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Daily and 3‐hourly variability in global fire emissions
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[1] Attribution of the causes of atmospheric trace gas and aerosol variability often requires
the use of high resolution time series of anthropogenic and natural emissions inventories.
Here we developed an approach for representing synoptic‐ and diurnal‐scale temporal
variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3).
We disaggregated monthly GFED3 emissions during 2003–2009 to a daily time step using
Moderate Resolution Imaging Spectroradiometer (MODIS)‐derived measurements of
active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were
constructed from Geostationary Operational Environmental Satellite (GOES) Wildfire
Automated Biomass Burning Algorithm (WF_ABBA) active fire observations. Daily
variability in fires varied considerably across different biomes, with short but intense
periods of daily emissions in boreal ecosystems and lower intensity (but more continuous)
periods of burning in savannas. These patterns were consistent with earlier field and
modeling work characterizing fire behavior dynamics in different ecosystems. On diurnal
timescales, our analysis of the GOES WF_ABBA active fires indicated that fires in
savannas, grasslands, and croplands occurred earlier in the day as compared to fires in
nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and
Measurements of Pollution in the Troposphere (MOPITT) column CO observations
provided evidence that including daily variability in emissions moderately improved
atmospheric model simulations, particularly during the fire season and near regions with
high levels of biomass burning. The high temporal resolution estimates of fire emissions
developed here may ultimately reduce uncertainties related to fire contributions to
atmospheric trace gases and aerosols. Important future directions include reconciling
top‐down and bottom up estimates of fire radiative power and integrating burned area and
active fire time series from multiple satellite sensors to improve daily emissions estimates.

Citation: Mu, M., et al. (2011), Daily and 3‐hourly variability in global fire emissions and consequences for atmospheric model
predictions of carbon monoxide, J. Geophys. Res., 116, D24303, doi:10.1029/2011JD016245.

1. Introduction

[2] In many parts of the world, fires exhibit considerable
variability on timescales of hours to centuries [Rothermel

and Philpot, 1973; Johnson, 1992; Swetnam and Betancourt,
1998; Nepstad et al., 1999; Gillett et al., 2004; Mouillot and
Field, 2005; Westerling et al., 2006; Marlon et al., 2008].
Understanding the causes of this variability is important for
assessing how fires respond to changes in climate and for
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quantifying how fires influence atmospheric levels of
greenhouse gases and aerosols [Bowman et al., 2009]. Fire
emissions have been shown, for example, to explain some of
the interannual variability in atmospheric CH4 [Langenfelds
et al., 2002; Bousquet et al., 2006] and CO2 [Langenfelds
et al., 2002; van der Werf et al., 2004; Randerson et al.,
2005; Nevison et al., 2008; Prentice et al., 2011] and much
of the seasonal and interannual variability in CO, particularly
in tropical and southern hemisphere regions [Bergamaschi
et al., 2000; Langenfelds et al., 2002; Chen et al., 2010;
Kopacz et al., 2010]. Concurrent measurements of burned
area have improved our understanding of various aspects of
ecosystem function, including trajectories of post‐fire net
primary production [Hicke et al., 2003; Goetz et al., 2006]
and surface energy exchange [Jin and Roy, 2005; Lyons
et al., 2008; McMillan and Goulden, 2008]. Motivation for
studying higher frequency variability in burned area and
emissions – over timescales shorter than one month – comes
from another set of inter‐related science questions. A key line
of inquiry in these studies is the investigation of how diurnal
and daily variability in emissions interact with atmospheric
transport and chemistry to influence atmospheric composi-
tion, radiation, and air quality.
[3] Covariance of emissions with atmospheric transport

and chemistry on daily and diurnal timescales can be sub-
stantial with important consequences for air quality. Fires in
Southern California that occur during periods of Santa Ana
winds, for example, have emissions that are often trans-
ported in a direction that is largely orthogonal to the mean
atmospheric flow [Moritz et al., 2010]. As a consequence,
plumes from these fires often extend across urban areas with
significant impacts on human health [Delfino et al., 2009].
On diurnal timescales, interactions between the timing of
emissions and the growth of the planetary boundary layer
(PBL) influence plume dynamics, rates of vertical mixing of
aerosols and trace gases, aerosol and trace gas lifetimes, and
the lateral transport of these emissions within the free tro-
posphere [Wang et al., 2006; Chen et al., 2009; Reid et al.,
2009; Val Martin et al., 2010].
[4] Important aspects of atmospheric chemistry also

respond on diurnal timescales, including processes that reg-
ulate the formation and destruction of NO, NO2, and aerosols.
Three spectrometers (Global Ozone Monitoring Experiment
(GOME), Ozone Monitoring Instrument (OMI), and Scan-
ning Imaging Absorption Spectrometer for Atmospheric
Cartography (SCIAMACHY)) on three different satellites
currently provide column measurements of NO2, thus allow-
ing for improved constraints on ozone chemistry and rates of
nitrogen deposition in terrestrial and ocean ecosystems. Given
the rapid photochemical oxidation of NO2 during the day
[Boersma et al., 2008], use of column measurements in bio-
mass burning regions to infer NOx fluxes requires an under-
standing of the diurnal cycle of emissions. For example,
Boersma et al. [2008] show that across southern Africa,
South America, and other tropical regions with high fire
emissions, column NO2 mixing ratios detected by OMI with a
1330 LT overpass are more than 40% higher than similar
measurements made by SCIAMACHY with a 1000 LT over-
pass. This temporal pattern is consistent with high levels of
midday fire emissions [e.g., Giglio, 2007] that increase the
column abundance of NO2 between the two overpass times.
The opposite diurnal pattern of column NO2 is observed over

fossil fuel source regions where emissions are more uniform
during the day and thus NO2 variations are more closely reg-
ulated by the diurnal cycle of loss processes that reach a
maximum during midday.
[5] Aerosol models used for climate and air quality assess-

ments [Schulz et al., 2006; Chin et al., 2009] have additional
sensitivities to the time interval of fire emissions inventories.
Emissions inventories with coarse time steps (i.e., 1 month)
are often distributed within atmospheric models uniformly
from day‐to‐day, increasing the probability that some emis-
sions will be released during precipitation events or during
meteorological conditions that are considerably different from
those that occurred during the time of the fires. Higher reso-
lution emissions inventories have the potential to reduce
biases associated with these temporal and spatial mismatches
[e.g., Xian et al., 2009] and thus improve our understanding
of direct and indirect climate forcing caused by biomass
burning aerosols [Jacobson, 2001; Ramanathan et al., 2001;
Kaufman et al., 2005; Yu et al., 2006; Flanner et al., 2007].
Compared to many other industrial aerosols sources, fire
aerosol emissions are unique in that that they are closely
coupled with synoptic to interannual variations in meteorology
that influence fire behavior, including fuel moisture levels
and fire spread rates, as well as dry andwet aerosol deposition
rates. Although uncertainties associated with the timing of
fire aerosol emissions are likely to be smaller than other
factors, including uncertainty associated with condensation
and coagulation of organic aerosols and bulk emissions [Reid
et al., 2005, 2009], improved daily emissions estimates are
needed, nevertheless, to allow for realistic comparisons with
satellite and surface aerosol optical depth observations.
[6] Here we describe an approach for representing synoptic

