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including balanced influences, spectral discrepancy, local strong regularity, subgraph counts in a

Cayley graph associated to a Boolean function, and equidistribution of additive derivatives among

many others. In addition, we construct families of quasi-random Boolean functions which exhibit

the properties of our equivalence theorem and separate the levels of our hierarchy. Furthermore,

we relate our properties to several extant notions of pseudo-randomness for Boolean functions.
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Chapter 1

Introduction

You cannot ask a government agency to build a new 100 billion dollar supercom-
puter and then say ‘just wire it up randomly, it should work.’

(Steven J. Young )

Randomness is simultaneously powerful, infuriating, and mysterious. Random constructions

can produce elusive Ramsey graphs [32], graphs of high girth and high chromatic number [5],

and efficient codes [5]. Yet in all these examples, randomness conceals as much as it reveals.

None of the construction mentioned here are explicit; they merely prove that such an object

exists without providing a single clear example. Indeed, many of the problems mentioned above

only received explicit solutions after decades of work (see for instance [4]), and some still await

constructions which will clarify their nature.

The random constructions themselves further exhibit often miraculous properties. The

same random graphs which Erdős used to prove lower bounds in Ramsey theory also possess the

following properties [42] amongst many more:

• contain every small graph as a subgraph,

• expand, in the sense that the neighborhood of a set of vertices is larger than that set,

• contain Hamiltonian cycles in abundance,

• contain every possible tree on n vertices,
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• cannot be disconnected without removing a large number of edges.

Indeed, there are decades of study into the properties of a random graph, and the expansion

properties of random graphs are of signal importance in computation. One natural question

arises: how do these properties of random graphs relate to one another? Can we say that certain

graph properties must appear together?

Out of the the desire to find explicit constructions meeting random bounds and the desire

to explore the properties of random graphs arose a new idea: quasi-randomness. The story begins

with quasi-random graphs.

1.1 Quasi-random Graphs

Quasi-randomness first appeared in embryo in the works of Erdős, S os, Graham,

Thomassen, and Wilson [31, 33, 82, 86] which explored several random graph properties which

could also be applied to deterministic graphs. The form of quasi-random theorems was fully

fleshed out in the seminal paper of Chung, Graham, and Wilson [20] which also introduced

the name “quasi-random.” As quasi-random graphs are the prototype for other theories of

quasi-randomness, it is worthwhile to present their result in more detail. Consider the following

graph properties for a fixed ε > 0:

• Every fixed graph H appears as a subgraph (1± ε)2−e(H)nv(H) times.

• The the largest eigenvalue of the adjacency matrix of G is at least n
2 and the second-largest

eigenvalue of the adjacency matrix of G is at most εn.

• Between every two sets of vertices S ⊆V (G) and T ⊆V (G), there are (1± ε) |S||T |2 edges.

• The 4-cycle appears as an induced subgraph (1± ε)2−6n4 times.

Each of the these properties makes sense both for a fixed graph and for a random graph.

Furthermore, random graphs satisfy all of these properties in expectation. A priori, there is little
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reason to believe that these properties have anything to do with each other. After all, the first

property cosniders subgraph counts of every finite graph whereas the last property considers a

single graph, the 4-cycle. Furthermore, the second property can be determined in polynomial

time, whereas there is no direct means of determining the third property.

The surprising result of Chung, Graham, and Wilson is that these four properties (and

several others) are equivalent to each other for a fixed graph. The notion of equivalence here is

subtle and important. Given such different conditions as in the above list, it is unreasonable to

demand that the properties have on-the-nose identical error bounds ε , but the error should not

grow too rapidly either. Chung, Graham, and Wilson balance these concerns as follows. Two

graph properties P1(ε) and P2(ε) are equivalent if for every ε > 0, there is a δ > 0 such that

P1(δ ) =⇒ P2(ε) and vice-versa, and the δ does not depend on the size of the graph in either

direction. The theorem’s goal is to organize the many properties of the list into equivalence

classes and thereby give a precise definition of a “random-like” graph. As a consequence, Chung,

Graham, and Wilson term a graph satisfying any one of the above properties quasi-random.

Of course, a beautiful equivalence of various graph properties is much less interesting in

the absence of concrete examples of graphs possessing the properties of the theorem. So Chung,

Graham, and Wilson proceed to give two primary examples. The first is the example of Paley

graphs, whose vertices are the integers mod p for some prime p and whose edges are defined by

quadratic residues. The second is graphs defined by parity conditions; the vertex set is the set of

all subsets of [n] of odd size and there is an edge between two sets if their intersection also has

odd size. Both graphs can be readily shown to possess one of the properties of the quasi-random

equivalence theorem, and therefore they possess all of the properties.

In summary, a theory of quasi-randomness has three main components:

• A list of properties, each of which is possessed by a random object of the relevant type.

• An equivalence theorem proving that the properties in the list are equivalent to each other

up to small losses in the parameters.
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• A construction of a object which possesses one (and therefore all) of the properties on in

the list.

The chief value of the theorem arises from the diversity of the list of properties in the first

step. The list ought to contain several properties which are not obviously equivalent (like the

4-cycle count property and the finite graph counting property for quasi-random graphs), and

some properties which are easily computable and some which are not (such as the eigenvalue

property and the expansion property for quasi-random graphs).

1.1.1 Extensions of quasi-randomness

There are also several related fields which are deeply intertwined with quasi-randomness.

The first is that of regularity lemmas. One of the properties in the Chung-Graham-Wilson

Theorem is ε-regularity, which states that any two subsets X and Y of size at least ε|G| have

nearly 1
2 |X ||Y | edges between them. Szemeredi’s regularity lemma [79] asserts that every

sufficiently large dense graph has an ε-regular partition, i.e. a partition of the vertex set such that

the induced bipartite graph between almost all pairs of parts is ε-regular. Put simply, Szemeredi’s

regularity lemmas that large dense graphs are quasi-random. The power of the regularity lemma

is hard to overstate, as it allows for a deterministic dense graph to be treated with probabilistic

techniques.

The theory of graph limits expands upon the ideas found in the regularity lemma, and

has a similar relationship to quasi-randomness. The theory of graph limits models graph via

symmetric functions on the unit square, i.e., maps ρ : [0,1]2 → [0,1] such that ρ(x,y) = ρ(y,x).

These maps are termed graphons to distinguish them from discrete graphs. There are several

different ways to define the topology on graphons, in fact, each of the quasi-random properties in

the Chung-Graham-Wilson Theorem provides a notion of topology. In this context of graphons,

the Chung-Graham-Wilson Theorem states that all of the topologies induced by these graph

properties are equivalent. Such topological equivalences expedite many proofs, for instance the

construction of graph limits is easily defined using subgraph counts of arbitrary graphs, while
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proving convergence of a sequence of graphs to a particular graph limit is more readily handled

by the C4-norm induced by the count of 4-cycles. We refer the reader to the text of Lovasz [66]

for additional details.

Quasi-randomness, regularity lemmas, and graph limits continued a fruitful dialogue in

the years following the Chung-Graham-Wilson Theorem. Chung and Graham studied quasi-

random tournaments in [16], and a limit notion of tournaments received further study in [10,

51, 83]. Chung and Graham studied subsets of the integers mod n in [19], which tied into the

study of arithmetic progressions in works of Roth [73] and Szemeredi [79]. The limit objects

for subsets of the integers were fully fleshed out in the works of Green and Tao [81]. As the

Chung-Graham-Wilson Theorem and Szemeredi’s regularity lemma applied only to dense graphs,

there was much interest in finding analogues of these theories for sparse graphs. Chung and

Graham gave a theory of quasi-randomness for sparse graphs in [21], Lovasz gave two theories of

graph limits for sparse graphs in [66], and a regularity lemma for sparse graphs appeared in [60].

Later on, Cooper studied quasi-random permutations in [28], followed by the work of Chan, Kral,

Noel, Pehvoa, Sharifzadeh and Volec [13] and Kral and Pikhurko [63] who expanded the list

of quasi-random properties. The limit theory of permutations appears in several works, notably

Hoppen, Kohayakawa, Moreia, Rath, and Menezes [54]. The work of Garbe, Hancock, Hladky,

and Sharifzadeh [30, 43] built a quasi-random theorem for Latin squares and the corresponding

limit theory. Griffiths extended the Chung-Graham-Wilson Theorem to oriented graphs in [49],

mirroring the directed graph limits in [66]. Gowers considered quasi-random groups [46].

There are, however, two objects whose theory of quasi-randomness requires special

attention: hypergraphs and Boolean functions.

1.1.2 The Trouble of Quasi-random Hypergraphs

Chung and Graham considered quasi-random hypergraphs throughout their work on

quasi-randomness for other objects, and found that hypergraphs were a different beast entirely.

There are several key steps in the Chung-Graham-Wilson Theorem which fail for hypergraphs.
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The first issue is expander mixing lemma, which appears as one of the main steps in the proof

of the Chung-Graham-Wilson Theorem. The expander mixing lemma requires a notion of

eigenvalues of a graph, and oo even make such a definition, a graph needs to be represented

by a matrix. For ordinary graphs, the adjacency matrix (and several related matrices) provide

several combinatorially meaningful eigenvalues. For hypergraphs, where the edges contain 3 or

more elements, the natural analogue of the adjacency matrix is a k-dimensional array of numbers

called a hypermatrix or tensor. There are two equivalent definitions of matrix eigenvalues needed

to prove the expander mixing lemma, the Rayleigh quotient and the defintion via eigenvectors,

and these definitions are no longer equivalent for hypermatrices. Indeed, a quasi-random theorem

involving eigenvalues of hypermatrices remains an open problem [27].

In light of these difficulties, the simpler case of linear hypergraphs attracted some

attention. A hypergraph is linear if each pair of phyeredge intersects in no more than one

vertex. As Friedman and Widgerson [40] showed, there is a sensible analogue of the eigenvalue

properties for linear k-uniform hypergraphs. Lenz and Mubayi [64, 65] extended this theme and

gave a hierarchy of different eigenvalue properties of linear k-uniform hypergraphs. The works

of Rödl, Schacht, and Kohawakaya [61] added a corresponding regularity lemma.

Quasi-randomness for linear hypergraphs contains properties closely related to quasi-

randomness for graphs, which indicates that the true difficulty of hypergraphs arises from edges

intersecting in more than one vertex. Indeed, such intersections lead to the second and more

profound difficulty in defining quasi-randomness for hypergraphs. As Chung and Graham

discovered in [15], a hypergraph may be ε-regular (in the sense of graphs) yet fail to be quasi-

random. Their construction works as follows. They begin with a randomly chosen k−1-uniform

hypergraph G, and then form a k-uniform hypergraph H by adding a k-edge {v1, . . . ,vk} if the

induced subgraph G[{v1, . . . ,vk}] contains an even number of hyperedges in G. As shown in [15],

H fails to contain any copies of the specific hypergraph consisting of all but one k-subset of

k+1 vertices. As containing every small hypergraph is a signal property of quasi-randomness,

H cannot be quasi-random. Nonetheless, H is ε-regular in the sense of graphs [15].
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The true analogue of ε-regularity for hypergraphs requires the consideration of the

l-shadow of the hypergraph, i.e., the l-uniform hypergraph consisting of all l-sets which are

contained in at least one edge in the original hypergraph [45]. For a 3-uniform hypergraph to be

quasi-random, it must not only have the “correct” number of hyperedges between any two sets,

but nearly half of all triangles in its 2-shadow must be contained in a 3-edge. As one considers

k-uniform hypergraphs, the situation only becomes worse, as a k-uniform hypergraph must be

quasi-random with respect to every l-shadow for l ≤ k.

Despite the absence of eigenvalue properties and the difficulties of ε-regularity, Chung

and Graham’s study produced a theory of quasi-randomness for k-uniform hypergraphs over

a series of works [14, 15, 17, 18, 22, 24]. One of the more surprising equivalences from quasi-

random graphs remained even in the setting of hypergraphs. For graphs, the count of copies of

C4 determine the counts of arbitrary graphs. For k-graph, Chung and Graham show in [15] that if

the number of copies of each k-graph on 2k vertices is close to its value on a random k-graph,

then the same holds for any k-graph on t vertices for t ≥ 2k. When specialized to k = 2, this

definition is nearly identical to the count of 4-cycles in the Chung-Graham-Wilson Theorem.

The corresponding regularity lemmas and several new quasi-random properties for

hypergraphs appeared in works of Chung, Frankl, Rödl, Schacht, Kohawakaya, and Nagle

[36, 62, 69, 76]. Additionally, Towsner [84] gathered many of the quasi-random properties

together into a larger theory and began a hypergraph limit theory; this was followed by [26] who

gave more combinatorial proofs of the same result. More relevant for our work, Castro-Silva

explored the connections between hypergraphs and additive combinatorics in [11, 12].

1.2 Boolean Functions

Perhaps the most subtle of the objects thus far is that Boolean functions. At the highest

level, a Boolean Functions is a map from binary strings of length n to {True,False}. Boolean

functions can encode a wide variety of mathematical and computational objects, such as decision
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problems, error-correcting codes, communication and cryptographic protocols, among others.

Given so many applications, Boolean functions are extremely well-studied in coding theory,

cryptography, and computational complexity among many other areas of computer science and

data science. For each application, many researchers have developed tools and perspectives

unique to each area to study these Boolean functions and have isolated key properties of Boolean

functions, for instance the sensitivity of the function to changes in each coordinate, the size of its

Fourier coefficients, or the distance of its support viewed as a binary code.

Through a variety of transformations, the theories of quasi-randomness for graphs and

hypergraphs apply to a theory of quasi-random Boolean functions. Indeed, in their on quasi-

random subsets of Z/nZ [19], Chung and Graham include a property that a graph associated

to a subset with quasi-random in the sense of the Chung-Graham-Wilson Theorem, and a

similar graph construction produces new properties for Boolean functions. In Chung and Tetali’s

work [23], the theory of quasi-random hypergraphs was directly extended to Boolean functions.

This would be extended further in the works of Gowers on Szemeredi’s Theorem [48].

Beyond works directly associated with quasi-randomness, the idea of random-like

Boolean functions appears in both cryptography and theoretical computer science. In these

fields, a random-like Boolean function has been formalized in several ways, and there is a

terminological conflict that needs to be addressed.

1.2.1 Pseudo-random vs Quasi-random

A close cousin of quasi-randomness the study of pseudo-randomness, which frequently

arises in theoretical computer science [85], additive combinatorics [47], and number theory [80].

While the names are quite similar, there are some major conceptual differences between the two.

The typical context for pseudo-randomness is a “structure vs pseudo-randomness” argu-

ment, of which Roth’s theorem [73] is an excellent example. Roth studied the size of subsets S of

[n] which contained no three-term arithmetic progression, i.e., a sequence of three elements of the

form a,a+d,a+2d for fixed a,d ∈ N. One readily verify that a uniformly random subset of [n]
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contains many three term arithmetic progressions; but the desired result considers arbitrary sets.

