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Protein secondary structure discrimination is crucial for understanding their biological
function. It is not generally possible to invert spectroscopic data to yield the structure.
We present a machine learning protocol which uses two-dimensional UV (2DUV) spec-
tra as pattern recognition descriptors, aiming at automated protein secondary structure
determination from spectroscopic features. Accurate secondary structure recognition is
obtained for homologous (97%) and nonhomologous (91%) protein segments, ran-
domly selected from simulated model datasets. The advantage of 2DUV descriptors
over one-dimensional linear absorption and circular dichroism spectra lies in the cross-
peak information that reflects interactions between local regions of the protein. Thanks
to their ultrafast (∼200 fs) nature, 2DUV measurements can be used in the future to
probe conformational variations in the course of protein dynamics.

ultrafast spectroscopy j biochemistry j physical chemistry j theoretical chemistry

Protein structures hold the key to deciphering their versatile biological functions (1).
Tremendous experimental progress has been made in protein structure determination
(2–4). Artificial intelligence has shown enormous potential for determining protein
structures. Very recently, DeepMind has successfully predicted protein three-
dimensional structure from sequences of amino acids using a machine learning (ML)
model (5, 6). These approaches provide limited information about how the conforma-
tions of a protein vary in the course of many important dynamic processes, including
matter transport across membrane proteins, ligand binding, and protein folding. Since
dynamical characteristics of proteins ultimately shape their function (7), it is essential
to incorporate protein dynamics information into the ML training in order to identify
the relevant conformations at ambient conditions.
Optical signals provide a window into a variety of response properties of matter.

Combined spatial and temporal resolved techniques provide a versatile set of tools for
characterizing protein structures and dynamics in ambient conditions (8, 9). The inter-
pretation of protein spectra based on protein structure and quantum chemistry calcula-
tions is a formidable task, requiring the solution of dynamic structures from sizable
spectra dataset. Developing ML protocols for connecting protein spectra and confor-
mations is highly desirable. There is a growing effort in applying data-driven ML
approaches toward automated connection of molecular spectra to structures (10–13).
This has motivated us to pursue ML protocols for predicting infrared and UV-visible
(UV-vis) absorption spectra of proteins from their structures (14–16). Structure inver-
sion (i.e., direct retrieval of protein structures from spectra) is more challenging and
not well developed. Only limited information about matter is projected onto the sub-
space spanned by the transition energies and intensities available. In conventional spec-
troscopy measurements, much of the rich information regarding the high-dimensional
configuration space of matter is not accessible. Therefore, determining three-
dimensional structure of molecules from one-dimensional (1D) spectroscopic features
(e.g., peaks and line shapes) is essentially a dimension augmentation process. Conven-
tionally, accumulative chemistry knowledge and theoretical simulations are required to
reveal protein structures from spectra. It is hard to connect the complexity of protein
structure and dynamics using 1D spectra signals as descriptors in ML. Descriptors con-
taining multidimensional information about protein structures (both global and local)
are required to accomplish this task.
Two-dimensional (2D) four-wave mixing spectroscopies, which measure the coupling

between optical transitions in the system of interest, can provide much more detailed
information about molecular structures and dynamics than their 1D counterparts (17).
Because 2D spectroscopies probe time-resolved responses of both global and local struc-
tures of the system, they are widely used to accomplish this task (18–22). The 2D spec-
troscopies project the response information onto a 2D feature space and can reach higher
resolution than 1D signals. The rich information carried by 2D spectra makes the
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automated interpretation of signals very challenging. Since ML is
most suitable for processing high-dimensional, nonlinear datasets
with clear underlying principles, developing an effective ML
model that can allow secondary structure recognition from 2D
spectra would be a key step toward protein structure inversion
from spectra.

Results and Discussion

We used three datasets (Fig. 1A): 1) the original set (I), with seg-
ments with secondary structures of α-helix, β-sheet, and others
(including 310-helix, π-helix, bend and coil) harvested from
molecular dynamics (MD) trajectories of natural proteins bovine
deoxyhemoglobin (BH; PDB ID: 1HDA) (23) and lentil lectin
(LL; PDB ID: 1LES) (24); 2) the homologous set (II), with seg-
ments from human deoxyhemoglobin (PDB ID: 1A3N, homol-
ogous to BH) (25) and pea lectin (PDB ID: 1BQP, homologous
to LL) (26); and 3) the nonhomologous set (III), with segments
taken from 498 other proteins (PDB IDs listed in SI Appendix,
Table S4). The linear absorption (LA), circular dichroism (CD),
and 2DUV spectra of each segment were simulated by using an
exciton model in the SPECTRON code (27). The three datasets
contain 147,993 structure-spectra samples in total. Details of the
dataset construction are described in Materials and Methods and
SI Appendix.
Because 1D and 2D spectra provide curves and grayscale