and diurnal variability in fire emissions from the Global Fire
Emissions Database version 3 (GFED3) monthly time series
[Giglio et al., 2010; van der Werf et al., 2010]. Our approach
builds on many past studies that have strengthened our
understanding of daily and hourly controls of fire emissions
and the impact of these emissions on atmospheric chemistry.
Heald et al. [2003] created one of the first global fire emission
inventories with a daily resolution, using Advanced Very
High Resolution Radiometer (AVHRR) satellite observations
to distribute fire emissions from a monthly climatology
developed by Duncan et al. [2003]. Use of the polar‐orbiting
satellite observations at this time step required careful con-
sideration of day‐to‐day variations in overpass coverage and
cloudiness and the impacts of scan angle on the performance
of the active fire detection algorithm. Although including
diurnal variability in emissions across Asia did not signifi-
cantly affect CO levels measured in remote aircraft transects
over the Pacific, the impacts on surface COwere considerable
near and within source regions. For the North American
continent, Wiedinmyer et al. [2006] developed a daily 1 km
fire emissions time series for 2002–2004 by combining active
fire observations from MODIS with high spatial resolution
information on vegetation cover (and thus fuel loads and
emission factors) from the Global Land Cover (GLC2000)
project [Latifovic et al., 2004]. In northern boreal regions,
both Hyer et al. [2007] and Chen et al. [2009] provide evi-
dence that atmospheric simulations of CO are improved when
monthly mean emissions time series are replaced by synoptic‐
scale (weekly) emissions.
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[7] Over the past decade, the Fire Locating and Modeling
of Burning Emissions (FLAMBE) modeling system also has
been used operationally to forecast visibility and air quality
at regional to global scales [Reid et al., 2009]. This system
integrates active fire products from Geostationary Opera-
tional Environmental Satellite (GOES) and polar orbiting
(Terra and Aqua) sources with biome‐specific fuel loads and
emission factors to estimate emissions with an hourly time
step. Using FLAMBE emissions with a meso‐scale atmo-
spheric model,Wang et al. [2006] show that biomass burning
plumes from Central America are sometimes transported
several hundreds of kilometers north by southerly winds, and
model representation of these plumes is sensitive to diurnal
variation in the smoke source. These plumes have significant
effects on air quality and particulate matter concentrations
across the south central and southeastern U.S. [Wang et al.,
2006] and may intensify severe weather events in the conti-
nental interior [Wang et al., 2009].
[8] Diurnal variability in fire activity has been investigated

in several remote sensing studies [e.g., Langaas, 1992; Prins
and Menzel, 1992; Eva and Lambin, 1998; Prins et al., 1998,
2001; Giglio, 2007; Zhang and Kondragunta, 2008; Roberts
et al., 2009]. These studies offer a perspective on fire vari-
ability that is broadly consistent with field observations and
modeling of fire behavior on diurnal and synoptic timescales
[Show, 1919; Beall, 1934; Rothermel and Philpot, 1973;
Beck and Trevitt, 1989; Linn et al., 2002; McRae et al.,
2005]. A quantitative understanding of diurnal cycle of fire
dynamics is required for comparing estimates of fire radiative
power from satellites with different overpass times and sensor
characteristics [e.g., Xu et al., 2010; Roberts et al., 2011] and
for modeling plume injection processes [Freitas et al., 2007],
in addition to the transport, chemistry and mixing processes
described above. Several generalizations emerge from these
studies of satellite observations of active fires. First, for most
vegetation types, peak fire activity typically occurs during
early and mid afternoon (between 1200 and 1600 LT) with
fire activity at night often lower by an order of magnitude or
more. The drop at night is consistent with lower sensible heat
fluxes and wind speeds and higher levels of atmospheric
humidity that limit rates of fuel consumption and fire spread
rates [e.g., McRae et al., 2005]. Second, diurnal patterns of
fire activity vary with biome type, although the results are
not always consistent among different studies. For example,
croplands tend to have lower levels of burning at night com-
pared to other fire types when analyzed using AVHRR [Eva
and Lambin, 1998] and GOES [Zhang and Kondragunta,
2008] active fire products, but this pattern is not observed
in some mixed crop and savanna regions by the Tropical Rain
Measuring Mission (TRMM) Visible and InfraRed Scanner
(VIRS) [Giglio, 2007]. Satellite observations of fires have
not been used as widely to investigate relationships between
diurnal patterns of fire activity and other factors such as
spread rate, wind speed, humidity, and fire size. Increasing
availability of enhanced fire products from multiple geosta-
tionary satellites over the next several years should improve
our understanding of these biophysical controls as well as
other socio‐economic and cultural influences.
[9] Here we develop a global time series of fire emissions

at a 0.5° × 0.5° spatial resolution that includes diurnal and
synoptic‐scale variability by combining information from
MODIS and GOES WF_ABBA active fire products with a

monthly emissions inventory derived from MODIS 500 m
burned area [Giglio et al., 2010; van der Werf et al., 2010].
We then evaluated the impact of this variability on model
estimates of atmospheric CO using Total Carbon Column
Observing Network (TCCON) and Measurements of Pollu-
tion in the Troposphere (MOPITT) observations. In section 2
below (the methods) we describe key driver data sets, our
methodology for developing our high frequency time series,
and our modeling approach. In section 3 (the results) we
compare our results with available atmospheric observations.
In sections 4 and 5 (the discussion and conclusions), we
evaluate important sources of uncertainty and identify direc-
tions for future investigation.

2. Methods

[10] We first describe the data sets and approaches we
used to construct our daily and hourly emissions time series.
We then provide information about the atmospheric model
simulations used to evaluate howmonthly, daily, and 3‐hourly
emissions time series influence our ability to estimate vari-
ability in atmospheric CO.

2.1. Global Fire Emissions Database Version 3

[11] GFED3 provides monthly estimates of burned area
and carbon emissions for 1997–2009 at a 0.5° spatial res-
olution. Burned area for 2000–2009 was derived primarily
from 500 m maps of surface reflectance from the Moderate
Resolution Imaging Spectroradiometer (MODIS) on Terra
and Aqua satellites using the direct broadcast algorithm from
Giglio et al. [2009]. During times when surface reflectance
observations were unavailable, a combination of local regres-
sion and regression tree approaches were used to estimate
burned area from Terra MODIS active fire observations
[Giglio et al., 2010]. These same regression techniques were
used to relate TRMM VIRS [Giglio et al., 2003] and Along
Track ScanningRadiometer (ATSR) [Arino and Rosaz, 1999]
active fire observations to MODIS burned area, allowing for
the extension of the GFED3 time series prior to the MODIS
era (i.e., during 1997–2000). The monthly time step of
GFED3 burned area was determined primarily by the need to
temporally aggregate burned area and active fire observations
to develop reliable regressionmodels with TRMMandATSR
active fire products.
[12] Carbon emissions from GFED3 were obtained from a

biogeochemical model that is driven by the burned area time
series described above [van der Werf et al., 2010]. Satellite
observations provided important constraints on the spatial
distribution of net primary production and fuel loads. Leaf
senescence and allocation parameterizations were adjusted
to match aboveground biomass observations in savanna and
tropical forest ecosystems. Other significant improvements
to the biogeochemical model in GFED3 included the use of
newly available maps of peatlands in Indonesia to quantify
soil organic matter levels, the use of subgrid‐scale burned
area in different vegetation types to estimate emission factors,
and the calibration of a new fire‐driven deforestation module
using satellite observations of deforestation area. Uncer-
tainty estimates for GFED3 carbon emissions were obtained
using a Monte Carlo approach, with error distributions for
burned area obtained from Giglio et al. [2010] and subjective
error distributions assigned for fuel load and combustion
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completeness components of the model [van der Werf et al.,
2010].

2.2. MODIS and GOES Active Fires

[13] We used MODIS active fire observations to distribute
monthly emissions estimates from GFED3 to a daily tem-
poral resolution in 0.5° × 0.5° grid cells. For this, we used
collection 5 of the Global Monthly Fire Location Product
(MCD14ML) [Giglio et al., 2006] that includes separate
lists of active fires for Aqua and Terra. This product con-
tains the individual locations and times of active fires from
day and night MODIS overpasses at a 1 km spatial resolution.
TheMODIS resolution varies from 1 km at nadir to 2.0 km by
4.8 km at a scan angle of 55°. We screened and removed
persistent active fire locations associated with volcanoes, gas
flaring, and other non‐fire sources using a static hot spot
database [Giglio et al., 2006]. In our analysis, we included all
of the MODIS active fire detections – we did not screen the
observations using confidence intervals. In contrast to some
of the temporally and spatially aggregated MODIS active fire
count products, MCD14ML does not include any corrections
for variable cloud cover or gaps in satellite coverage. As
described below in section 2.3, we adjusted our approach to
take into account latitudinal changes in Aqua and Terra sat-
ellite coverage based on comparisons with the GOES active
fire time series in the Western Hemisphere.
[14] We used GOES WF_ABBA active fire data [Prins

et al., 1998; Reid et al., 2009] to construct climatological
mean diurnal cycles of fire activity. We specifically used
GOES‐11 (west) and GOES‐12 (east) observations during
2007–2009 with version 6.0 of the WF_ABBA algorithm.

