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RESEARCH

Walking performance is positively 
correlated to calf muscle fiber size in peripheral 
artery disease subjects, but fibers show aberrant 
mitophagy: an observational study
Sarah H. White1 , Mary M. McDermott2,3*, Robert L. Sufit4, Kate Kosmac1, Alex W. Bugg1, 
Marta Gonzalez‑Freire5, Luigi Ferrucci5, Lu Tian6, Lihui Zhao3, Ying Gao3, Melina R. Kibbe7,8, Michael H. Criqui9, 
Christiaan Leeuwenburgh10 and Charlotte A. Peterson1*

Abstract 

Background: Patients with lower extremity peripheral artery disease (PAD) have decreased mobility, which is not 
fully explained by impaired blood supply to the lower limb. Additionally, reports are conflicted regarding fiber type 
distribution patterns in PAD, but agree that skeletal muscle mitochondrial respiration is impaired.

Methods: To test the hypothesis that reduced muscle fiber oxidative activity and type I distribution are negatively 
associated with walking performance in PAD, calf muscle biopsies from non‑PAD (n = 7) and PAD participants 
(n = 26) were analyzed immunohistochemically for fiber type and size, oxidative activity, markers of autophagy, and 
capillary density. Data were analyzed using analysis of covariance.

Results: There was a wide range in fiber type distribution among subjects with PAD (9–81 % type I fibers) that did 
not correlate with walking performance. However, mean type I fiber size correlated with 4‑min normal‑ and fastest‑
paced walk velocity (r = 0.4940, P = 0.010 and r = 0.4944, P = 0.010, respectively). Although intensity of succinate 
dehydrogenase activity staining was consistent with fiber type, up to 17 % of oxidative fibers were devoid of mito‑
chondria in their cores, and the core showed accumulation of the autophagic marker, LC3, which did not completely 
co‑localize with LAMP2, a lysosome marker.

Conclusions: Calf muscle type I fiber size positively correlates with walking performance in PAD. Accumulation 
of LC3 and a lack of co‑localization of LC3 with LAMP2 in the area depleted of mitochondria in PAD fibers suggests 
impaired clearance of damaged mitochondria, which may contribute to reduced muscle oxidative capacity. Further 
study is needed to determine whether defective mitophagy is associated with decline in function over time, and 
whether interventions aimed at preserving mitochondrial function and improving autophagy can improve walking 
performance in PAD.
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Background
Patients with lower extremity peripheral artery disease 
(PAD), caused by atherosclerosis in the lower extremi-
ties, have faster functional decline and higher rates of 
mobility loss compared to people without PAD [1–7]. As 
therapeutic advances have not kept pace with the grow-
ing burden of disability from this chronic disease [8], new 
approaches are urgently needed to prevent disability in 
patients with PAD.

Patients with PAD experience ischemia of lower limb 
skeletal muscle during walking activity, when metabolic 
demands exceed oxygen supply, followed by reperfusion 
during rest. Ischemia has been demonstrated to damage 
skeletal muscle fibers and impair mitochondrial activ-
ity, and reperfusion exacerbates this damage [9–13]. As 
a result, small studies of PAD participants show quan-
titative mitochondrial dysfunction in gastrocnemius 
muscle, with reduced ATP production [11, 14]. Low 
mitochondrial activity, measured either by respirometry 
from muscle biopsy specimens or using magnetic reso-
nance spectroscopy, is associated with poorer treadmill 
walking in people with PAD [9, 14]. Moreover, while 
mitochondria-specific autophagy, known as mitophagy, 
has not been directly explored in PAD, electron micros-
copy of gastrocnemius biopsies in patients with PAD 
shows pathologic changes in mitochondria [15]. Further, 
research has shown that gastrocnemius mitochondrial 
content may predict mortality rate in PAD [16]. While 
bypass surgery improves walking performance in PAD 
patients [17], it is associated with a higher degree of 
morbidity and mortality, and patients may later require 
additional procedures with a greater risk of limb loss [18]. 
Therefore, alternative strategies, perhaps targeting mito-
chondrial health, may be advantageous targets of future 
therapies for PAD patients.

Human skeletal muscle is characterized by three main 
fiber types, which vary in fatigue resistance and oxida-
tive potential. Type I, slow-twitch fibers have the greatest 
mitochondrial density and, therefore, greatest oxidative 
metabolism, resulting in high resistance to fatigue [19]. 
Types IIa and IIx are fast-twitch fibers, with IIa hav-
ing intermediate oxidative activity and fatigability and 
IIx relying primarily on glycolytic, anaerobic metabo-
lism, fatiguing the most quickly [19]. Muscle fiber type 
composition, which is normally closely associated with 
mitochondrial oxidative capacity, is altered in muscle 
from PAD patients, but reports are contradictory. In 
patients with PAD, a decrease in type I fibers, an increase 
in type IIx fibers, and smaller cross-sectional area of 
type I and IIa fibers in the gastrocnemius muscle have 
been reported [20]. On the other hand, several studies 
show that PAD results in an increase in the muscle area 

occupied by oxidative type I fibers [21–23] (reviewed in 
[24]). Whether specific fiber type alterations are asso-
ciated with more severe mobility impairment in PAD 
patients is unknown.

The considerable variability in reports on fiber type 
alterations in PAD led us to hypothesize that fiber type 
composition in the gastrocnemius muscle would directly 
relate to walking performance in PAD. Additional fea-
tures that may relate to functional performance were also 
evaluated, including capillary density and mitochondrial 
content. These analyses suggest potential new targets in 
muscle for the development of effective interventions to 
improve muscle function and mobility in PAD patients.

