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Massively parallel screenuncoversmany rare
3′ UTR variants regulatingmRNA abundance
of cancer driver genes

Ting Fu 1,2,8, Kofi Amoah 2,3,8, Tracey W. Chan2,3, Jae Hoon Bahn2,
Jae-Hyung Lee 2,4, Sari Terrazas2,5, Rockie Chong6, Sriram Kosuri6 &
Xinshu Xiao 1,2,3,5,7

Understanding the function of rare non-coding variants represents a sig-
nificant challenge. Using MapUTR, a screening method, we studied the func-
tion of rare 3′ UTR variants affecting mRNA abundance post-transcriptionally.
Among 17,301 rare gnomADvariants, an average of 24.5%were functional, with
70% in cancer-related genes, many in critical cancer pathways. This observa-
tionmotivated an interrogation of 11,929 somaticmutations, uncovering 3928
(33%) functional mutations in 155 cancer driver genes. Functional MapUTR
variantswere enriched inmicroRNA- or protein-binding sites andmay underlie
outlier gene expression in tumors. Further, we introduce untranslated tumor
mutational burden (uTMB), a metric reflecting the amount of somatic func-
tional MapUTR variants of a tumor and show its potential in predicting patient
survival. Through prime editing, we characterized three variants in cancer-
relevant genes (MFN2, FOSL2, and IRAK1), demonstrating their cancer-driving
potential. Our study elucidates the function of tens of thousands of non-
coding variants, nominates non-coding cancer driver mutations, and demon-
strates their potential contributions to cancer.

Whole-genome sequencing efforts have revealed the landscape of
human non-coding genetic variants1. It is increasingly recognized that
non-coding variants contribute significantly to human diseases,
including cancer2–4. Despite the substantial progress toward defining
functional elements in the non-coding genome, a primary challenge in
human genetics is to pinpoint the biological mechanisms through
which non-coding genetic variants confer disease risks. Genome-wide
association studies (GWASs) have been conducted extensively to
detect disease-associated genomic loci. However, only a small pro-
portion of disease heritability has been explained5. This is partly due to

the limited statistical power of GWASs and their reliance on arrays of
common single-nucleotide polymorphisms (SNPs), which makes it
difficult to detect rare variants with modest effects5,6.

At the population level, an overwhelming majority of genetic
variants are rare1,7. In contrast to common variants, which typically
have small, additive effects on complex traits, rare variants can have
large functional effects8,9. It is hypothesized that rare variants con-
tribute substantially to the missing heritability of complex traits and
diseases10–13. For example, recent studies using whole-genome
sequencing data have successfully uncovered much of the heritability
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of complex traits such as height, primarily through the detection of rare
variants13. However, due to their low frequencies, rare variants are often
outside the reach of most statistically powered association studies,
despite the increasing recognition of their disease implications14–16. Thus,
decoding the functions of non-coding rare variants will greatly inform a
better understanding of disease mechanisms.

In general, non-coding variants may affect many aspects of gene
regulation, including both transcriptional and post-transcriptional
processes. It was estimated that about 60% of the variation in protein
expression arises from post-transcriptional regulation17. However, in
contrast to the substantial progress made in understanding tran-
scriptional regulation, pinpointing functional variants in post-
transcriptional steps, for example, via regulation by the 3′ untrans-
lated regions (UTRs), remains a major challenge9,18.

The 3′ UTR is a primary hub of gene regulation, affecting many
critical processes such as RNA stability, RNA localization and
translation19. This region harbors numerous cis-regulatory elements,
interacting with trans-factors including microRNAs (miRNAs) and RNA-
binding proteins (RBPs)20. For genetic variants in the 3′ UTRs, a primary
mode of function is by disrupting the cis-regulatory elements and
affecting the binding of trans-acting factors21. Expression quantitative
trait loci (eQTL) studies revealed a significant enrichment of putative
functional non-coding variants in the 3′ UTRs, often representing the
largest enrichment among all types of non-coding regions22–24.

In addition to the global association analysis of eQTLs, massively
parallel reporter assays (MPRAs) are emerging as effective means to
decipher 3′ UTR function18,25–29. It possesses unique advantages as a
high-throughput functional assay that allows the nomination of causal
variants in non-coding regions18,25,29. However, previous eQTL and
MPRA studies primarily focused on the functions of common genetic
variants18,23,25,29. Little attention has been given to rare variants (e.g.,
< 1% in Minor Allele Frequency), which constitute the majority of 3′
UTR variants with unknown function1,7. The recent reports of example
rare functional 3′ UTR variants highlight the need of global analyses of
such variants for a more complete understanding of the genetic basis
of disease18,30,31.