Roth noticed that the number of three term arithmetic progressions can be captured by a Fourier

analytic formula, and this observation gave rise to a clever proof. Given a subset S of the set [n]

with no three-term arithmetic progressions, Roth divides the argument into two cases. First, he

considerd the “pseudo-random” case, where the Fourier coefficients of the (indicator function of

the) set S are small. As a set with small Fourier coefficients must have many three-term arithmetic

progressions, Roth concluded that S must have a large Fourier coefficient. This is the “structured”

case. Here, he used the large Fourier coefficient to construct a large arithmetic progression

on which the set S has increased density. By reducing to this long arithmetic progression, the

argument can be repeated until a three-term progression is found. As a consequence any set with

constant density must contain a three-term progression, and so any set with no such progression

must have density which tends to 0 as n becomes large.

Comparing Roth’s theorem with quasi-randomness, one can see several key differences

between the two concepts. pseudo-random properties serve as a dividing line, separating arbitrary

objects into “structured” and “random-like” sets. Thus pseudo-random properties come paired

with some sort of structure. In Roth’s Theorem, the structure was a large arithmetic progression,

and the proof used different techniques based on whether the pseudo-random property of small

Fourier coefficients held. Indeed, a pseudo-random property is useless without a structured

counterpart which must appear whenever the property fails. pseudo-random properties stand

apart from each other, and are rarely placed into equivalence theorems as in quasi-randomness.

quasi-random properties, by contrast, need not have a structured counterpart, and are introduced

with a view towards an equivalence theorem involving many other properties.

It is certainly possible that a quasi-random property may have a structured object which

appears whenever the property fails, for instance a graph which is not ε-regular has a pair of sets

with very few or very many edges between them. Furthermore, there are many quasi-random

properties referenced as pseudo-random and vice-versa; indeed, the pseudo-random property

of small Fourier coefficients appearing in Roth’s Theorem is one of the main quasi-random
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properties in Chung and Graham’s work on quasi-random subsets of Z/nZ. Nonetheless, the

typical focus of pseudo-random properties is frequently limited to the context of a particular

argument. It is of great interest to try to extend pseudo-random properties to the broader context

of a quasi-random theorem, and we small consider this problem in Chapter 3.

1.2.2 Influences of Boolean Functions

One notion of pseudorandom property for Boolean functions, the notion of influences,

continually appears in a variety of applications. Given a Boolean function f : Fn
2 → {1,−1},

the ith-influence of a coordinate i if the fraction of inputs x ∈ Fn
2 where flipping the value of xi

changes the output of the function. If the function does not depend at all on coordinate i, then the

ith influence is 0, and if f (x) = xi, then the ith influence is 1. For other functions, the influence

lies between these two extremes.

Influences first appeared in the context of genetics and social choice theory in the work

of Penrose [72] on majority votes, Banzhaf on weighted voting rules [6], and Coleman [25] on

coalitions. Here a Boolean function is seen as a voting rule and influence tracks the power of

an individual voter of the outcome of the election. In this context, the maximum influence is of

great interest, and we note the Tribes function of Ben-or and Linial [7] which is gives a voting

rule where all voters have small influence and the KKL Theorem [34, 57] which shows that the

tribes example is best possible.

In a totally different direction, Freidgut [38] showed that influences provide a characteri-

zation of the presence of sharp thresholds in the study of properties of random graphs. Ever since,

Friedgut’s Theorem has been an essential tool in the study of graph thresholds, see [1, 37, 41].

However, a random Boolean function does not have small influences, i.e., small influences

do not give a truly pseudorandom or quasirandom property. For the restricted class of montone

Boolean functions, small influences do give a speudorandom property, and monotone Boolean

functions are a primary focus in the context of social choice and thresholds. For general functions,

however, a somewhat different notion of influence arose in the context of property testing.
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The basic question of property testing is simple: given a Boolean function, does it possess

a given property P? Property testing first appeared in the work of Rubinfeld and Sudan [75],

followed by works of Goldrecih, Goldwasser, and Ron [44] and Friedl and Sudan [39]. There are

variety of properties for which efficient tests are known, and many of these properties appear in

quasirandom theorems. For instance, the gowers norms which arise in quasi-random hypergraphs

provide a test for F2-degree [77].

One of the central problems in property testing is the testing of dictators, i.e., testing

if a Boolean function depends on a single input. These tests are at the heart of the famed PCP

theorem [8, 9, 29]. As shown by [55], testing whether a Boolean function is a dictator can

be done via a form of noise stability, known as “small stable influences.” Random Boolean

functions do possess small stable influences and these works implicitly define a pseudorandom

property which is opposed to functions which depend only on a few coordinates. Efficient tests

for dictators were developed in a series of works due to Bellare, Goldreich, Sudan, Parnas, Ron,

and Samorodnitsky [71] culminating in the works of Hastad [55, 56].

1.3 Local Quasi-randomness

The goal of this thesis is to organize a range of properties of Boolean functions into a

hierarchy of equivalence classes in the same style as the quasi-random graphs and hypergraphs

in [14, 20, 24]. Our properties are local in nature, forming a hierarchy depending on a local

parameter d. For instance, one of our main properties, the Balanced Influences Property, concerns

the influences of all vectors of Hamming weight at most d. Another property considers subgraph

counts of 4-cycles in the associated Cayley graph with location restrictions depending on d.

There is a second parameter in the descriptions of our properties, an error bound ε which controls

our notion of equivalence between properties. For two properties P1(d,ε) and P2(d,ε), we say

that P1 implies P2 if for every ε > 0 there is a δ > 0 such that P1(d,δ ) implies P2(d,ε) where δ

only depends on d and ε . If P1 and P2 imply each other, then we say that P1 and P2 are equivalent.
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In our main theorem, we show how a number of known analytic properties of Boolean

functions, such as the k-th order strict avalanche criterion, restrictions of the function having

small Fourier coefficients, and discrepancy of the Fourier coefficients, can be either strengthened

or weakened so as to become equivalent to one another. Motivated by the enumeration of

“sub-patterns” within a larger object, we further show that several combinatorial properties of

graphs built from our Boolean function are equivalent with these analytic properties. These

combinatorial properties include local 4-cycle counts, a local sameness property, counts of

rainbow embeddings of graphs and a co-degree condition on a Cayley graph defined from the

Boolean function. We summarize the main theorem and its proof in Figure 1.1. Finally, we give

an explicit construction of a family of Boolean functions which exhibits the properties in our

main theorem. As it turns out, our construction depends crucially on the existence of good binary

codes. As will be indicated throughout the thesis, the properties that we discuss here are satisfied

by a random Boolean function, and therefore are called quasi-random in the spirit of [20] .

INF(d,ε) SD(d,ε)

RF(d,ε)

RC(d,ε)

RI(d,ε)

LSR(d,ε)

RAIN(d,ε)

WRAIN(d,ε)

L4C(d,ε)

SAME(d,ε)

EQD(d,ε)

ε/2

Thm 2.4.1

ε Thm 2.4.2

ε/2d Thm 2.4.3
εThm 2.4.4

Thm 2.4.5
ε

2ε

Thm 2.5.1Def. ε

Thm 2.5.2 ε/2

Thm 2.5.2
ε/20

Thm 2.5.3

ε/2Thm 2.5.4

ε Thm 2.5.5
ε

Thm 2.5.6 2ε/3

Thm 2.5.7

ε/12

Figure 1.1. The implications in Theorem 2.3.2. Each edge gives the loss in ε and the reference
to the theorem in which the implication is shown.

All of the theories mentioned in the previous sections center on properties of a global

nature, for instance the total number of copies of a fixed subgraph as considered in the first
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property of Chung, Graham, and Wilson’s work [20]. By contrast, our properties here are local

in nature. We shall later prove that our local theory of quasi-random Boolean functions is distinct

from each of these global theories, stronger than several of the global theories, and incomparable

with the others. We illustrate the relationships in Figure 1.2

(ε,d)-Uniform, d > 1

(ε,1)-Uniform(ε,n)-Fourier Regular

(ε,k)-Fourier Regular, k < n

(ε,δ )-Small Stable Influences ε-Cycle Regularity

(ε,d) Balanced Influences, d > 0

(ε,d) Balanced Influences, d = Ω(ln(1/ε))

Bent

ε

ε

ε2

εDef.

ε2/4

ε2/2

ε

ε

ε2/8

Figure 1.2. The relationships between different theories of quasi-randomness. Each box is a
distinct theory of quasi-randomness. Each arrow is a strict implication. Beside each arrow we
give the loss function. The results of this thesis are in bold blue text and blue arrows. Non-
implications are red dotted lines with an X in the middle.

Our thesis is organized as follows. In Chapter 2, we present our local quasi-randomness

theorem for Boolean functions. In Sections 2.1 and 2.2 we give the preliminaries needed to state

our quasi-random properties. In Section 2.3, we state the main equivalence theorem of eleven

quasi-random properties. Due to the large umber of properties and their rich connections, the

proofs of the implications are divided into two sections. Section 2.4 considers influences of

Boolean functions and several analytic properties. Section 2.5 considers a codegree property and
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4-cycle counts amongst other combinatorial properties. We then give an explicit construction

of quasi-random functions possessing the properties in our main theorem in Section 2.6. These

functions also separate the levels of the hierarchy of our equivalence classes.

In Chapter 3 we discuss several extant theories of quasi-random Boolean functions.

Each is presented via specific pseudo-random property, and we then give an theorem relating

our quasi-random properties to the extant theory. The main results of Chapters 2 and 3 are

summarized in the flowcharts found in figures Figure 1.1 and Figure 1.2.
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Chapter 2

quasi-random Influences

In this chapter, we state and prove our main quasi-randomness theorem for Boolean

functions. At a high level, our theorem connects a variety of analytic and combinatorial properties

of Boolean functions, and these properties require an extensive list of definitions. In Sections 2.1

and 2.2 we state all of the relevant definitions. We then state our main theorem in Section 2.3

2.1 Analytic Properties of Boolean Functions

At the highest level, a Boolean function is a map from the set of binary strings of length

n to True and False. There are several different mathematical interpretations of binary strings

and True and False, and we will use the following:

Definition 2.1.1. A Boolean function to be a map f : Fn
2 →{1,−1}. We will view −1 as True

and 1 as False.

For a proposition P(x), let [P(x)] :=


1 P(x)

0 ¬P(x)
denote the indicator function for P(x).

We will write 0 for the zero vector in Fn
2 throughout, and write 1 ∈ Fn

2 for the all-ones vector. If

µ is a distribution on a set Ω, and P(x) is a proposition on the variable x ∈ Ω, then Px∼µ

[
P(x)

]
will denote the probability distribution that P(x) holds when x is drawn from the distribution µ .

Whenever we write the expectation or probability over a set, such as Ex∈Fn
2
, the expectation or

probability is taken with respect to the uniform distribution. We refer the reader to O’Donnell’s
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book [70] for any undefined terminology.

In the following subsections, Sections 2.1.1 to 2.1.7 to §2.1.3, we state the definitions

concerning various aspects of Boolean functions that will be used to define our various properties

of Boolean functions.

2.1.1 Fourier Analysis

We can equip the space of all maps g : Fn
2 → R with the following inner product:

⟨ f ,g⟩ := Ex∈Fn
2

f (x)g(x) =
1
2n ∑

x∈Fn
2

f (x)g(x).

Definition 2.1.2. For each γ ∈ Fn
2, the Fourier character χγ : Fn

2 →{1,−1} is χγ(x) := (−1)γ·x

where γ · x := ∑
n
i=1 γixi is the usual dot product.

The Fourier characters form an orthonormal basis for the space of all maps g : Fn
2 → R

with the inner product as defined above.

Definition 2.1.3. For g : Fn
2 → R the Fourier coefficient with respect to γ ∈ Fn

2, denoted ĝ(γ), is

⟨g,χγ⟩= Ex∈Fn
2
g(x)χγ(x).

Notice that f̂ (0) = ⟨ f ,1⟩= Ex∈Fn
2

f (x) is simply the average value of f .

The density of a Boolean function f : Fn
2 →{1,−1}, denoted by dens( f ), is | f−1({−1})|

2n ,

which we note is precisely 1− f̂ (0)
2 .

Definition 2.1.4. The convolution of two functions g and h : Fn
2 → R is

(g∗h)(x) := Ey∈Fn
2
g(x+ y)h(y).

that ĝ∗h(γ) = ĝ(γ) ĥ(γ).
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2.1.2 F2-Degree

Every boolean function f : Fn
2 → {1,−1} has an alternate representation as a map

Fn
2 → F2 defined as follows. f (x) = ∑y∈Fn

2
f (y)1y(x) where 1y(x) = ∏

n
i=1(1+ yi + xi). If we

expand out each 1y(x), we get a multilinear polynomial (using the fact that x2 = x over F2)

f (x) = ∑y⃗∈Fn
2
c⃗yx⃗y where x⃗y := ∏i∈supp(y) xi. As this expansion is unique, we can then define the

degree of f as deg( f ) := max⃗y̸=⃗0 |⃗y|.

A Boolean function f : Fn
2 → {1,−1} can be equivalently defined as a multilinear

polynomial from Fn
2 → F2, [70] where 1 ∈ F2 denotes True and 0 ∈ Fn

2 denotes False. As

the multilinear expansion of a Boolean function is unique (see [70]) each Boolean function

f : Fn
2 →{1,−1} has a well-defined F2-degree, given by the size of the largest monomial in its

multilinear expansion over F2.

2.1.3 Bent Functions

We consider a specific class of Boolean functions originally defined by Rothaus [74].

Definition 2.1.5. [74] For n even, a Boolean function f : Fn
2 → {1,−1} is bent if for every

γ ∈ Fn
2 we have ∣∣∣ f̂ (γ)∣∣∣= 2−n/2.

Note that bent functions only exist for n even.

We will use the following property of Bent functions frequently.

Proposition 2.1.6. [74] If g : Fn
2 →{1,−1} is bent, then (g∗g)(x) = [x = 0].

Definition 2.1.7. The inner product function IP : F2m
2 →{1,−1} is defined by

IP(z) := (−1)∑
m
i=1 zizm+i.

The inner product function will serve as a useful example throughout this thesis. From

the definition, we have the following:
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Lemma 2.1.8. IP has F2-degree 2.

For the sake of completeness, we show that IP is in fact a bent function.

Lemma 2.1.9. [ [74]] IP : F2m
2 →{1,−1} is a Bent function.

Proof. Fix γ ∈ F2m
2 , and let γ1,γ2 ∈ Fm

2 denote the first m bits of γ and the last m bits respectively.

For x ∈ F2m
2 , define x1,x2 similarly. Then,

ÎP(γ) = Ex∈F2m
2

IP(x)χγ(x)

= Ex1∈Fm
2
Ex2∈Fm

2
(−1)x1·x2+γ1·x1+γ2·x2

= Ex1∈Fm
2
(−1)γ1·x1 Ex2∈Fm

2
(−1)(x1+γ2)·x2

= Ex1∈Fm
2
(−1)γ1·x1[x1 = γ2] (2.1)

= (−1)γ1·γ22−m

where we use the fact that Fourier characters are orthogonal in Equation (2.1)). Thus IP is a

bent function. We remark for later use that IP has F2-degree 2 as it is equal to the degree 2

polynomial ∑
m
i=1 zizm+i.