Methods
Participant identification, recruitment methods, 
and ethical approval
PAD (n =  26) and non-PAD (n =  7) participants were 
identified from among participants in five studies at 
Northwestern University Feinberg School of Medicine. 
Two studies were observational cohort studies [the 
walking and leg circulation study iii (WALCS III) and 
Biomarker Risk Assessment in Vulnerable Outpatients 
(BRAVO)] [25–27] and three studies were randomized 
trials [Group Oriented Arterial Leg Study (GOALS), Pro-
genitor Cells to Improve Leg Functioning in PAD (PRO-
PEL)] [28–30], and Resveratrol To Improve Outcomes 
in Older People with PAD (RESTORE). For the observa-
tional studies, participants from WALCS III and BRAVO 
were recruited from among consecutively identified PAD 
patients at Chicago-area medical centers who were evalu-
ated in vascular surgery, cardiology, general medicine, 
endocrinology, and geriatric clinics [25–27]. Non-PAD 
participants were identified either among consecutive 
men and women age 65 and older without risk factors for 
PAD or cardiovascular disease in a large general internal 
medicine practice at Northwestern who were screened 
with the ankle brachial index (ABI) and found to have an 
ABI of 0.90 to 1.30 [25] or from potential study partici-
pants for the randomized trials who were found to have a 
normal ABI at the screening/baseline study visit [28–30].

Inclusion and Exclusion Criteria
All PAD participants in these analyses had a baseline 
ABI value of <0.90. All non-PAD participants included in 
these analyses had a baseline ABI of 0.90 to 1.30.

Exclusion criteria have been reported [25–30] and con-
sisted of severe functional limitation, characterized by 
inability to walk without a walker or wheelchair, signifi-
cant cognitive impairment, terminal illness, recent major 
operation or recent major cardiovascular event and lack 
of willingness to return for the required study visits.
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Comorbidities
Presence of comorbid diseases and smoking history were 
obtained by administering questionnaires in a standard-
ized fashion.

Medications
Participants were asked to bring their medication bottles 
or a complete list of their medications to their baseline 
study visit. Names of each medication were recorded. A 
study investigator (MMM) reviewed each medication 
named and indicated whether each medication was a sta-
tin or not.

Intermittent claudication
The presence and characteristics of exertional leg symp-
toms were assessed using the San Diego claudication 
questionnaire [31]. Participants with exertional calf pain 
that did not begin at rest and that resolved within 10 min 
of rest were classified with intermittent claudication [31].

Ankle brachial index
The ankle brachial index (ABI) was measured with a 
handheld Doppler probe (Nicolet Vascular Pocket Dop 
II, Golden, CO) to measure systolic blood pressures after 
the participant rested supine for 5  min. Pressures were 
measured in the following order, and then repeated in 
reverse order: right brachial, dorsalis pedis, and posterior 
tibial arteries; left dorsalis pedis, posterior tibial, and bra-
chial arteries. The ABI was calculated by dividing average 
pressures in each leg by the average of the four brachial 
pressures [32, 33].

Six‑min walk
Following standardized instructions to complete as many 
laps as possible, participants walked back and forth over 
a 100-foot hallway for 6  min [1, 2, 5, 34]. Participants 
were instructed to walk continuously with the goal of 
covering as much ground as possible within the 6  min. 
Participants were allowed to stop and rest if needed. A 
research assistant walked with and slightly behind the 
participant, so that the research assistant did not pace the 
participant. Standardized words of encouragement were 
given at 1-min intervals, for example, “One minute has 
passed. You’re doing well; keep up the good work.” The 
distance covered after 6 min and the distance at onset of 
leg symptoms were recorded.

Four‑meter walks
Four-meter walks were performed at “normal” and “fast” 
pace to measure walking velocity, based on previous 
studies [35, 36]. Each walk was performed twice and the 
faster walk in each pair was used.

Muscle biopsies
A single investigator (RLS) collected all muscle biop-
sies from the medial head of the gastrocnemius muscle, 
at the point that was approximately 67 % of the distance 
between the medial malleolus and the medial aspect of 
the proximal tibia. Anesthesia was achieved with subcu-
taneous lidocaine. Subcutaneous and adipose tissue were 
dissected until muscle was identified. Approximately 
100 mg of muscle tissue was mounted in trigacanth gum 
on cork and immediately frozen in liquid-nitrogen cooled 
isopentane to be processed for immunohistochemical 
analysis. The fascia was closed with absorbable suture, 
the wound was closed with subcuticular sutures, and the 
skin was closed with steri-strips.

Histochemistry/Immunohistochemistry
Seven-micrometer sections of the gastrocnemius muscle 
were cut in a cryostat and allowed to dry at room tem-
perature for 1 h. Slides were stored at −20 °C until pro-
cessed as described below:

For fiber type determination (n = 26 PAD, n = 7 non-
PAD), unfixed consecutive sections were incubated over-
night at 4  °C with anti-laminin (#L9393; Sigma-Aldrich, 
St. Louis, MO, USA) and isoform-specific myosin heavy 
chain (MyHC) antibodies: MyHC type I (BA.D5; IgG2b), 
IIa (SC.71; IgG1) and IIx (6H1; IgM), all from Develop-
mental Studies Hybridoma Bank (DSHB; Iowa City, IA, 
USA). The next day, slides were incubated with anti-rab-
bit IgG H+L AMCA (#C1-1000; Vector Laboratories, 
Inc., Burlingame, CA, USA) and immunoglobulin-spe-
cific secondary antibodies: goat anti-mouse IgG2b AF647 
(#A21242), goat anti-mouse IgG1 AF488 (#A21121), and 
goat anti-mouse IgM AF555 (#A21426), all from Inv-
itrogen (Grand Island, NT, USA), for 1  h. Slides were 
post-fixed in methanol for 5  min and then mounted 
(#H-1000; Vector Laboratories). The entire cross-section 
of approximately 1000 fibers (range 600–1600) per sub-
ject was analyzed for minimum feret diameter and fiber 
type. Minimum feret diameter was determined using an 
interactive automated analysis program in ZEN 2 (blue 
edition, v2.0, Zeiss, Oberkochen, Germany). The pro-
gram calculated minimum fiber feret diameter based on 
the laminin staining, which outlines fibers. Each fiber 
was then assigned to either type I or type II based on the 
intensity of staining within the Cy5 (type I) or FITC and 
TRITC filters (type IIa and type IIx, respectively).

For lectin staining, to quantify capillary density, slides 
were blocked for 1  h in normal horse serum (#S-2012; 
Vector Laboratories), incubated in TRITC-labeled lec-
tin (#L4889; Sigma-Aldrich) for 90  min at room tem-
perature, and then mounted with fluorescent mounting 
media (Vectashield, #H-1000; Vector Laboratories). The 
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lectin system from Ulex europaeus has been validated as 
an accurate vascular endothelial marker in human skel-
etal muscle [37, 38]. The lectin+ capillaries were counted 
and expressed per fiber. Due to the orientation and qual-
ity of the biopsy, quantification could only be performed 
on n = 18 PAD subjects. Approximately 600 fibers (range 
400–750) per subject were in cross section to be accu-
rately counted for lectin + staining.

For Oil Red O (ORO) staining, ORO stock [700  mg 
ORO (#O0625; Sigma-Aldrich) and 100 mL 60 % Triethyl 
phosphate (#538728; Sigma-Aldrich)] was filtered using 
Whatman® #1 filter paper then diluted 3:2 with double 
distilled water (ddH2O) to make the ORO working solu-
tion. Slides were fixed in 4 % paraformaldehyde for 3 min 
at room temperature then rinsed in ddH2O. Slides were 
then incubated in working ORO solution for 2 h, rinsed 
in ddH2O, and mounted with mounting media (#H-5501; 
Vector Laboratories).

For succinate dehydrogenase (SDH) activity staining, 
slides were incubated in 0.75  mM nitrotetrazolium blue 
(#N6876; Sigma-Aldrich), 125  mM succinic acid diso-
dium (#224731; Sigma-Aldrich), and 75 mM PBS, pH 7.4, 
for 1 h at 37 °C. Following a series of acetone rinses, slides 
were mounted. Fibers that stained strongly with SDH 
(++) were counted as type I fibers, fibers that stained 
intermediate (+) were type IIa fibers, and those that 
did not stain for SDH (−) were type IIa/x hybrids. Cavi-
ties were evident in type I and IIa fibers, but not in IIa/x 
hybrids because of the lack of SDH staining in the latter. 
Fibers containing distinct cavities in SDH staining greater 
than 5 % of the fiber area were quantified and expressed 
as a percentage of total fibers. Due to the orientation and 
quality of the biopsy, quantification could only be per-
formed on n = 18 PAD subjects. Approximately 1000 fib-
ers (range 750–1300) were analyzed per subject.

For staining of mitochondrial complex I, subunit 20 
and complex IV, subunit 1 (COX-1), slides were fixed in 
4  % paraformaldehyde for 10  min, washed with TBST 
(1 % Tween-20), then blocked for 1 h in TBST with 1 % 
normal goat serum. Next, slides were incubated over-
night at 4 °C in anti-NDUFB8 (complex I-20; #ab110242; 
Abcam, Cambridge, MA) and anti-MTCO1 (COX-1; 
#ab14705; Abcam) antibodies in TBST with 1 % normal 
goat serum. Following TBST washes, slides were incu-
bated in biotin goat anti-mouse IgG1 (#115-065-205; 
Jackson Immuno Research, West Grove, PA, USA) and 
anti-mouse IgG2a AF488 (#A21121; Invitrogen) second-
ary antibodies in TBST with 1 % normal goat serum for 
1  h. Slides were reacted with streptavidin-horseradish 
peroxidase included with the TSA kit (#T20935; Invit-
rogen), incubated in TSA AF594 (#T20950; Invitrogen) 
in amplification diluents for 15 min, then mounted (#H-
1000; Vector Laboratories).

For staining of mitochondrial COX-1 and microtu-
bule-associated protein light chain 3 (LC3), slides were 
fixed in 4 % paraformaldehyde for 10 min, washed with 
TBST (1  % Tween-20), then blocked for 1  h in TBST 
with 5 % normal goat serum. Slides were incubated over-
night at 4  °C in anti-MTCO1 (cox-1; #ab14705; Abcam) 
and anti-LC3B (#NN100-2220; Novus Biologicals, Lit-
tleton, CO, USA) antibodies in TBST with 5  % normal 
goat serum. Following TBST washes, slides were incu-
bated for 1  h in biotin goat anti-rabbit IgG (#111-065-
003; Jackson Immuno Research) and anti-mouse IgG2a 
AF488 (#A21121; Invitrogen) secondary antibodies in 
TBST with 5  % normal goat serum. Lastly, slides were 
incubated in streptavidin AF594 (#S32356; Thermo Sci-
entific, Waltham, MA, USA) for 15  min, then mounted 
(#H-1000; Vector Laboratories).