This time period includes seasonal and interannual variations
in burning due to climatic and socio‐economic forcing
mechanisms.We used these observations to construct a single
mean diurnal cycle for each of several different vegetation
types within different continental‐scale regions as described
below. In future work, observations from an updated version
of the WF_ABBA (version 6.5) may allow for more detailed
characterizations of diurnal cycles during different periods
within the fire season or as a function of environmental
conditions.
[15] We only used the full hemispheric scans that occurred

every three hours from each satellite to build ourmean diurnal
cycles because these scans were less likely to be affected by
rescheduling issues associated with tracking hurricanes and
other weather phenomena. Our analysis does not account for
block‐out zones due to solar contamination near local noon
and cloud obscuration. For the 3‐hourly data set used in this
study, the solar contamination block‐out zone primarily
impacts local noon observation of fires in Florida, several
gulf coast states, and the Yucatan Peninsula in the late spring
and early summer. It also inhibits fire detection near local
noon in northeastern Brazil in the spring and fall. We chose
these two satellites and time period because of the higher
saturation temperatures of the 3.9 mm channel on these
radiometers compared to earlier GOES‐10 and GOES‐9
instruments. We only used fire pixels for which the retrieval
algorithm had higher levels of certainty (classes 0–3), where
0 represented the highest quality in which sub‐pixel estimates
of instantaneous fire size and temperature were retrieved
from the WF_ABBA, 1 represented saturated fire pixels,
2 represented cloud contaminated fire pixels, and 3 represented
high probability fire pixels. The spatial resolution of the
GOES observations varies, from approximately 4 km at nadir
to ∼8 km at 60° latitude [Reid et al., 2009].

2.3. Approach for Estimating Daily Fire Emissions
Fractions

[16] Within each 0.5° grid cell for which GFED3 monthly
emissions were available, we estimated the daily fraction of
emissions using the sum of Terra and Aqua active fires.
Prior to combining the Terra and Aqua time series, the Terra
fire counts were multiplied by a regionally specific factor
that was computed as the ratio of mean annual daily Aqua
active fires to mean annual daily Terra active fires (auxiliary
material Table S1).1 This adjustment represented an attempt
to normalize for regional differences in the diurnal cycle of
fire activity as sampled by Terra (10:30 am/10:30 pm LT)
as compared to Aqua (1:30 pm/1:30 am LT). For most
regions, these factors were greater than 1 which meant that
by applying the adjustment factor Terra active fires were
amplified – giving this time series proportionally greater
weight because of the lower probability of observing fires in
mid‐morning as compared to early afternoon [e.g., Giglio,
2007]. Agreement between this adjusted sum and GOES
WF_ABBA active fires was relatively high in boreal forests
across Alaska and Canada, in western forests in the U.S., and
in dry tropical forests in southern Mexico (Figure 1). Corre-
lations were also high in South America across Bolivia and
in the Brazilian states of Rondonia, Mato Grosso, and

Figure 1. Correlation of daily active fire counts fromGOES
WF_ABBA and the sum of Aqua and Terra sensors during
2007–2009. Active fires from Terra were first adjusted using
the regional factors shown in auxiliary material Table S1 to
account for differences in satellite overpass times (relative to
Aqua) that have consequences for sampling the diurnal cycle
of fire activity. We only included in the analysis grid cells
and years that had at least 10 GOES WF_ABBA active fire
observations and 10 Aqua or Terra observations each year.
The GOES program spatial domain encompasses North,
Central, and South America: the GOES 11 (West) and 12
(East) satellites were positioned during this time period over
the equator at 135°W and 75°W.

1Auxiliary materials are available in the HTML. doi:10.1029/
2011JD016245.
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Tocantins. The relationship between MODIS and GOES was
weaker in the easternmost states of Brazil and across the
southeastern U.S., possibly as a result of smaller and more
sporadic agricultural or forest management fires that have
lower detection probabilities for both sensors. Furthermore
portions of these regions are impacted by the GOES
WF_ABBA solar contamination block‐out zones in spring
and fall.
[17] As a consequence of satellite orbital geometry, cov-

erage by Aqua and Terra increased toward the poles, reducing
the size of spatial gaps between successive overpasses. In
the tropics, these gaps created an artificial spikiness in the
distribution of active fires that had the potential to bias

estimates of daily emissions [e.g., Al‐Saadi et al., 2008]
(auxiliary material Figure S1). By smoothing the MODIS
active fire time series in each 0.5° grid cell using 3‐day and
5‐day center mean filters, correlation between the MODIS
time series and GOES WF_ABBA active fires increased in
the tropics, particularly between 15°N and 15°S (Figure 2).
In contrast, in mid and high latitudes where there were
fewer gaps in coverage by MODIS (and there was less
evidence for spikiness as shown in auxiliary material
Figure S2), smoothing degraded the correlation with GOES.
[18] To account for the latitudinal differences in MODIS

coverage, we generated our daily fraction of emissions using
a 3‐day center mean smoothing filter equator‐ward of 25°N
and 25°S and no smoothing filter pole‐ward of these lati-
tudes. This approach is similar to past work aggregating
Aqua and Terra active fires in two day intervals in equatorial
regions to avoid satellite overpass gaps for near real time
biomass burning emissions estimates [Al‐Saadi et al., 2008;
Pierce et al., 2009]. Thus our daily emissions fractions
represented a true 1‐day time step in the extra‐tropics, and
∼3 day time step in the tropics and subtropics. We opted to
accept this lower resolution for the tropics and subtropics of
the Western Hemisphere where hourly GOES observations
were available to allow for a consistent treatment across the
tropics as a whole byMODIS. As the availability of active fire
observations from other geostationary satellites increases in
the future [e.g., Reid et al., 2009], we expect refinements to
this approach and significant reductions in uncertainties
associated with daily emissions estimates in tropical Africa
and Asia.
[19] Following the approach described above, we gener-

ated a time series of daily fire fractions for each month in the
GFED3 time series during 2003–2009, each with a variable
number of days corresponding to the length of each month
(and taking into account leap years).

2.4. Approach for Estimating 3‐Hourly Fire Emissions
Fractions

[20] We constructed climatological mean diurnal cycles of
fire activity from GOES WF_ABBA active fire detections,
as a function of vegetation type and region using all avail-
able GOES satellite observations from full hemisphere scans
during 2007–2009. We then created a diurnal cycle of eight
3‐hourly fractions of emissions for each 0.5° grid cell and
month, using sub‐grid scale information on burned area in
different vegetation types from Giglio et al. [2010] to weight
the contribution of different diurnal cycles to the grid cell
mean during each month. Thus the shape of the diurnal
cycle in a given grid cell varied from one month to the next,
depending on the distribution of burned area in different
vegetation types.
[21] To construct mean diurnal cycles of fire activity from

measurements spanning multiple time zones, we used the
following method. GOES WF_ABBA active fire detections
had a Greenwich Mean Time (GMT/UTC) time stamp
associated with them. We converted these UTC time stamps
to local solar time (LST) at each grid cell by using the
following equation: LST = UTC + longitude/15.
[22] Mean diurnal cycles of GOES WF‐ABBA active

fires for different regions and vegetation types in the
Western Hemisphere, normalized to the same daily sum, are
shown in Figure 3. The corresponding absolute levels of

