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Photoelectrochemical cells are distinguished by the use of a 

semiconductor-electrolyte interface to create the necessary junction for use 

as a photovoltaic device. BI - 2 ,F9,M2,El,G8 This article presents a description 

of this device from an electrochemical engineering viewpoint. The traditional 

chemical engineering fundamentals of transport phenomena, reaction kinetics, 

thermodynamics, and system design provide a useful foundation for the study of 

semiconducting devices. The motivation for the study of photoelectrochemical 

cells is discussed, and a physical description of the cell features is 

presented. This leads to a tutorial on the mechanism of cell operation, 

including descriptions of the phenomena of band-bending and straightening, the 

effect of interfaCial phenomena, and current flow. Mathematical relationships 

are developed which describe this system, and the influence of cell design is 

discussed. 

Many review papers cover the physics and chemistry of 

photoelectrochemical cells (see, e.g •• references G13, G3, A8, R2, H4, N9, T3, 

WID, Hl3, H2l, and K9). This review is distinguished by an emphasis on 

quantitative design and optimization of large-scale photoelectrochemical cells 

and by a mathematical description that accounts for the influence of the 

nonideal behavior associated with large electron and hole concentrations in 

the semiconductor. This review also provides a contrast between a physical 

description of electrons in terms of energies and statistical distributions 

and a chemical description in terms of concentrations and activity 

coefficients. 

1. Semiconductor Electrodes 

Semiconductors are characterized by the difference in energy between 

valence and conduction-band electrons. Electrons can be transferred from the 

valence band to the conduction band by absorption of a photon with energy 

greater than or equal to the transition or band-gap energy. When the electron 

moves into the higher energy level. it leaves behind a vacancy in the valence 

band, or hole. Both the negatively charged electrons and the positively 

charged holes are mobile and can serve as charge carriers (see, e.g., 

references G14, 02, 517, H3. or 12). In the presence of a potential gradient 

(or electric field). electrons and holes tend to migrate in opposite 

directions and can res~t in a net flow of electrical current.. In the absence 
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of a potential gradient, electron-hole pairs produced by illumination 

recombine with no'net flow of electrical current. Photovoltaic devices 

therefore require an equilibrium potential gradient in the illuminated region 

of the semiconductor. 

A potential gradient can be created by forming an interface or junction 

with a semiconducting material. Metal-semiconductor, p-n semiconductor, and 

semiconductor-electrolyte interfaces have been used in the construction of 

photovoltaic cells.Hl5-16.WI The interface in a p-n junction photovoltaic 

cell can be constructed by doping the surface of an n or p-type semiconductor 

with atoms tha.t invert the semiconductor type. These atoms are then thermally 

diffused into the host semiconductor to an optimal depth. Diffusion rates in 

grain boundaries greatly exceed those in the bulk crystal; thus the need for a 

distinct boundary limits this technique to single-crystal host semiconductors. 

The junction'between an electrolyte and a semicond~ctor, in contrast to the 

thermally-diffused p-n junction, is formed spontaneously when the 

semiconductor is immersed in the electrolyte. The doping and diffusion, 

proce.ssesare not needed, and polycrystalline semiconductors can be used. HIO 

Vapor or plasma deposition of thin metallic or semiconducting films also 

allows construction of solar cells with polycrystalline materials. These' 

solid-state-junction photovoltaic devices have the advantages attributed to 

photoelectrochemical cells and avoid the associated corros~on problems. MIS 

1.1 Physical Description 

The principal elements of the liquid-junction photovoltaic cell, as shown 

in Figure 1. are the counterelectrode, the electrolyte. the semiconductor­

electrolyte interface. and the semiconductor. The distribution of charged 

species (ionic species in the electrolyte and. electrons and holes in the 

semiconductor) is altered by the semiconductor-electrolyte interface, and an 

equilibrium potential gradient is formed in the semi'conductor. The 

interfacial region may be associated with adsorption of charged species or 

with surface sites. The charge is distributed such that the interface taken 

as a whole is still electrically neutral. Sunlight is absorbed within the 

semiconductor and causes generation of electron-hole pairs which are separated 

by the potential gradient. This separation leads to concentration and 

potential driving forces for electrochemical reactions at the semiconductor­

electrolyte interface. The electrochemical reactions allow passage of 
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Figure 1. The photoelectrochemical cell. 



electrical current through the cell. 

The semiconductor and the electrolyte phases are conveniently 

characterized through macroscopic relations. A microscopic model is required 

for the interface between the bulk phases. This model can be arbitrarily 

complex but is restricted by the requirement that thermodynamic relationships 

among the bulk phases hold. A convenient model for the interfacial region is 

represented in Figure 2. The interface is represented by four planes, inner 

and outer Helmholtz planes on the electrolyte side of the interface and inner 

and outer surface states on the semiconductor side. The outer Helmholtz plane 

(OHP) is the plane of closest approach for (hydrated) ions associated with the 

bulk solution. The inner Helmhotz plane (IHP) passes through the center of 

ions specifically adsorbed on the semiconductor surface. The outer surface 

state (055) represents the plane of closest approach for electrons (and holes) 

associated with the bulk of the semiconductor. The inner surface state (ISS) 

is a plane of surface sites for adsorbed electrons. If surface sites are 

neglected, the ISS and the 055 are cOincident. 

This model of the semiconductor-electrolyte interface is an extension of 

the classical Gouy-Chapman diffuse-double-layer theory.G12,Dll,Sl3,N4 Charge 

adsorbed onto the IHP and the ISS planes is balanced by charge in the diffuse 

region of the electrolyte and the space-charge region of the semiconductor. 

The net charge of the interface, including surface planes and diffuse and 

space-charge regions, is equal to zero. Within a given model, reactions may 

be written to relate concentrations and potentials at interfacial planes. 

Interfacial sites or energy levels for electrons or holes can be included at 

the ISS. Interfacial reactions may thus include adsorption of ionic species 

from the OHP to the IHP, adsorption of electrons from the 055 to sites of 

specified energy at the ISS, surface recombination through ISS sites, and 

direct surface recombination. Emission of electrons from the semiconductor 

may take place by electron transfer from surface sites at the ISS to adsorbed 

ions (trapping and subsequent emission). transfer of 055 electrons to adsorbed 

ions (thermionic emission), transfer of electrons in the space charge region 

to adsorbed ~ons (thermally enhanced field emisSion or direct tunneling), 

transfer of electrons in the neutral region to adsorbed ions (field emission 

or direct tunneling). and transfer of electrons in the neutral region to 

adsorbed ions through defects in the bulk (multistep tunneling). Such 
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Figure 2. Physical model of the semiconductor-electrolyte interface in a 
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reactions may also involve ions associated with the 055 or with the diffuse 

part of the double layer. These reactions may also take place in the reverse 

direction. These reaction mechanisms are also described by Fonash. F5 

1.2 The Mechanism of Cell Operation 

Formation of an interface perturbs the potential distribution in the 

semiconductor, and this perturbation creates the junction necessary for the 

photovoltaic effect in solar cells. Examination of the potential distribution 

in the liquid-junction cell therefore provides insight into the forces driving 

the cell. The following discussion is based on the numerical solution of the 

equations governing a GaAs photoanode with a selenium redox couple. 03 ,05-7 

The governing equations are presented in section 2. InterfaCial reactions 

were included but were assumed to be sufficiently fast that the operation of 

the cell was limited by the transport and generation of- electrons and holes in 

the semiconductor. The potential distribution is presented in Figure 3. In 

the dark. at open-circuit, (curve a) the system is equilibrated. The 

potential is nearly constant throughout the solution and the interfacial 

planes (OHP, IHP. ISS, and 055). The potential varies in the semiconductor in 

response to charge distributed in the semiconductor. This variation of 

electrical potential in the equilibrated semiconductor is termed band-bending. 