For staining of LC3 and lysosome associated mem-
brane protein 2 (LAMP2), slides were fixed in ice-cold 
acetone for 10  min, washed with TBST (1×  TBS with 
1  % Tween-20), blocked for 1  h in TBST with 5  % nor-
mal goat serum, then incubated overnight at 4  °C in 
anti-LC3B (#NN100-2220; Novus Biologicals) and anti-
LAMP2 (#ab25631; Abcam) antibodies in TBST (0.5  % 
Tween-20) with 5 % normal goat serum. Following TBST 
(1  % Tween-20) washes, slides were incubated for 1  h 
in biotin goat anti-rabbit IgG (#111-065-003; Jackson 
Immuno Research) in TBST (0.5 % Tween-20) with 5 % 
normal goat serum, then washed in TBST (1  % Tween-
20). Next, slides were incubated for 2  h in streptavidin 
AF594 (#S32356; Thermo Scientific) and anti-mouse 
IgG2a AF488 (#A21121; Invitrogen) in TBS with 5  % 
normal goat serum. Slides were then washed in TBS and 
mounted (#H-1000; Vector Laboratories).

Image acquisition and analysis
Images were captured at either ×10 or ×20 magnifica-
tion at room temperature with a Zeiss upright micro-
scope (AxioImager M1; Zeiss, Oberkochen, Germany) 
and analysis carried out using the Zeiss ZEN 2 software 
(blue edition, v2.0). To capture the entire muscle cross-
section  (200–400 fibers/subject), the tiles feature within 
Zen was utilized. Images of COX-1 and LC3 co-staining 
were also captured at ×60 magnification at room tem-
perature with a Nikon AIR+  confocal imaging system 
and analyzed with NIS-Elements C Software (Nikon 
Instruments, Inc., Melville, NY, USA). Investigators were 
blinded to sample subject group for all analyses.

Real‑time quantitative PCR
RNA was extracted from PAD muscle biopsies using the 
RNeasy Mini Kit (Cat. No. 74104, Qiagen, Valencia, CA, 
USA). RNA quality and integrity were assessed using 
the Agilent 2100 Bioanalyzer. Because of low starting 
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quantities, RNA of sufficient quality was obtained from 
18 subjects. Reverse transcription was performed using 
the Superscript® VILO™ cDNA Synthesis Kit (Cat. No. 
11754050, Life Technologies, Carlsbad, CA, USA). Quan-
titative real-time PCR was performed using SYBR Select 
Master Mix (Cat. No. 4472903, Life Technologies) and 
gene expression was normalized to the geometric mean 
of three housekeeping genes: β2 microglobulin, phos-
phoglycerate kinase, and 18S RNA. Primer pairs are pre-
sented in Additional file 1: Table S1.

Statistical analyses
Differences in clinical and muscle characteristics 
between PAD and non-PAD participants were com-
pared using Fisher’s exact testing for categorical vari-
ables and t-testing for continuous variables. Simple 
correlation coefficients between muscle fiber charac-
teristics and functional performance measured by nor-
mal and fast paced 4-m walk velocity as well as six-min 
walking distance were estimated and the significance 
levels of nonzero correlations were obtained among 
PAD participants. The multiple linear regression analy-
sis was performed to examine the association of the 
type I fiber size (quantified by the minimum feret diam-
eter) and the proportion of type I fibers with functional 
performance. Furthermore, the interactions between 
the proportion and size of type I fiber are also tested in 
the multiple regression analysis. Associations were con-
sidered significant at P ≤ 0.05 based on a two-sided test 
and trends declared at P ≤ 0.10. All analyses were per-
formed using SAS (Version 9.4, SAS Institute Inc., Cary, 
NC).

Results
Study participant characteristics
The demographic data and clinical characteristics of PAD 
and non-PAD subjects are shown in Table 1.

Fiber size, but not fiber type distribution, relates 
to walking performance in subjects with PAD
Quantifying the relative abundance of type I, IIa and IIx 
fibers showed that PAD participants exhibited trends 
toward greater mean frequency of hybrid type IIa/x 
fibers (P  =  0.058) and reduced frequency of IIa fibers 
(P = 0.088), but had a similar mean frequency of type I 
fibers compared to non-PAD participants (Fig. 1A). Fib-
ers expressing exclusively IIx MyHC were not detected. 
Non-PAD subjects exhibited a relatively even fiber type 
distribution (approximately 50 % type I and 50 % type II 
fibers; representative image, Fig.  1B), typical of healthy 
muscle, whereas PAD subjects demonstrated a wide 
heterogeneity of fiber type distributions. Representative 
images from PAD subjects with a higher percentage of 

type I fibers (Fig. 1C), an even distribution of type I and 
type II fibers (Fig.  1D), and a higher percentage of type 
II fibers (Fig.  1E) illustrate the variability. All individual 
subject fiber type distributions are shown in Fig. 1F and 
the relative distribution is shown in Additional file 2: Fig-
ure S1. Type I fiber frequency in individuals with PAD 
ranged from 9 to 81 % (19 to 60 % in non-PAD), type IIa 
abundance ranged from 8 to 72  % (20 to 65  % in non-
PAD), and type IIa/x fibers ranged from 5 to 56 % (5 to 
40 % in non-PAD).