Figure 2. (a) Zonal sums of GFED3 fire emissions for
5° latitude bands (Tg C/yr) and annual mean active fire counts
from GOES and the sum of Aqua and Terra MODIS during
2007–2009 in the Western Hemisphere. (b) The mean corre-
lation coefficients between daily GOES WF_ABBA active
fires and the sum of Aqua and Terra active fires (with overpass
adjustments to Terra) for three different levels of smoothing:
no smoothing, a 3‐day centered mean smoothing filter, and
a 5‐day centeredmean smoothing filter. Themean correlation
coefficients shown here are the mean of all the individual grid
cell correlation coefficients within each latitude band. In both
panels, active fires from Terra were first adjusted using the
regional factors shown in auxiliary material Table S1 to
normalize for differences in satellite overpass times (relative
to Aqua).
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active fires observed for each region and vegetation type are
shown in auxiliary material Figure S3. These mean diurnal
cycles were constructed only from 0.05° areas within each
region that had greater than 80% coverage of one of the three
aggregated vegetation types: forests, shrublands and savannas,
or croplands and grasslands. We used the Terra MODIS col-
lection 4 MOD12C1 land cover product [Friedl et al., 2002]
to identify these areas, and derived our aggregated vegetation
types from the International Geosphere Biosphere Program
(IGBP) classification within this product. Specifically, we
included the IGBP classes of evergreen needleleaf forest,

evergreen broadleaf forest, deciduous needleleaf forest,
deciduous broadleaf forest, and mixed forest in our aggre-
gated forest class, closed and open shrubland, woody
savannas, and savannas in our aggregated shrubland and
savanna class, and grasslands, croplands, cropland/natural
vegetation mosaic, and barren or sparsely vegetated areas in
our grassland and cropland class. Our logic was to broadly
separate vegetation types into three classes as a function of
high, medium and low fuel densities. The distribution of
burned area in these three aggregated vegetation types is
summarized in auxiliary material Figures S4 and S5 and

Figure 3. Diurnal cycles of fires constructed using GOES WF_ABBA active fire counts from 2007 to
2009. The different diurnal cycles were constructed only using grid cells at a 0.05° × 0.05° resolution each
within region that had 80% or more coverage by each vegetation type. The fire counts have been normal-
ized so that the sum for each individual vegetation type equaled 1 over a 24‐h period. Each individual
time step is 3 h. All valid observations during 2007–2009 were averaged together to construct the annual
mean diurnal cycle shown here for each vegetation type. Error bars were calculated as the standard devi-
ation of normalized annual mean fractions for each year.
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Table 1 for different continental‐scale regions shown in
auxiliary material Figure S6.
[23] To develop our global product, we applied the nor-

malized diurnal fractions for the 3 different vegetation classes
from GOES (Figure 3) to regions with roughly similar bio-
geography. For example, we used normalized diurnal frac-
tions from boreal North America in boreal Asia. The complete
mapping is provided in Table 2. This mapping approach may
be further refined when geostationary active fire observations
from other platforms become publicly available for ecosys-
tems in Africa and Asia [e.g., Reid et al., 2009].

2.5. Atmospheric Model Simulations

[24] To simulate atmospheric CO we used the GEOS‐Chem
global three‐dimensional model of tropospheric chemistry
[Bey et al., 2001] which was driven by assimilated meteoro-
logical observations from the Goddard Earth Observation
System (GEOS) of the NASA Global Modeling and Assim-
ilation Office (GMAO). We used version 8‐01‐02 of the
model (http://acmg.seas.harvard.edu/geos/) driven by GEOS‐5
reanalysis [Rienecker et al., 2008] that had 72 vertical layers

and was averaged to a 2° × 2.5° horizontal resolution. The
new GEOS‐5 reanalysis used a modified relaxed Arakawa‐
Schubert convection scheme [Ott et al., 2009] that led to
improvements in the distribution of precipitation and atmo-
spheric circulation across the tropics as compared to GEOS‐4.
[25] Our model simulations spanned the 2004 to 2009

period, after a spin up period of one year. For the spin‐up,
we used 2004 meteorology (the first available year of the
GEOS‐5 reanalysis that was modified to drive GEOS‐Chem)
and monthly, daily or 3‐hourly fire emissions from 2003. In
these simulations, we carried three separate tracers for
monthly GFED3 CO emissions and the daily and 3‐hourly
emissions time series we developed here (the latter two
tracers are described above in sections 2.3 and 2.4). We
chose to inject fire emissions into the surface layer of the
atmospheric model because several recent remote sensing
studies indicate that most fire plumes remain within the
planetary boundary layer [Val Martin et al., 2010; Tosca
et al., 2011]. We saved 3‐hourly distributions of CO mixing
ratio from the model for all three tracer simulations, and
sampled the three‐dimensional distribution of CO mixing
ratio at the time and location of the MOPITT satellite mea-
surements and TCCON stations as described below.
[26] In addition to the fire emissions tracers described

above, we also included CO emissions from anthropogenic,
biofuel and biogenic emissions in the GEOS‐Chem model
simulations (auxiliary material Table S2). The sources of
fossil fuel emissions were from Streets et al. [2006]. Biofuel
emissions were from the inventory of Yevich and Logan
[2003]. Isoprene and monoterpene CO sources were pre-
scribed using a multiyear annual cycle mean (2004–2009)
generated from the Model of Emissions of Gases and
Aerosols from Nature driven by GEOS‐5 meteorology
(MEGAN) [Guenther et al., 2006]. Methanol emissions were
scaled based on results from MEGAN and acetone emis-
sions were prescribed following Jacob et al. [2002]. All CO
simulations used the same monthly 3‐D OH concentration
fields archived from a GEOS‐Chem full‐chemistry simula-
tion [Fiore et al., 2003].

2.6. Atmospheric Observations

[27] We compared our GEOS‐Chem model simulations
with TCCON CO observations from six sites: Park Falls,
Lamont, JPL, Darwin, Wollongong, and Lauder. We selected
these six sites based on the length of the available time series
(longer than one year during the period of 2004–2009) and
the requirement that fire‐emitted CO visibly contribute to
some of the observed variability of column CO at the dif-
ferent stations based on our monthly mean simulations with
GEOS‐Chem. This effectively excluded stations near urban

Table 1. Fraction of Burned Area in Different Aggregated
Vegetation Classes During 2003–2009

Regiona Forests
Shrublands

and Savannas
Croplands

and Grasslands

BONAb 0.558 0.400 0.042
TENA 0.239 0.311 0.450
CEAM 0.327 0.360 0.312
NHSA 0.109 0.618 0.272
SHSA 0.199 0.643 0.158
EURO 0.177 0.323 0.500
MIDE 0.016 0.273 0.710
NHAF 0.053 0.800 0.147
SHAF 0.075 0.875 0.049
BOAS 0.295 0.394 0.311
CEAS 0.029 0.062 0.909
SEAS 0.225 0.356 0.419
EQAS 0.783 0.145 0.072
AUST 0.027 0.897 0.076

aAbbreviations for the different regions are as follows: BONA, boreal
North America; TENA, temperate North America; CEAM, Mexico and
Central America; NHSA, northern hemisphere South America; SHSA,
southern hemisphere South America; EURO, Europe; MIDE, the Middle
East; NHAF, northern hemisphere Africa; SHAF, southern hemisphere
Africa; BOAS, boreal Asia; CEAS, central Asia; SEAS, Southeast Asia;
EQAS, equatorial Asia; AUST, Australia and Oceania. A spatial map of
the distribution of these regions is given in auxiliary material Figure S6.

bThe MODIS land cover product classified open taiga forests in boreal
North America and boreal Asia as open shrubland, and in some
instances, savanna. These ecosystems are very different from subtropical
savanna and shrublands, with one notable difference being the presence
of large stores of carbon in organic soils that are vulnerable to combustion.