The difference in potential between the semiconductor-electrolyte interface 

and the current collector-semiconductor interface of the semiconductor is the 

flat-band potential. This is the potential that would need to be applied in 

order to achieve uniform potential in the semiconductor. 

Under illumination at open circuit (curve b) the concentrations of 

electrons and holes increase. and the variation of potential in the 

semiconductor decreases. The decrease in potential variation in r.esponse to 

illumination is referred to as the straightening of the bands. The charges of 

holes and electrons. generated by the illumination, tend to go in opposite 

directions under the influence of the electric field. Their accumulation, at 

open circuit. at various locations creates an electric field which tends to 

cancel that existing in the dark and leads to this straightening of the bands. 

The difference between the potential in the dark and under illumination 

represents a driving force for flow of electrical current. The potential 

distribution near the short-circuit condition (curve c) approaches the 

equilbrium distribution. Short-circuit is defined as the condition of a zero 
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cell potential. The description presented here neglects the influence of 

electrolyte resistance and counterelectrode kinetic and mass-transfer 

limitations in determining the condition of short-circuit. The inclusion of 

these effects cause the short-circuit potential distributions described here 

to occur at negative cell potentials. All the variation in potential (from 

open circuit in the dark to open circuit under illumination to short-circuit 

under illumination) takes place in the semiconductor. The potential drop 

across interfacial planes is comparatively small and invariant. 

Concentration distributions of holes and electrons in the semiconductor 

are presented in Figure 4 for a system with no interfacial kinetic 

limitations. Under equilibrium conditions the concentration of holes (curve 

a) is essentially .zero in the bulk of the semiconductor and increases near the 

negatively charged interface. Conduction electrons are depleted near the 

interface and reach a value of 0.328 dimensionless units at the current 

collector, where the concentrations are scaled by the dopant concentration 

(Nd-Na ), and Nd and Na represent the concentrations of ionized electron donors 

and acceptors, respectively. The electron concentration in a neutral region 

of the semiconductor would have a value essentially equal to 1.0. The 

equilibrated semiconductor of Figure 4 can therefore be described as having an 

inversion region extending from the semiconductor-electrolyte interface to 0.5 

Debye lengths from the interface and a depletion region extending to the 

current collector. An inversion region is usually defined as the region for 

which the dimensionless minority carrier concentration is greater than one. 

The definition used here is for a region where the minority carrier 

concentration cannot be assumed to be negligible Or is greater than the 

majority carrier concentration. 

The semiconductor described by Figure 4 has a net positive charge which 

is balanced by charge associated with the diffuse region of the electrolyte 

and with the interface such that system electroneutrality is maintained. The 

potential gradient, the driVing force for migration of charged species, is 

balanced by the concentration gradient, which drives diffusion. Thus, the net 

flux of each species in the semiconductor is equal to zero at equilibrium. 
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Illumination under open-circuit conditions produces electron-hole pairs, 

which are separated by the potential gradient (see Figure 3). The 

concentration of holes increases near the interface, and the concentration of 

electrons increases near the current collector (curve b in Figure 4). Under 

steady-state conditions, the rate of generation of electron-hole pairs is 

balanced by the rate of homogeneous and interfacial recombination. As the 

system without kinetic limitations approaches short circuit (curve c in Figure 

4), the concentrations of holes and electrons approach the equilibrium 

distributions. 

The potential and concentration distributions described for the system 

with no kinetic limitations to interfacial reactions are constrained by the 

rates of generation and mass transfer in the semiconductor. More generally. 

kinetic limitations to -interfacial reactions are compensated by the increased 

interfacial potential and concentration driving forces required to allow 

passage of electrical current. The presence of these limitations may be 

inferred from experimental data by inflection points in the current-potential 

curve. 

2. Mathematical Description 

Macroscopic transport equations are commonly used to describe the 

semiconductor and the electyrolyte in the liquid-junction cell. A microscopic 

model of the semiconductor-electrolyte interface couples the equations 

governing the macroscopic systems. 

2.1 Semiconductor 

The electrochemical potential of a given species can arbitrarily be 

separated into terms representing a reference state, a chemical contribution, 

and an electrical contribution. 

~. = 
~ 

( 1 ) 

where + is a potential which characterizes the electrical state of the phase 

and can be arbitrarily defined. The potential used here is the electrostatic 

potential which is obtained through integration of Poisson's equation. P6 

Equation (1) can be viewed as the defining equation for the activity 
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coefficient, fie 

The flux density of an individual species within the semiconductor is 

driven by a gradient of electrochemical potential; 

( 2 ) 

This can be written for electrons and holes in terms of concentration and 

potential gradients (see, e.g., references G3 or N4). The flux density of 

holes ~h is therefore given by 

(3a) 

and the flux density of electrons Ne by 

(3b) 

The concentrations of electrons and holes are represented by nand p, 

respectively, and the mobilities ui are related to the diffusivities Di by the 

Nernst-Einstein equation 

D. = RTu. 
~ ~ 

(4 ) 

This equation is appropriate for both dilute and concentrated solutions. N4 

Nonidealities associated with more concentrated solutions are incorporated 

within the activity coefficient. 

Equation (3) can be simplified through the assumption of constant 

activity coefficients. Under the assumption of constant activity 

coefficients, equation (3) is in harmony with a Boltzmann distribution of 

electrons and holes. Such an approach is valid for plNv and nlNc less than 

0.1. Expressions have been presented for the activity coefficients of 

electrons and holes.Rll.P2-3.H17.G16 The use of concentration-dependent 

activity coefficients, e.g •• 

for holes and 

f = e 

1 

1 

for electrons. 09 extends the validity of the transport equations to 
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dimensionless concentrations less than 1. The expressions given in equation 

(5) are thermodynamically consistent, are valid in regions of charge, and are 

consistent with a Fermi-Dirac distribution for electrons. These expressions 

do not, however, account for band-perturbing and band-gap narrowing effects 

associated with heavily-doped semiconductors. The activity coefficients can 

be modified to account for these effects. but this modification requires more 

information on the energy-band structure (see references L6, D2, Rll, L12. and 

H5). Inclusion of activity coefficients is necessary for highly-doped 

semiconductors and for semiconductors subjected to a large electric field. 