We determined if fiber type frequency was associated 
with walking performance in PAD subjects, measured 
with 6-min walk distance, and normal- and fastest-
paced 4-min walk velocities. Although the proportion 
of slow-twitch, type I fibers alone did not correlate with 
performance, type I fiber size, quantified by the mini-
mum feret diameter, was strongly correlated to both 
normal- and fastest-paced 4-min walk velocity (normal-
paced r =  0.4940, P =  0.010; fastest-paced r =  0.4944, 
P = 0.010, Table 2, Additional file 3: Figure S3A, B). The 
overall average minimum feret diameter was also posi-
tively correlated to both normal- and fastest paced 4-min 
walk velocity (r  =  0.4804, P  =  0.013 and r  =  0.4137, 
P = 0.036, respectively, Additional file 3: Figure S3C, D). 
There was no correlation between fiber type or size and 
6-min walk performance (Table  2). Further, there was a 
positive interaction effect between the type I fiber per-
centage and type I fiber size on the normal-paced 4-min 
walk velocity (P = 0.038).

Table 1 Characteristics of non-PAD and PAD participants

a Based on n = 3 non-PAD
b Based on n = 4 non-PAD

Continuous variable Non‑PAD
(n = 7)

PAD
(n = 26)

P value

Age (year), mean (SD) 69.71 (4.99) 66.81 (10.20) 0.474

Ankle brachial index, mean (SD) 1.13 (0.10) 0.63 (0.14) <0.0001

Body mass index (kg/m2)a, mean 
(SD)

25.15 (2.51) 28.41 (4.75) 0.257

Categorical variable

 Male sex, n 4 15 1.000

 African Americans, n 1 11 0.223

 Current smokera, n 0 14 0.224

 Anginaa, n 0 2 1.000

 Myocardial infarctiona, n 0 2 1.000

 Heart failurea, n 0 0 1.000

 Strokea, n 0 2 1.000

 Pulmonary diseasea, n 0 5 1.000

 Cancera, n 2 3 0.068

 Diabetesa, n 0 9 0.532

 Intermittent claudicationa, n 0 5 1.000

 Statin useb, n 2 15 1.000
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Maintenance of capillary density in PAD
Consistent with previous reports [20, 24], there was a 
trend for PAD subjects to have a greater number of cap-
illaries/fiber than non-PAD (1.15 ± 0.28 vs. 1.72 ± 0.13 

for non-PAD and PAD subjects, respectively; P = 0.082; 
Additional file 4: Figure S4, representative images shown 
in A and B, quantified in C). However, capillary density 
did not correlate to fiber type (r = −0.1023 P = 0.642), 

Fig. 1 Fiber type analysis of gastrocnemius muscle sections using isoform‑specific myosin heavy chain (MyHC) immunohistochemistry. A Quanti‑
fication (mean ± SEM) of type I (pink), IIa (green), and IIa/x (yellow/orange) muscle fibers, shown in representative images, of non‑PAD (B; n = 7) and 
PAD (C–E; n = 26) participants. C–E) Representative images of PAD subjects with primarily type I fibers, 50 % type I and 50 % Type II, and primarily 
type II fibers, respectively; F individual variation in fiber type distribution between non‑PAD and PAD subjects (approximately 1000 fibers analyzed 
per subject). Scale bar = 100 µm
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fiber minimum feret diameter (r =  0.1396, P =  0.525), 
nor to function (Table 2).

Mitochondrial oxidative activity is impaired in PAD
Muscle sections were stained for succinate dehydro-
genase (SDH) activity (Fig.  2A) to evaluate mitochon-
drial oxidative capacity that was then compared to fiber 
type (Fig. 2B) on serial sections. As expected, fibers that 
stained strongly for SDH activity (++) were type I slow-
twitch fibers, fibers that stained intermediate for SDH 
(+) were type IIa fibers, and fibers with lowest SDH 
staining (−) were type IIa/x hybrids.

SDH activity staining indicates the presence of both 
intermyofibrillar and subsarcolemmal mitochondrial 
activity; PAD participants showed a loss of intermyofi-
brillar SDH activity in the center of up to 17 % of their 
muscle fibers (4.61 ± 4.76 %, mean ± SD; Fig. 2A). These 
cavities were also devoid of cytochrome c oxidase (com-
plex IV; COX) activity (Fig.  2C), but were not centrally 
necrotic, as evidenced by the presence of MyHC staining 
in the center of the fibers (Fig. 2B). Additionally, the fib-
ers showed no accumulation of ectopic lipid in the center 
(ORO staining; Additional file 5: Figure S5). The percent-
age of fibers with absence of SDH activity in the center 
(cavities) was positively correlated with type I fiber fre-
quency (r =  0.6499; P =  0.006; Fig.  2D). Immunohisto-
chemical analysis showed that in PAD subjects, proteins 
comprising complexes I and IV (COX-1) of the electron 
transport system were undetectable in the center of fib-
ers that lacked SDH activity (Fig. 3, right column), indi-
cating that loss of SDH activity is due to the absence of 

intermyofibrillar mitochondria. The absent intermyofi-
brillar mitochondria were not evident in non-PAD mus-
cle samples (Fig. 3, left column).

We analyzed PAD gastrocnemius muscle homogenate 
for mRNA levels of peroxisome proliferator-activated 
receptor gamma coactivator 1α (PGC1α), the master reg-
ulator of mitochondrial biogenesis, as well as additional 
genes important during mitochondrial biogenesis, cAMP 
response element-binding protein (CREB) and CREB-
regulated transcription coactivator 1 (CRTC1). Addi-
tionally, hypoxia-inducible factor 1α (HIF1α) expression, 
which has been shown to stimulate mitochondrial bio-
genesis following short-term hypoxia, was evaluated. 
Within PAD subjects, PGC1α mRNA correlated posi-
tively with the percentage of type I fibers (r =  0.5580, 
P = 0.016; Fig. 4), as would be expected in normal mus-
cle. No correlation between PGC1α, CREB, CRTC1, nor 
HIF1α expression and the percentage of fibers showing 
absence of SDH staining was apparent (Additional file 6: 
Figure S6). Further, expression of PGC1α, CREB, CTRC1, 
and HIF1α did not correlate with any functional perfor-
mance measures in PAD subjects (Table 2).