Table 2. Mapping of Regions in the Western Hemisphere to Other Parts of the World for the Purpose of Constructing Diurnal Cycles of
Fire Emissions

Western Hemisphere (GOES Observations Available)
Rest of World (Diurnal Cycles Constructed From GOES Observations

in Corresponding Western Hemisphere Regions)

Boreal North America (BONA) Boreal Asia (BOAS)
Temperate North America (TENA) Europe (EURO) and Central Asia (CEAS)
Central America and Mexico (CEAM) Middle East (MIDE)
Northern Hemisphere South America (NHSA) Northern Hemisphere Africa (NHAF)
Southern Hemisphere South America (SHSA) Southeast Asia (SEAS), Equatorial Asia (EQAS), Southern Hemisphere

Africa (SHAF), and Australia and Oceania (AUST)
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areas with the exception of JPL. We used the beta version of
the public TCCON data archive (http://tccon.ipac.caltech.
edu/). TCCON is a global network of ground‐based and sun‐
viewing Fourier Transform Infrared (FTIR) spectrometers
designed to measure column abundances of CO, CO2, CH4,
N2O and other molecules that absorb in the near infrared
[Wunch et al., 2011]. Within the network, stringent require-
ments on the instrumentation, data processing and calibration
have improved the accuracy and precision of the mea-
surements [Wunch et al., 2011]. Past work with TCCON
observations has led to an identification of biases in vertical
mixing in atmospheric models [Yang et al., 2007], improved
estimates of CH4 emissions from the city of Los Angeles
[Wunch et al., 2009], reduced uncertainties associated with
emission factors from savanna fires [Paton‐Walsh et al., 2010]
and new diagnostics of the magnitude of seasonal carbon
exchange in temperate and boreal ecosystems [Keppel‐Aleks
et al., 2010]. TCCON retrievals of CO have been calibrated
against in situ aircraft profiles at three sites: Lamont, Lauder,
and Park Falls, and the calibration coefficient determined
from these three sites is applied to all TCCON CO data
[Wunch et al., 2010]. Based on these comparisons, the esti-
mated TCCON CO column dry air molar fractions have an
accuracy of ±4 ppbv. Averaging kernels for CO peak in the
upper troposphere/lower stratosphere such that the sensitivity
to CO at 100 hPa is more than double that at the surface

[Wunch et al., 2010]. Diurnal and synoptic variability in
TCCON CO total column measurements due to fires in the
vicinity of a given site therefore may be damped because
associated variations in CO are expected to occur primarily at
the surface and in the lower troposphere.
[28] TCCON spectrometers require a direct view of the

sun to measure atmospheric absorption. Under clear‐sky
conditions, an interferogram is typically recorded in less than
2 min. The exact time depends on how quickly the scanning
mirror is moving and the spectral resolution of the spec-
trometer. When clouds are present, interferograms unaffected
by cloud will be recorded less frequently, and integrating
times can exceed 10 min. To compare the model with the
observations, we first averaged all the column CO observa-
tions together within each 3‐h interval of model output. We
also computed the mean solar zenith angle (SZA) of the
observations within each interval, and used this mean SZA
with a look up table of averaging kernels (e.g., auxiliary
material Figure S7) to estimate the column CO from
GEOS‐Chem.
[29] We also compared our simulations with the MOPITT

version 4 daily level 3 CO product [Deeter et al., 2003;
Emmons et al., 2004]. Improvements in the MOPITT
version 4 product included a finer vertical resolution, a
floating surface level, a lognormal distribution for CO vol-
ume mixing ratio (VMR) variability, and CO a priori that

Figure 4. (a) Monthly GFED3 emissions averaged over a single 0.5 grid cell in northern South America
(11.75°S, 51.75°W) during 2007. This grid cell was located in the northeastern corner of the Brazilian
state of Mato Grosso. (b) Daily emissions and (c) 3‐hourly emissions for the same grid cell derived using
the approach described in the text. Note the different vertical scales.
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varied spatially and temporally [Deeter, 2009]. To compare
with our model simulations, we only used daytime MOPITT
observations, sampling the model during the 10:30 am
MOPITT overpass time. We only included level 3 observa-
tions in our analysis for which the degree of freedom was
greater than 0.98. We used MOPITT averaging kernels and a
priori to construct the model CO column following the in-
structions for MOPITT version 4 data set [Deeter, 2009]. To
compare MOPITT with the TCCON column CO we first
smoothed the MOPITT retrievals using the TCCON aver-
aging kernel following the approach described by Luo et al.
[2007] and Rodgers and Connor [2003]. We did not com-
pare our model simulations with surface CO observations
because long‐term time series of daily measurements were
not available for many sites.

3. Results

3.1. Daily and 3‐Hourly Fire Emissions for Individual
Grid Cells

[30] Figures 4 and 5 show examples of the original monthly
GFED3 emissions, these monthly emissions distributed to a
daily time step derived from the sum of Aqua and Terra active
fires (section 2.3), and 3‐hourly emissions derived by adding
diurnal information from GOES active fires (section 2.4) for
0.5° grid cells from South America and Alaska. For South
America we show a representative grid cell from the north-
eastern corner of the Brazilian state of Mato Grosso during
2007, an area that has undergone extensive deforestation

over the last decade (Figure 4). In this region, fires are often
used to clear forests for mechanized agriculture and pasture
[Morton et al., 2008]. They also are used, to a lesser degree,
to maintain forage quality in existing pastures, although most
of the emissions are associated with forest clearing [van der
Werf et al., 2009]. For this cell, much of the burning occurred
during a single two‐week period in late August and early
September.
[31] For Alaska we show a grid cell that was partly burned

during the summer of 2009 as a part of the Minto Flats
South fire (Figure 5). Measurements from within fire peri-
meters that burned during 2004 in Alaska yielded a mean
fire combustion rate of 3300 g C per m2 of burned area with
a range of 1500–4600 g C per m2 of burned area [Boby
et al., 2010]. Mean fuel consumption levels from GFED3
for this 2009 fire were somewhat higher but within the
reported range: 3607 g C per m2 of burned area for the grid
cell shown in the figure. The active fire observations indi-
cated that almost all of the burning in this grid cell occurred
during July and the first week of August, with the most
intense period of burning occurring during the first week of
July. For both grid cells, the distribution of burning within the
growing season was modified considerably by using active
fires to distribute fire emissions on a daily basis.

3.2. Global Patterns of Daily Fires

[32] Global patterns of daily fires have the potential to
provide new information about fire type and ecosystems
processes. Keymetrics of daily fire activity varied considerably

Figure 5. Same as Figure 4 but for a 0.5° grid cell in interior Alaska (64.75°N, 149.75°W) during 2009.
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among different biomes (Figure 6). The mean number of
fire days each year, for example, ranged between 5 and 20
in many boreal ecosystems to over 100 in many savanna
regions of South America and Africa (Figure 6a). The number
of fire events each year, defined as the number of contin-
uous periods of fire activity, also was higher in savannas
(4–25 events) compared to boreal forests (2–6 events) but the
relative difference between these two biomes was smaller
than for the number of fire days (Figure 6b). As a result, the
number of fire days per event was considerably higher in
savannas compared to boreal forests (Figure 6c).

[33] It is important to note that these patterns are scale
dependent (and were generated here at the 0.5° spatial res-
olution of GFED3). They also were influenced by the 3‐day
center mean smoothing we applied to active fires in tropical
regions. Nevertheless, the relative spatial distributions sug-
gested several interesting features of global fire behavior.
The small number of days per fire event in boreal regions,
for example, provided evidence that these fires were short‐
lived but intense given the relatively high levels of fuel
consumption typical for this biome (Table 3). In contrast, the
large number of fire days and large number of days per fire
event in savanna regions indicated a more continuous pattern
of burning over the fire season. Additional information on fire
sizes derived from 500 m burned area data would be required
to assess whether this pattern in savannas was driven by
multiple independent small fires (of short duration) or a
smaller number of large fires that moved slowly across the
landscape.
[34] Agricultural fires also had a unique signature as

quantified using these metrics. Across the Southeastern U.S.,
central Asia, and southern China, fires in these regions were
characterized by a high number of individual fire events
each year (Figure 6b) and a very low duration for each
event (1–2 days) (Figure 6c).
[35] Daily rates of fire emissions, derived from mean

annual emissions from van derWerf et al. [2010] and from the
number of fire days per year described above, were consid-
erably higher in boreal forest biomes of North America and
Siberia than in other regions (Figure 7). The daily rate of fire
emissions per unit of burned area, a metric which is related
to both fuel consumption and rates of fire spread, was more
than 70 times higher in boreal forests ecosystem of North
America than in African savannas (Table 3).