In this study, using our developed assay, a massively parallel
screen for rare 3′ UTR variants (MapUTR), we tested the function of
17,301 rare variants in regulating mRNA abundance in two human
cell lines. We observed that 70% of functional rare variants were in
cancer-relevant genes. Thus, we further tested a special type of rare
variants, cancer somatic mutations, in well-known cancer driver
genes. Our data demonstrate the likely existence of abundant 3′UTR
cancer mutations in cancer driver genes. In addition, functional
MapUTR variants enabled the definition of a metric, untranslated
tumormutational burden (uTMB), which has the potential to predict
patient survival.

Results
The MapUTR method to identify functional 3′ UTR variants
regulating mRNA abundance
In MapUTR, we cloned the synthetic DNA oligonucleotides (oligos)
containing 3′ UTR variants and their flanking sequences (158–164
nucleotides (nt) in total) into the 3′ UTR of the eGFP gene (Fig. 1a,
Methods). This reporter gene is driven by a strong promoter, the CMV
early enhancer/chicken beta actin (CAG) promoter32, which allows the
identification of functional variants primarily affecting post-
transcriptional (rather than transcriptional) regulation. The plasmid
library was electroporated into HEK293 or HeLa cells to test for mRNA
abundance (Fig. 1a).

To avoid exhaustion of cellular machineries in the episomal
reporter assay, it is expected that minimizing the amount of trans-
fected DNA is beneficial. We thus first determined the minimum
amount of DNA per cell (DNA/Cell ratio) for MapUTR. For three
known functional variants in the literature25,33, we measured their

impacts given three DNA/Cell ratios respectively. The largest ratio,
4ug DNA per 1 million cells (4 μg/1 M), was chosen as it was used in
previous literature34 and the smallest ratio, 40 ng/1M, was chosen as
lower ratios did not permit recovery of the RNA libraries. We
observed that the smaller DNA/Cell ratio yielded larger effect sizes,
in line with the expected directions of RNA/DNA ratios (Supple-
mentary Fig. 1). We hypothesized that this increased sensitivity may
be due to the low DNA input, which avoids exhaustion of the cellular
machineries. However, we found that the targeted RNA-seq library
had very low yield (< 1 ng) at 40 ng/1M DNA/Cell ratio. Thus, we
opted to use a DNA/Cell ratio (200 ng/1M) that is as low as possible
while yielding expected directions of RNA/DNA ratios (Supplemen-
tary Fig. 1) and reliable generation of RNA-seq libraries (10–180 ng).
Compared to other studies18,34,35, we were able to lower the DNA/Cell
input ratio by 5–20 fold.

After electroporation of the plasmid library, total RNA was
extracted for RNA-seq library generation targeting the tested 3′ UTRs
(Fig. 1a, Supplementary Fig. 2a). A DNA-seq library is also needed to
allow for normalizations of RNA expression. To this end, either pre- or
post-transfection DNA-seq was used in previous studies18,25,34–36. To
determine our protocol, we collected both pre- and post-transfection
DNA-seq libraries with three biological replicates each, incorporating
15-mer unique molecular identifiers (UMIs) in library generation
(Supplementary Fig. 2b). Following sequencing, we calculated the
allele frequency (AF) (alt/(alt+ref)) for each variant using the UMI
counts from the two types of DNA-seq libraries. Indeed, their AFs are
highly correlated (Supplementary Fig. 3a), especially at high UMI
abundances, although the correlation is still significant given low UMI
counts (1st quantile) (Supplementary Fig. 3b, c). Given the ease of
generating pre-transfection DNA libraries, we opted to use pre-
transfection DNA to perform RNA abundance normalization.

UMIs were also incorporated into RNA-seq libraries (Supple-
mentary Fig. 2a). In the data analysis steps, UMIs in the DNA-seq and
RNA-seq data were extracted to enable removal of PCR duplicates,
followed by read alignment, data normalization and detection of
functional variants (Fig. 1b, Methods). To measure the impact of
each allele on mRNA abundance, we calculated an “activity score” as
the normalized relative read number (RNA/DNA) for that allele
(Fig. 1c, Methods). We further compared the activity scores of the
alternative and reference alleles to reach at a “relative activity score”
(Fig. 1c, Methods).

MapUTR captures functional effects of random mutations
within known cis-regulatory elements in the 3′ UTR
To test the performance ofMapUTR, we picked 5 known 3′UTRmotifs
(Supplementary Table 1) reported in the literature25 that alter mRNA
stability. We mutated each base respectively within the motif and its
surrounding regions (22–23nt on each side, Fig. 1d). For eachbase, all 3
possible alternative alleles were included individually. The resulting
pool of oligo sequences was tested with MapUTR in both HEK293 and
HeLa cells. For all 5motifs, we observed a lowmismatch rate relative to
the reference sequence in the DNA-seq data (0.057% on average)
outside of the mutated regions (Fig. 1e, Supplementary Fig. 4). This
observation indicates that the oligo synthesis and subsequent experi-
mental steps produced generally low error rates.