Autophagic accumulation in the center of PAD fibers
Muscle sections were co-stained with antibodies 
against COX-1 and LC3 protein, the latter being an 
autophagosome marker (Fig.  5). Fibers with normal 
mitochondrial activity in both PAD and non-PAD sub-
jects showed ubiquitous COX-1 staining throughout 
the fiber, indicative of intermyofibrillar mitochondria, 
and stronger staining around the periphery, where 

Table 2 Correlations of functional measures with muscle characteristics in PAD patients (n = 26)

Italicized text indicates significance (P < 0.05)
a n = 18

Pearson correlation coefficients
(Prob > |r| under H0: Rho = 0, number of observations)

6‑min walk distance (m) 4‑min walking velocity, normal‑
paced (m/s)

4‑min walking velocity, 
fastest‑paced (m/s)

r value P value r value P value r value P value

% Type I 0.0067 0.975 0.1422 0.488 0.0785 0.703

% Type IIa −0.0539 0.798 −0.2054 0.314 −0.2433 0.231

% Type IIa/IIx 0.0456 0.829 0.0210 0.919 0.1435 0.485

Min. feret, Type I 0.3175 0.122 0.4940 0.010 0.4944 0.010

Min. feret, Type II 0.2676 0.196 0.4317 0.028 0.3713 0.062

Min. feret, average 0.3121 0.129 0.4804 0.013 0.4137 0.036

Lectin/fibera 0.0537 0.813 −0.0208 0.925 −0.0783 0.723

% Fibers with cavities in SDHa −0.1991 0.460 0.4426 0.086 0.0993 0.714

PGC1α mRNAa −0.1025 0.686 0.0832 0.743 0.1580 0.531

CREB mRNAa 0.0750 0.768 −0.2533 0.310 −0.2675 0.283

CTRC1 mRNAa 0.0431 0.871 −0.2346 0.349 −0.2495 0.318

HIF1α mRNAa 0.2072 0.409 −0.2480 0.321 −0.1937 0.441
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subsarcolemmal mitochondria are localized. In normal 
muscle fibers, both SDH++/COX-1 high and low mus-
cle fibers demonstrate very little detectable LC3 stain-
ing, indicating relatively low levels of autophagy (Fig. 5, 
row A). In PAD, fibers showing small central regions 
with absent mitochondrial protein and activity exhib-
ited punctate LC3 staining localized to those regions 
(Fig.  5, row B). However, other PAD fibers exhibited 
varying degrees of LC3 accumulation in the center 
with low or absent SDH and COX-1 staining, suggest-
ing autophagy may be increased in subjects with PAD 
(Fig.  5, rows C, D). Overall, fibers that lacked COX-1 
protein and SDH activity in their cores demonstrated 
clear accumulation of LC3 staining (Fig. 5, row E). The 
loss of the mitochondrial network in the center of fib-
ers with LC3 accumulation can be seen more clearly 
with confocal imaging, presented in Additional file  7: 
Figure S7. Some fibers had relatively diffuse LC3 stain-
ing within the SDH/COX-1 cavities (Additional file  7: 

Figure S7A), while the larger, more fully developed 
cavities contained a dense LC3 plaque in the center 
(Additional file  7: Figure S7B). To determine if the 
remaining LC3 staining was due to improper fusion 
of the autophagosome and the lysosome, muscle sam-
ples were co-stained with LC3 and LAMP2, a lysosome 
membrane protein (Fig.  6). In non-PAD, diffuse, weak 
LC3 and LAMP2 staining was visible within the fibers 
(Fig. 6a). In PAD subjects, rare fibers showed overlap of 
LC3 and LAMP2 (Fig. 6b), whereas the majority of fib-
ers showed LC3 accumulation in the center of the fiber 
but no clear overlap with LAMP2 (Fig. 6c).

Fiber size may affect the degree of mitochondrial 
dysfunction
While capillary density did not correlate to fiber size 
(r = 0.1396, P = 0.525) or the percentage of fibers show-
ing cavities in SDH staining (r = −0.0549, P = 0.845), the 
average minimum feret diameter positively correlated to 

Fig. 2 Representative images of serial PAD gastrocnemius muscle sections stained for mitochondrial activity and fiber type. A succinate dehy‑
drogenase (SDH) activity; B myosin heavy chain (MyHC) composition by immunohistochemistry; C cytochrome c oxidase activity. Arrows point to 
the same fiber in serial sections. Arrow, type I fiber (pink); double arrow, type IIa fiber (green); large arrowhead, type IIa/x hybrid fiber (yellow/orange). 
D Correlation between the percent of total fibers with SDH cavities and type I fiber frequency in PAD subjects (n = 18, approximately 1000 fibers 
counted per subject). Scale bar = 100 µm
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the percentage of fibers with SDH cavities (r =  0.5398, 
P = 0.030; Fig. 7).

Discussion
A novel finding of this study was the correlation between 
gastrocnemius muscle fiber size (minimum fiber diame-
ter) and 4-min walking velocities in PAD subjects. While 
previous reports have indicated fiber cross sectional 
area decreases as much as 40 % with advancing PAD [20, 
39], the current study is the first to show a positive cor-
relation between fiber size and functional measures. In 
contrast, size was not correlated to 6-min walk distance, 
a measure of walking endurance. It is possible that in 

PAD patients, ischemia-related pain in the limb muscles 
causes patients to stop walking during the 6-min walk 
test, which may be less dependent on the muscle proper-
ties studied here.