images, respectively, of distributions of response intensities in
the frequency domain, we applied convolutional neural net-
works (CNNs)—a well-established pattern recognition ML
technique—to process these electronic spectra as sequences and
images, respectively, based on which the structural correlations

of these spectral patterns are examined (SI Appendix, Figs. S1
and S2). Using 2DUV spectra as input, the average secondary
structure discrimination accuracy attained 95.1, 97.0, and
91.3% for protein segments extracted from the same protein
(dataset I), from homologous protein (dataset II), and from
nonhomologous protein (dataset III), respectively. 2DUV
shows significant advantages for achieving our goals compared
to 1D LA and CD spectra. This superior performance can be
ascribed to the exciton coupling information contained in the
cross-peaks of 2DUV spectra. This information is combined
with excitation energies and intensities and convoluted into 1D
line shapes in LA and CD. Gradient-weighted class activation
mapping (grad-CAM) analysis confirms the importance of the
cross-peak patterns in 2DUV for secondary structure discrimi-
nation (28).

As shown in Fig. 2A, the 1D LA spectra (green lines) of pep-
tide segments with different secondary structures are similar,
with slight differences in peak widths and positions. This spec-
tral similarity can be attributed to the congestion by signals
from multiple chromophores, making the 1D spectra poorly
resolved for structure discrimination. CD spectra are more
informative than LA. Due to its sensitivity to exciton interac-
tion patterns governed by the relative distances and orientations
of chromophores, CD has long been used for protein secondary
structure characterization (29). However, the CD signals are
the differences between the absorption intensities of the oppo-
site circular polarized incident waves, resulting in much broader
and shifted peaks, as shown by the purple lines in Fig. 2A.

2DUV simultaneously represents electronic transitions (diag-
onal peaks) and their couplings (off-diagonal peaks) in a 2D
space, giving much higher resolutions and directly illustrating

Fig. 1. Machine discrimination schemes to recognize peptide secondary structures. (A) Three sets of proteins, denoted as original (I), homologous (II), and
nonhomologous (III), were used to prepare the peptide segment dataset. Using only dataset I, the pretrained model underfits the correlation between sec-
ondary structures and spectra; the performance is greatly improved by incorporating data from the other two datasets via transfer learning. The horizontal
dashed lines in the bar plots denote accuracies of 90%. (B) Flowchart to generate the LA, CD, and 2DUV spectra of each peptide segment extracted from
different proteins.
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the subtle distinctions in exciton couplings due to structural
variations. As shown in Fig. 2B, the 2DUV spectra are much
richer and, thus, more informative than the corresponding lin-
ear spectra (Fig. 2A). The simulation of 2DUV spectra requires
statistical averaging of spectral patterns of individual structures,
which erodes some fine features (21, 27). Moreover, 2DUV
spectra of segments with the same secondary structure might
possess variable spectral patterns, as shown in Fig. 2B. The
three randomly selected samples from each of the secondary
structure categories have different 2DUV patterns even for
segments with the same secondary structure, which further
complicates the analysis. It is not obvious how to extract repre-
sentative spectral patterns for different secondary structures,
which is required in order to establish the spectrum-structure
correlation for secondary structure discrimination.
Our goal is to construct ML models that correlate the chemi-

cal and spectral information carried by the spectroscopic signals
with protein secondary structures. In the first step, we con-
structed two 1D CNN models for LA and CD and a 2D CNN
model for 2DUV to extract structure-spectra correlations. The
models were first trained with the original dataset I, which was
randomly split into the training, validation, and test sets with
size ratios of 7:1:2. The hyperparameters—including the size of
filters, learning rates, dropout ratios, and the kernel size of max
pooling—were optimized using the grid search method (SI
Appendix, Tables S1 and S2). Fig. 3 depicts the accuracies of
secondary structure discrimination of models with various com-
binations of hyperparameters. For each type of model, hyper-
parameters such as the dropout ratio, the filter size, and the
learning rate adopt a series of widely scattered values. A model
was then trained and tested with each combination of hyper-
parameters (connected with lines), and its accuracy was
reported as the color of the connecting lines. According to the
color bar in Fig. 3, red lines reflect high accuracies near unity,
while blue lines reflect accuracies lower than 90%. It is evident
that models fed with 2DUV (Fig. 3C) perform much better
than those fed with LA (Fig. 3A) and CD (Fig. 3B): the 1D

model trained with LA spectra (Fig. 3A) achieved overall accu-
racies of 86∼91% in secondary structure discrimination, while
the model trained with CD spectra (Fig. 3B) performs slightly
better, reaching 87∼93% accuracies. In contrast, the 2D CNN
models trained with 2DUV spectra show robust high perfor-
mance of near 100% accuracy, independent of the choice of
hyperparameters, as shown in Fig. 3C. The significantly higher
performance of the 2D CNN models compared to the 1D
models indicates that in addition to the electronic transition
energies, intensities, and chiral characteristics included in the
1D spectra, the couplings between them—which are revealed
only by the 2DUV spectra—are crucial for secondary structure
discrimination.