Another approach toward characterization of ~egenerate semiconductors has 

been to include the nonidealities associated with degeneracy within a modified 

Nernst-Einstein relationship.L4,L17,MS,Kl2 The modified Nernst-Einstein 

relationship is given byL3 

D. 
~ 

( 6 ) 

where F~(~) is a tabulated integralS2.AlO and ~ is proportional to the 

difference between the electrochemical potential of the species t and the 

respective band-edge energy. This approach is related to the activity 

coefficient used in the above development byLS 

= ( 1 - :~: :~ 1 ( 1 ) 

The validity of the Nernst-Einstein relation rests on the fact that the 

driving force for both migration and diffusion is the gradient of th~ 

electrochemical potential, and the decomposition of this into chemical and 

electrical contributions is arbitrary and without basic physical 

significance. GlS Correction of the Nernst-Einstein relationship to account for 

nonideal behavior represents a decomposition of the electrochemical potential 

gradient such that the diffusional flux density is proportional to the 

gradient of concentration, not activity as given in equation (3). The 

advantages of the approach represented by equations (1) through (S) are that 

the influence of nonideal behavior is separated from transport properties and 
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that only one transport property need be measured for each species. 

Furthermore, the transport property can be expected to be a weaker function of 

concentration. The activity coefficients presented in equation (5) can also 

be employed within the framework of the transport theory for concentrated 

solutions. N4 ,B5 

Homogeneous reaction takes place in the semiconductor; thus a material 

balance for a given species, say holes, yields 

( 8 ) 

where Rh is the net rate of production of holes under steady-state conditions. 

The development presented here, while applicable to p-type semiconductors, is 

oriented toward analysis of an n-type semiconductor in which holes are the 

minority carrier. Material balances of holes and electrons are not 

independent, and conservation of the minority carrier was chosen to improve 

the numerical computational accuracy. 

The rate of production of holes is, by stoichiometry, equal to the rate 

of production of electrons and is governed by three concurrent processes: 

generation by absorption of light, generation by absorption of heat, and 

recombination of electrons and holes (i.e., transfer of an electron from the 

conduction band to the valence band). 

(9 ) 

Mathematical models of the homogeneous recombination process have been 

developed which incorporate single-step electron transfer from one energy 

level to another. They differ in the assumption of the presence or absence of 

impurities which allow electrons to have energies between the conduction and 

valence-band energies.Sll.S4.M19 

Band-to-band kinetic models (pre'sented in Figure 5) allow electrons to 

have only valence or conduction-band energies. Absorption of the appropriate 

amount of thermal or electromagnetic energy creates an electron-hole pair; 

recombination of an electron and a hole releases energy in the form of heat or 

light. The band-to-band model, yields 
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'oj 

(10) 

where ~ is the fraction of incident photons with energy greater than the band 

gap energy, m is the absorption coefficient, qo is the incident solar flux, 

and ni is the intrinsic concentration, 

kth(N~-n) (Nv-P))~ 
rec 

(11) 

The intrinsic concentration is written in terms of Nc and Nv • the number of 

available conduction and valence-band sites respectively, and kth and k rec , 

thermal generation and recombination rate constants. Under equilibrium 

conditions, the rate of thermal generation is equal to the rate of 

recombination, and np • nil. 

Most semiconducting materials contain within their lattice structure 

impurities or imperfections which may be described as fixed sites with 

valence-band electron energies within the semiconductor band gap. The trap­

kinetics model allows recombination to occur through these sites (see Figure 

6). Absorbed radiation drives an electron from the valence band to the 

conduction band, and all recombination and thermal generation reactions are 

assumed to occur through trap sites. This model results in 

-my = ~mqoe -

P + n 

where k 1 , kl, k3, and k4 are the rate constants for the corresponding 

reactions shown in Figure 6. The intrinsic concentration is given by 

k 1k 3 (NC-n) (Nv-P»)~ 
k2 k4 

(12 ) 

( 13 ) 

The expressions for the intrinsic concentration (equations (11) and (13» are 

conSistent with the expression derived through statistical-mechanical models, 

e. g •• 
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np 
2 

= n. 
~ 

= 
-E /RT 

(N -n) (N -p)e g c v 

The intrinsic concentration can be considered to be a constant for a given 

semiconductor only if the ratios nlNc and p/Nv are negligibly small compared 

to unity. The intrinsic concentration is related to the nondegenerate limit 

nlim and the activity coefficients of equation (5) by 

(f~fh ( 15) 

The assumption of a constant intrinsic concentration is consistent with the 

assumption of unity activity coefficients for electrons and holes. The value 

of the intrinsic concentration derived from statistical-mechanical arguments 

serves as a relationship among the kinetic parameters in equations (11) and 

(13). 

The divergence of the current is zero at steady state; therefore the 

fluxes of holes and electrons are related by 

v·N -e v·N = 0 -h (16) 

A material balance on electrons, analogous to equation (8), could be used to 

replace equation (16). 

Poisson's equation, 

F 
E 

SC 
[p - n + 

relates the potential to the charge distribution. The Debye length, 

characterizes the distance over which the potential varies in the 

semiconductor. It typically has a value of 1x10-6 to 2xlO-S cm. 

-11-
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The degree of ionization of donors or acceptors is dependen~ upon the 

concentrations of charged species within the semiconductor and upon the 

temperature. Complete ionization is frequently assum~d, and this assumption 

is reasonable at room temperatures. 

2.2 Electrolyte 

For dilute electrolytic solutions (less than 3 M) the flux of an ionic 

species can be separated into migrational. diffusional, and convective terms, 

i.e., 

(19 ) 

This relationship fails for concentrated solutions due to the neglect of the 

contributions of activity co.fficients (see equation (3» and to the neglect 

of ion-ion interactions. N4 Under the assumption that homogeneous reactions do 

not take place. conservation of mass yields a uniform flux at steady-state. 

i.e., 

v·N. = 0 
-~ 

(20) 

The potential and concentrations of charged species are related by Poisson's 

equation, 

(21) 

Electroneutrality of the electrolyte is not assumed here because the diffuse 

region near the interface plays an important role in the microscopic model of 

the interface. The Debye length in the solution is given by 

sol ~ = ( (22) 

and typically has a value of 1x10-8 to lXlO-7 cm. 

The relationships presented above are sufficient to describe the 

electrolytic solution. An additional relationship yields the current density 
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as a function of the ionic fluxes, 

ZiN . 
-~ 

(23) 

Within the semiconductor, this can be regarded to be an integrated form of 

equation (16). 

2.3 Semiconductor-Electrolyte Interface 

The interfacial reactions described in section 1.1 are driven by 

departure from equilibrium. For a general interfacial reaction,N4 

i 

the condition of equilibrium is given by 

2: s1'" 1 = 0 
1 

(24) 

(25) 

Here, si is the stoichiometric coefficient of species i. Hi is a symbol for 

the chemical formula of species i. and "'i is the electrochemical potential of 

species i. Electrons at a given energy level (or holes) are included 

explicitly as a reactant. 