2.1.4 Hamming Weight

We will also need to track the size of individual vectors in Fn
2.

Definition 2.1.10. For a vector x ∈ Fn
2, its Hamming weight, denoted |x|, is the number of nonzero

entries in x.

Similarly, the Hamming distance between two vectors x and y ∈ Fn
2 is |x− y|. The

Hamming ball of radius d in Fn
2 and centered at the vector x ∈ Fn

2, denoted by Bd(n,x), is

{y ∈ Fn
2 : |x− y| ≤ d}.

The following definition will be useful in our combinatorial properties.

Definition 2.1.11. For a subset S ⊆ Fn
2, its diameter is diam(S) := maxx,y∈S |x− y|.
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2.1.5 The influences of Boolean functions

The notion of “influences” is prominent in both analysis of Boolean functions and

cryptography.

Definition 2.1.12. For γ ∈ Fn
2, the γ-Influence of f is

Iγ [ f ] := Px∈Fn
2

[
f (x) ̸= f (x+ γ)

]
.

Note that I0[ f ] is always 0. Furthermore, for γ ∈ Fn
2 with γi = 1 and γ j = 0 for j ̸= i, Iγ [ f ]

is precisely the influence of coordinate i as studied extensively in O’Donnell [70]. We note the

work of Keevash et al [58] which considers a related generalization of influences in the context

of hypercontractivity.

The following property of the γ-influences will be quite useful later.

Lemma 2.1.13. For any fixed γ ∈ Fn
2, a Boolean function f : Fn

2 →{1,−1} satisfies

f ∗ f (γ) = 1−2Iγ [ f ].

Proof. By definition of γ-influence,

1−2Iγ [ f ] = 1−2P[ f (x) ̸= f (x+ γ)]

= Ex∈Fn
2

(
1−2[ f (x) ̸= f (x+ γ)]

)
= Ex∈Fn

2
f (x) f (x+ γ) (2.2)

= f ∗ f (γ)

where we use the fact that f (x) ∈ {1,−1} in Equation (2.2)).
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2.1.6 The spectral sampling of Boolean functions

Parseval’s Theorem states that for f : Fn
2 →{1,−1},

∑
γ∈Fn

2

f̂ (γ)2 = Ex∈Fn
2

[
f (x)2

]
= 1.

Thus the Fourier coefficients of f define a probability distribution on Fn
2 as follows:

Definition 2.1.14. For a fixed Boolean function f : Fn
2 → {1,−1}, the Spectral Sample S f is

the distribution on Fn
2 where

Pγ∼S f [γ = δ ] = f̂ (δ )2

for each fixed δ ∈ Fn
2.

2.1.7 Subcubes and the counting of subcubes

Let [n] denote the set {1, . . . ,n}, and for S ⊆ [n], let S denote [n]\S. Given a set S ⊆ [n],

and two vectors x ∈ FS
2, y ∈ FS

2, let x⊗
S

y denote the vector where

(x⊗
S

y)i =


xi i ∈ S

yi i ∈ S
.

Definition 2.1.15. The subcube defined by a set S ⊆ [n] and a vector z ∈ FS
2 is the set

C(S,z) := {x⊗
S

z : x ∈ FS
2}.

We say that the dimension of the subcube C(S,z) is |S|. Note that C([n],η) where η is the

empty string is precisely the hypercube Qn. In Figure 2.1, we have two examples of subcubes.

We are also concerned about Boolean functions restricted to a subcube:

Definition 2.1.16. The restriction of f : Fn
2 → {1,−1} to the subcube C(S,z) is the Boolean
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function f |S,z : FS
2 →{1,−1} defined by

f |S,z(x) = f (x⊗
S

z)

If S = /0, then f |S,z(x) is the constant function f (z), and if S = [n], then we recover f

itself.

000

001010 100

101011110

111

Figure 2.1. The blue dashed lines in the figure indicate the 2-dimensional subcube C({1,3},1),
i.e., the set of all length 3 binary strings with a 1 in the second coordinate. The red dotted line
indicates the 1-dimensional subcube C({2},01).

We will need the following result, translated into our notation.

Lemma 2.1.17. [ [70] Proposition 3.21] If C(S,z) is a fixed subcube and γ ∈ FS
2, then

f̂ |S,z (γ) = ∑
δ∈FS

2

f̂
(

γ ⊗
S

δ

)
χδ (z).

2.2 Combinatorial aspects of Boolean functions

In the following subsections, Sections 2.2.1 to 2.2.4, we give several useful combinatorial

interpretations of Boolean functions that are of interest in their own right. For two sets A,B, let

A ↪→ B denote the set of all injective functions from A to B. Let A⊔B denote the disjoint union

of the sets A and B.
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2.2.1 Cayley Graphs

Definition 2.2.1. Given a group G and a set S ⊆ G, Cayley graph of G generated by S is the

graph with vertex set G and a,b ∈ G adjacent if ab−1 ∈ S.

If s ∈ S implies that s−1 ∈ S, then the Cayley graph with generating set S is an undirected

graph.

Of the many ways to define a graph from a Boolean function, the following first comes

to mind.

Definition 2.2.2. For a Boolean function f : Fn
2 → {1,−1}, the Cayley graph of f , denoted

Cay( f ), is the Cayley graph on Fn
2 whose generating set is f−1({−1}).

As every element of Fn
2 is its own additive inverse, it follows that Cay( f ) is an undirected

graph.

The Cayley graph Cay( f ) appears in several of the extant theories of quasi-randomness

we shall consider in Chapter 3, for instance [11].

2.2.2 Graph Homomorphisms

We will be interested in subgraph counts in Cay( f ) which can be defined by graph

homomorphisms.

Definition 2.2.3. A graph homomorphism from H = (U,F) to G = (V,E) is a map φ : V (H)→

V (G) such that

(u,v) ∈ F =⇒ (φ(u),φ(v)) ∈ E.

We will typically assume our graph homomorphisms are injective, and we denote the

normalized number of injective graph homomorphisms via the following:

hom(H,G) = Eφ :V (H)↪→V (G) ∏
(u,v)∈E(H)

[(φ(u),φ(v)) ∈ E(G)].
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We will also make use of graph homomorphisms which may not be injective, and we

denote the normalized number of such graph homomorphisms via the following:

hom(H,G) = Eφ :V (H)→V (G) ∏
(u,v)∈E(H)

[(φ(u),φ(v)) ∈ E(G)].

Note that the normalization factor in hom(H,G) is
1

|V (G)|(|V (G)|−1) . . .(|V (G)|− |V (H)|+1)

whereas in hom(H,G) the normalization factor is
1

|V (G)||V (H)| .

2.2.3 Colored Multigraphs

The following definition is inspired by the work of Aharoni et al on rainbow extremal

problems [2].

Definition 2.2.4. An edge-colored multigraph M with color set K is a multigraph with an edge-

coloring using colors in K such that multiple edges between any two vertices u and v cannot

have the same color.

We will typically think of the edges of an edge-colored multigraph as a subset of V ×

V ×K.

Definition 2.2.5. For fixed f : Fn
2 →{1,−1} and k ≥ 1, the rainbow Hamming graph RHG(k, f )

is the colored multigraph on the vertex set Bk(n,0) with color set K = Fn
2 and edge set defined as

{(u,v,x) ∈V ×V ×K : f (u+ x) = f (v+ x)}.

An explicit example of a rainbow Hamming graph is given in Figure 2.2.

2.2.4 Rainbow embeddings

We consider graph homomorphisms into a colored multigraph which agree with the

coloring.
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Figure 2.2. The rainbow Hamming graph RHG(1,h) of the function h(z) = (−1)1−z1z2 where
z1,z2 ∈ F2. Each edge is labeled by the string in F2

2 which defines its color. Note that h encodes
the NAND function.

Definition 2.2.6. Let M be a colored multigraph with color set K and let G be a fixed (simple)

graph. A rainbow embedding of G into M is an injective coloring χ : E(G) ↪→ K and an injective

map φ : V (G) ↪→V (M) such that

(u,v) ∈ E(G) =⇒ (φ(u),φ(v),χ((u,v))) ∈ E(M).

These embeddings are also considered in the work of Alon and Marshall [3].

For a fixed graph G, a fixed colored multigraph M with color set K, let

ch(G,M) := Eφ :V (G)↪→V (M)Eχ:E(G)↪→K ∏
(u,v)∈E(G)

[(φ(u),φ(v),χ((u,v))) ∈ E(M)]

be the normalized count of rainbow embeddings of G into M. If we additionally fix the injection

φ : V (G) ↪→V (M), let

chφ (G,M) := Eχ:E(G)↪→K ∏
(u,v)∈E(G)

[(φ(u),φ(v),χ((u,v))) ∈ E(M)]

be the normalized count of rainbow embeddings with a fixed map φ .
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2.3 Quasi-random Properties and the Equivalence Theorem

In this section, we describe a number of quasi-random properties of Boolean functions.

Each property involves two parameters, denoted by d and ε , where ε indicates the error bound

and d is often related to the rank or dimension of patterns or objects in the property. We will

typically think of ε and d as constants, but our results sometimes hold when ε and d depend on

n. The proofs of the equivalence of these properties will be given in sections §2.4 and §2.5.

We begin with a basic property regarding the density of our Boolean functions. A random

Boolean function will be −1 and 1 about equally often, i.e., it has density close to 1
2 . We say

that a Boolean function f : Fn
2 →{1,−1} is ε-balanced if

∣∣∣dens( f )− 1
2

∣∣∣< ε . Since the density

dens( f ) is equal to 1− f̂ (0)
2 , any ε-balanced function f satisfies

∣∣∣ f̂ (0)∣∣∣< 2ε .

For the rest of the thesis, we consider the following weaker density property:

Property P0. A Boolean function f : Fn
2 →{1,−1} is weakly balanced if the density of f is at

least 3
10 and at most 7

10 .

Equivalently, a weakly balanced function has
∣∣∣ f̂ (0)∣∣∣< 2

5 . We remark that all of the quasi-

random properties below will require a weakly balanced Boolean function. The assumption of

weak balance is necessary, since there are Boolean functions which are not weakly balanced

and satisfy some but not all of our quasi-random properties, as shown in Theorem 2.3.1. The

specific value of 2
5 is chosen for the sake of exposition and can be replaced by any constant

strictly greater than 1
2
√

2
and strictly less than 1

2 .

Our first property focuses on the directional influences defined in Section 2.1.5. If

f : Fn
2 →{1,−1} is chosen uniformly at random, we expect that the γ-influence (see Definition

Definition 2.1.12) should be close to 1
2 . Our first quasi-random property formalizes this notion

for weakly balanced Boolean functions.

Property P1. A weakly balanced Boolean function f : Fn
2 → {1,−1} has the Balanced Influ-

ences Property INF(d,ε) if the γ-Influence of f is close to 1
2 for every nonzero γ in the Hamming
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ball of radius d centered at 0, i.e., ∣∣∣∣Iγ [ f ]−
1
2

∣∣∣∣< ε

for every γ such that 1 ≤ |γ| ≤ d.

We remark that INF(d,0) is also known as the dth-Order Avalanche Criterion as studied

in cryptography [35].

It is natural to assume that the Balanced Influences Property implies weak balance, but

the implication does not hold for d = 1 and d = 2 as we shall prove in Section 2.6.

Theorem 2.3.1. For d ∈ N the following holds:

• For d ≥ 3, if f : Fn
2 → {1,−1} satisfies the Balanced Influences Property INF(d, 2

25 −

2−d−1), then f is weakly balanced.

• For d ≤ 2, there exists a Boolean function such that dens( f ) = 1
4 but

Iγ [ f ] =
1
2

for any γ ∈ Fn
2 such that 0 < |γ| ≤ d.

For f : Fn
2 →{1,−1} drawn uniformly from all Boolean functions, the expected spectral

sample (see Definition Definition 2.1.14) is 1
2n on each vector in Fn

2. Rather than considering

each vector in Fn
2 individually, we will consider subcubes (see Definition Definition 2.1.15). In

particular, the total weight of the uniform distribution on a subcube of dimension k is exactly

2k−n. Our next quasi-random property states that the spectral sample S f assigns similar weight

to each subcube as the uniform distribution does.

Property P2. A weakly balanced Boolean function f : Fn
2 → {1,−1} has the Spectral Dis-

crepancy Property SD(d,ε) if the spectral sample of f has total weight close to 2l−n on every
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subcube of dimension l where l ≥ n−d, i.e.,

∣∣∣Pz∼S f [z ∈ H]−2dim(H)−n
∣∣∣< ε

for every subcube H of dimension at least n−d.

Next, we have a counting property on subcubes via the notion of restricted functions (see

Definition Definition 2.1.16). As f |S,z is a map Fd → {1,−1} for |S|= d, we can consider its

Fourier coefficients. The next quasi-random property states that these Fourier coefficients are

quite small on average.

Property P3. A weakly balanced Boolean function f : Fn
2 →{1,−1} has the Restriction Fourier

Property RF(d,ε) if the average restriction of f is nearly a bent function on any subcube of

dimension at most d, i.e.,

∣∣∣∣Ez∈FS
2

[
f̂ |S,z (γ)2

]
−2−dim(C(S,z))

∣∣∣∣< ε

for every subcube C(S,z) of dimension at most d and every γ ∈ FS
2.

The next property states that we can control certain patterns in the restrictions of f .

Property P4. A weakly balanced Boolean function f : Fn
2 →{1,−1} has the Restriction Con-

volution Property RC(d,ε) if the average self-convolution of restrictions of f to subcubes of

dimension at most d is close to the indicator function of the 0 vector, i.e.,

∣∣∣∣Ez∈FS
2
( f |S,z ∗ f |S,z)(x)− [x = 0]

∣∣∣∣< ε

for every set S ⊆ [n] of size at most d and every x ∈ FS
2.

Convolutions are closely related to influences, so we have an additional influences

property pertaining to an average restricted function:
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Property P5. A weakly balanced Boolean function f : Fn
2 →{1,−1} has the Restriction Influ-

ences Property RI(d,ε) if the γ-Influences of the average restriction to subcubes of dimension at

most d are close to 1
2 , i.e., ∣∣∣∣Ez∈FS

2
Iγ [ f |S,z]−

1
2

∣∣∣∣< ε

for every set S ⊆ [n] of size at most d and every nonzero γ ∈ FS
2.

The directional derivative of a Boolean function f : Fn
2 → {1,−1} in the direction

γ is ∆γ f (x) = f (x+ γ) f (x). Our next property states that pairs of multiplicative directional

derivatives are equidistributed in the following sense:

Property P6. A Boolean function f : Fn
2 →{1,−1} has the Equidistributed Derivatives Property

EQD(d,ε) if every pair of sufficiently close directional derivatives take each possible pair of

values equally often, i.e., for every choice of c0,c1 ∈ {1,−1} and for every a,b ∈ Fn
2 such that

|a| ≤ d, |b| ≤ d, and 0 < |a−b| ≤ d, we have

∣∣∣∣Ex∈Fn
2
[∆a f (x) = c0][∆b f (x) = c1]−

1
4

∣∣∣∣< ε.