An important measure of the algorithm performance is its
transferability (i.e., how the model performs on datasets other
than the training set). We therefore examined the pretrained
models discussed above on two new datasets: the homologous
(II) and nonhomologous (III) sets. The models’ performance
on the three datasets are shown by the confusion matrices in SI
Appendix, Fig. S3. The vertical and horizontal axes denote the
true and model-predicted labels, respectively. Although the pre-
trained models perform well on the original set (SI Appendix,
Fig. S3A), the discrimination accuracies significantly decrease
for datasets II and III (SI Appendix, Fig. S3 B and C). Specifi-
cally, the average accuracy of the LA (CD) model decreases
from 98.2 (98.9) to 78.2% (66.8%), while the accuracy of the
2DUV model decreases from 100 to 98.4%. The average accu-
racies of the pretrained LA, CD, and 2DUV models further
drop to 72.6, 73.1, and 66.4%, respectively. The lower dis-
crimination for datasets containing new structures is expected,
since the pretrained model used only spectrum-structure corre-
lations of segments extracted from the BH and LL proteins.
Spectral patterns arising from new chromophore environments
in different proteins are hard to recognize.

To extend the knowledge learned from dataset I, we
employed the transfer learning technique to finetune the pre-
trained models. In this protocol, the convolution modules (i.e.,

Fig. 2. The 1D/2DUV spectroscopy and schematic view of the neural network for protein structure recognition. (A and B) The LA (A, green), CD (A, purple),
and 2DUV (B) spectra of three randomly selected peptide segments with α-helical (first row), β-sheet (second row), and other (third row) secondary struc-
tures. (C) Schematic view of the architecture of the CNNs for secondary structure recognition from 2DUV spectra.
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the convolution and max pooling layers) were held fixed, while
the following fully connected dense layers were allowed to
change (Fig. 2C). For all the 1D and 2D models, 500, 500,
and 2,000 samples from datasets I, II, and III, respectively,
were randomly selected. All models perform better than the
pretrained ones when applied on datasets II and III. As shown
in Fig. 4C, the 2D model experiences the most significant
improvement, with an average accuracy of 91.3% (compared

with 66.4% of the pretrained model). The performances of the
LA and CD models were also improved by the transfer learn-
ing; specifically, the average accuracy of the LA model was
improved from 72.6 to 88.0%, and that of the CD model was
improved from 73.1 to 86.7%.

Even though the discrimination accuracies of the LA and
CD models significantly improve with transfer learning, these
models still underperform compared to the 2DUV model with

Fig. 3. Parallel coordinate plots of the hyperparameter optimization. (A and B) The 1D (LA and CD) CNNs. (C) The 2D (2DUV) CNN.

Fig. 4. Confusion matrices of the CNN models after transfer learning to recognize secondary structures of protein segments. The vertical and horizontal
axes denote the true and model-predicted categories, respectively. Each matrix element represents the ratio of samples with corresponding categorical
labels. Near-unity diagonal values reflect high recognition accuracies. (A) The original set I. (B) The homologous set II. (C) The nonhomologous set III.
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3∼5% average accuracy. The transferability to homologous data-
set II is similar, as shown in Fig. 4B: the 2D model attained an
average accuracy of 97.0%, which is much better than that of
the models using LA (91.1%) or CD (76.3%) spectra. To sum-
marize, either in the pretrained case or after transfer learning, the
2D model significantly outperforms its 1D counterparts.
The superiority in discriminating peptide secondary structures

of the 2D compared with 1D models can be attributed to the
intrinsic dimensionality advantage of the 2D spectra, where not
only the excitons themselves, but also the couplings between
these excitons, are given by the cross-peaks. As illustrated in the
simple transition dipole coupling model, the coupling strength is
sensitive to the distance and the relative orientation of the chro-
mophores (i.e., the peptide bonds) (30). This structural depen-
dence of the electronic coupling is then represented as cross-peak
intensities in the 2DUV spectra (27). On the other hand,
2DUV also carries information buried in the LA spectra, which
can be demonstrated by plotting the diagonal slice into 1D
curves. The low performance of LA and CD spectra in discrimi-
nating secondary structures indicates that the exciton energy-
intensity pairs in a 1D space are insufficient to construct reliable
structure-spectrum correlation, which results in ambiguities in
spectrum-based structure discrimination. The exciton coupling
information in the 2D signals is crucial for this task.
To understand why the 2DUV information is crucial for sec-