The rate of a reaction A at the interface is given by 

Pi A 
c. ' 
~ 

(26) 

where {l A is a symmetry factor (usually assumed to be equal to 1/2). kf ,A and 

kb.A are forward and backward reaction rate constants. respectively. n is the 

number of electrons transferred. and A+A is the potential driving force for 

the given reaction. A. The potential driving force enters into reactions 

involving charge transfer from locations of one potential to locations of 

another. 
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The reaction orders for a given species i in the forward and reverse 

directions are Pi,A and qi.A, respectively. They are determined from the 

stoichiometric coefficients, si,A: 

For s. A = 0; p. A = 0, and q. A = O. 
~ , 1. , ~ , 

For s. A > 0; Pi,A = s. A' and q. A = O. 
~ , 1. , 1. , 

For si ,A < 0; p. A = 0, and q. A = -s. A' 1. , 1. , 1. , 

The reaction rates are written in terms of the equilibrium constants as 

= kb'R{ KR exp ( 
( l-P A ) F4<p A ) p. A 

n 1. , 
r

A RT 
c. 

i 1. 

(27) 

- exp ( 
-p F4<PA ) qi. R} A n 

RT 
C i i 

The equilibrium constant used here is the ratio of the forward and backward 

rate constants: 

(28) 

The equilibrium constants can be related to equilibrium interfacial 

concentrations and potentials. i.e. 

( F) -s. A 
= exp - RT 4<PA n c

i 
1., 

i 
(29) 

Through equation (27), the equilibrium constants can be related to electron-

site and Fermi energies. Within parametric studies, it is convenient to allow 

one independent rate constant to be characteristic of each group of 

interfacial reactions. For example. adsorption reactions (IHP-OHP) might 

have individual rate constants for each reaction A related to the 

characteristic rate constant by 
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0 -~ 
kb,A = k. KA J 

(30a) 

and 

0 

~ k f ,A = k. 
J 

(30b) 

where kj is the pre-exponential part of the rate constant, with a 

characteristic value for a given reaction type j, and ~ was given a value of 

one half. The value for the equilibrium constant KA incorporates the energy 

levels of interfaCial sites and associated energies of adsorption. These 

equations are consistent with equations (27) and (28). 

The general approach described above can be applied to an arbitrarily 

complex interfacial reaction scheme. Material balances govern the interface. 

Under steady-state conditions, these are expressed by continuity of flux at 

the OSS and the OHP; i.e., 

N loss = 2 -s r , -e e,A A, ass 
A 

( 31a) 

!!h loss = l -s r , 
h,A A ,ass 

A 

(3-1 b) 

and 

N. 

10hP 
= l -s r . 

-~ i,A A, ohp 
A 

(31c) 

Material balances are also written for each adsorbed species i at the ISS and 

the 1HPi i. e •• 

l s. A r A, iss = 0 
~, 

(32a) 

A 
and 

l s. A 
~ , r A , ihp = 0 (32b) 

A 

These equations apply only if surface states are involved within the 
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microscopic model of the interface. 

Gauss's law can be applied to the region between the ass 

~ ~. 
&1 ( E2 

(~iss- ~ihp) + FL Ziri = 
&2 ass ~ss E sc 

and between the ISS and the IHP: 

~. 
~ss 

iss 

and ISS: 

) (33a) 

) (33b) 

where r i are the surface concentrations of charges species located at the 

respective interfacial planes. 

The approach described above allows description of interfacial reactions 

in terms of individua~ single-step processes. Frequently, reactions are 

described by a single rate expression. The rate of a charge-transfer 

reaction, for example, can be expressed through the Marcus-GeriScher theory by 

+= 

r = kredCred f ~(E)p(E) [1-f(E)]Dred (E) dE 

(34) 

+= 

KaxCax f ~(E)p(E)f(E)Dox(E) dE , 

where kox and kred are rate constants, ~(E) is an energy-dependent 

transmission or rate constant, p(E)[l-f(E») is the distribution of unoccupied 

electron states in the electrode, p(E)f(E) is the distribution of occupied 

states in the electrode, and Dox and Dred are the distributions of occupied 

and unoccupied states, respectively, for electrons associated with the ionic 

species. G3 - 4 ,M13 This may be regarded to be a form of equation (26) 

integrated over all electron energy levels. Within this approach, the 

occupancy of electron states feE) is given by the Fermi-Dirac distribution, 

and the energy states of electrons associated with ionic species are 

distributed according to 
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exp ( -
(E - E - ~ ) 2) 

D d(E) = 
F,el 

re 4kT~ 
(35a) 

and 

exp ( -
(E - EF,el+ ~ ) 2) 

D (E) = ox 4kT~ 
(35b) 

where ~ is called the rearrangement or reorientation energy. This term is 

used to relate the energy of electrons in the semiconductor to the energy of 

electrons associated with the ionic species. At equilibrium, the Fermi 

energy. or electrochemical potential, of electrons in the semiconductor is 

equal to the Fermi energy of electrons associated with the ionic species. This 

requirement specifies the concentrations of oxidized and reduced species at 

the semiconductor surface. 

A kinetic argument can be used instead to establish the equilibrium 

distribution of ions at the semiconductor surface. The rate of adsorption of 

a species i is given according to equation (26) as 

(36) 

Under equilibrium conditions the reaction rate is zero, and the fractional 

occupation of the inner Helmholtz plane is given by 

(37) 

k 

where 
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( 
kf,.R 1 AE; = -z;FA~A + RT In -k---

• • M b,.R 
(38 ) 

The fractional occupation by a single species i corresponds to that given by 

the Langmuir adsorption isotherm (see, e.g., DelahayD10) for which AEi is the 

"standard" free energy of adsorption. The "standard" free energy of 

adsorption is therefore a function of A~.R' the equilibrium potential 

difference between the inner and outer Helmholtz planes. 

The equilibrium constants given in equation (29) couple the equilibrium 

concentrations of electrons, obtained as functions of Fermi energy, and the 

equilibrium concentrations of adsorbed ions; obtained as functions of 

concentration and free energies of adsorption. 

2.4 Boundary Conditions 

The boundary conditions are specified by the microscopic model of the 

various interfaces included within the photoelectrochemical cell. A metal-

semiconductor interface, for example, can be described in a manner similar to 

that presented in the preceding section. Consider a semiconducting electrode 

bounded at one end by the electrolyte and at the other end by a metallic 

current collector. The boundary conditions at the semiconductor-electrolyte 

interface are incorporated into the model of the interface. Appropriate 

boundary conditions at the semiconductor-current collector interface are that 

the potential is zero, the potential derivative is equal to a constant, 

determined by the charge assumed to be located at the semiconductor-current 

collector interface, and all the current is carried by electrons (the flux of 

holes is zero). These conditions are consistent with a selective ohmic 

contact. F5 The boundary conditions in the electrolytic solution are set a 

fixed distance from the interface. This distance may be considered to be a 

diffusion layer. The boundary conditions are that the potential gradient is 

continuous and that all concentrations have their bulk value. 
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2.5 Counterelectrode 

In the region sufficiently far from the interface that electroneutrality 

holds and under the assumptions that the concentration is uniform and that the 

solution adjacent to the electrodes may be treated as equipotential surfaces, 

the potential distribution can be obtained through solution of Laplace's 

equation, v2+~o, and is a function of current density. The potential drop in 

the region between the counterelectrode and the outer limit of the diffusion 

layer is given by 

Li 
VIR = Ie: (39) 

where Ie: is the solution conductivity and L is the distance between the 

counterelectrode and the outer edge of the diffusion layer. The 

counterelectrode was assumed here to be in a configuration parallel to the 

semiconductor. Relaxation of this assumption will be discussed in section 3.3 

The conductivity of dilute solutions can be related to ionic mobilities and 

concentrations by 

Ie: = F2 2: Z~UiCi 
1 

or is obtained from experimental measurements for a given electrolyte. 