Next we consider some combinatorial properties. Our first few combinatorial properties

focus on the Cayley graph of a Boolean function Cay( f ) (see Definition Definition 2.2.2). For

v ∈V (G), let NG(v) denote the neighborhood of v in G.

Property P7. A weakly balanced Boolean function f : Fn
2 → {1,−1} has the Local Strong

Regularity Property LSR(d,ε) if any two vertices u,v ∈ Fn
2 at Hamming distance most d have

approximately the same number of common neighbors in the Cayley graph of f , i.e.,

∣∣∣∣∣∣∣
∣∣∣NCay( f )(x)∩NCay( f )(y)

∣∣∣
2n −

(
1
4
− f̂ (0)

2

)∣∣∣∣∣∣∣< ε

for every pair of vertices x,y in Cay( f ) such that 0 < |x− y| ≤ d.
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We remark that the Local Strong Regularity Property is analogous to the co-degree

property in Chung, Graham, and Wilson’s work on quasi-random graphs [20]. Note that the term
f̂ (0)

2 allows for a range of edge densities in Cay( f ), and in particular Cay( f ) and Cay(− f ) do

not have the same edge density in general. Our next property states that nonetheless Cay( f ) and

Cay(− f ) are somewhat interchangeable.

Property P8. A weakly balanced Boolean function f : Fn
2 →{1,−1} has the Local Sameness

Property SAME(d,ε) if for any two vertices u,v∈Fn
2 at Hamming distance most d, approximately

half of all other vertices are a common neighbor of u and v either in the Cayley graph of f or the

Cayley graph of − f , i.e.,

∣∣∣∣∣∣∣
∣∣∣NCay( f )(x)∩NCay( f )(y)

∣∣∣+ ∣∣∣NCay(− f )(x)∩NCay(− f )(y)
∣∣∣

2n − 1
2

∣∣∣∣∣∣∣< ε

for every pair of vertices x ̸= y in Cay( f ) such that 0 < |x− y| ≤ d.

Given the power of subgraph counts of 4-cycles in Chung, Graham, and Wilson’s work

on quasi-random graphs [20], we have an additional property regarding these 4-cycle counts. We

say that a map ψ : A → Fn
2 has diameter at most k if

∣∣ψ(u)−ψ(v)
∣∣≤ k for every u,v ∈ A.

Property P9. A weakly balanced Boolean function f : Fn
2 → {1,−1} has the Local 4-Cycle

Property L4C(d,ε) if in the Cayley graph Cay( f ), for any two vertices u,v ∈ Fn
2 at Hamming

distance at most d, the expected number of 4-cycles with u and v as antipodal points is close to

the expected value, i.e.,

∣∣∣∣∣∣homφ (C4,Cay( f ))−

(
1
4
− f̂ (0)

2

)2
∣∣∣∣∣∣< ε

via the definition of homφ (H,G) for any injection φ : L(C4) ↪→ Fn
2 of diameter at most d.

Here we assume the function f is weakly balanced, an assumption which will be crucial
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in the proof of Theorem 2.5.2. We remark that Chung, Graham, and Wilson give a global count

of C4’s, whereas we give a stronger condition which controls local appearances of C4. This

intuitive connection will be expanded upon in Chapter 3 where we compare our properties to a

number of previously known pseudo-random properties appearing in prior works.

Our final few combinatorial properties build on the Local 4-Cycle Property by giving

strong control over local subgraph counts of an arbitrary graph. In particular, given a graph H,

we fix the location of our desired subgraph in a larger graph derived from our Boolean function,

and then ask for how many ways we can extend our choice of location to a homomorphism of

H. To keep track of the extra information needed, these properties have a number of additional

technical requirements and definitions.

We consider a count of rainbow embeddings in the rainbow Hamming graph (see sections

§2.2.3 and §2.2.4).

Property P10. A weakly balanced Boolean function f : Fn
2 →{1,−1} has the Rainbow Embed-

dings Property RAIN(d,ε) if for every fixed simple graph G with at most max{
√

ε2n/2−1,1}

edges and every choice of injection φ from G to the rainbow Hamming graph of f , there are

close to a 2−|E(G)|-fraction of colorings of G which become rainbow embeddings of G under φ ,

i.e., the Rainbow Embeddings Property holds if

∣∣∣chφ (G,RHG(d, f ))−2−|E(G)|
∣∣∣< ε

for every fixed graph G such that
∣∣E(G)

∣∣ ≤ max{
√

ε2n/2−1,1}, and every φ : V (G) ↪→

V (RHG(d, f )) of diameter at most d.

Property P11. A weakly balanced Boolean function f : Fn
2 →{1,−1} has the Weak Rainbow

Embeddings Property WRAIN(d,ε) if for every choice of injection φ from K2 to the rainbow

Hamming graph of f , there are close to a 1
2-fraction of colorings of K2 which become rainbow
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embeddings of G under φ , i.e., the Rainbow Embeddings Property holds if

∣∣∣∣chφ (K2,RHG(d, f ))− 1
2

∣∣∣∣< ε

for every φ : V (K2) ↪→V (RHG(d, f )) of diameter at most d.

A map ∆ : N×R>0 → R>0 is a loss function if for each d ∈ N, ε < ε ′ implies that

∆(d,ε)≤ ∆(d,ε ′). For properties P(d,ε) and Q(d,ε) and a loss function ∆, we say P ∆-implies

Q, denoted P(d,ε) ∆
=⇒ Q(d,ε), if for every d ≥ 1, every ε > 0, every n > 0 and every Boolean

function f : Fn
2 →{1,−1}

P(d,∆(d,ε)) =⇒ Q(d,ε).

Notice that ∆(d,ε) does not depend on the function f or on the size of the domain, n. If

P(d,ε)
∆1=⇒ Q(d,ε) and Q(d,ε)

∆2=⇒ P(d,ε)

for some loss functions ∆1 and ∆2, we say that P and Q are equivalent. Our main result is that

Property P1, Property P2,. . . ,Property P11 are all equivalent as stated below.

Theorem 2.3.2. For any fixed d, the properties INF(d,ε), SD(d,ε), RF(d,ε), RC(d,ε), RI(d,ε),

EQD(d,ε), LSR(d,ε), SAME(d,ε), L4C(d,ε), RAIN(d,ε), and WRAIN(d,ε) are all equiva-

lent.

If a Boolean function f satisfies the Balanced Influences Property INF(d,ε) for some

d and ε , we say that f is quasi-random of rank d with error bound ε . Such a function f then

satisfies all of the other properties in Theorem 2.3.2 with rank d and the appropriate value of ε .

We shall prove Theorem 2.3.2 via a series of theorems, each of which handles a specific

implication between two properties. As we have a large number of properties and implications

to prove, the proof of Theorem 2.3.2 is divided into two sections as follows:
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INF(d,ε) SD(d,ε)

RF(d,ε)

RC(d,ε)

RI(d,ε)

LSR(d,ε)

RAIN(d,ε)

WRAIN(d,ε)

L4C(d,ε)

SAME(d,ε)

EQD(d,ε)

ε/2

Thm 2.4.1

ε Thm 2.4.2

ε/2d Thm 2.4.3
εThm 2.4.4

Thm 2.4.5
ε

2ε

Thm 2.5.1Def. ε

Thm 2.5.2 ε/2

Thm 2.5.2
ε/20

Thm 2.5.3

ε/2Thm 2.5.4

ε Thm 2.5.5
ε

Thm 2.5.6 2ε/3

Thm 2.5.7

ε/12

Figure 2.3. The implications in Theorem 2.3.2. Each edge gives the loss in ε and the reference
to the theorem in which the implication is shown.

• Section 2.4 considers the properties INF(d,ε), SD(d,ε), RF(d,ε), RC(d,ε), and RI(d,ε)

which revolve around the Fourier expansion of a Boolean function.

• Section 2.5 considers the combinatorial properties LSR(d,ε), L4C(d,ε), SAME(d,ε),

EQD(d,ε), RAIN(d,ε), and WRAIN(d,ε).

We can summarize the proof of our main theorem in Figure 2.3, where each arrow is labeled

with the relevant theorem and error bound.

One can easily observe that P(d+1,ε) =⇒ P(d,ε) for each property P and every d and

ε . Our second main result, proven in Section 2.6, shows that these inclusions are strict, i.e., that

there are functions which are quasi-random of rank d but not quasi-random of rank d +1.

Theorem 2.3.3. For each d ≥ 1 and any 0 < ε < 1
8 , there exists an explicit weakly balanced

function fd : Fn
2 →{1,−1} such that

• fd satisfies the Balanced Influences Property INF(d,ε).

• fd does not satisfy the Balanced Influences Property of rank d +1 for any ε < 1
2 .
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2.4 Proof of Equivalence of Analytical Properties

In this section, we shall prove the equivalence of a number of analytic properties in

Theorem 2.3.2. Figure 2.4 provides an outline of the implications proven in this section.

INF(d,ε) SD(d,ε)

RF(d,ε)

RC(d,ε)

RI(d,ε)

ε/2

Thm 2.4.1

ε Thm 2.4.2

ε/2d Thm 2.4.3
εThm 2.4.4

Thm 2.4.5
ε

Figure 2.4. The implications in Theorem 2.3.2 proven in Section 2.4. Each edge gives the loss
in ε and the reference to the theorem in which the implication is shown.

First, we relate the Balanced Influences Property to the Spectral Discrepancy Property.

Theorem 2.4.1. For any fixed integer d ≥ 1 and any ε > 0, the Balanced Influences Property

INF(d,ε/2) implies the Spectral Discrepancy Property SD(d,ε).

Proof. Fix a subcube C(S,z0) where |S| = n− k for k ≤ d. Let M ∈ FS×[n]
2 be the projection

matrix which sends z ∈ Fn
2 to z|S.

We observe that the indicator function [γ ∈C(S,z0)] can be written as

[γ ∈C(S,z0)] = Ev∈FS
2
(−1)v·(Mγ−z0). (2.3)

Indeed, if γ ∈ C(S,z0), then Mγ = z0, and Ev∈FS
2
(−1)v·(Mγ−z0) = Ev∈FS

2
1 = 1. If γ /∈ C(S,z0),

then γ j ̸= (z0) j for some j ∈ S. Therefore, Ev∈FS
2
(−1)v·(Mγ−z0) =Ev∈FS

2
(−1)v·y for some nonzero

vector y. Hence, Ev∈FS
2
(−1)v·(Mγ−z0) = 0. Let f be a function which satisfies the Balanced
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Influence Property INF(d,ε/2). We expand the definition of the spectral sample.

Pγ∼S f

[
γ ∈C(S,z0)

]
= ∑

γ∈C(S,z0)

f̂ (γ)2

= ∑
γ∈Fn

2

f̂ (γ)2 [γ ∈C(S,z0)]

= ∑
γ∈Fn

2

f̂ (γ)2Ev∈FS
2
(−1)v·(Mγ−z0) (2.4)

where we use Equation (2.3)) in Equation (2.4)). Simplifying further, we have

Pγ∼S f

[
γ ∈C(S,z0)

]
= Ev∈FS

2
(−1)v·z0 ∑

γ∈Fn
2

f̂ (γ)2 (−1)v·Mγ

= Ev∈FS
2
(−1)v·z0 ∑

γ∈Fn
2

f̂ (γ)2 (−1)(M
⊤v)·γ

= Ev∈FS
2
(−1)v·z0 ∑

γ∈Fn
2

f̂ (γ)2
χγ(M⊤v) (2.5)

= Ev∈FS
2
(−1)v·z0 f ∗ f (M⊤v) (2.6)

where we use the definition of χγ in Equation (2.5)) and Fourier expansion of f ∗ f in Equa-

tion (2.6)). Notice that f ∗ f (M⊤0) = ( f ∗ f )(0) = 1, and that x = 0 is the only solution to

M⊤x = 0. Therefore, we can write

∣∣∣Pγ∼S f

[
γ ∈C(S,z0)

]
−2−k

∣∣∣=
∣∣∣∣∣∣∣ ∑v∈Fk

2

(−1)v·z0
f ∗ f (M⊤v)

2k −2−k

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣ ∑
v∈Fk

2\{0}
(−1)v·z0

f ∗ f (M⊤v)
2k

∣∣∣∣∣∣∣
≤ 1

2k ∑
v∈Fk

2\{0}

∣∣∣ f ∗ f (M⊤v)
∣∣∣

=
1
2k ∑

v∈Fk
2\{0}

∣∣1−2IM⊤v[ f ]
∣∣
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where we use Lemma 2.1.13 in the final line. As k ≤ d, we have |v| ≤ d. Since M is a projection

matrix,
∣∣∣M⊤v

∣∣∣= |v| ≤ d . Therefore, we may apply INF(d,ε/2) to find

∣∣∣Pγ∼S f

[
γ ∈C(S,z0)

]
−2−k

∣∣∣≤ 1
2k ∑

v∈Fk
2\{0}

ε ≤ ε

As C(S,z0) is arbitrarily chosen, f satisfies the Spectral Discrepancy Property SD(d,ε) as

desired.

Now we can relate the spectral sample to the Fourier coefficients of restricted functions.

Theorem 2.4.2. For any fixed d ≥ 1 and ε > 0 the Spectral Discrepancy Property SD(d,ε)

implies the Restriction Fourier Property RF(d,ε).

Proof. This proof is essentially the proof of Corollary 3.22 in [70], which we include here for

completeness. Suppose f : Fn
2 →{1,−1} satisfies the Spectral Discrepancy Property SD(d,ε).

Let C(S,z) be an arbitrary subcube of dimension k where k ≤ d. Then for a fixed γ ∈ FS
2,

Lemma 2.1.17 gives us

Ez∈FS
2

f̂ |S,z (γ)2 = Ez∈FS
2

 ∑
δ∈FS

2

f̂
(

γ ⊗
S

δ

)
χδ (z)


2

= ∑
δ1,δ2∈FS

2

f̂
(

γ ⊗
S

δ1

)
f̂
(

γ ⊗
S

δ2

)
Ez∈FS

2
χδ1(z)χδ2(z)

= ∑
δ∈FS

2

f̂
(

γ ⊗
S

δ

)2

(2.7)

= Pη∼S f

[
η ∈C(S,γ)

]
(2.8)

where we use the orthogonality of the Fourier characters in Equation (2.7)) and the definition of

the spectral sample Equation (2.8)). As k ≤ d,
∣∣∣S∣∣∣= n− k ≥ n−d. Thus we can apply Property
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SD(d,ε) to C(S,z) to find that

∣∣∣Pη∼S f

[
η ∈C(S,γ)

]
−2−k

∣∣∣< ε

for every γ ∈ FS
2. Hence, ∣∣∣∣Ez∈FS

2
f̂ |S,z (γ)2 −2−k

∣∣∣∣< ε

for every γ ∈ FS
2. As C(S,z) is arbitrary, f satisfies the Restriction Fourier Property RF(d,ε).

