with the gene expression. The statistical power is

highly correlated to the number of samples for that tissue.

We hypothesized that theremight also exist correlation be-

tween the sample size and the number of loci with AH.

Indeed, we observed that the proportion of eGenes with

AH for each tissue is in a linear relationship with the sam-

ple size, as shown in Figure 6A (R2¼ 0.85, p¼ 2.23 10�16).

This result indicates that statistical power prevents the

identification of AH at other loci.

To check the reproducibility of the AH detection, we

compared the results from GTEx blood data with results

from two other blood eQTL studies: GEUVADIS40 and

Wester et al.42 We tested the overlap between genes with

AH for skin and adipose tissues based on the GTEx20 and

MuTHER41 datasets. We only considered eGenes that are

common between the studies. In all comparisons, we

observed a high reproducibility rate for the detection of

AH in blood (Figure 6B, p ¼ 7.9 3 10�97), skin (Figure 6C,

p ¼ 4.9 3 10�63), and adipose (Figure 6D, p ¼ 1.1 3 10�69)

tissues. We compute the significant overlap between AH
Genetics 100, 789–802, May 4, 2017 797



Table 1. List of 44 Tissues in GTEx

Tissue #Individual #eGene #AH (CAVIAR) #AH/#eGene #AH (CM)
#Overlap between
(%) CAVIAR & CM

Vagina 79 1,535 63 0.0410 26 13 (50.0%)

Brain, anterior cingulate cortex BA24 72 1,745 73 0.0418 27 10 (42.4%)

Small intestine terminal ileum 77 1,978 87 0.0439 32 17 (53.1%)

Brain, hypothalamus 81 1,750 81 0.0462 31 17(54.8%)

Uterus 70 1,504 71 0.0472 33 14(42.4%)

Brain, putamen basal ganglia 82 2,144 102 0.0475 52 24 (46.1%)

Brain, hippocampus 82 1,713 82 0.0478 35 13 (37.1%)

Liver 97 2,148 120 0.0558 40 18 (45.0%)

Prostate 87 2,088 120 0.0574 31 21 (67.7%)

Brain, nucleus accumbens basal ganglia 93 2,596 162 0.0624 70 41 (58.5%)

Brain, frontal cortex BA9 92 2,547 159 0.0624 70 40 (57.1%)

Ovary 85 1,776 112 0.0630 58 30 (51.7%)

Pituitary 87 2,708 181 0.0668 71 39 (54.9%)

Brain, cerebellar hemisphere 89 3,455 241 0.0697 115 59 (51.3%)

Brain, caudate basal ganglia 100 2,939 206 0.0700 95 54 (56.8%)

Spleen 89 3,141 224 0.0713 107 59 (55.1%)

Brain, cortex 96 3,009 236 0.0784 91 51 (56.0%)

Artery coronary 124 2,897 230 0.0793 119 65 (54.6%)

Colon sigmoid 124 3,247 282 0.0868 130 87 (66.4%)

Cells, EBV transformed lymphocytes 114 3,280 287 0.0875 126 81 (64.2%)

Esophagus, gastresophageal junction 127 3,231 294 0.0909 138 100 (72.4%)

Brain, cerebellum 103 4,278 393 0.0918 181 119 (65.7%)

Adrenal gland 126 3,636 358 0.0984 189 110 (58.2%)

Stomach 170 4,007 433 0.1080 146 103 (70.5%)

Pancreas 149 4,372 526 0.1203 235 153 (65.1%)

Colon transverse 124 4,771 576 0.1207 279 203 (72.7%)

Heart, atrial appendage 159 4,174 522 0.1250 192 125 (65.1%)

Breast mammary tissue 183 4,600 590 0.1282 246 178 (72.3%)

Adipose visceral omentum 185 4,611 611 0.1325 296 223 (75.3%)

Heart, left ventricle 190 4,526 627 0.1385 278 205 (73.7%)

Testis 157 8,333 1,220 0.1464 349 257 (73.6%)

Artery aorta 197 5,850 898 0.1535 435 338 (77.7%)

Skin, not sun exposed, suprapubic 197 5,371 835 0.1554 180 138 (76.6%)

Esophagus muscularis 218 6,431 1,153 0.1792 515 411 (79.8%)

Esophagus mucosa 241 6,849 1,228 0.1792 605 480 (79.3%)

Lung 278 7,026 1,356 0.1929 662 537 (81.1%)

Adipose, subcutaneous 298 7,806 1,669 0.2138 870 714 (82.6%)