(40) 

The potential drop across the counterelectrode-electrolyte interface is 

given by 

(41 ) 

where ~CE is the equilibrium potential drop across the interface and ~CE is 

the total counterelectrode reaction overpotential. The total overpotential is 

related to the current density through the Butler-Volmer reaction model D10 ,N4 

i = io{ ( 1 -
1 )exp ( 

(l-lU nF ) 1 c,11m RT ~CE 

(42) 

- ( 1 + 
i ) exp ( -

pnF ) } 1 a, lim RT ~CE 
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where io is the exchange current density associated with the bulk 

concentrations of reactants, ik,lim is the diffusion-limited current density 

associated with species k, and n is the number of electrons transferred in the 

counterelectrode reaction. 

3. Photoelectrochemical Cell Design 

The liquid-junction photovoltaic cell has the advantages that the 

junction between electrolytic s~lution and semiconductor is formed easily and 

that polycrystalline semiconductors can be used. The principal disadvantage 

is that the semiconductor electrode tends to corrode under illumination. The 

electrochemical nature of the cell allows both production of electricity and 

generation of chemical products which can be separated. stored, and recombined 

to recover the stored energy. Liquid-junction cells also have the advantages 

that are attributed to other photovo1taic devices. Photovoltaic power plants 

can provide local generation of power,on a small scale. The efficiency and 

cost of solar cells is independent of scale. and overall efficiency is 

improved by locating the power plant next to the 10ad. Ol 

The design of a liquid-junction photovoltaic cell requires selection of 

an appropriate semiconductor-electrolyte combination and design of an efficent 

cell configuration. The selection ofa semiconductor is based upon the band 

gap, which provides an upper limit to the conversion efficiency of the device, 

and the choice of electrolyte is governed by the need to limit corrosion and 

by the requirement that interfacial reaction rates be fast. 

3.1 Choice of Materials 

The performance of photoelectrochemical cells constructed with thin-film 

or polycrystaliine semiconductors is strongly dependent upon the method,of 

film formation and upon the surface preparation. Conversion efficiencies 

(incident solar illumination to electrical power) of 3 to 6.5 percent have 

been reported for cells using thin-film n-CdSe electrodes (see references R12. 

KB. L13-l4. P9. R3. RB-9. and H14). and a conversion efficiency of 5.1 percent 

has been achieved with a pressure-sintered po1ycrystalline CdSe 

photoelectrode. M16 A comparable efficiency of B.l percent has been reported 

for a single-crystal CdSe electrode. H6 Conversion efficiencies of 0.03B to 

0.3 percent have been reported for polycrystalline CdS filmsM15.PB.T4 as 
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compared to 1.3 percent for single-crystal CdS. H6 Conversion efficiencies of 

up to 7.3 percent have been reported for polycrystalline n-GaAs films;H7,J2,N6 

12 percent has been reported for the single crystal n-GaAs.HB,P4 The lower 

efficiency of the polycrystalline thin-film semiconductors, as compared to the 

single-crystal counterparts, is expected to be compensated by their lower 

cost. Reviews of the materials aspects of photoelectrochemical cells are 

given in references Cl, CIO, and M23. 

3.1.1 Band gap. An upper limit to the efficiency of photovoltaic devices 

can be established, based upon the band gap and the solar spectrum, without 

consideration of cell configuration. This ultimate efficiency is given byAB 

~ 

E f N(E} dE 
9 

E 
~ult = 9 (43) 

~ 

f E N(E} dE 

0 

where Eg is the semiconductor band-gap energy, E is the photon energy, and 

N(E) is the number density of incident photons with energy E. The fraction of 

the power in the solar spectrum that can be converted to electrical power is a 

function of the band gap of the semiconductor. Photons with energy less than 

the band gap cannot produce electron-hole pairs. Photons with energy greater 

than the band gap yield only the band gap energy.LlS-16,WlS 

The ultimate efficiency of equation (43) represents an upper limit to 

conversion of solar energYi AB ,W12,S3 factors such as reflection and absorption 

losses of sunlight, kinetic and mass transfer limitations, and recombination 

will reduce the efficiency. These effects are included in section 3.3. A 

band gap between 1.0 and 1.5 eV is generally considered to be appropriate for 

efficient conversion of solar energy. 

3.1.2 Corrosion. The application of liquid-junction technology to 

photovoltaic power conversion is limited by problems associated with the 

semiconductor-electrolyte interface. Primary among these problems is 

corrosion. Efficient conversion of solar energy requires a band gap between 

1.0 and 1.5 eV, and most semiconductors near this band gap corrode readily 

under illumination. Semiconductors with large band-gaps (4 to 5 eV) tend to 
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be more stable but cannot convert most of the solar spectrum. 

Among the approaches taken to solve this problem, the most successful 

concern the matching of an electolyte to the semiconductor. The rate of 

corrosion is reduced if the semiconductor is in equilibrium with the corrosion 

products. The rate of corrosion can also be reduced by using a redox couple 

which oxidizes easily. The oxidation of the redox couple Se~+l/Se~- for 

example, has been shown to compete successfully with photocorrosion reactions 

for holes in n-type GaAs electrodes. HlO ,C4 

P-type semiconductors used as cathodes are more stable than the more 

common and generally more efficient n-type semiconducting anodes. The 

inefficiency of p-type photocathodes has been attributed to the presence of 

surface states near the valence band energy. A stable p-type photocathode has 

been developed, however, with a solar-energy-conversion efficiency of 11.S 

percent. H9 Protective films have been proposed to be a solution to electrode 

corrosion. The electrode, in this case, would be a small band-gap 

semiconductor covered by a film composed of either a more stable large band­

gap semiconductor, a conductive polymer, or a metal. A large Schottky barrier 

is freqently present at such semiconductor-metal and semiconductor­

semiconductor interfaces which blocks the transfer of holes from the 

semiconductor to the electrolyte. In cases where the photocurrent is not 

blocked, corrosion can take place between the semiconductor and the protective 

film.Ml2,G7 Menezes et al. Ml4 discuss the difficulties in avoiding absorptive 

losses in the metal film while maintaining sufficient integrity to serve the 

semiconductor corrosion protection function. Frese et al. F8 have, however, 

reported a measurable improvement in the stability of GaAs with less than a 

monolayer gold metal coverage. Thin conductive poly-pyrrole films appear to 

be successful in inhibiting corrosion in some electrolytes. N7 - 8 ,S9-

lO,F3,BIO,RS In addition, insulating polymer films deposited on grain 

boundaries can improve the performance of polycrystalline semiconductors by 

reducing surface recombination rates. W3 (For more complete reviews of the 

corrosion of semiconducting electrodes, see references Wl4, HIO, H4, Ml2, M21, 

K9, and G6-7). 
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3.2 Solution of the Governing Equations 

Quantitative optimization or prediction of the performance of 

photoelectrochemical cell configurations requires solution of the macroscopic 

transport equations for the bulk phases coupled with the equations associated 

with the microscopic models of the interfacial regions. Coupled phenomena 

govern the system, and the equations describing their interaction cannot, in 

general, be solved analytically. Two approaches have been taken in developing 

a mathematical model of the liquid-junction photovoltaic cell: approximate 

analytic solution of the governing equations and numerical solution. 