With a bound on the Fourier coefficients of restricted functions, we can bound the

convolution of a restricted function with itself.

Theorem 2.4.3. For any fixed d ≥ 1 and ε > 0 the Restriction Fourier Property RF(d,ε/2d)

implies the Restriction Convolution Property RC(d,ε)

Proof. Let f : Fn
2 →{1,−1} have the Restriction Fourier Property RF(d,ε/2d), and note that

f also satisfies RF(k,ε/2k) for every k ≤ d. Fix k ∈ N such that k ≤ d and a set S ⊆ [n] where

|S|= k.

We have

Ez∈FS
2
( f |S,z ∗ f |S,z)(x) = Ez∈FS

2
∑

δ∈FS
2

f̂ |S,z (δ )2
χδ (x)

= ∑
δ∈FS

2

(
Ez∈FS

2
f̂ |S,z (δ )2

)
χδ (x)
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Using the Fourier expansion of the indicator function [x = 0], we then have

∣∣∣∣Ez∈FS
2
( f |S,z ∗ f |Sz)(x)− [x = 0]

∣∣∣∣=
∣∣∣∣∣∣ ∑
δ∈FS

2

(
Ez∈FS

2
f̂ |S,z (δ )2 − 1

2k

)
χδ (x)

∣∣∣∣∣∣
≤ ∑

δ∈FS
2

∣∣∣∣Ez∈FS
2

f̂ |S,z (δ )2 − 1
2k

∣∣∣∣
≤ ∑

δ∈FS
2

ε

2k

≤ ε

where we use RF(k,ε/2k) in the penultimate line. Since k and S are arbitrary, we conclude that

f satisfies the Restriction Convolution Property RC(d,ε).

Theorem 2.4.4. For any fixed d ≥ 1 and ε > 0 the Restriction Convolution Property RC(d,2ε)

implies the Restriction Influences Property RI(d,ε).

Proof. Suppose f satisfies the Restriction Convolution Property RC(d,2ε). Applying

Lemma 2.1.13 to f |S,z, we have

Iγ [ f |S,z] =
1− f |S,z ∗ f |S,z(γ)

2

for any fixed S and z. Now fix k ∈ N such that k ≤ d and S ⊆ [n] where |S|= k. Then,

∣∣∣∣Ez∈FS
2
Iγ [ f |S,z]−

1
2

∣∣∣∣= ∣∣∣∣(Ez∈FS
2

1− f |S,z ∗ f |S,z(γ)
2

)
− 1

2

∣∣∣∣= ∣∣∣∣Ez∈FS
2

f |S,z ∗ f |S,z(γ)
2

∣∣∣∣
If γ ̸= 0, RC(d,2ε) implies that the above is at most ε . Hence, f satisfies the Restriction

Influences Property RI(d,ε).

Theorem 2.4.5. For any fixed d ≥ 1 and ε > 0, the Restriction Influences Property RI(d,ε)

implies the Balanced Influences Property INF(d,ε).
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Proof. Suppose f : Fn
2 → {1,−1} satisfies the Restriction Influences Property RF(d,ε). Fix

S ⊆ [n] with |S| ≤ d and a nonzero γ ∈ FS
2. Then,

Ez∈FS
2
Iγ [ f |S,z] = Ez∈FS

2
Ex∈FS

2
[ f |S,z(x+ γ) ̸= f |S,z(x)]

= Ez∈FS
2
Ex∈FS

2
[ f (x⊗

S
z+ γ ⊗

S
0)) ̸= f (x⊗

S
z)]

Let y = x⊗
S

z and δ = γ ⊗
S

0. Note that |δ | ≤ d as |S| ≤ d. Thus

Ez∈FS
2
Iγ [ f |S,z] = Ey∈Fn

2
[ f (y+δ ) ̸= f (y)]

= Iδ [ f ]

Since any vector of Hamming weight at most d can be represented as γ ⊗
S

0 for some set S with

|S| ≤ d and γ ∈ FS
2, f satisfies the Balanced Influences Property INF(d,ε).

2.5 Proof of Equivalence of Combinatorial Properties

In this section, we continue the proof of Theorem 2.3.2 and prove that several of our

combinatorial properties are equivalent to the Balanced Influences Property. The diagram in

Figure 2.5 summarizes the proofs found in this section.

We begin by considering the relationship between γ-Influences and the Local Strong

Regularity Property.

Theorem 2.5.1. For any fixed d ≥ 1 and ε > 0, the Balanced Influences Property INF(d,2ε)

implies the Local Strong Regularity Property LSR(d,ε).

Proof. Suppose f : Fn
2 → {1,−1} satisfies the Balanced Influences Property INF(d,2ε). Fix
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INF(d,ε)

LSR(d,ε)
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Figure 2.5. The implications in Theorem 2.3.2 proven in Section 2.5. Each edge gives the loss
in ε and the reference to the theorem in which the implication is shown.

u,v in the Cayley graph of f such that 0 < |u− v| ≤ d. Then,

∣∣∣∣∣
∣∣N(u)∩N(v)

∣∣
2n − 1

4
+

f̂ (0)
2

∣∣∣∣∣=
∣∣∣∣∣Ez∈Fn

2

(1− f (u+ z))(1− f (v+ z))
4

− 1
4
+

f̂ (0)
2

∣∣∣∣∣
=

∣∣∣∣∣ f̂ (0)
2

−
Ez∈Fn

2
f (u+ z)+ f (v+ z)

4
+

Ez∈Fn
2

f (u+ z) f (v+ z)

4

∣∣∣∣∣
=

1
4

∣∣ f ∗ f (u+ v)
∣∣

=
1
2

Iu+v[ f ]

≤ ε

where we use Lemma 2.1.13 in the penultimate line and INF(d,2ε) in the ultimate line. It

follows that f satisfies the Local Strong Regularity Property LSR(d,ε).

As Local Strong Regularity is a condition on common neighbors, we can use it to count

4-cycles.

Theorem 2.5.2. For any fixed d ≥ 1 and ε > 0, the Local 4-Cycle Property L4C(d,ε/20)

implies the Local Strong Regularity Property LSR(d,ε) and the Local Strong Regularity Property
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LSR(d,ε/2) implies the Local 4-Cycle Property L4C(d,ε).

Proof. Let u,v be the vertices in the left part of C4, and fix an injective map φ : {u,v} ↪→ Fn
2.

The key observation is the following:

homφ (C4,Cay( f )) =

∣∣N(φ(u))∩N(φ(v))
∣∣2

22n

Indeed, a (possibly non-injective) graph homomorphism of C4 with a fixed left part is simply a

choice of two vertices in the common neighborhood of φ(u) and φ(v) in Cay( f ). Let N(u,v) =∣∣N(φ(u))∩N(φ(v))
∣∣.

Hence,

∣∣∣∣∣∣homφ (C4,Cay( f ))−

(
1
4
− f̂ (0)

2

)2
∣∣∣∣∣∣=
∣∣∣∣∣∣N(u,v)2

22n −

(
1
4
− f̂ (0)

2

)2
∣∣∣∣∣∣

=

∣∣∣∣∣N(u,v)
2n +

(
1
4
− f̂ (0)

2

)∣∣∣∣∣
∣∣∣∣∣N(u,v)

2n −

(
1
4
− f̂ (0)

2

)∣∣∣∣∣
(2.9)

Now we prove both of the implications in the theorem. Assume first that f satisfies the

Local 4-Cycle Property L4C(d,ε/20). By Equation (2.9)),

ε

20
≥

∣∣∣∣∣∣homφ (C4,Cay( f ))−

(
1
4
− f̂ (0)

2

)2
∣∣∣∣∣∣≥ 1

20

∣∣∣∣∣N(u,v)
2n −

(
1
4
− f̂ (0)

2

)∣∣∣∣∣ (2.10)

where we use the fact that f is weakly balanced to show that

∣∣∣∣∣N(u,v)
2n +

(
1
4
− f̂ (0)

2

)∣∣∣∣∣≥
∣∣∣∣N(u,v)

2n +
1
4

∣∣∣∣−
∣∣∣∣∣ f̂ (0)

2

∣∣∣∣∣≥ 1
4
− 1

5
=

1
20

.

It follows that f satisfies the Local Strong Regularity Property LSR(d,ε).

Now assume that f satisfies the Local Strong Regularity Property LSR(d,ε/2), so that
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∣∣∣∣N(u,v)
2n −

(
1
4 −

f̂ (0)
2

)∣∣∣∣< ε/2. Again using Equation (2.9)), we find that

∣∣∣∣∣∣homφ (C4,Cay( f ))−

(
1
4
− f̂ (0)

2

)2
∣∣∣∣∣∣<
∣∣∣∣∣N(u,v)

2n +

(
1
4
− f̂ (0)

2

)∣∣∣∣∣ ε

2

≤

∣∣∣∣∣N(u,v)
2n −

(
1
4
− f̂ (0)

2

)∣∣∣∣∣+2

∣∣∣∣∣14 − f̂ (0)
2

∣∣∣∣∣
 ε

2

By LSR(d,ε/2),

∣∣∣∣∣∣homφ (C4,Cay( f ))−

(
1
4
− f̂ (0)

2

)2
∣∣∣∣∣∣≤
ε

2
+2

∣∣∣∣∣14 − f̂ (0)
2

∣∣∣∣∣
 ε

2

≤
(

ε

2
+

1
2
+
∣∣∣ f̂ (0)∣∣∣) ε

2

=

(
ε

2
+

9
10

)
ε

2

≤ ε

where we use the facts that f is weakly balanced and ε ≤ 1. We conclude that f satisfies the

Local 4-Cycle Property L4C(d,ε).

Local Strong Regularity also allows us to consider the Cayley graph Cay(− f ).

Theorem 2.5.3. For any fixed d ≥ 1 and ε > 0, the Local Strong Regularity Property LSR(d,ε/2)

implies the Local Sameness Property SAME(d,ε).

Proof. Let f : Fn
2 →{1,−1} be a Boolean function which satisfies the Local Strong Regularity

Property LSR(d,ε/2). Fix u,v ∈ Fn
2 such that |u− v| ≤ d. Similarly to Theorem 2.5.2, let

N+(u,v) =
∣∣∣NCay( f )(u)∩NCay( f )(v)

∣∣∣ and let N−(u,v) =
∣∣∣NCay(− f )(u)∩NCay(− f )(v)

∣∣∣.
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We observe that

N−(u,v)
2n = Ex∈Fn

2

1+ f (x+u)
2

1+ f (x+ v)
2

=
1
4
+

f̂ (0)
2

+Ex∈Fn
2

f (x+u) f (x+ v)

=
N+(u,v)

2n + f̂ (0)

Hence,∣∣∣∣∣N+(u,v)+N−(u,v)
2n − 1

2

∣∣∣∣∣=
∣∣∣∣∣2N+(u,v)

2n − 1
2
+ f̂ (0)

∣∣∣∣∣= 2

∣∣∣∣∣N+(u,v)
2n − 1

4
+

f̂ (0)
2

∣∣∣∣∣≤ ε

where we use LSR(d,ε/2) in the final line. Hence, f has the Local Sameness Property

SAME(d,ε).

Since the rainbow Hamming graph has an edge uv with color x whenever f (u+ x) =

f (v+ x), the Local Sameness Property gives a natural way to control the rainbow Hamming

graph.

Theorem 2.5.4. For any fixed d ≥ 1 and ε > 0, the Local Sameness Property SAME(d,ε)

implies the Weak Rainbow Embeddings Property WRAIN(d,ε).

Proof. Suppose f : Fn
2 →{1,−1} satisfies the Local Sameness Property SAME(d,ε). Fix u,v ∈

Bd(n,0), and let φ be an injection from V (K2) to {u,v}. By definition of rainbow embeddings,

we have

chφ (K2,RHG(d, f )) = Eχ:E(K2)→Fn
2
[(φ(u),φ(v),χ(e)) ∈ E(RHG(d, f ))]
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Setting x = χ(e) and applying the definition of the edge set of RHG( f ), we have

chφ (K2,RHG(d, f )) = Ex∈Fn
2
[ f (φ(u)+ x) = f (φ(v)+ x)]

= E
x∈Fn

2

[ f (φ(u)+ x) = f (φ(v)+ x) = 1]+

[ f (φ(u)+ x) = f (φ(v)+ x) =−1]

=

∣∣∣NCay(− f )(φ(u))∩NCay(− f )(φ(v))
∣∣∣+ ∣∣∣NCay( f )(φ(u))∩NCay( f )(φ(v))

∣∣∣
2n

Let X =
∣∣∣chφ (K2,RHG(d, f ))− 1

2

∣∣∣. We then have,

X =

∣∣∣∣∣∣∣
∣∣∣NCay(− f )(φ(u))∩NCay(− f )(φ(v))

∣∣∣+ ∣∣∣NCay( f )(φ(u))∩NCay( f )(φ(v))
∣∣∣

2n − 1
2

∣∣∣∣∣∣∣
< ε

by the Local Sameness Property SAME(d,ε). Hence, f satisfies the Weak Rainbow Embeddings

Property WRAIN(d,ε).

Our next theorem is an immediate consequence of the Weak Rainbow Embeddings

Property.

Theorem 2.5.5. For any fixed d ≥ 1 and ε > 0, the Weak Rainbow Embeddings Property

WRAIN(d,ε) implies the Balanced Influences Property INF(d,ε).

Proof. Suppose f : Fn
2 → {1,−1} satisfies the Weak Rainbow Embeddings Property

WRAIN(d,ε). Fix u ∈ Bd(n,0), and let φ be an injection from V (K2) to {u,0}. By defini-

tion of rainbow embeddings, we have

chφ (K2,RHG(d, f )) = Eχ:E(K2)→Fn
2
[(u,0,χ(e)) ∈ E(RHG(d, f ))]
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Setting x = χ(e) and applying the definition of the edge set of RHG( f )

chφ (K2,RHG(d, f )) = Ex∈Fn
2
[ f (u+ x) = f (x)]

= Px∈Fn
2

[
f (x+u) = f (x)

]
= 1− Iu[ f ]

By Property WRAIN(d,ε), we have that |chφ (K2,RHG(d, f ))− 1
2 |< ε . Hence, it follows that∣∣∣Iu[ f ]− 1

2

∣∣∣< ε and f satisfies the Balanced Influences Property INF(d,ε).

Theorem 2.5.6. For any fixed d ≥ 1 and ε > 0, the Balanced Influences Property INF(d,2ε/3)

implies the Equidistributed Derivatives Property EQD(d,ε).