Muscle, skeletal 361 6,687 1,452 0.2171 715 614 (85.8%)

Whole blood 338 6,822 1,489 0.2182 792 656 (82.8%)

Skin, sun exposed, lower leg 302 8,093 1,780 0.2199 549 467 (85.0%)

(Continued on next page)
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Table 1. Continued

Tissue #Individual #eGene #AH (CAVIAR) #AH/#eGene #AH (CM)
#Overlap between
(%) CAVIAR & CM

Artery, tibial 285 7,443 1,647 0.2212 796 653 (82.0%)

Cells, transformed fibroblasts 272 7,915 1,841 0.2325 965 798 (82.6%)

Thyroid 278 8,931 2,088 0.2337 932 786 (84.3%)

Nerve tibial 256 8,429 2,012 0.2386 1,075 881 (81.9%)

Total 7,014 28,717

Tissues are sorted based on the number of samples. #Individual indicates the number of samples for each tissue. #AH (CAVIAR) is the number of loci detected by
CAVIAR that harbor AH. #AH(CAVIAR)/#eGene is the fraction of eGenes that are detected to harbor AH. #AH(CM) is the number of loci detected by the conditional
method (CM) to harbor AH.
estimations for different eQTL datasets. We compute the

p values using a hypergeometric test that is implemented

in the SuperExactTest43 software. In addition, Jansen

et al.44 recently performed CM on a blood eQTL dataset to

detect AH genes. We computed the overlap for AH loci de-

tected by CAVIAR in GTEx blood tissue. We observed that

492 AH loci are common between CAVIAR and the Jansen

et al.44 results. CAVIAR detected 1,489 AH loci and Jansen

et al.44 detected 2,496 AH loci (see Figure S14).
Prevalence of Allelic Heterogeneity in GWAS Datasets

To measure the level of AH in a human quantitative trait,

we applied our method to a GWAS of high-density lipopro-

tein (HDL).21 We obtained the summary statistics available

for HDL from the ImpG-Summary26 webpage. There are

37 loci that are reported as significant for HDL.21 Out of

37 loci, 13 (35%) showed evidence for AH with probability

R80% (see Table S3). We also studied the results of GWASs

focused on two psychiatric diseases: major depression dis-

order (MDD)22 and schizophrenia (SCZ).3 For MDD, we

found evidence for AH at one of two loci. For SCZ, we iden-

tified 25 loci out of 108 (23%) with high probability of AH

(see Table S4). One example of AH in SCZ is the locus on

chromosome 18 that includes TCF4 (MIM: 602272)

(Figure 7A). The locus contains multiple associated SNPs

that are distributed in different LD blocks (Figure 7B). Ac-

cording to our analysis, there are three or more causal var-

iants in this locus with high probability (Figure 7C) (for

similar results in other loci, see Figures S15–S51 for HDL

and Figures S52–S179 for SCZ).
Discussion

We have proposed a novel probabilistic method to detect

loci with AH. Our results show that our method is more

accurate than the standard conditional method (CM).

One of the main benefits of our method is that it requires

only summary statistics. Summary statistics of a GWAS or

eQTL study are widely available, so our method is appli-

cable to most existing datasets. We have shown that AH

is widespread and more common than previously esti-

mated in complex traits, both in GWASs and eQTL studies.
The Ame
Since ourmethod is influenced by statistical power and un-

certainty induced by LD, the proportions of loci with AH

detected in this study are just a lower bound on the true

amount of AH. Thus, our study suggests that many, and

maybe even most, loci are affected by AH.

Our results highlight the importance of accounting for

the presence of multiple causal variants when character-

izing the mechanism of genetic association in complex

traits. Falling to account for AH can reduce the power to

detect true causal variants and can explain the limited suc-

cess of finemapping of GWASs. It is worthmentioning that

methods for fine-mapping38,45,46 exist that allow for more

than one causal variant in a locus; however, these methods

require access to rawgenotypes andphenotypes.Oneof the

advantages of CAVIAR is that it requires only the existing

summary statistics (e.g., marginal statistics per-SNP ob-

tained from GWASs). Thus, methods such as CAVIAR are

applicable to most GWAS datasets. Similarly, attempts to

explain GWASs using eQTL data should be more successful

with methods that assume some loci may include multiple

causative variants (e.g., eCAVIAR31 and RTC47).