ondary structure discrimination, we have generated the grad-
CAMs for typical segments (28). A grad-CAM is reconstructed
from the gradients of the class target score with respect to the
feature maps of the last convolution layer, which is a measure
of the relative importance of the neuros in classification. The
grad-CAM is a heatmap that demonstrates the region(s) of a
2DUV spectrum crucial for structure discrimination. It can
also be viewed as a visual explanation of what the CNN model
learned about the object. Fig. 5 depicts the 2DUV spectra and
corresponding grad-CAMs of three randomly selected segments
with each secondary structure category. It is evident that for all
the samples shown in Fig. 5, the most important spectral
features for secondary structure discrimination lie in the off-
diagonal region (i.e., the cross-peaks caused by exciton cou-
pling), which is absent in 1D LA and CD spectra. Compared
to other secondary structures (Fig. 5C), for α-helices (Fig. 5A),
the important spectral features lie below the diagonal line in
the far UV range (52,000∼54,000 cm�1) and correspond to

the strong coupling between peptide excitations along the helix
(21). As shown in Fig. 5B, two aspects are primarily responsible
for the discrimination as β-sheets: the signals near the diagonal
line in the far UV range and the clean diagonal blocks below
52,000 cm�1 and above 55,000 cm�1. These two 2DUV fea-
tures suggest that single peptide excitations are more character-
istic for β-sheets, and fewer excitons were strongly shifted by
exciton coupling of their intrinsic resonance. Both arguments
imply that strong coupling between peptide excitations is less
common in β-sheets than in α-helices.

In summary, we have developed 1D and 2D CNN models
using three datasets (the original set I, the homologous set II,
and the nonhomologous set III) containing the LA, CD, and
2DUV spectra of nearly 148,000 protein segments to discrimi-
nate the secondary structures of peptide segments from 1D LA/
CD or 2DUV spectra. With the aid of transfer learning, the
2D CNN models attained average discrimination accuracies of
95.1, 97.0, and 91.3% for the three sources of protein seg-
ments with decreasing homology to the original BH and LL
protein. Compared to the 2D models trained on structure-
2DUV correlations, the 1D models using LA or CD did not
attain sufficient accuracy for secondary structure discrimina-
tion. The grad-CAM heatmaps revealed the important spectral
regions that are crucial for secondary structure discrimination.
The superiority of the 2D models stems from the exciton cou-
pling information explicitly contained in the 2DUV spectra
cross-peaks, which may not be retrieved from 1D spectra. Tak-
ing advantage of 2DUV spectroscopic features as descriptors, a
ML protocol was able to automatically discriminate protein sec-
ondary structure motifs, paving the way for optical-spectroscopic
monitoring, real-time structure-determination of proteins, and
protein structure inversion from spectra.

Materials and Methods

Protein Segment Datasets. To construct the original dataset I, the BH (PDB
ID: 1HDA) (23) and LL (PDB ID: 1LES) (24)—consisting primarily of α-helices and
β-sheets, respectively—were selected. The experimentally resolved three-
dimensional structures in the Research Collaboratory for Structural Bioinformatics
(RCSB) protein data bank (31) were adopted as the initial structures, followed by
MD equilibrations (details in SI Appendix). Structure snapshots were harvested
every 1,000 fs along the MD trajectories to avoid structural coherence. Each
snapshot was scanned with the Define Secondary Structure of Protein (DSSP)
(32) algorithm to extract peptide segments with pure secondary structure motifs

Fig. 5. (Left) 2DUV spectra and corresponding grad-CAM of three randomly selected segments: (A) α-helical, (B) β-sheet, and (C) other secondary structures.
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(i.e., 28,556 α-helices, 32,439 β-sheets, and 26,998 others [87,993 in total]).
The homologous set (II) and the nonhomologous set (III) were constructed with
a similar procedure, with both sets consisting of 30,000 peptide segments
(10,000 for each of α-helix, β-sheet, and others).