Proof. Fix a,b ∈ Fn
2 such that |a| , |b| ≤ d and 0 < |a−b| ≤ d. Fix also c0,c1 ∈ {1,−1}. Let

X =

∣∣∣∣Ex∈Fn
2
[∆a f (x) = c1][∆b f (x) = c0]−

1
4

∣∣∣∣
We then have

X =

∣∣∣∣Ex∈Fn
2

(
1+ c1∆a f (x)

2

)(
1+ c0∆b f (x)

2

)
− 1

4

∣∣∣∣
=

1
4

∣∣∣c1Ex∈Fn
2
∆b f (x)+ c0Ex∈Fn

2
∆a f (x)+ c0c1Ex∈Fn

2
∆a f (x)∆b f (x)

∣∣∣
=

1
4

∣∣∣Ex∈Fn
2

(
c1 f (x) f (x+b)+ c0 f (x+a) f (x)

)
+ c0c1Ex∈Fn

2
∆a f (x)∆b f (x)

∣∣∣

Note that ∆a f (x)∆b f (x) = f (x + a) f (x) f (x + b) f (x) = f (x + a) f (x + b) as f (x) ∈ {1,−1}.

44



Therefore

X =
1
4

∣∣c1 f ∗ f (b)+ c0 f ∗ f (a)+ c0c1 f ∗ f (a+b)
∣∣

≤ 1
4

(∣∣ f ∗ f (b)
∣∣+ ∣∣ f ∗ f (a)

∣∣+ ∣∣ f ∗ f (a+b)
∣∣)

=
1
2
(
Ib[ f ]+ Ia[ f ]+ Ia+b[ f ]

)
≤ ε

where we use Lemma 2.1.13 and INF(d,2ε/3) thrice in the final line. Thus f satisfies the

Equidistributed Derivatives property EQD(d,ε).

Our final and most technical result connects equidistributed derivatives and rainbow

embeddings.

Theorem 2.5.7. For any fixed d ≥ 1 and 1 ≥ ε > 0, the Equidistributed Derivatives Property

EQD(d,ε/12) implies the Rainbow Embeddings Property RAIN(d,ε).

Proof. Let G be a fixed graph with at most max{
√

ε2n/2−1,1} edges. Let φ : V (G) ↪→ Bd(n,0)

be an injection of diameter at most d.

We first consider the case where 1 maximizes the above. Let (u,v) be the single edge in

G. By the definition of RHG( f ), we have

chφ (G,RHG(d, f )) = Eχ:E(G)↪→Fn
2
[(φ(u),φ(v),χ((u,v))) ∈ E(RHG(d, f ))]

= Ex∈Fn
2
[ f (φ(u)+ x) = f (φ(v)+ x)]

= Ex∈Fn
2
[ f (φ(u)+ x) f (x) = f (φ(v)+ x) f (x)]

= Ex∈Fn
2
[∆φ(u) f (x) = ∆φ(v) f (x)]

= Ex∈Fn
2
[∆φ(u) f (x) = 1][∆φ(v) f (x) = 1]+

Ex∈Fn
2
[∆φ(u) f (x) =−1][∆φ(v) f (x) =−1]
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By EQD(d,ε/12), we have

∣∣∣∣chφ (G,RHG(d, f ))− 1
2

∣∣∣∣≤ ∣∣∣∣Ex∈Fn
2
[∆φ(u) f (x) = 1][∆φ(v) f (x) = 1]− 1

4

∣∣∣∣+∣∣∣∣Ex∈Fn
2
[∆φ(u) f (x) =−1][∆φ(v) f (x) =−1]− 1

4

∣∣∣∣
≤ ε

6

≤ ε

so we turn to the case where G has more than one edge, but at most
√

ε2n/2−1 edges. Let

m =
∣∣E(G)

∣∣
Recall that chφ (G,RHG(d, f )) counts the normalized number of colorings χ such that

φ becomes a rainbow embedding of G with the coloring χ in the rainbow Hamming graph

RHG(d, f ). More formally, we have

chφ (G,RHG(d, f )) = Eχ:E(G)↪→Fn
2 ∏
(u,v)∈E(G)

[(φ(u),φ(v),χ((u,v))) ∈ E(RHG(d, f ))]

= Eχ:E(G)↪→Fn
2 ∏
(u,v)∈E(G)

[ f (φ(u)+χ((u,v))) = f (φ(v)+χ((u,v)))]

We observe that the event

f (φ(u)+χ((u,v))) = f (φ(v)+χ((u,v))) ⇐⇒ ∆φ(u) f (χ((u,v))) = ∆φ(v) f (χ((u,v)))

Let Pχ(u,v) denote the event that ∆φ(u) f (χ((u,v))) = 1 and ∆φ(v) f (χ((u,v))) = 1. Let Nχ(u,v)

denote the event that ∆φ(u) f (χ((u,v))) =−1 and ∆φ(v) f (χ((u,v))) =−1. We then have

chφ (G,RHG(d, f )) = Eχ:E(G)↪→Fn
2 ∏
(u,v)∈E(G)

(
[Nχ(u,v)]+ [Pχ(u,v)]

)

Hence, we have
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∣∣∣chφ (G,RHG(d, f ))−2−m
∣∣∣=
∣∣∣∣∣∣Eχ:E(G)↪→Fn

2 ∏
(u,v)∈E(G)

(
[Nχ(u,v)]+ [Pχ(u,v)]

)
−2−m

∣∣∣∣∣∣
=

∣∣∣∣∣∣ E
χ:E(G)↪→Fn

2
∏

(u,v)∈E(G)

(
[Nχ(u,v)]+ [Pχ(u,v)]−

1
2
+

1
2

)
−2−m

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣
∑

/0 ̸=R⊆E(G)

E
χ:E(G)↪→Fn

2

∏(u,v)∈R

(
[Nχ(u,v)]+ [Pχ(u,v)]− 1

2

)
2|E(G)\R|

∣∣∣∣∣∣∣∣∣∣∣
≤ ∑

/0 ̸=R⊆E(G)

∣∣∣∣∣ E
χ:E(G)↪→Fn

2

∏(u,v)∈R

(
[Nχ(u,v)]+ [Pχ(u,v)]− 1

2

)∣∣∣∣∣
2|E(G)\R|

For R ⊆ E(G), let XR = ∑χ:R↪→Fn
2
∏(u,v)∈R

(
[Nχ(u,v)]+[Pχ(u,v)]− 1

2

)
. Let YR be the analogous

version of XR which sums over all functions, not just injections, i.e.,

YR = ∑
χ:R→Fn

2

∏
(u,v)∈R

(
[Nχ(u,v)]+ [Pχ(u,v)]−

1
2

)
.

We then have

∣∣∣chφ (G,RHG(d, f ))−2−m
∣∣∣≤ ∑

/0 ̸=R⊆E(G)

2−|E(G)\R| 1
(2n)|R|

|XR|

≤ ∑
/0 ̸=R⊆E(G)

2−|E(G)\R| 1
(2n)|R|

(|XR −YR|+ |YR|)
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Fix R ⊆ E(G).

|XR −YR|=

∣∣∣∣∣∣∣∣∣ ∑
χ:R→Fn

2
χnot injective

∏
(u,v)∈R

(
[Nχ(u,v)]+ [Pχ(u,v)]−

1
2

)∣∣∣∣∣∣∣∣∣
≤ ∑

χ:R→Fn
2

χnot injective

∏
(u,v)∈R

∣∣∣∣∣
(
[Nχ(u,v)]+ [Pχ(u,v)]−

1
2

)∣∣∣∣∣
As Nχ(u,v) and Pχ(u,v) cannot occur simultaneously, we have

|XR −YR| ≤ ∑
χ:R→Fn

2
χnot injective

(
1
2

)|R|

≤
(

2n|R|− (2n)|R|

)(1
2

)|R|

= (2n)|R|

(
2n|R|

(2n)|R|
−1

)(
1
2

)|R|

Observe that |R|2 ≤
∣∣E(G)

∣∣2 ≤ ε2n−2. Thus |R|2
2n ≤ ε

4 ≤ 1
4 . We have

2n|R|

(2n)|R|
≤
(

2n

2n −|R|

)|R|

=

(
1− |R|

2n

)−|R|

≤ exp

(
2
|R|2

n

)
(2.11)

≤ 1+2
|R|2

n
+

(
2
|R|2

n

)2

(2.12)

where we use the fact that e−2x ≤ 1− x for x ∈ [0,1.59] in Equation (2.11)) and the fact that
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ex ≤ 1+ x+ x2 for x ∈ [0,1.79] in Equation (2.12)). As |R|2
2n ≤ ε

4 , it follows that

2n|R|

(2n)|R|
≤ 1+

ε

2

and thus

|XR −YR| ≤ (2n)|R|

(
1
2

)|R|
ε

2

Now we turn to YR.

|YR|=

∣∣∣∣∣∣ ∑
χ:E(G)→Fn

2

∏
(u,v)∈R

(
[Nχ(u,v)]+ [Pχ(u,v)]−

1
2

)∣∣∣∣∣∣
=

∣∣∣∣∣∣ ∏
(u,v)∈R

((
∑

χ:{(u,v)}→Fn
2

[Nχ(u,v)]−
1
4

)
+

(
∑

χ:{(u,v)}→Fn
2

[Pχ(u,v)]−
1
4

))∣∣∣∣∣∣
= 2n|R|

∣∣∣∣∣∣ ∏
(u,v)∈R

((
Eχ:{(u,v)}→Fn

2
[Nχ(u,v)]−

1
4

)
+

(
Eχ:{(u,v)}→Fn

2
[Pχ(u,v)]−

1
4

))∣∣∣∣∣∣
By definition,

Eχ:{(u,v)}→Fn
2
[Pχ(u,v)] = Eχ:{(u,v)}→Fn

2
[∆φ(u) f (χ((u,v))) = 1][∆φ(v) f (χ((u,v))) = 1]

Eχ:{(u,v)}→Fn
2
[Nχ(u,v)] = Eχ:{(u,v)}→Fn

2
[∆φ(u) f (χ((u,v))) =−1][∆φ(v) f (χ((u,v))) =−1]

By assumption, φ is a map of diameter at most d from V (G) to Bd(n,0). Thus,
∣∣φ(u)∣∣ ≤ d,∣∣φ(v)∣∣≤ d, and

∣∣φ(u)−φ(v)
∣∣≤ d for every (u,v) ∈ E(G). Hence, we may apply EQD(d,ε/12)

to find that

YR ≤ 2n|R|

∣∣∣∣∣∣ ∏
(u,v)∈R

(
ε

12
+

ε

12

)∣∣∣∣∣∣≤ 2n|R|
(

ε

6

)|R|
≤ (2n)|R|

(
1+

ε

2

)(
ε

6

)|R|

where we use the same bound on 2n|R| as above. Now we can put everything back together as
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follows:

∣∣∣chφ (G,RHG(d, f ))−2−m
∣∣∣≤ ∑

/0 ̸=R⊆E(G)

2−|E(G)\R|
((

1
2

)|R|
ε

2
+

(
1+

ε

2

)(
ε

6

)|R|
)

=
ε

2

(
1−2−m

)
+

(
1+

ε

2

)((
1
2
+

ε

6

)m

− 1
2

m
)

As ε

3 ≤ 1
2 , we have the following:

(
1
2
+

ε

6

)m

− 1
2

m
=

1
2

m
((

1+
ε

3

)m

−1

)

≤ 1
2

m
(

ε

3
m
(

1+
ε

3

)m−1
)

(2.13)

≤ ε

6
m
(

3
4

)m−1

(2.14)

≤ ε

3
(2.15)

where we use the fact that (1+x)m ≤ 1+mx(1+x)m−1 in Equation (2.13)), the fact that ε

3 ≤ 1
2 in

Equation (2.14)), and the numerical fact that m(3/4)m−1 ≤ 2 for every m ≥ 1 in Equation (2.15)).

Therefore,

∣∣∣chφ (G,RHG(d, f ))−2−m
∣∣∣≤ ε

2
+

(
1+

ε

2

)
ε

3
≤ ε

as ε ≤ 1. Thus f also satisfies the Rainbow Embeddings Property RAIN(d,ε).

Remark 2.5.8. Chapter 2, in full, is a reprint of the material as it appears in Quasi-random

Boolean Functions, Fan Chung and Nicholas Sieger, which is in review at the Electronic Journal

of Combinatorics. The dissertation author was the primary investigator and author of this paper.
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2.6 Constructions of quasi-random Functions and Separa-
tion of the Hierarchy

In this section, we construct a large class of functions which separate the Balanced

Influences Property INF(d +1,ε) from INF(d,ε ′).

An [n,k,d]-binary linear code is a subspace C ⊆ Fn
2 of dimension k such that the

minimum Hamming distance between elements of C is d. An [n,k,d]-binary linear code may be

specified by its parity check matrix M ∈F(n−k)×n
2 which has the property that x∈C ⇐⇒ Mx= 0.

Note that the parity check matrix has rank n− k. We will need the following elementary fact

regarding linear codes of distance d.

Lemma 2.6.1. [ [50], Proposition 2.3.5] If M is the parity check matrix of a code with distance

strictly greater than d, then any nonzero x ∈ ker(M) must have |x|> d.

Example 2.6.2. Let C be the [8,4]-Extended Hamming code with parity check matrix H

H =



0 1 1 1 1 0 0 0

1 0 1 1 0 1 0 0

1 1 0 1 0 0 1 0

1 1 1 0 0 0 0 1


One can check that no vector of Hamming weight 3 or less can be an element of the kernel, as

every set of 3 columns has at least one row with an odd number of 1’s

The goal of this section is to demonstrate that a bent function composed with the parity

check matrix of a distance d linear code is quasi-random of rank d with error ε for any ε > 0.

Proof of Theorem 2.3.3. Let C be an [n,k,d +1]-binary linear code such that n− k is even and

n ≥ k+4. Let H ∈ F(n−k)×n
2 be a parity check matrix for C . Let g : Fn−k

2 →{1,−1} be a bent
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function, and define f : Fn
2 →{1,−1} by

f (x) := g(Hx).

We claim that

Iγ [ f ] =


1
2 γ /∈ ker(H)

0 γ ∈ ker(H)

Indeed, by Lemma 2.1.13, we have

Iγ [ f ] =
1
2
− 1

2
f ∗ f (γ)

=
1
2
− 1

2
Eδ∈Fn

2
g(Hδ )g(H(δ + γ))

=
1
2
− 1

2
Eη∈Range(H) g(η)g(η +Hγ) (2.16)

where in Equation (2.16)) we use the fact that Hδ is uniformly distributed on Range(H) when

δ is uniformly distributed on Fn
2. As the parity check matrix is a surjective linear map from

Fn
2 → Fn−k

2 , we have

Iγ [ f ] =
1
2
− 1

2
E

η∈Fn−k
2

g(η)g(η +Hγ)

=


1
2 γ /∈ ker(H)

0 γ ∈ ker(H)

(2.17)

where we use the fact that a g∗g(x) = 0 for x ̸= 0 (see Proposition 2.1.6) in Equation (2.17)).

Now we can apply Lemma 2.6.1 to conclude that if |γ| ≤ d, γ /∈ ker(H). It follows that Iγ [ f ] = 1
2

for every γ ∈ Fn
2 with 0 < |γ| ≤ d.