A wide range of fiber type distributions was evident in 
PAD subjects in the current study, which was not corre-
lated to walking performance or ABI, the latter being an 
accepted measure of disease severity in PAD [2, 4, 40, 41]. 
Although we initially hypothesized that those with the 
highest proportion of type I fibers may have the highest 
endurance, this was not the case, which may be due to 
preferential loss of intermyofibrillar mitochondria in type 
I fibers in PAD. Research has indicated there is a switch 
from a type II to a type I phenotype in the gastrocnemius 
muscle with advancing PAD [39]. We hypothesize that an 
overall decrease in fiber size combined with an increase 
in type I fiber area and concomitant mitochondrial loss 
in the center of oxidative fibers may, in combination, con-
tribute to progressive mobility loss in PAD. This hypoth-
esis warrants further investigation.

Previous work demonstrated impaired mitochondrial 
respiration and enhanced oxidative stress and damage in 
the muscles of PAD subjects [10, 24, 42]. Pipinos, et  al. 
[10] reported reduced activity of complexes I, III, and 
IV of the electron transport system in gastrocnemius 
homogenates, but no difference in complex II activity. 
Complex II is the only complex of the electron trans-
port system that is fully encoded by the nuclear genome, 
while the remaining 3 complexes contain mitochondrial-
encoded subunits [43], suggesting impairment of the 
mitochondrial genome in PAD. In the current study, we 
showed a disruption of both succinate dehydrogenase 
(SDH, complex II) and cytochrome c oxidase (complex 
IV; COX) activities in the center of fibers of PAD sub-
jects, which is not typically seen in healthy muscle fibers. 
Further, both the nuclear-encoded subunit 20 of complex 
I and the mitochondrial-encoded subunit 1 of complex 
IV were absent in the center of a significant number of 
fibers of PAD subjects, indicating absence of intermyofi-
brillar mitochondrial populations in the core of the fib-
ers. Mitochondrial absence could be due to limited O2 
and nutrient delivery to the center of the fiber, as is seen 
in canine models of heart failure [44]. This idea is fur-
ther supported by the positive correlation between fiber 
size and the percentage of fibers lacking central mito-
chondria in the current study. However, recent reports 
have described succinate accumulation in various tissues 
(heart, liver, brain, and kidney) following ischemia and 
implicated the metabolite as a potential driver of reper-
fusion reactive oxygen species production [45]. Impaired 
SDH activity and the potential accumulation of succinate 
during repeated bouts of ischemia and reperfusion could 
be compounding factors leading to oxidative damage and 

Fig. 3 Representative images of non‑PAD and PAD gastrocnemius 
muscle sections stained for mitochondrial activity and mitochondrial 
electron transport proteins. Top row shows succinate dehydrogenase 
(SDH) activity (dark fibers are type I, intermediate fibers are type IIa, 
and light fibers are type IIa/x), second row shows mitochondrial com‑
plex I, subunit 20 (orange), third row shows mitochondrial complex 
IV, subunit I (COX‑1; green) staining and bottom row shows complex 
I and COX‑1 merged. Arrows within the same column point to same 
fibers. Scale bar = 50 µm
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impaired functional performance in PAD patients; these 
findings require further investigation.

The maintenance of healthy cellular energetics relies on 
a dynamic process of balancing the removal of damaged 
or dysfunctional mitochondria through mitochondrial-
specific autophagy, known as mitophagy, and mitochon-
drial biogenesis [46]. In the current study, PGC1α, the 
master regulator of mitochondrial biogenesis, was high-
est in subjects with a greater percentage of oxidative 
fibers, consistent with normal muscle. No correlation 
between PGC1α, CREB1, CRTC1, and HIF1α expression 
and the percentage of fibers with depleted central SDH 
activity suggests impaired mitochondrial biogenesis was 
not a major contributor to mitochondrial loss. These 
data, combined with previous reports of mitochondrial 
dysfunction in PAD [47], led us to hypothesize the mito-
chondrial cavities in the core of some fibers of PAD sub-
jects were due to elevated mitophagy and dysfunctional 
clearance of damaged mitochondria, as opposed to com-
promised biogenesis. One might expect an overcompen-
sation of PCG1α to maintain mitochondrial density in 
the face of elevated mitophagy. However, the autophago-
some debris in fibers lacking central mitochondria may 
have prevented healthy mitochondria from infiltrating 
the center of the fiber. On the other hand, the lack of cor-
relation between mitochondrial biogenesis gene expres-
sion and SDH cavities may suggest that PAD fibers are 
not able to sufficiently increase mitochondrial biogenesis 
to maintain oxidative capacity.

The autophagic marker, LC3, was accumulated in the 
center of fibers that may be undergoing an elevated rate 
of mitophagy compared to healthy fibers. A consequence 
of aging is an impaired ability to degrade damaged mito-
chondria [48]. However, age was not associated with any 

skeletal muscle measure in our analyses. Still, there may 
be a similar mechanism in PAD subjects that prevents 
the proper removal of dysfunctional mitochondria. An 
increase in autophagosomes in the center of fibers in 
which mitochondria are actively being degraded may 
imply greater mitophagy; however, the LC3 plaque evi-
dent in some fibers in which mitochondria were clearly 
absent may indicate impaired fusion with the lysosome 
and incomplete recycling as is evident in other diseases, 
such as sporadic inclusion-body myositis [49]. This is fur-
ther supported by incomplete co-localization of LC3 with 
the lysosome marker, LAMP2, in PAD fibers in the cur-
rent study. It is important to note that the muscle samples 
collected capture a snapshot of a dynamic and ongoing 
process. There may be a progression within individual 
fibers of mitochondrial depolarization and death that 
may or may not successfully fuse with the autophago-
some and, subsequently, the lysosome to be properly 
removed and recycled.