3.3. Hemispheric Patterns of 3‐Hourly Fires

[36] Most fire activity occurred in the middle of the day and
this was especially the case for Central and South America
where 35%–56% of all fires in different biome types occurred
during the 3‐h interval between 12:00–15:00 LT. In contrast,
the least amount of fire activity in all regions and biome types
occurred after midnight, between 0:00–09:00 LT, with the
sum during this 9 h interval never exceeding 13% of the
24‐h total (Figure 3). In tropical biomes, these diurnal pat-
terns are in general agreement with results from earlier sat-
ellite remote sensing studies [e.g., Langaas, 1992; Prins
et al., 2001; Giglio, 2007; Roberts et al., 2009].
[37] The smallest diurnal amplitudes of fire activity

occurred in forest and shrub biomes of boreal and temperate
North America. Fires in these biomes had considerably higher
levels of burning in late afternoon and evening relative to fires
in other regions and ecosystems (Figure 3). This shift in the
diurnal cycle is consistent with longer duration fires and thus
stronger controls on fire spread rates from synoptic‐scale
meteorological events that persist for multiple days [e.g.,
French et al., 2011] and with fire behavior studies in North
American forests that indicate optimal weather conditions for
fire spread peak in mid afternoon between 2 and 4 P.M. LT
[Beall, 1934; Beck and Trevitt, 1989]. For temperate North
America, the reduced diurnal amplitude and higher levels of
fire activity during evening observed for forest fires relative
to cropland fires is consistent with earlier analyses of GOES
observations using a different land cover classification

Figure 6. Global annual mean distribution of (a) the number
of fire days per year, (b) the number of fire events per year,
and (c) the number of fire days per fire event. These maps
were generated using the daily fire fraction time series
described in the main text (section 2.4) during 2003–2009.
Figure 6cwas constructed by dividing Figure 6a by Figure 6b.
A fire event was defined as a single continuous period for
which the daily fire fraction time series was nonzero. This
meant that at least one Aqua or Terra active fire observation
existed for that day in the extra‐tropics (north of 25°N and
south of 25°S), and the same for the tropics, but with a 3‐day
center‐mean smoothing applied to compensate for gaps in
satellite coverage. In the construction of Figures 6a and 6b, if
a grid cell did not have any fires in a given year, this year was
excluded from the multiyear mean shown in the panel.
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[Zhang and Kondragunta, 2008]. Forest and shrubland
biomes in boreal North America had similar diurnal patterns
of fire activity. This was consistent with the MODIS‐derived
land cover classification we used that assigned areas with
lower levels of evergreen tree cover (e.g., taiga) to shrub and
savanna classes.
[38] In Central and South America, small differences in

phase were visible between the timing of forest fires relative
to shrubland/savanna and cropland/grassland fires (Figure 3).
Fires in the latter two biome classes started increasing earlier
in the morning and often tapered off at earlier times in the
afternoon. One possible mechanism explaining this pattern is
that crop, grass and shrub fuels dry out faster than forest fuels,

enabling land managers to start the ignition process earlier in
the day [Giglio, 2007]. This explanation is consistent with
observations that show intact tropical forest canopies have
higher levels of surface humidity that are known to inhibit fire
activity [Nepstad et al., 2004]. Higher levels of fuels in forests
also may enable longer periods of burning that persist into
late afternoon and evening. It is important to note in the
context of interpreting these results that other remote sensing
studies of tropical fire show diverging diurnal patterns as a
function of vegetation type. For example, in an analysis of
Tropical Rainfall Measuring Mission observations, Giglio
[2007] found that fires in tropical forests peaked earlier in
the day than fires occurring in ecosystems with lower levels

Figure 7. (a) Mean annual burned area (kha/yr), (b) mean burned area per fire day (kha/day), (c) mean
annual fire emissions (gC/m2/yr) and (d) mean annual emissions per day of burning (g C/m2/day). All
panels show mean patterns during 2003–2009. If a grid cell did not have any fires in a given year, this
year was excluded from the multiyear mean shown in the panel.

Table 3. Summaries for Mean Annual Burned Area (Mha/yr), Mean Annual Fire Emissions (Tg C/yr), Fuel Consumption (g C per m2 of
Burned Area), Number of Fire Days per Year, Daily Rate of Burned Area (% of Annual Burned Area/Day), and Daily Rate of Fuel
Consumption (g C/m2 of Burned Area/Day) Averaged During 2003–2009

Region

Mean Annual
Burned Area
(Mha/yr)

Mean Annual
Emissions
(Tg C/yr)

Fuel Consumption
(g C per m2 of Burned Area)

Number of
Fire Daysa

(d/yr)

% of Annual
Burned Area
per Day

Daily Rates of Fuel Consumption
(g C per m2 of Burned Area per Day)

BONA 2.3 64 2764 7.2 13.9 383
TENA 1.6 10 621 10.5 9.5 59
CEAM 1.3 18 1442 54.5 1.8 26
NHSA 2.3 22 966 75.8 1.3 13
SHSA 17.7 299 1692 51.6 1.9 33
EURO 0.6 4 660 9.4 10.6 70
MIDE 0.9 2 206 12.6 7.9 16
NHAF 120.0 447 372 86.1 1.2 4
SHAF 126.8 570 449 95.1 1.1 5
BOAS 6.2 110 1762 10.2 9.8 173
CEAS 13.6 34 249 15.9 6.3 16
SEAS 7.6 106 1383 43.7 2.3 32
EQAS 1.1 116 10677 42.5 2.4 251
AUST 39.8 121 305 28.4 3.5 11
Global sum or mean: 341.7 1922 1682 38.8 5.3 78

aThe mean number of fire days refers to the number of separate days that had active fire observations in 0.5° grid cells that had some burned area during
the calendar year. Only grid cells within each year for which burned area was detected were used to construct the biome‐level mean for each year.
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of tree cover. Roberts et al. [2009], using Spinning Enhanced
Visible and Infrared Imager (SEVIRI) data for Africa, docu-
mented considerable differences in diurnal cycles for different
vegetation types, but with distributions not fully consistent
with themechanisms and observations described above. Future
intercomparison efforts to reconcile the differences between
these studies may require use of high resolution maps of
land cover and multiple fire detection algorithms (e.g., both
SEVIRI and GOES_WF_ABBA algorithms) driven by the
same set thermal imagery.

[39] The diurnal patterns described above for boreal,
temperate and tropical ecosystems appeared to be robust
when we performed sensitivity studies examining how the
diurnal cycles changed as a function of the quality (and
number) of active fire detections included in the analysis
(auxiliary material Figure S8). Including GOES WF_ABBA
quality classes 0–5 increased the number of active fire
observations (and also the number of false detections) and
led to diurnal cycles that were broadly similar to the higher
quality observations used to develop our diurnal emissions

Figure 8. CO column observations and model estimates of the fire contribution to each column observa-
tion at: (a) Park Falls, (b) Lamont, (c) JPL, (d) Darwin, (e) Wollongong and (f) Lauder. Black dots show the
3‐hourly TCCON observations. Red dots show the MOPITT 4 daily level 3 satellite observations. The
model simulations of fire‐derived CO are from GEOS‐Chem with monthly emissions (blue line) and daily
emissions (dark green line). Modeled column total CO including non‐fire sources and with daily fire emis-
sions (light green line) are also shown in the figure. Simulations with 3‐hourly emissions were very similar
to those with daily emissions and thus are not shown. To obtain the model estimates, we first converted the
model CO profile to column CO using the appropriate (solar zenith angle‐dependent) TCCON averaging
kernel for each time point. TheMOPITT 4 observations shown here also were transformed to the same scale
using the TCCON averaging kernels following the approach described by Luo et al. [2007].
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climatology. Separate analysis of early, mid and late fire
season periods indicated that differences in the diurnal cycles
among different vegetation classes were mostly similar dur-
ing these different periods, although agricultural fires in
Central America appeared to shift from peaking later to earlier
in the diurnal cycle with progression of the fire season
(auxiliary material Figure S9).