Similarly, as C has distance d +1, there is some γ ′ ∈ Fn
2 with Hamming weight d +1

such that Hγ ′ = 0. Hence, Iγ ′[ f ] = 0 by Equation (2.17)) above. Thus INF(d+1,ε) cannot hold

for f unless ε ≥ 1
2 .
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It remains to show that
∣∣∣ f̂ (0)∣∣∣< 2

5 , i.e., that f is weakly balanced. To that end we observe

f̂ (0) = Ex∈Fn
2
g(Hx) = Ey∈Fn−k

2
g(y)

by the same reasoning as in Equation (2.16)) above. Since g is bent, it follows that

∣∣∣ f̂ (0)∣∣∣= ∣∣ĝ(0)∣∣= 2−
n−k

2 .

As n ≥ k+4, we conclude that
∣∣∣ f̂ (0)∣∣∣≤ 1

4 < 2
5 and thus INF(d,ε) holds for f for any ε > 0.

Finally, we show that the Balanced Influences Property implies weak balance. We will

need the following lemma:

Lemma 2.6.3. If f : Fn
2 → {1,−1} has the Balanced Influences property INF(d,ε/2), then

f̂ (γ)2 ≤ 2−d + ε for every γ ∈ Fn
2.

Proof. By Theorem 2.4.1, if f has the Balanced Influences Property INF(d,ε/2), then f has the

Spectral Discrepancy Property SD(d,ε). Fix γ ∈ Fn
2 and let C(S,z) be a subcube of dimension

n−d which contains γ . By SD(d,ε),

f̂ (γ)2 ≤ ∑
δ∈C(S,z)

f̂ (δ )2 ≤ 2−d + ε.

Therefore,
∣∣∣ f̂ (γ)∣∣∣≤√

2−d + ε for every γ ∈ Fn
2.

Remark 2.6.4. The functions constructed in the proof of Theorem 2.3.3 show that the bound in

Lemma 2.6.3 is tight. Indeed, these function have the property that every subcube of dimension

n−d contains exactly one nonzero Fourier coefficient of weight 2−d/2. Thus both of the above

inequalities are tight for such functions.
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Proof of Theorem 2.3.1. Fix d ≥ 3. By Lemma 2.6.3, if f : Fn
2 →{1,−1} satisfies INF(d, 2

25 −

2−d−1) (note that 2
25 > 1

16 , so this expression is positive when d ≥ 3), then

∣∣∣ f̂ (α)
∣∣∣<√2−d +

(
4

25
−2−d

)
=

2
5

for every α ∈ Fn
2. Hence,

∣∣∣∣∣∣∣
∣∣∣ f−1({−1})

∣∣∣
2n − 1

2

∣∣∣∣∣∣∣=
1
2

∣∣∣ f̂ (0)∣∣∣< 1
5

and f is weakly balanced.

For the second part of the Theorem, consider the function f : F2
2 → {1,−1} which is

−1 if and only if its input is 11. One can easily verify that I10[ f ] = I01[ f ] = I11[ f ] = 1
2 , and

f−1({−1})
22 = 1

4 by construction.
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Chapter 3

Comparison with Extant Theories of
quasi-randomness

There are various quasi-randomness theorems for Boolean functions implicitly or ex-

plicitly considered in several related works ranging from hypergraphs to analysis of Boolean

functions. Typically, these theories capture global properties of a Boolean function while the

quasi-random properties defined in Section 2.3 are local. We will discuss an incomplete list of

these extant theories and compare them with some of our local quasi-random properties.

3.1 Cycle-Regularity

3.1.1 Roth’s Theorem and Fourier Analysis over Z/nZ.

A collection of pseudo-random properties of Boolean functions appears implicitly in

Chung and Graham’s work on quasi-random subsets of Z/NZ [19]. Their work generalizes

the pseudo-random property of small Fourier coefficients appearing in Roth’s Theorem. By

identifying the set of binary strings with the binary expansions of integers mod n, their work

implicitly produces a theory of quasi-random Boolean functions. While both their Theorem

and ours use Fourier analysis, it is important to note that Chung and Graham are using Fourier

analysis over Z/NZ, and the Fourier characters of Z/NZ are wildly different than those of Fn
2.

To apply their work to Boolean functions, we can identify the set of binary strings with

elements of Z/2nZ. Then a Boolean function can be identified with the set of elements of Z/2nZ
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(ε,d)-Uniform, d > 1

(ε,1)-Uniform(ε,n)-Fourier Regular

(ε,k)-Fourier Regular, k < n

(ε,δ )-Small Stable Influences
ε-Cycle Regularity

(ε,d) Balanced Influences, d > 0

(ε,d) Balanced Influences, d = Ω(ln(1/ε))

Bent

ε
[53]

ε

[70]

ε2

[70]

εDef.

ε2/4Thm 3.3.1

ε2/2

Ex 6.5f [70]

εLem 2.1.6

εThm 2.3.3
ε2/8Thm 3.4.2

Ex 6.5d [70]

Thm 3.2.5

Thm 3.2.5

Thm 3.1.1

Thm 3.3.1
Thm 3.4.2

Figure 3.1. The relationships between different theories of quasi-randomness. Each box is a
distinct theory of quasi-randomness. Each arrow is a strict implication. Beside each arrow we
give a reference to the proof of the implication and the loss function. The results of this thesis
are in bold blue text and blue arrows. Non-implications are red dotted lines with an X in the
middle, with a citation for each result.

on which it takes the value −1. Their key pseudo-random property is the following:

Property P12. A Boolean function f : Z/2nZ→{1,−1} is ε-Cycle Regular if f has correlation

at most ε with all nonzero characters of Z/2nZ, i.e., for every nonzero j ∈ Z/2nZ,

∣∣∣Ez∈Z/2nZ f (z)exp(2πi jz/2n)
∣∣∣< ε.

As shown by Chung and Graham [19], ε-Cycle Regularity controls the correlations of a

function f with a shifted copy of itself much like our Balanced Influences Property Property P1.

However, the arithmetic operations considered in ε-Cycle Regularity are carried out over Z/2nZ
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rather than Fn
2 as in the Balanced Influences Property.

3.1.2 Relationship between Balanced Influences and Cycle-Regularity

We prove the following theorem:

Theorem 3.1.1. For any δ > 0 there is a δ -Cycle Regular function which is not (ε,k+1)-Fourier

Regular for any ε < 1 where k =C0 ln(1/δ ) for some absolute constant C0.

The relationship between ε-Cycle Regularity and the other theories is more intricate than

our other theories of quasi-randomness, largely due to the algebraic differences between Z/2nZ

and Fn
2. As Boolean functions in the sense of ε-Cycle Regularity are not functions on Fn

2, we

have the following definition to transfer results between these two theories:

Definition 3.1.2. Given z ∈ Z/2nZ, let z∗ ∈ Fn
2 denote the binary expansion of z, i.e., the vector

such that

z∗i = ai

where z = ∑
n
i=1 ai2i−1 is the binary expansion of z.

Chung and Graham [ [19], Prop. 6.2] prove the following result.

Lemma 3.1.3. [19] Let g : Z/2nZ→{1,−1} be the function which is −1 if and only its input

has an odd number of ones in its binary expansion. There is an absolute constant C such that g

is ε-Cycle Regular where ε =C

√2+
√

2
2

n

≈ 0.92n.

In our notation, the function g considered in Lemma 3.1.3 can written as the composition

of the binary expansion function defined in definition Definition 3.1.2 with the Fourier character

χ1. As χ1 is a Fourier character, χ1 cannot be (ε,n)-Fourier Regular for any ε < 1. Thus for

any δ > 0, δ -Cycle Regularity does not imply (ε,n)-Fourier Regularity for any ε < 1. Here we

generalize Lemma 3.1.3 to show that there is a Fourier character χγ where |γ| is much smaller

than n which is ε-Cycle Regular for any ε > 0. As a consequence, we will show that for any
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δ > 0, δ -Cycle Regularity cannot even imply (ε,k)-Fourier Regularity for a wide range of k < n

and ε < 1.

Proof of Theorem 3.1.1. Set k = ⌈C0 ln(1/δ )⌉ for some absolute constant C0 to be defined later.

Define S = {1, . . . ,k}. Define γ ∈ Fn
2 by γ := 1⊗

S
0 where 1 ∈ FS

2 is the all-ones vector and 0 ∈ FS
2

is the zero vector. We show that χγ is δ -Cycle Regular.

Define ωn := exp
(

2πi
2n

)
. Now let c ∈ Z/2nZ\{0} be arbitrary, and via the Euclidean

algorithm, write c = 2n−ka+ b where 0 ≤ b < 2n−k. For z ∈ Z2n , we write z∗ = y∗⊗S x∗. We

then have χγ(z∗) = χ1(y∗)χ0(x∗) = χ1(y∗) by the definition of γ . Then,

Ez∈Z/2nZ χγ(z∗)ω−cz
n = E0≤y<2k E0≤x<2n−k χγ(y∗⊗

S
x∗)ω−(2n−ka+b)(2kx+y)

n

= E0≤y<2k E0≤x<2n−k χ1(y∗)ω−2nax−2kxb−2n−kay−by
n

= E0≤y<2k E0≤x<2n−k χ1(y∗)ω−2kxb−2n−kay−by
n

= E0≤y<2k χ1(y∗)ω−2n−kay−by
n E0≤x<2n−k ω

−2kxb
n

= E0≤y<2k χ1(y∗)ω−2n−kay−by
n E0≤x<2n−k ω

−xb
n−k

=


0 b ̸= 0

E0≤y<2k χ1(y∗)ω
−2n−kay
n b = 0

=


0 b ̸= 0

E0≤y<2k χ1(y∗)ω
ay
k b = 0

Observe that χ1(y∗) is precisely the function considered in Lemma 3.1.3 on the group Z2k . Hence,
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we may apply Lemma 3.1.3 to conclude that

∣∣∣Ez∈Z/2nZ χγ(z∗)ω−cz
n

∣∣∣≤C

√2+
√

2
2

k

≤C

√2+
√

2
2

−C0 ln(1/δ )

≤ δ

where C and C0 are sufficiently large absolute constants. Thus z → χγ(z∗) is δ -Cycle Regular.

However, |γ|= k, and so χγ cannot be (ε,k+1)-Fourier Regular for any ε < 1. Thus δ -Cycle

Regularity does not imply (ε,k+1)-Fourier Regularity for any ε < 1.

3.2 The Gowers Norms and (ε,k)-Uniformity

3.2.1 Gowers Norms and F2-Degree

The aforementioned Semeredi’s Theorem proved that any subset S of the integers such

that limn→∞

|S∩[n]|
n was positive contained arbitrarily long arithmetic progressions. Szemeredi’s

original proof is famously intricate, whereas Roth’s theorem is in many ways the prototypical

example of a “structure vs pseudo-randomness” argument. However, Roth’s Theorem fails

to capture progression of length 4 or higher. Gowers [48], extended Roth’s argument to arbi-

trarily long progressions using the quasi-randomness found in Chung and Graham’s work on

hypergraphs. The same ideas appear in Chung and Tetali’s work on the relationship between

k-uniform hypergraphs and Boolean functions in [23] and in papers by Castro-Silva [11, 12].

These works convert a Boolean function to a k-uniform hypergraph via the following construction.

Given a Boolean function f : Fn
2 →{1,−1}, its Cayley hypergraph H has the vertex set Fn

2 and

hyper-edges {x1, . . . ,xk} ∈ E(H) ⇐⇒ f (x1 + · · ·+ xk) = −1. In the hypergraph setting, one

considers the deviation in [15, 23, 24] which counts even and odd partial octahedra in k-uniform

hypergraphs.
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By translating the definitions of deviation and the Cayley hypergraph, we arrive at the

main definition for our purposes:

Definition 3.2.1. For k ≥ 1, the k-th Gowers uniformity norm of a function f : Fn
2 → {1,−1},

denoted ∥ f∥U(k), is defined as

∥ f∥U(k) :=

Ex∈Fn
2
Ev1,...,vk∈Fn

2 ∏
α1,...,αk∈{0,1}

f (x+α1v1 + · · ·+αkvk)

2−k

We will typically use the following equivalent formula

∥ f∥U(k) =

Ex∈Fn
2,M∈Fn×k

2
∏

v∈Fk
2

f (x+Mv)

2−k

(see [53]).

For these theories, the key pseudo-random property is the following:

Property P13. A Boolean function f : Fn
2 →{1,−1} is (ε,d)-Uniform if

∥ f∥U(d+1) < ε

As shown in Castro-Silva’s monograph [11], (ε,k + 1)-Uniformity implies (ε,k)-

Uniformity with no loss in ε , and the implication is strict. Hence, just as we have a hierarchy

of quasi-random properties in our Theorem 2.3.3, we can view (ε,k)-Uniformity as a similar

hierarchy indexed by k. As shown in [53], the k+1-st Gowers norm controls correlation of f

with functions of F2-degree at most k (see Section 2.1.2 for the definition of F2-degree).

Remark 3.2.2. Directional derivatives provide a third means of defining the Gowers uniformity

norms [53], so one might then think that the Equidistributed Derivatives Property Property P6

will have a close relationship with (δ ,k)-Uniformity. However, the Equidistributed Derivatives

Property only considers derivatives along vectors of Hamming weight at most k, whereas the
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Gowers uniformity norms consider all possible directional derivatives. As we shall see in the

proof of Theorem 3.2.5 below, the Spectral Discrepancy Property Property P2 is more applicable

in comparing our work and the theory of (ε,k)-Uniformity.

3.2.2 Lemmas

To connect our work on balanced influences to (ε,k)-Uniformity, we will need two

lemmas.

Lemma 3.2.3. For even n, there is a function f : Fn
2 →{1,−1} which has INF(d,ε) for every

d ≤ n and ε > 0, but ∥ f∥U(3) = 1.

Proof. We consider the Inner Product function IP(x) : Fn
2 →{1,−1} defined in Definition 2.1.7.

As shown in Lemma 2.1.9, IP is a bent function and therefore
∣∣∣ÎP(γ)

∣∣∣= 2−n/2 for every γ ∈ Fn
2.

By Proposition Proposition 2.1.6 and Lemma 2.1.13. IP has the property INF(d,ε) for every

1 ≤ d ≤ n and ε > 0. However, IP has F2-Degree 2. Since ∥g∥U(d+1) = 1 if g has F2-degree d

(see [53]), we conclude that ∥IP∥U(3) = 1.

Lemma 3.2.4. Let g : Fn
2 →{1,−1} be a Boolean function. Let M ∈ Fn×(n+1)

2 be the projection

matrix which sends x ∈ Fn+1
2 to its first n coordinates, and let w ∈ Fn+1

2 be the vector with a

single 1 in the n+1st coordinate. Let f : Fn+1
2 → {1,−1} be defined by f (x) = g(Mx). If g is

(ε,k)-Uniform, then

• f is (ε,k)-Uniform

• Iw[ f ] = 0.
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Proof. We first show that f is (ε,k)-Uniform. To that end, we have

∥ f∥U(k) =

Ex∈Fn+1
2

E
N∈F(n+1)×k

2
∏

v∈Fk
2

f (x+Nv)

2−k

=

Ex∈Fn+1
2

E
N∈F(n+1)×k

2
∏

v∈Fk
2

g(M(x+Nv))

2−k

=

Ex∈Fn+1
2

E
N∈F(n+1)×k

2
∏

v∈Fk
2

g(Mx+MNv)

2−k

We write y = Mx and P = MN. Since M is a projection matrix and x is uniformly distributed on

Fn+1
2 , y is uniformly distributed on Fn. Similarly, P is a uniformly distributed matrix in Fn×k

2 .