While the absence of mitochondrial activity within the 
center of myofibers has been reported in diseases such 
as central core disease (CCD), denervation, and hyper-
trophic cardiomyopathy [50], the mitochondrial disrup-
tion in the fibers of PAD appears distinct. CCD fiber 
morphology presents the most similarity to our findings 
but is caused by a genetic mutation in RYR1, the gene 
that encodes the skeletal muscle ryanodine receptor, 
disrupting calcium handling within the muscle. CCD is 
often accompanied by muscle weakness, delayed motor 
development, and orthopedic impairment (hip disloca-
tion, scoliosis), and tends to present at a young age [51]. 
Denervation can result in a phenomenon known as “tar-
get fibers”, in which ringing of oxidative enzyme activity 
occurs within the center of myofibers, but a clear three-
zone architecture is apparent [52], unlike the distinct cav-
ities seen in PAD fibers. In hypertrophic cardiomyopathy, 
only type I fibers are affected and present with very small 
cavities at varying locations within the fiber [53], whereas 
both type I and IIa fibers in PAD participants presented 
with abnormal mitochondrial activity which were nearly 
always centrally located. Thus, we hypothesize that the 
chronic ischemic environment in PAD contributes to loss 
of intermyofibrillar mitochondria unique to this disease.

Although we hypothesize that poor 4-min walking 
performance in PAD is related to elevated mitophagy 
and impaired clearance of damaged mitochondria, an 
alternative conclusion is that mechanical capacity, rather 
than bioenergetics, may be limiting normal function in 
this diseased population. This is supported by our find-
ing that myofiber size was positively correlated to 4-min 
walking performance in the current study. Research has 
indicated that low-impact, endurance exercise training 
improves walking performance in PAD but these studies 

Fig. 4 Correlation between mRNA levels of PGC1α and type I 
fiber frequency in PAD gastrocnemius muscle samples (n = 18, 
approximately 1000 fibers counted per subject to quantify type I fiber 
frequency)
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did not evaluate fiber size adaptations, nor the relation-
ship between fiber size and functional performance [54]. 
The pathology associated with PAD is likely multifaceted, 
but defects in the structure and function of the muscle, in 

addition to the vasculature, must be addressed in order to 
maximally improve function.

The most important limitation of this study is the rel-
atively small sample size. Analysis of a greater number 

Fig. 5 Representative images of the variation of LC3 staining associated with cavities in SDH activity and mitochondrial COX‑1 staining in PAD gas‑
trocnemius muscle sections. First column shows succinate dehydrogenase (SDH) activity (dark fibers are type I, intermediate fibers are type IIa, and 
light fibers are type IIa/x), second column shows mitochondrial COX‑1 protein (green), third column shows LC3 (red) and fourth column shows COX‑1 
and LC3 merged. Examples of normal fibers with no LC3 staining or COX‑1 cavities (row A), punctate LC3 staining where a COX‑1 cavitiy is forming 
(row B), elevated LC3 staining with low COX‑1 staining (row C), LC3 accumulation in areas lacking COX‑1 staining (row D), and LC3 plaque in the 
center of an SDH/COX1 cavity (COX‑1; row E). Arrows within the same row point to areas of LC3 accumulation in same fiber. Scale bar = 100 µM
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of patients with PAD would confirm the association 
between muscle morphology and function. Addition-
ally, the duration of PAD was unknown in the subjects 
studied, which did not allow us to quantify the expo-
sure to ischemia and relate them to muscle character-
istics. Previous study demonstrates that the exact onset 
of PAD is not typically precisely identified [55]. Repeat 
biopsies several months apart, as well as comparison of 
the affected versus non-affected leg in PAD subjects, will 
contribute to our knowledge of the pathological progres-
sion of PAD in the gastrocnemius muscle. Lastly, it was 
assumed that the biopsy is representative of the entire 
muscle but the authors recognize that regions of local-
ized damage may not accurately reflect the morphology 
of the entire muscle. Further, findings in one muscle may 
not reflect what is happening in other lower extremity 
muscles.

Fig. 6 Representative images of gastrocnemius muscle sections from non‑PAD and PAD subjects stained for LC3, an autophagosome marker (red) 
and LAMP2, a lysosome marker (green). A In non‑PAD, very little LC3 and LAMP2 staining is apparent. In PAD, rare fibers show co‑localization of 
accumulated LC3 and LAMP2 (B), whereas the majority of fibers have elevated LC3 accumulation but no co‑localization with LAMP2 (C). Arrows in 
the same column point to the same areas of LC3 accumulation in the center of the fiber with or without LAMP2 co‑localization. Scale bar = 50μm

Fig. 7 Correlation between average minimum fiber diameter and 
succinate dehydrogenase (SDH) cavities in PAD gastrocnemius 
samples. SDH cavities are quantified by the percentage of fibers with 
cavities in SDH activity staining
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Conclusions
In summary, among people with PAD, muscle fiber size 
was positively correlated to 4-min walk performance, 
and may be associated with the degree of mitochondrial 
dysfunction evident in PAD subjects. We speculate that 
the lack correlation of type I fiber frequency and function 
may be due to impaired mitochondrial activity within 
the center of muscle fibers, consequent to increased 
mitophagy in patients with PAD. Considering the mor-
phological features of muscle may aide in the manage-
ment plan for PAD patients to improve their overall 
quality of life.
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