One of the limitations of our method is that we assume

that the observed marginal statistics are corrected for the

population using PCA-based methods. Recently, linear

mixed models (LMMs)48–53 have become a popular correc-

tion for population structures that have cryptic relation-

ships. Thus, the current version of our method is not

applicable to summary statistics that have been corrected

for population structure using LMM. However, we have

shown in our previous works30,36 that the same statistical

model can be extended to incorporate the summary statis-

tics that have been corrected for population structure

using LMM. Unfortunately, in this case, the study’s raw

genotypes and phenotypes should be available in order

to perform the desired analysis.

In summary, we have developed a method to detect the

presence of AH in loci of complex traits. We show that,

while the method may fail to detect AH in some loci, the

false positive rate is very low. Thus, when our method de-

tects a locus to have AHwith a high probability, the predic-

tion is very reliable. Since the amount of AHdetected in our

study is just a lower bound on the number of loci with AH,

we suggest that AH is widespread in complex traits.
rican Journal of Human Genetics 100, 789–802, May 4, 2017 799
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Figure 7. Allelic Heterogeneity in the TCF4 Locus Associated with Schizophrenia
(A) Manhattan plot obtained from Ricopili consists of all the variants (7,193 variants) in a 1 Mbp window centered on the most signif-
icant SNP in the locus (rs9636107). We use PGC-SCZ52-may13 version of the data. This plot indicates multiple significant variants that
are not in tight LD with the peak variant.
(B) LD plot of the 50 most significant SNPs showing several distinct LD blocks.
(C) Histogram for the probability of having different number of causal variants.
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impg/

LocusZoom, http://locuszoom.sph.umich.edu/locuszoom/

MDD summary statistics, https://www.med.unc.edu/pgc/files/

resultfiles/converge.MDD.summary_stats.2Sep2015.tbl.gz

MuTHER, http://www.muther.ac.uk/Data.html

OMIM, http://www.omim.org/

Ricopili, http://data.broadinstitute.org/mpg/ricopili

SCZsummary,https://www.med.unc.edu/pgc/files/resultfiles/scz2.

snp.results.txt.gz

SuperExactTest, https://cran.r-project.org/web/packages/

SuperExactTest/index.html
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Bilow, M., Sul, J.H., Sankararaman, S., Pasaniuc, B., and Eskin,

E. (2016). Colocalization of GWAS and eQTL signals detects

target genes. Am. J. Hum. Genet. 99, 1245–1260.

32. Kostem, E., Lozano, J.A., and Eskin, E. (2011). Increasingpower

of genome-wide association studies by collecting additional

single-nucleotide polymorphisms. Genetics 188, 449–460.

33. Zaitlen,N., Pasxaniuc, B.,Gur, T., Ziv, E., andHalperin, E. (2010).

Leveraging genetic variability across populations for the iden-

tification of causal variants. Am. J. Hum. Genet. 86, 23–33.

34. Abecasis, G.R., Altshuler, D., Auton, A., Brooks, L.D., Durbin,

R.M., Gibbs, R.A., Hurles, M.E., McVean, G.A.; and 1000 Ge-

nomes Project Consortium (2010). A map of human genome

variation from population-scale sequencing. Nature 467,

1061–1073.

35. Abecasis, G.R., Auton, A., Brooks, L.D., DePristo, M.A., Dur-

bin, R.M., Handsaker, R.E., Kang, H.M., Marth, G.T., McVean,

G.A.; and 1000 Genomes Project Consortium (2012). An inte-

grated map of genetic variation from 1,092 human genomes.

Nature 491, 56–65.

36. Joo, J.W.J., Hormozdiari, F., Han, B., and Eskin, E. (2016).

Multiple testing correction in linear mixed models. Genome

Biol. 17, 62.

37. Han, B., and Eskin, E. (2012). Interpreting meta-analyses of

genome-wide association studies. PLoS Genet. 8, e1002555.

38. Fang, M., and Georges, M. (2016). Bayesfm: a software pro-

gram to fine-map multiple causative variants in gwas identi-

fied risk loci. bioRxiv. http://dx.doi.org/10.1101/067801.

39. Altshuler, D.M., Gibbs, R.A., Peltonen, L., Altshuler, D.M.,

Gibbs, R.A., Peltonen, L., Dermitzakis, E., Schaffner, S.F., Yu,
802 The American Journal of Human Genetics 100, 789–802, May 4,
F., Peltonen, L., et al.; International HapMap 3 Consortium

(2010). Integrating common and rare genetic variation in

diverse human populations. Nature 467, 52–58.

40. Lappalainen, T., Sammeth, M., Friedländer, M.R., ’t Hoen,

P.A.C., Monlong, J., Rivas, M.A., Gonzàlez-Porta, M., Kurba-
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