3.4. Impacts of Temporal Resolution of Emissions
on Atmospheric CO Simulations

[40] At TCCON stations, model simulations indicated that
fires contributed to some of the observed variability in CO
on synoptic to interannual timescales (Figure 8). At Darwin,
for example, fire‐derived CO was a dominant contributor to
the annual cycle, with mixing ratios peaking during the
moderate 2006 El Niño. At Park Falls, in contrast, fire con-
tributions were smaller and occurred primarily during mid‐
summer. Increasing the temporal resolution of fire emissions
modestly improved the agreement between the model and the
observations at Darwin and Park Falls, particularly when we
replaced monthly with daily emissions and analyzed con-
tributions to variability during the peak fire season (Table 4).
At Darwin, using daily emissions instead of monthly emis-
sions increased the correlation between the model and the
observations from 0.48 to 0.53. During the fire season, the
improvements were larger, with the correlation increasing
from 0.71 to 0.80 (Figure 9). At other TCCON stations, use of
daily emissions instead of monthly emissions had relatively
small or virtually no impact on model performance. Further,
use of 3‐hourly emissions did not significantly improve
model performance beyond that obtained from the daily
emissions time series at all of these sites.
[41] We conducted a similar analysis using daily level‐3

MOPITT4 observations over a set of broad geographic
regions. Small improvements in model performance occurred
using daily instead of monthly emissions in many regions,
including boreal North America, temperate North America,
southern hemisphere South America, boreal Asia, Southeast
Asia, equatorial Asia, and Australia (Table 5). Higher tem-
poral frequency emissions had almost no effect on model
performance in several other regions, including Central
America, northern hemisphere South America, and the
Middle East. As with the TCCON sites, improvements
gained from the use of higher frequency emissions were
larger on sub‐seasonal timescales (and during peak fire
season). The largest improvements in model performance
derived from using daily fire emissions estimates occurred
over source regions or in nearby outflow regions (Figure 10).
Daily emissions increased the correlation between model

Figure 9. Model versus observed column CO for the
Darwin, Australia TCCON site sampled during 3month inter-
vals during peak fire season each year. (a) Monthly fire emis-
sions model estimates, (b) daily fire emissions model
estimates, and (c) 3‐hourly fire emissions model estimates.
Units are column dry air mole fractions of CO × 109 (ppb).

Table 4. Correlation Coefficients Between TCCON CO Column Observations and GEOS‐Chem Simulations With Monthly, Daily and
3‐Hourly Fire Emissions (Mean Annual Cycle Not Removed)

TCCON Station Latitude and Longitude

Full Time Series Peak Fire Season (3 Months)

Monthly Daily 3‐Hourly Monthly Daily 3‐Hourly

Park Falls, WI 45.945°N 90.273°W 0.26 0.29 0.29 0.13 0.25 0.24
Lamont, OK 36.604°N 97.486°W 0.13 0.14 0.13 0.42 0.47 0.44
JPL, CA 34.200°N 118.180°W 0.27 0.29 0.33 0.54 0.56 0.56
Darwin, AU 12.424°S 130.892°E 0.48 0.53 0.53 0.71 0.80 0.82
Wollongong, AU 34.406°S 150.879°E 0.59 0.60 0.60 0.53 0.56 0.56
Lauder, NZ 45.038°S 169.684°E 0.67 0.67 0.67 0.54 0.56 0.56
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and MOPITT4 observations considerably in boreal North
America and Asia, southern Africa, India, Myanmar, and
northern Australia. As expected, in areas far remote from
source regions like the mid‐Pacific, the impacts of using
higher frequency emissions were minimal. This was prob-
ably a consequence of substantial atmospheric mixing that

attenuated high frequency variability originating from con-
tinental source regions.

4. Discussion

[42] High temporal resolution estimates of fire emissions,
like the time series we developed here, may allow for more
effective attribution of the sources of trace gases and aerosols.
This is possible because in many regions fires are often
sporadic, creating unique spatial and temporal imprints on
atmospheric constituents that, in turn, provide a means for
quantifying levels of fire emissions and isolating these con-
tributions from other sources [e.g., Wang et al., 2006]. High
temporal resolution emissions estimates also are important
for carbon data assimilation systems that often integrate CO2

observations with other meteorological variables on hourly
time scales [Peters et al., 2007; Zupanski et al., 2007]. In
addition, daily emissions estimates are needed for air quality
studies in regions with high fuel loads near population cen-
ters, such as efforts to quantify the human health impacts of
peat fires during 2010 across Russia.

4.1. Directions for Future Work

[43] Continuous remote sensing observations of fire radi-
ative energy (FRE) provide an alternate means for esti-
mating emissions [Wooster et al., 2005; Roberts and Wooster,
2008] that may enable near real‐time aerosol and atmospheric
chemistry forecasts [Kaiser et al., 2011]. One important
direction for future research is to reconcile top‐down estimates

Figure 10. Improvements in model performance obtained from using daily and 3‐hourly emissions esti-
mates. The difference in model correlation with MOPITT4 daily level 3 observations is shown for model
simulations with (a) daily and monthly emissions and (b) 3‐hourly and daily emissions. Prior to estimating
the correlation between the model and MOPITT4, a monthly mean annual cycle of CO was removed from
both the observations and the model.

Table 5. Correlations Between MOPITT Column CO and GEOS‐
Chem Model Simulations With Monthly, Daily, and 3‐Hourly Fire
Emissions

Region

Full Time Seriesa Peak Fire Season (3 Months)

Monthly Daily 3‐Hourly Monthly Daily 3‐Hourly

BONA 0.44 0.50 0.50 0.32 0.41 0.42
TENA 0.45 0.47 0.47 0.19 0.23 0.23
CEAM 0.02 0.02 0.02 0.38 0.40 0.40
NHSA 0.18 0.18 0.18 0.26 0.25 0.25
SHSA 0.50 0.52 0.52 0.58 0.61 0.61
EURO 0.68 0.68 0.68 0.36 0.40 0.40
MIDE 0.32 0.32 0.32 −0.07 −0.06 −0.06
NHAF 0.29 0.30 0.30 0.32 0.33 0.33
SHAF 0.62 0.64 0.64 0.60 0.63 0.63
BOAS 0.56 0.59 0.59 0.60 0.65 0.65
CEAS 0.50 0.51 0.51 0.27 0.29 0.29
SEAS 0.44 0.46 0.45 0.43 0.46 0.46
EQAS 0.46 0.48 0.48 0.65 0.70 0.70
AUST 0.53 0.55 0.55 0.54 0.59 0.59

aCorrelations from 1° × 1° grid cells that had more than 50 valid daily
MOPITT 4 observations during 2004–2009 were averaged in each region
between 70°N and 50°S.
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of FRE derived from thermal imagery with bottom‐up esti-
mates of energy release from forward biogeochemical models
[e.g., Roberts et al., 2011]. Figure 7, where we estimated the
daily rate of carbon emissions, is a step in this direction. It
shows, for example, that boreal fires tend to have significantly
higher rates of emissions per day of burning than savanna
fires at a 0.5° spatial resolution. Since the energy content of
most fuels varies within a relatively narrow range, total
burned area and fuel consumption provide a strong constraint
on the total energy released by a fire. Active fires from polar
orbiting and geostationary sources, in turn, allow for the
partitioning of this energy through time, thus allowing for
more reasonable forward model estimates of energy release.
In this context, the north‐south gradients of daily rates of
carbon emissions reported here for North American forests
appear qualitatively consistent with fire plume heights mea-
sured by Val Martin et al. [2010]. Both plume heights and
daily emissions were at maximum levels in boreal forests in
Alaska and Canada, at intermediate levels in temperate forests
and shrublands across the U.S., and at minimum levels for
tropical forests in southern Mexico, Guatemala, and other
countries in northern Central America. Mechanistically, fires
that release high levels of carbon each day also would be
expected to generate the energy required to inject plumes to
higher altitudes within the free troposphere [Freitas et al.,
2007]. Deeper and drier atmospheric boundary layers in
boreal regions may create conditions that simultaneously
enable both higher rates of fuel consumption and higher
plumes. A more direct comparison of FRE from forward
modeling and satellite‐derived approaches will require sev-
eral additional steps however, including, for example, the
availability of emission data with the same spatial resolution
as the active fire data (∼1 km) and careful consideration of the
length and structure of the fire front.
[44] Future improvements in high temporal resolution time

series of fire emissions will likely come from several sources,
including use of additional satellite observations and con-
sideration of additional fire processes. Burned area estimates
derived from surface reflectance changes in many instances
can provide daily to‐weekly estimates of the perimeter of
the fire‐affected area [Tansey et al., 2008]. Combining this
information with the active fire time series described above
has the potential to reduce uncertainties [Roberts et al., 2011].
Importantly, with moderate resolution (e.g., ∼500 m) burned
area data, it may be possible to interpolate the movement of
the fire perimeter over a period of several days‐ thus filling
in gaps created by clouds or intervals between successive
satellite overpasses.
[45] In future work on diurnal patterns of fire emissions, it