Next, we compared the impact of each mutation in the known
motifs and their surrounding sequences on mRNA abundance. As
shown in Fig. 1f, mutations in the functional motifs induced con-
siderable changes in relative mRNA expression, whereas the flanking
regions were associated with relatively small mutation-induced varia-
tions. In addition, the alternative alleles induced an overall increase in
mRNA abundance (positive relative activity scores), consistent with
the known role in mRNA destabilization of each motif25. Our results
support the effectiveness ofMapUTR in capturing biologically relevant
post-transcriptional regulatory events.
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Identification of functional rare 3′ UTR variants with MapUTR
We next applied MapUTR to test the functionality of rare genetic
variants in the 3′ UTR. From the Genome Aggregation Database
(gnomAD)37, we extracted rare 3′ UTR variants defined as those
with an adjusted minor allele frequency (adjAF) < 0.01. After
removing sequences incompatible with the cloning strategy (e.g.,
shared similarity with restriction enzyme sites or primer
sequences, see Methods and Supplementary Table 2), we selected

17,301 variants to be tested with MapUTR, 1044 of which were
also reported in clinically relevant databases (ClinVar38, CIViC39,
COSMIC40, iGAP41).

We synthesized 200nt-long oligos harboring each rare variant and
its flanking region, together with subpool primers and restriction sites
(Methods, Fig. 1a,c). A relatively low error rate (average 0.016%) was
again observed in the DNA-seq and RNA-seq reads (Fig. 2a). The
average error rate across each designed sequence or at the vicinity
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(±10 nt) of the tested variant was also low (Supplementary Fig. 5). The
activities of biological replicates were highly correlated, signifying
MapUTR’s ability to reproducibly capture the impact of genetic var-
iants on mRNA abundance (Fig. 2b). We also evaluated the statistical
difference of the functional impacts of the two alleles via
MPRAnalyze42. To call functional variants, we required a falsediscovery
rate (FDR) ≤ 10% and aminimumabsolute relative activity score of 10%.
The latter cutoff was determined by inspecting the relative activity
scores of mutations in known functional motifs, which mostly excee-
ded 10% (Fig. 1f).

Among the 17,210 and 17,194 rare variants tested by MapUTR in
HEK293 and HeLa cells, respectively, 3814 (22%) and 4694 (27%)
alteredmRNA abundance significantly (Fig. 2c, Supplementary Data 1),
with 6598 (38%) being significant in at least one cell line. Overall, the
functional variants are relatively uniformly distributed across the
length of 3′ UTRs (Supplementary Fig. 6a). These functional rare var-
iants were harbored in 3992 genes, representing 52.1% of all tested
genes. Among these variants, 50.9% and 51.2% in HEK293 and HeLa,
respectively, had higher expression associated with the variant allele,
whereas the rest of the variants downregulated mRNA expression.
Moreover, among the 1,044 clinically relevant variants, 41.5% are
functional in at least one cell line (26.2% in HEK293 and 26.7% in HeLa)
(Fig. 2d). Importantly, 45% of these functional, clinically relevant var-
iants are annotated in the ClinVar database with “uncertain sig-
nificance”. Thus, the MapUTR results shed light on the potential
functionality of these variants.

To compare the effect sizes of the functional rare variants to those
of common variants, we conducted another MapUTR experiment to
test 3367 common 3′ UTR variants in HeLa cells (containing predicted
functional variants in our unpublishedwork). A total of 1200 (35.6%) of
these common variants were detected as functional by MapUTR. We
observed that rare variants had significantly higher effect sizes than
common variants (Supplementary Fig. 6b). This is consistent with the
expectation that functional rare variants are generally more disruptive
than common ones.

We next compared the function of 3′ UTR variants between the
two cell lines. To this end, we correlated the relative activity scores of
the 1910 (29% of the 6598) variants that were functional in both cell
lines. A significant correlation was observed, and the majority of
shared variants (~94%) showed the same direction of change between
the two cell lines (Fig. 2e). The relative activity scores were also sig-
nificantly correlated when all variants tested in both cell lines were
included (Supplementary Fig. 6c). Thus, the genetic background,
rather than trans-acting factors, plays a consistent and dominant role
in determining the function of 3′ UTR functional variants between
HEK293 and HeLa cells.