Multiscale Simulation of Peptide Electronic Spectra. For each of the
extracted peptide segments, the LA, the CD in the UV-vis region, and the
2DUV spectra were calculated using multiscale simulation schemes. As shown in
Fig. 1B, each snapshot was treated by the exciton Hamiltonian with electrostatic
fluctuations (EHEF) method (21) to construct the Frenkel exciton Hamiltonian
and the transition electric/magnetic dipole moments. The solvation effects and
intraprotein perturbations to the electronic transitions of peptide chromophores
were properly incorporated by the EHEF scheme. In the meantime, using the
sequencing information from the DSSP scan, the corresponding blocks of exciton
Hamiltonian and transition dipoles for each peptide segment were extracted.
This electronic structure and response information was then fed to the SPECTRON
code (27) to simulate the LA, CD, and 2DUV spectra for each segment.

The signals were collected in the 42,000∼58,000 cm�1 (238∼172 nm) fre-
quency regime, where the peptide bond π! π� and n! π� transitions domi-
nate the UV spectra, along with weaker contributions from the Bb, Ba, and La
transitions of the aromatic side chains (33–35). Here, we have applied a very
small broadening factor of 250 cm�1 in generating the spectra with Lorentzian
line shapes, so as to avoid the long tails of Lorentzian line shapes and the strong
overlaps between different photo-response signals (which might cause ambigu-
ity in data analysis). Future work will be done with Gaussian line shapes to test
the convergency of our results. The LA and CD spectra were recorded with a fre-
quency resolution of 10 cm�1, resulting in a 1600 × 1 representation of the
spectra. The 2DUV spectra were simulated by a kI four-wave mixing procedure,
with all pulses having parallel polarizations (27). The signals were collected with
resolutions of 1,000 cm�1 in both the Ω1 and Ω3 dimensions (see SI
Appendix, section S1 for details), resulting in a 161 × 161 representation for
each 2DUV spectrum. In the end, for each segment in datasets I, II, and III, an
LA spectrum, a CD spectrum, and a 2DUV spectrum were generated. The peptide
segments, together with the electronic spectra, comprise the dataset (∼148,000
samples) used in this work.

CNN Models and Spectra Descriptors. The discrimination of the peptide sec-
ondary structures from their LA, CD, or 2DUV spectra is expressed as a supervised
classification problem: the model takes the spectral data as input and discrimi-
nates the secondary structure of the corresponding segment. We concentrate on
the two most common secondary structures, α-helix and β-sheet, as two catego-
ries and categorize all the other secondary structures as “other.” Thus, the model
maps the spectral data to one of the three categories.

We have used 1D CNNs to correlate the LA and CD spectra with secondary
structures (SI Appendix, Fig. S1). The models consist of an input layer that
directly adopts the linear spectra with dimensions of 1600 × 1; the input layer
is followed by two convolution modules, each containing a convolution layer
with the rectified linear unit activation (36) and a max pooling layer. A dropout
layer is used to regularize the output of the convolution module and pass it to
two fully connected dense layers. The classification targets were output by a final

softmax layer. Backpropagation and the Adam optimizer (37) were employed to
train the model.

Similar to the linear spectra, a 2D CNN was used to discriminate second-
ary structures form the 2DUV spectra. The difference lies in the convolution
module, where three convolution modules were used, each containing a
convolution layer and a max pooling layer. The 2DUV signals SðΩ1,Ω3Þ
were normalized as

�SðΩ1,Ω3Þ ¼ SðΩ1,Ω3Þ � μ

σ
, [1]

where μ and σ are the average and SD of the signals of the whole training set,
respectively. The normalized signals were then clipped to the �2, 2½ � interval,
which contains more than 97% of the spectral patterns. The renormalization and
clipping of the original data accelerate the ML analysis by a factor of 2 without
affecting qualitative conclusions. This renormalization simply rescales the abso-
lute intensities using a single set of factors (μ and σ) and does not change the
relative intensities between samples; tests on the original spectra generate the
same results. Benchmarks conducted with spectral images at lower resolutions
(of 81 × 81 and 41 × 41) have produced, qualitatively, the same results.

Transfer Learning to Improve Transferability. We have simulated some
practical scenarios of secondary structure discrimination from spectra, where
knowledge of only a few “typical” systems were available. These can be extended
to achieve broader scopes. Here, we used the original dataset (I) to construct
spectra-secondary structure correlations (the pretrained model) and generalized
this knowledge by the transfer learning technique to other proteins (i.e., the
homologous [II] and the nonhomologous [III] datasets). To refine the pretrained
model, we kept the convolution modules fixed, tuning the following layers with
new datasets consisting of randomly selected samples from datasets I, II, and III.

Data Availability. All protein PDB IDs used in this work are listed in
SI Appendix; previously published models and data are available in DCAIKU
(http://dcaiku.com:13000/).
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