3.2.1. Analytic approach. The semiconductor electrode is typically divided 

into three regions. Surface-charge and electron and hole-flux boundary 

conditions model the semiconductor-electrolyte interface. The region adjacent 

to the interface is assumed to be a depletion layer, in which electron and 

hole concentrations are negligible. The potential variation is therefore 

independent of hole and electron concentration in this region. Far from the 

interface a neutral region is defined in which the potential is constant; here 

electron and hole fluxes are driven only by diffusion. Current-potential 

relationships are derived in the analytiC approach by invoking assumptions 

appropriate to each region. 

Integration of Poisson's equation in the depletion layer. for example. 

resul ts in a depletion laye"r thickness W in terms of the voltage drop V across 

the layer: 

w = ( 2eV )!,i (44) 

The depletion layer thickness is. as shown in Figure 3, a function of 

illumination intenSity. The assumption that the semiconductor can be 

separated into depletion and neutral regions restricts the voltage drop V to 

values high enough to deplete the majority carriers (electrons in an n-type 

semiconductor) in a region adjacent to the interface but small enough to avoid 

formation of an inversion layer (in which the concentration of minority 

carriers is significant). This assumption is not appropriate under many 

operating conditions for which the liquid-junction cell may be practical. 

(Figure 4, for example, shows an inversion layer adjacent to the solution 

interface.) 
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Analytic models of photoelectrochemical devices closely resemble models 

of solid-state solar cells (see, e.g., references A7, CS-6, 09, KII, Ml7, PI, 

55, 512" 514, TI-2, and VI). Several analytic current-voltage relationships 

have been derived which use the general approach described above and differ in 

their treatment of surface reactions and recombination within the depletion 

and neutral layers. GartnerG2 neglected recombination and thermal generation 

of carriers in the depletion region and neglected the effect of concentration 

limitations at the semiconductor-electrolyte interface. The Gartner model is 

frequently used to analyze experimental results. Bl2 ,K6,W7 WilsonW8 - 9 used the 

same approach but included surface recombinations. Albery et al. A4 - 6 extended 

the model of Gartner by including recombinati~n of holes and electrons in the 

depletion layer •. ReichmanR6 - 7 presented a model which included recombination 

in the depletion region and. kinetic limitation at the interface. ReissRIO 

presented models for various cases,- including within the model the potential 

drop across the electrolyte double layer, surface recombination, and surface 

kinetic limitations. The semiconductor was divided into depletion and neutral 

regions, and the effect of illumination on cell potential was included as an 

additive photovoltage. AhigrenA2 incorporated a Butler-Volmer reaction rate 

expression into the boundary conditions at the semiconductor-electrolyte 

interface. McCann and HanemanM8 included enhanced recombination associated 

with grain boundaries within the bulk of the semiconductor. The photovoltage 

was included in the calculation of the depletion region width. McCann et 

al. M9 used an analytic model to calculate the current-voltage characteristics 

of front and back-wall-illuminated liquid-junction cells. 

Surface states and crystal imperfections have been found to play an 

important role in charge-transfer and redox reactions at the semiconductor­

electrolyte interface (see references Hl2, W6, WII, A3, A9, B3, F2, B6, and Nl). 

Mathematical and conceptual relationships have been developed which describe 

electrochemical reactions at the semiconductor-electrolyte interface in terms 

of surface states and potentials (see, e.g., references GI, JI, M4, G4, M20, 

B7. MIl, M13. F7, K7, and R4). Electrochemical reaction via surface states 

has been included within an analytic model,C7 but this model is still limited 

by the restrictions described above. 
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Equivalent circuit models of the liquid-junction cell -have also been 

presented. S6 ,M6-7 These models are useful in the analysis of impedance 

response measurements. 

3.2.2. Numerical approach. Use of a digitial computer in the numerical 

solution of the equations governing the liquid-junction cell eliminates the 

need for restrictive assumptions. This approach has been used in the modeling 

of solid-stage devices. Ml ,D6-7,C8-9,Sl6,H2,Ll-2,Rl Laser and BardL7 - 1? 
developed a computer program which was used to calculate open-circuit 

photopotentials, the transient behavior of the system following charged 

injection, and the time dependence of photocurrents in liquid-junction cells. 

Time dependent material balances of holes and electrons and POisson's equation 

described the semiconductor. The interface was included in terms of charge 

and flux boundary conditions. The model was limited by lack of convergence 

for electrode thicknesses greater than that of the space-charge region and did 

not treat explicitly the electrolyte and counterelectrode. Orazem and 

NewmanOS - 7 present a numerical solution of the governing equations that 

includes analysis of neutral, space-charge, and inversion regions in the 

semiconductor coupled with explicit treatment of the electrolyte and the 

counterelectrode. Interfacial reactions were treated explicity. Potential-

dependent concentration variables were defined to reduce the numerical 

difficulties associated with concentrations that can vary up to 20 orders of 

magnitude in a short distance. OS ,B8 Errors associated with matching of 

solutions for various regions of the semiconductor were thereby avoided. 

Numerical methods for solving coupled ordinary differential equations are 

discussed by Newman and associates,N3,WS and a general method for treating 

boundary conditions is presented by White. W4 

A number of computer programs related to the liquid-junction photovoltaic 

cell have been developed. Leary et al.,Lll for example, calculated carrier 

concentrations in polycrystalline films using a numerical solution of 

Poisson's equation coupled with overall charge neutrality within spherical 

grains. Their model was used for analysis of semiconductor gas sensors. 

Davis and colleagues D3- S presented a computer program which uses simultaneous 

calculation of surface and solution equilibrium states to obtain the 

equilibrium condition of electrical double layers. 
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3.3 The Influence of Cell Design 

The optimal design of liquid-junction photovaltaic cells shares 

constraints with solid-state photovoltaic cells.HIS,II Current collectors 

cast shadows and can reduce the amount of sunlight absorbed in the 

semiconductor. A constraint unique to the liquid-junction cell is the 

placement of the counterelectrode relative to the semiconductor-electrolyte 

interface. Shadows, which reduce efficiency and cause local currents in 

solid-state photovoltaic cells, may lead to localized corrosion in 

photoelectrochemical cells. Mass-transfer and kinetic limitations at the 

counterelectrode and resistance of the electrolyte can play important roles in 

the optimal design of the liquid-junction photovoltaic cell. These 

considerations are treated qualitatively by Parkinson. PS 

Ideally, modeling and optimization of photoelectrochemical cell 

configurations involves solution of the governing equations in three 

dimensions. A first approach toward the analysis of these devices involves 

coupling the solution of the one-dimensional equations (see the previous 

section) with primary resistance calculations for the specific cell 

configuration. The computational problem is still difficult but can be 

solved. This approach toward calculation of the influence of cell design is 

illustrated below and is based on the work of Orazem and Newman. OB The system 

modeled was an n-type GaAs semiconducting anode in contact with an O.B M K2Se , 

0.1 M K2Se2, 1.0 M KOH electrolytic solution. The choice of this 

semiconducting electrode system was based upon the work of Heller and 

associates. HIO The semiconductor was assumed to be in the form of a thin film 

(see Mitchell for a review of thin-film photovoltaic technologiesMIB ). 