Hence,

∥ f∥U(k) =

Ey∈Fn
2
EP∈Fn×k

2
∏

v∈Fk
2

g(y+Pv)

2−k

= ∥g∥U(k)

≤ ε (3.1)

where we use our assumption on g in Equation (3.1)). Thus f is (ε,k)-Uniform.

For the second claim, we observe that f (x+w) = f (x) for every x. Therefore, Iw[ f ] =

0.

3.2.3 Relationship between Balanced Influences and (ε,k)-Uniformity

We show the following theorem:

Theorem 3.2.5. For any ε > 0, a Boolean function f : Fn
2 → {1,−1} with (δ ,d)-Balanced

Influences is also (ε,1)-Uniform by setting δ = ε4

4 and d ≥ 1+ ⌈4ln(1/ε)
ln(2) ⌉.

Furthermore, (ε,d)-Balanced Influences and (ε,k)-Uniformity are incomparable for any

d ≤ n and k ≥ 2. More precisely,
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(1) There is a function f : Fn
2 →{1,−1} with (δ ,n)-Balanced Influences for any δ > 0, yet f

is not (ε,2)-Uniform for any ε < 1.

(2) For any k ≥ 2 and any δ > 0, there is a function g : Fn
2 →{1,−1} which is (δ ,k)-Uniform

and does not have INF(d,ε) for any rank d ≥ 1 or ε < 1
2 .

Proof. We have three claims to prove. First, we consider the relationship between (ε,n) Balanced

Influences and (ε,1)-Uniformity. Let f : Fn
2 → {1,−1} satisfy INF(d,ε4/4) where d ≥ 1+

⌈4ln(1/ε)
ln(2) ⌉. By Lemma 2.6.3, f is (

√
2−d + ε4/2,n)-Fourier Regular. Using the bound on d, we

find that

2−d + ε
4/4 ≤ 1

2
exp
(
−4ln(1/ε)

)
+ ε

4/2 = ε
4 (3.2)

Thus f is (ε2,n)-Fourier Regular. By Proposition 6.7 in O’Donnell’s book [70], (
√

ε,n)-Fourier

Regularity implies (ε,1)-Uniformity. Thus, f is (ε,1)-Uniform.

Next we show that (ε,k)-Balanced Influences is incomparable with (ε,d)-Uniformity for

d > 1 and any k. Lemma 3.2.3 provides a function f which possesses INF(k,ε) for any k ∈ N

with 1 ≤ k ≤ n and any ε > 0 yet has ∥ f∥U(3) = 1.

Now we can show that (ε,d)-Uniformity cannot imply (ε,k)-Balanced Influences for

any k ≥ 1. Let g : Fn
2 →{1,−1} be a uniformly random Boolean function. For any ε > 0, there

is n sufficiently large such that g is (ε,k)-Uniform. By Lemma 3.2.4 if f : Fn+1
2 →{1,−1} is g

composed with a projection matrix, f is (ε,k)-Uniform yet there is a vector w ∈ Fn+1
2 such that

Iw[ f ] = 0 and |w|= 1. Thus, f cannot have the Balanced Influences Property INF(k,ε) for any

k ≥ 1 and ε < 1
2 .

It follows that (ε,k)-Uniformity and quasi-randomness of rank d with error ε are incom-

parable for k ≥ 2 and d ≥ 1.
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3.3 Fourier Expansion

3.3.1 History

O’Donnell presents several pseudo-random properties in [70] which center on the Fourier

expansion defined in Section 2.1.1. In this section and the next we will treat the relationship of our

work to his. The relevant properties date back to the work of Siegenthaler on cryptography [78].

Seigenthaler observed that a random-like cipher function f : Fn
2 →{0,1} has little to no weight

on Fourier coefficients f̂ (γ) where |γ| ≤ k. This naturally leads to a notion of a pseudo-random

Boolean function.

It is easy to observe that every Fourier coefficient of a random Boolean function is small

with high probability. We can combine these two ideas with the following definition, which also

appears in a work of Xiao and Massey [87]:

Property P14. A Boolean function f : Fn
2 →{1,−1} is (ε,d)-Fourier Regular if

∣∣∣ f̂ (γ)∣∣∣< ε

for every γ ∈ Fn
2 with |γ| ≤ d.

By definition, (ε,d + 1)-Fourier Regularity ε-implies (ε,d)-Fourier Regularity, and a

Fourier character χγ where |γ| = d +1 shows that the implication is strict. Hence, just as we

have a hierarchy of quasi-random properties in our Theorem 2.3.3, (ε,k)-Fourier Regularity

can be viewed as forming an increasing hierarchy of pseudo-random properties indexed by

k. Furthermore, (ε,n)-Fourier Regularity and (ε,1)-Uniformity are equivalent as is shown in

Proposition 6.7 of [70].

O’Donnell notes that the (ε,k)-Fourier Regularity is equivalent to several combinatorial

notions for small values of k. For instance, an (ε,k)-Fourier Regular function has small correla-

tion with k-juntas, i.e., functions whose output is determined by at most k inputs. The support

sets of an (ε,k)-Fourier Regular Boolean function can be used to produce a k-wise independent
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distribution on Fn
2, i.e., a distribution such any choice of k coordinates are mutually independent

(although larger sets might not be independent).

3.3.2 Relationship between Balanced Influences and (ε,k)-Regularity

As for the relationship between (ε,k)-Fourier regularity and our properties, we show the

following theorem:

Theorem 3.3.1. For any ε > 0, a Boolean Function f : Fn
2 → {1,−1} with (δ ,d)-Balanced

Influences is also (ε,k)-Fourier Regular for any k ≤ n by setting δ = ε2

4 and d = 1+ ⌈2ln(1/ε)
ln(2) ⌉.

Conversely, for any δ > 0 there is a function which is (δ ,n)-Fourier Regular which does

not have (ε,k) Balanced Influences for any rank k ≥ 1 or error bound ε < 1
2 .

Proof. Assume that f satisfies INF(d,ε2/2) where d ≥ 1+ ⌈2ln(1/ε)
ln(2) ⌉. Lemma 2.6.3 implies

that if f : Fn
2 → {1,−1} has INF(d,ε), then f is also (2

√
2−d + ε2/2,n)-Fourier Regular. By

the bound on d,

2−d + ε
2/2 ≤ 1

2
exp
(
−2ln(1/ε)

)
+ ε

2/2 = ε
2

Thus, f is (ε,n)-Fourier Regular. If a function g is (δ ,k)-Fourier Regular then g is also (δ ,k−1)-

Fourier Regular by definition. Hence, if f : Fn
2 → {1,−1} has (ε2/2,d)-Balanced Influences

then f is (ε,k)-Fourier Regular for any k ≤ n.

For the second claim, we must show that (ε,k)-Fourier Regularity cannot imply (ε,d)-

Balanced Influences for any k ≤ n, d ≥ 1 or ε < 1. Consider the inner product function IP :F2n
2 →

{1,−1} defined in Example Equation (2.1). By applying Lemma 3.2.4 to IP, we find a function

f : F2n+1
2 → {1,−1} which is (2−n/2,n)-Fourier Regular and yet does not have INF(d,ε) for

any d ≥ 1 and ε < 1
2 . As (ε,n)-Fourier Regularity implies (ε,k)-Fourier Regularity for k < n, IP

is (ε,k)-Fourier Regular for any k ≤ n. It follows that (ε,k)-Fourier Regularity does not imply

INF(d,ε) for any choice of k ≤ n, d ≥ 1, and ε < 1
2 .
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3.4 Small Stable Influences

3.4.1 Stable Influences

The influences of a Boolean function have These functions have been of great interest

in the context of thresholds in random structures thanks to Friedgut’s theorem [38] and the

KKL theorem on voting rules. O’Donnell gives four different notions of pseudo-randomness for

Boolean functions based on influences.

Small Influences

Small Stable InfluencesRegular

Low-Degree Regular

[70], Ex 6.5(a) ε2 [70], Ex 6.5(d) ε

[70], Ex 6.5(f) ε [70], Def 6.11 ε

Figure 3.2. The various pseudo-random properties considered in O’Donnell’s work.

Here, small influences is equivalent to the property that Iγ [ f ]< ε for each vector γ ∈ Fn
2

of Hamming weight 1, low-degree regularity and regularity are the same as the (ε,k)-Fourier

regularity from Section 3.3. Curiously, a random function does not have small influences as

we noted in defining Property P1 and O’Donnell himself notes [70]. Thus Small Influences are

not a true pseudo-random property for an arbitrary function. Stable influences capture the idea

that individual coordinates are unimportant while still applying to random functions. Stable

influences are defined as follows.

Definition 3.4.1. For a coordinate i and a parameter ρ ∈ [0,1], the ρ-stable influence of a
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Boolean function f : Fn
2 →{1,−1} is

Iρ

i [ f ] := ∑
γ∈Fn

2
γi=1

ρ
|γ|−1 f̂ (γ)2 .

Stable influences have been of great importance in computer science ever since the KKL

Theorem [57] on the existence, and much of O’Donnell’s test is focused on functions which

small stable influences [70].

The key pseudo-random property is:

Property P15. A Boolean function f : Fn
2 → {1,−1} has (ε,ρ)-Small Stable Influences for

some ε ∈ R≥0 and ρ ∈ [0,1] if

I1−ρ

i [ f ]< ε

for every i ∈ [n].

As shown by O’Donnell [70], ρ-Small Stable Influences measure the expected change in

the function if the input bits are changed via a particular noise model. Thus, (ε,ρ) Small Stable

Influences implies a form of noise stability [67].

Much of O’Donnell’s work is focused on monotone Boolean functions where changing an

input bit from 0 to 1 cannot make the function change from true to false. These are precisely the

functions considered in Freidgut’s Theorem and are of great interest in applications in Hardness

of Approximation [52,59,67,68]. All four notions of influence are pseudo-random properties for

monotone functions, and are equivalent in that setting [70].

3.4.2 Relationship between Balanced Influences and Small Stable
Influences

We show the following theorem:

Theorem 3.4.2. For any ε > 0 and 1 > ρ ≥ 2−
√

2, a Boolean function f : Fn
2 → {1,−1}

with (δ ,d)-Balanced Influences also has (ε,ρ)-Small Stable Influences by setting δ = ε2

8 and
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d = ⌈ ln( 2
ε )

ln(2−ρ)⌉.

Conversely, there is a function which has ((1−δ )n−1,δ )-Small Stable Influences for any

δ < 1 but does not have (ε,k)-Balanced Influences for any k and any ε < 1
2 .

Roughly speaking, (ε,ρ)-Small Stable Influences indicates that a function has little

Fourier weight on vectors of small Hamming weight, whereas (ε,d)-Balanced Influences indi-

cates that the Fourier weight is spread evenly over all of Fn
2.

Proof of Theorem 3.4.2. Assume f satisfies INF(d,ε2/8) for d = ⌈ ln(2/ε)
ln(2−ρ)⌉. By Theorem 2.4.1,

f also satisfies SD(d,ε2/4) for any d ≥ ⌈ ln(2/ε)
ln(2−ρ)⌉.

Recall that 1 > ρ ≥ 2−
√

2 ≈ 0.58. We want to show that I1−ρ

i [ f ] < ε for each i ∈

[n] via the Spectral Discrepancy Property. We observe that the set of γ ∈ Fn
2 with γi = 1 is

precisely the n−1-dimensional subcube C({i},1), and the same subcube may be divided into

2d−1 subcubes of dimension n− d as follows. Pick a set S of size d which contains i. Then,

C({i},1) =
⊔

z∈FS
2

zi=1

C(S,z). Therefore,

I1−ρ

i [ f ] = ∑
γ∈Fn

2
γi=1

(1−ρ)|γ|−1 f̂ (γ)2

= ∑
z∈FS

2
zi=1

 ∑
γ∈C(S,z)

(1−ρ)|γ|−1 f̂ (γ)2



≤ ∑
z∈FS

2
zi=1

(
max

γ∈C(S,z)
(1−ρ)|γ|−1

) ∑
γ∈C(S,z)

f̂ (γ)2


≤
(

2−d + ε
2/4
)

∑
z∈FS

2
zi=1

(
max

γ∈C(S,z)
(1−ρ)|γ|−1

)
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where we use SD(d,ε2/4) in the ultimate line. Now we can simplify further:

I1−ρ

i [ f ]≤
(

2−d + ε
2/4
)

∑
z∈FS

2
zi=1

(1−ρ)|z|−1

=
(

2−d + ε
2/4
)d−1

∑
j=0

(
d −1

j

)
(1−ρ) j


=
(

2−d + ε
2/4
)
(2−ρ)d−1

Since d = ⌈ ln( 2
ε )

ln(2−ρ)⌉, we have that d ≤ ln( 2
ε )

ln(2−ρ) +1. As ρ < 1, we have

(2−ρ)d−1 ≤ (2−ρ)
ln( 2

ε )
ln(2−ρ) =

2
ε

Since ρ ≥ 2−
√

2, d = ⌈ ln( 2
ε )

ln(2−ρ)⌉ ≥
ln( 2

ε )
ln(2−ρ) ≥

2ln( 2
ε )

ln(2) . Therefore,

2−d ≤ 2−
2ln( 2

ε )
ln(2) =

ε2

4

Thus,

I1−ρ

i [ f ]≤

(
ε2

4
+

ε2

4

)
2
ε
= ε

as desired.

Conversely, one can easily verify that χ1 has ((1−ρ)n−1,ρ)-Small Stable Influences,

but Iγ [χ1] = 1 for every γ ∈ Fn
2 with Hamming weight 1. Thus χ1 does not have INF(d,ε) for

any d ≥ 1 unless ε = 1
2 .

Remark 3.4.3. Chapter 3, in full, is a reprint of the material as it appears in Quasi-random

Boolean Functions, Fan Chung and Nicholas Sieger, which is in review at the Electronic Journal

of Combinatorics. The dissertation author was the primary investigator and author of this paper.
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[35] Réjane Forrié. The Strict Avalanche Criterion: Spectral Properties of Boolean Functions
and an Extended Definition. In Shafi Goldwasser, editor, Advances in Cryptology —
CRYPTO’ 88, pages 450–468, New York, NY, 1990. Springer New York.
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[60] Y. Kohayakawa and V. Rödl. Szemerédi’s Regularity Lemma and Quasi-randomness.
In Bruce A. Reed and Cláudia L. Sales, editors, Recent Advances in Algorithms and
Combinatorics, pages 289–351. Springer New York, New York, NY, 2003.

[61] Yoshiharu Kohayakawa, Brendan Nagle, Vojtěch Rödl, and Mathias Schacht. Weak
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