may be possible to systematically relate the amplitude of the
diurnal cycle of satellite‐derived observations of active fires
to key environmental variables such as wind speed, humidity,
and fuel moisture [e.g., Smith and Wooster, 2005] – drawing
upon relationships that are well established in the fire
behavior literature. Here we assumed that the diurnal cycles
of total carbon, CO2, and CO emissions were the same as a
first approximation. An important future step for reducing
uncertainties in emissions will be to allow emission factors
for CO and other trace gases and aerosols to vary diurnally.
Smoldering combustion, which has greater relative produc-
tion of reduced gases and aerosols (i.e., lower combustion
efficiencies), contributes more to total nighttime emissions

than to daytime emissions [e.g., Ward et al., 1992; Cachier
et al., 1995; Hao et al., 1996; Ferguson et al., 2003;
Schkolnik et al., 2005; Fuzzi et al., 2007] because of higher
levels of atmospheric humidity and lower wind speeds
during night that tend to suppress flaming stages of com-
bustion [e.g., Beck and Trevitt, 1989; Linn et al., 2002;
McRae et al., 2005]. More field observations of CO2, CH4,
and CO over multiple diurnal and seasonal cycles are
needed in biomass burning field studies to develop realistic
emission factor parameterizations. Deployment of space‐
based laser spectrometers that measure multiple gases, fol-
lowing for example from NASA mission concepts such as
Active Sensing of Carbon Dioxide Emissions over Nights,
Days and Seasons (ASCENDS) [Abshire et al., 2010], also
have the potential to constrain this variability.

4.2. Sources of Uncertainty

[46] Using a global atmospheric model, here we observed
modest improvements in our simulations when we included
daily and 3‐hourly variability in emissions. There are prob-
ably at least four different reasons why the model improve-
ments were not larger. First, even if emissions were known
perfectly, other sources of error within the atmospheric
modeling framework would be expected to limit simulation
performance. For example, we did not use high temporal
resolution inventories for several other important sources of
CO, including fossil fuel emissions, because these time series
are not yet available at a global scale. Uncertainties in several
other sources, including biogenic emissions of volatile
organic compounds, also are considerable and our under-
standing of seasonal and interannual controls on these fluxes
remains limited. In addition, significant uncertainties exist
with respect to several aspects of atmospheric model trans-
port, including for example vertical mixing by convection in
the free troposphere, flow in regions with complex terrain,
atmospheric boundary layer dynamics, and fire injection
processes. The relatively coarse resolution of our atmospheric
model (2.5°) also probably damped temporal and spatial
variability in simulated atmospheric CO driven by our daily
and 3‐hourly emissions time series. With future higher spatial
resolution simulations (and comparisons with surface CO
observations near source regions), we hypothesize that
improvements from using the daily and 3‐hourly emissions
inventories will be more substantial.
[47] Second, at several of the TCCON sites, mostly

notably Lamont and Lauder, the contribution from local fire
sources was most likely relatively small. Long‐range atmo-
spheric transport (e.g., at Lauder, transport of CO from fires
in Australia, southern Africa, and South America) is likely to
act as a low‐pass smoothing filter on emissions as a conse-
quence of diffusive mixing, thus limiting improvements in
the model obtained from replacing monthly with daily (or
3‐hourly) fire emissions.
[48] Third, important uncertainties remain with respect to

quantifying daily variability in emissions. TheMODIS active
fire time series used here was derived from polar‐orbiting
Terra and Aqua satellites and as a consequence, gaps in
coverage existed in tropical regions. It is likely that this
source of uncertainty will be reduced in the future as more
geostationary satellite observations of active fires become
publicly available for Africa and Asia [Reid et al., 2009],
along with more detailed information on fire radiative power
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and fire size. Even with the expected future increases in data
availability, persistent cloud cover in tropical regions will
remain an important challenge with respect to active fire
detection and thus to the development of a daily time series
of fires driven by either geostationary or polar‐orbiting
satellite observations.
[49] Fourth, on longer time scales our understanding of

several of the key processes regulating emissions remains
limited. Over the last decade, improved change detection
algorithms and increased availability of high quality mod-
erate resolution surface reflectance data has transformed our
understanding of burned area at a global scale and has led to
a several‐fold reduction in uncertainty, particularly in boreal
forest and savanna biomes. Although further improvements
in burned area are urgently needed, including improved
methods for mapping small (sub‐500 m) fires and understory
fires in forests, in many regions burned area observations are
no longer the primary source of uncertainty in fire emissions
estimates. For example, our ability to quantify and develop
realistic parameterization of fuel consumption has not pro-
gressed as quickly over the last decade, in part from dearth of
information on how to scale estimates of tree mortality and
combustion completeness across heterogeneous landscapes
in savanna, woodland, and tropical forest ecosystems [e.g.,
van der Werf et al., 2010].
[50] On hourly time‐scales, one primary driver of uncer-

tainty is related to diurnal variations in the performance of the
active fire detection algorithm. For the 4mmband, the thermal
contrast between fire pixels and neighboring cells is highest at
night when the surface is cool and there is no contamination
from reflected solar radiation [Giglio, 2007]. As a result, the
efficacy of the active fire detection algorithm may be higher,
particularly for smaller fires. Lower detection efficiencies
during the day, when there is less thermal contrast, may lead
to an overall reduction in the amplitude of the diurnal cycle.
Cooler air and surface temperatures at night, however, also
may reduce the likelihood of false detections (which would
mostly likely occur during midday) causing a bias in the
opposite direction [Giglio, 2007; Schroeder et al., 2008]. In
this context, evaluating the robustness of the different diurnal
cycles measured here for agriculture and grass, shrub, and
forest vegetation types (and the relatively small differences in
phasing observed between them) will require comparisons
with other geostationary active fire products, the use of other
land cover maps, coordinated aircraft and field campaigns,
and more detailed analysis of diurnal changes in the effi-
ciency of the WF_ABBA algorithm used here.
[51] Other important remaining sources of uncertainty in the

diurnal cycle characterizations include the influence of block
out zones used to avoid solar contamination near local solar
noon.Work is currently underway to evaluate a newgeneration
of spatially gridded global geostationary WF_ABBA active
fire products that include information on block outs and other
data gaps in the geostationary record. Use of these gridded
products in future work may enable a more systematic
quantification and reduction of uncertainties related to solar
zenith angle effects.

5. Conclusions

[52] Here we developed an approach for representing
daily and 3‐hourly variability in global fire emissions using

a combination of polar‐orbiting and geostationary satellite
observations of active fires. Outside of the tropics, our time
series resolved day‐to‐day variations in fires. In the tropics,
we applied a 3‐day center mean smoothing filter to avoid
spikiness caused by gaps in coverage by Aqua and Terra
satellites. For each month, we constructed a mean diurnal
cycle of fire activity in each grid cell based on burned area
in different vegetation types and vegetation‐specific mean
diurnal cycles derived from the GOES WF_ABBA fire
product. Our time series was designed for use in global
atmospheric studies of trace gases and aerosols. Because of
the sporadic nature of fires on synoptic time scales in many
regions, high temporal resolution estimates may allow for
improved attribution of causes of variations in atmospheric
constituents.
[53] Several distinct biome‐level differences in fire behavior

emerged from our study of daily fires. In boreal biomes, the
number of fire days in a given year at a 0.5° spatial resolution
rarely exceeded 20 whereas in tropical savannas this often
exceeded 100. The duration of fire events (continuous periods
of burning) also was shorter in boreal biomes. The abrupt
nature of boreal fires, combined with high levels of fuel con-
sumption (g C per m2 of burned area) caused daily rates of
fuel consumption to be over an order of magnitude higher in
boreal regions than in savanna regions. Diurnally, observa-
tions from GOES WF_ABBA indicated that fires in grass-
lands, savannas, and crops often occurred earlier in the day
than in forests.
[54] Atmospheric model simulations with daily and

3‐hourly emissions generally showed improved agreement
with ground based and space based remote sensing observa-
tions of CO, particularly during the fire season. Directions for
future research include reconciling forward model and sat-
ellite‐derived estimates of fire radiative power and integrating
multiple geostationary and polar orbiting fire products to
produce higher quality (and higher temporal resolution)
emissions time series.
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