Interfacial reactions were included but were not limited by kinetics. OS - 7 

This approach requires calculation of the resistance to current flow 

associated with the two-dimensional systems. Some methods for calculation of 

this resistance were reviewed by Fleck et al. F4 Kasper. KI - S Moulton. M22 

Newman,NS and Orazem and Newman04 have presented primary resistance 

calculations for configurations of potential application to 

photoelectrochemical cells. 
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One possible photoelectrochemical cell configuration employs a slotted-

semiconductor electrode as presented in Figure 7a. A glass cover plate 

protects the cell. Sunlight passes through the cover plate and the 

electrolyte to illuminate the semiconductor surface. Electrical current 

passes between the semiconductor and the counterelectrode through slots cut in 

the semiconductor. Characteristic features of this configuration are that no 

shadows are cast upon the semiconductor and that reaction products could be 

separated if a membrane were placed between the semiconductor and the 

counterelectrode. 

A two-dimensional representation of this cell is presented in Figure 7b. 

The primary current distribution and the resistance of a cell containing a 

slotted electrode were calculated using numerical methods coupled with the 

Schwarz-Christoffel transformation. 04 ,B9,A1 The cell resistance is a function 

of three geometric ra~ios, chosen to be tIC, h/C, and L/h, where L is the 

half-length of the protruding electrode assembly, t is the thickness of the 

protruding electrode assembly, C is the half-gap between the electrode 

assemblies, and h is the separation between the electrode and the upper 

insulating wall. The separation between the counterelectrode and the lower 

edge of the semiconductor-electrode assembly is also given by h. These 

parameters are shown in Figure 7c. 

Four geometric parameters characterize this cell design. The distance 

between the counterelectrode and the semiconductor assembly was chosen to be 

0.5 cm, and the semiconductor assembly thickness was assumed to be 0.1 cm. 

The values chosen for this analysis were based on mechanical considerations. 

Smaller spacing could result in shorting of counterelectrode and semiconductor 

andlor trapping of gas bubbles. The influence of the counterelectrode could 

be reduced by increasing the flow rate or degree of mixing near the 

counterelectrode, thereby increasing the limiting current. Interfacial 

reactions were considered to be equilibrated. Kinetic limitations at the 

semiconductor-electrolyte interface may greatly reduce the performance of some 

semiconductor systems. 

The primary resistance for this system is presented in Figure 8 as a 

function of LID with h/C as a parameter. The maximum power density is 

presented in Figure 9 as a function of L/h with h/C asa parameter. The 

maximum power density for this system is obtained with a small gap. For 
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h/Ga O.5 (Gal cm), the maximum power density was 47.S W/m2, and the maximum 

power efficiency was 5.4 percent. The current density under maximum power 

conditions was 15 mA/cm2 delivered at 477.6 mV. For h/G=10 (G=O.Os cm), the 

maximum power density was 67.7 W/m2, and the maximum power efficiency was 7.7 

percent. At maximum power the current density was 15.2 mA/cm2 delivered at 

534.6 mV. 

The hierarchy of photovoltaic cell efficiencies is presented in Table 1. 

Semiconductor effects, such as recombination, reduce the power efficiency of 

a GaAs-based device from a value of 37 percent. based solely upon band gap. to 

15.3 percent. Reflection losses. with an arbitrarily chosen SO percent 

efficiency of illumination. reduce this value to 12.2 percent. This value is 

consistent with the value measured in a bench-top experimental system for 

which the influence of counterelectrode limitations and electrolyte resistance 

can be minimized. This value can also be compared to the 12 percent 

efficiency obtained in the experimental work of Heller and Miller. HS ,HI0.P4 

Accounting for the effect of cell design reduces the efficiency from 15.3 

percent to 9.S percent, and inclusion of illumination losses further reduces 

the cell efficiency to 7.7 percent for the slotted-electrode cell. 

Table 1. 

Optimal Band-Gap 

GaAs Band-Gap 

Semiconductor­
Electrolyte 
Junction 

Slotted­
Electrode 
Cell Design 

No 

Power Efficiency under Front Illumination 

Illumination Illumination Experimental 
Losses Losses * ResultsHS.HI0.P4 

45 36 (S07.) 

37 30 (S07.) 

15.3 12.2 (S07.) 12.0 

9.S 7.7 (55.47.) 

• In some cases, the number in parenthesis represents the fraction of AM-2 
illumination (above the bandgap) which actually enters the semiconductor. 
after accounting for reflection, shadowing, and absorption in intervening 
phases. In other cases, where detailed calculations were not made. it 
represents the ratio to column 1 because the nonlinear effect of illumination 
could not be assessed. 

-2S-



The maximum power efficiency is presented as a function of illumination 

intensity in Figure 10 for the slotted-electrode cell. The cell was designed 

with the design parameters calculated to be optimal under peak AM-2 

illumination. The power efficiency decreases with increasing illumination due 

to the influence of electrolyte resistance and kinetic and mass-transfer 

limitations at the counterelectrode. These phenomena become increasingly 

important as current densities increase, and mass-transfer limitations at the 

counterelectrode can result in an upper limit for cell currents. 

The maximum power efficiency for the system without counterelectrode 

limitations is also presented in Figure 10. These results are consistent with 

the use of a porous counterelectrode in the cell. The maximum cell current 

obtained under large magnitudes of illumination depends upon the ratio of the 

counterelectrode area to the semiconductor area. This ratio must be large for 

liquid-junction photovoltaic cells designed for large intensities of 

illumination, and for some configurations, a porous counterelectrode may be 

appropriate. C2 Inclusion of a cooling system in the cell design becomes 

important under these conditions. The electrolyte itself can serve as a heat 

exchange medium in photoelectrochemical systems. 

Similar calculations were performed for a cell with a wire-grid 

counterelectrode through which sunlight passes. OS Current-potential curves 

are presented in Figure 11 for these optimally designed cells as compared to 

the cell without interfacial kinetic limitations, counterelectrode 

limitations, or electrolytic resistance. The cell with a slotted 

semiconductor has a larger power efficiency than the wire-grid 

counterelectrode cell and can be designed for separation of chemical products. 

The analysis of the system designed for separation of chemical products would 

need to include the electrical resistance of the membrane. 

The allowable capital investment for a photovoltaic cell is given by 

I = 8.76 Pi ~ 4C Y , n e (45) 

where Pin is the annual incident illumination intensity averaged over 24 hours 

in W/m2 (on this baSiS, the average insolation of the continental United 

States is 200 to 250 W/m2.AS), ~ is the cell efficiency, 4C is the difference 

in selling price and operating cost in S/kW-hr, and Ye is the break-even point 
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in years. Lenses or mirrors could be used to increase the amount of sunlight 

striking the semiconductor surface. Based upon a 7.7 percent power efficiency 

(averaged over 24 hours). 250 W/m2 incident illumination (averaged over 24 

hours), SO.05/kW-hr profit, and a break-even period of 5 years, an investment 

of S42/m2 is justified for the complete cell. Based upon a 15.3 percent power 

efficiency (this number is averaged over 24 hours and neglects the influence 

of cell design). an investment of S83/m2 is justified for the complete cell. 

An increase of solar illumination by a factor of five while reducing the 

efficiency to 6 percent (see Figure 10) yields an acceptable initial 

investment of S164/m2. If the mirrors and lenses needed to concentrate 

sunlight are cheaper than the semiconducting film. the cell may be most 

economical under high illumination. The values presented here can be compared 

to the cost estimate of SO.34 per peak watt presented by Weaver et al. W2 for a 

GaAs photoelectrochemical cell. Their estimate is based on materials cost and 

assumes a cell efficiency of 13 percent. The influence of cell design was 

therefore neglected. Under AM-2 illumination, this value corresponds to 

S39/m2. 

4. Conclusions 

Development of a mathematical model of photoelectrochemical devices 

requires treatment of the diffuse double layer (or space charge region) in the 

semiconductor. The principles of electrochemical engineering can be readily 

applied to provide a chemical description of these devices in terms of 

potentials and concentrations of charged species. The macroscopic transport 

relations which govern the electrolyte and the semiconductor are coupled by a 

microscopic model of the interface. Analytic solution of the governing 

equations requires restrictive assumptions. These assumptions can be avoided 

by numerical solution of the governing equations. 

The optimization of photoelectrochemical devices for solar energy 

conversion depends on the choice of semiconductor, electrolyte, and cell 

design. The performance of the cell is strongly dependent upon the design. 

surface area, and placement of the counterelectrode and current collectors. 

This type of solar cell may be economical under concentrated illumination or 

in regions where electrical power has high value. 
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5. Notation 

5.1 Roman Characters 

c 
i 

D. 
1 

E 
i 

lI. E. 
1 

f. 
1 

F 

G 
th 

G
L 

i 

i 
0 

k f •J 

kb .:.0 

kk 

K,Q 

m 

M 
i 

n 

n 

n
i 

N 

N 
a 

Nd 

Ni 

P 

molar concentration of species 

diffusivity of species 
2 

i. cm /s 

energy of species or site i. eV 

ionic adsorption energy. J/mol 

3 
i. mol/cm 

molar activity coefficient of species i 

Faraday's constant. 96.487 C/equiv 

3 
rate of thermal electron-hole pair generation. mol/s-cm 

3 
rate of photo electron-hole pair generation. mol/s-cm 

2 current density. rnA/cm 

2 
exchange current density. rnA/cm 

forward reaction rate constant for reaction ,Q 

backward reaction rate constant for reaction J 

rate constants for homogeneous reaction k 

equilibrium constant for reaction J 

solar absorption coefficient. l/cm 

symbol for chemical formula of species i 

number of electrons involved in electrode reaction 

electron concentration. mol/cm3 

3 
intrinsic electron concentration. mol/cm 

3 
total site concentration. mol/cm 

3 
total bulk electron-acceptor concentration. mol/cm 

3 
total bulk electron-donor concentration, mol/cm 

2 
flux of species i, mol/cm s 

3 hole concentration, mol/cm 
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Q. A 
1.M 

R 

R. 
1 

R 
rec 

heterogeneous reaction order 

heterogeneous reaction order 

2 
incident solar flux. mol/s-cm 

. 2 
heterogeneous reaction rate. mol/s-cm 

universal gas constant. 8.3143 J/mol-K 

3 
net rate of production of species i. mol/s-cm 

3 
net rate of electron-hole recombination. mol/s-cm 

si stoichiometric coefficient of species i in an electrode reaction 

T absolute temperature. K 

2 
u

i 
mobility of species i. cm -mol/J-s 

v potential drop across depletion layer. V 

w 

5.2 

E 

~k 

e 

depletion layer thickness, em 

charge number of species i 

Greek Characters 

symmetry factor 

2 
surface concentration of energy or species k, mol/cm 

distance between interfacial planes (gap denoted by k). cm 

permittivity. C/V-cm 

photon efficiency 

total overpotential at interface k. V 

fractional occupation of surface sites 

conductivity. mho/cm 

Debye length. cm 

~i electrochemical potential of species i. J/mol 

+ electrical potential. V 
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5.3 

o 

e 

• 

5.4 

bulk 

c 

CE 

cell 

e 

h 

ihp 

iss 

A 

o 

ohp 

oss 

sc 

sol 

v 

Superscripts 

equilibrium 

secondary reference state at infinite dilution 

secondary reference state in semiconductor 

Subscripts 

associated with the bulk 

associated with conduction band in semiconductor 

associated with the counterelectrode 

associated with the cell 

relating to electrons 

relating to holes 

associated with inner Helmholtz plane 

associated with inner surface states 

associated with reaction A 

equilibrium value or initial value 

associated with outer Helmholtz plane 

associated with outer surface states 

associated with semiconductor 

associated with solution 

associated with valence band in semiconductor 
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7. Figure Captions 

Figurp. 1. The photoelectrochemical cell. 

~igure 2. Physical mod~l of the semiconductor-electrolyte interface in a 
photoelectrochemical cell. 

~igure 3. Potential distribution for the photoelectrochemical cell with no 
interfacial kinetic limitations. Curve a, open circuit in the dark; curve b, 
open circuit under 882 W/m2 illumination; and curve c, near short circuit (i 
-23.1 mA/cm2) under illumination. -

Figure 4. Concentration distribution for the photoelectrochemical cell with 
no interfacial kinetic limitations. Curve a. open circuit in the dark; curve 
b, open circuit under 882 W/m2 illumination; and curve c, near short circuit 
(~ = -23.1 mA/cm 2 ) under illumination. Concentrations are dimensionalized by 
the net dopant concentration Nd-N

a
. 

Figure 5. Schematic representation of band-to-band recombination kinetics in 
the semiconductor. 

Figure 6. Schematic representation of single-trap recombination kinetics in 
the semiconductor. 

Figure 7. Slotted-electrode photoelectrochemical cell; (a) three-dimensional 
configuration, (b) two-dimensional representation, and (c) repeating section. 

Figure 8. 
L/h. 

Primary resistance of a slotted-electrode cell as a function of 

Figure 9. Maximum power density as a function of L/h for the slotted­
electrode photoelectrochemical cell. 

Figure 10. Maximum power efficiency as a function of the fraction of peak 
AM-2 illumination for a slotted-electrode photoelectrochemical cell with 
h/G=10 and L/h=0.5. 

Figure 11. Cell potential as a function of current density for (a) a front-
illuminated semiconductor without kinetic, electrolyte resistance, and 
counterelectrode limitations; (b) an optimally designed slotted-electrode cell 
with a porous counterelectrode; and (c) an optimally designed cell with a 
wire-grid counterelectrode of radius 0.5 cm. 
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