Functional MapUTR variants alter miRNA target sites
The 3′ UTR is known to harbor cis-regulatory elements that recruit
trans-acting factors, usuallymiRNAs and RBPs, for post-transcriptional
regulation of gene expression43. To investigate the potential mechan-
isms associated with the rare functional MapUTR variants, we first

asked whether they may alter miRNA target sites44. In HEK293 and
HeLa cells, 63.8% and 63.5% of all functional MapUTR variants over-
lapped predictedmiRNA target sites, respectively (Methods). It should
be noted that these percentages are not higher than the percentage of
all tested variants overlapping miRNA target sites, possibly due to
challenges in the accurate prediction of miRNA targets. Nonetheless, a
functional variant disrupting miRNA targeting is expected to lead to
enhanced mRNA abundance. Consistent with this expectation, in both
HEK293 and HeLa cells, we observed a significant bias toward the
upregulation ofmRNA abundanceby the alternative alleles inMapUTR
(Fig. 3a). Although this effect is small, it indicates that miRNA target
disruption may be one functional mode of 3′ UTR variants. Indeed,
hundreds of miRNAs (726 in HEK293 and 988 in HeLa cells) were dis-
rupted byMapUTR functional variants in their targets more often than
by nonfunctional variants. For example, Fig. 3b shows two miRNA-
target pairs. One miRNA, miR-34b-3p, is predicted to target the PLIN4
transcript that harbors a rare variant (rs767768172) in the miRNA seed
match region.MapUTR revealed significantly highermRNA abundance
associated with the alternative allele, consistent with the expected
derepression by the miRNA in the presence of the rare variant. Simi-
larly, another rare variant (rs145078776) is predicted to disrupt the
binding of miR-3180-5p to the LDHD transcripts (Fig. 3b). It should be
noted that both genes have important disease relevance, with PLIN4
implicated in skeletal muscle disease45 and LDHD involved in clear cell
renal carcinoma46.

Functional MapUTR variants alter RBP binding sites
Next, we investigated the role of RBPs in affectingmRNA abundance of
genes harboring rare functional MapUTR variants. As a first step, we
examined the overlap of functional variants with RBP binding peaks in
the ENCODE eCLIP data47 from HepG2 and K562 cells. We observed
that 57.6% or 57.5% of functional variants in HEK293 (2,195) or HeLa
(2,701), respectively, resided within the binding peaks of at least one
RBP. In addition, the functional variants were located closer to the
eCLIP peaks than the nonfunctional ones (Supplementary Fig. 7). Next,
we conducted motif analyses using HOMER48 to identify over-
represented hexamers among sequences that upregulated or down-
regulated mRNA expression (see Methods). For sequences that
downregulated mRNA expression, we identified well-defined destabi-
lizingmotifs such as theAU-rich andGU-richelements (Supplementary
Fig. 8a, c). In contrast, CU-rich, CA-rich, and GA-rich elements, which
are known stabilizing motifs49, were enriched among sequences that
upregulated mRNA expression (Supplementary Fig. 8b, d). Addition-
ally, the strength of themotifs was significantly altered by theMapUTR
variants relative to nonfunctional or random control variants (Sup-
plementary Fig. 8e, Methods). These results support the validity of the
MapUTR experiment.

Next, we associated the above motifs with RBPs using previously
published RNABind-n-Seq (RBNS)50 data where bindingmotifs of RBPs
were characterized experimentally (Supplementary Fig. 9). We then
evaluated whether the alternative alleles of each functional variant
altered RBP binding using the DeepRiPe model51 (Methods). On the

Fig. 1 | MapUTR captures functional 3′ UTR variants in known functional
motifs. a Experimental Design ofMapUTR. Subpool-F and Subpool-R represent the
15-mer primer sequences to amplify the oligo pool. REC1 and REC2 represent
restriction enzyme sites. pCAG, the CMV early enhancer/chicken beta actin (CAG)
promoter. EGFP, eGFP gene. Library, oligo sequences containing the mutations/
motifs. RT, sequences for gene-specific reverse transcription. polyA, polyA signals.
See also Supplementary Fig. 2. b Computational workflow. c Design of oligos
containing rare variants from gnomAD and quantification of variant effects. CDNA

(ref) represents DNA counts for the reference allele, CRNA (ref) represents RNA counts
for the reference allele, CDNA (alt) represents DNA counts for the alternative allele,
CRNA (alt) represents RNA counts for the alternative allele, Aref represents the activity
score of the reference allele, Aalt represents the activity score of the alternative

allele, and lnFC represents the relative activity score of the alternative allele com-
pared to the referenceallele. CreatedwithBioRender.com.dDiagramof oligoswith
randommutations in the motif and its flanking regions (22–23 nt). eMismatch rate
(%) per position along the length of DNA sequences harboring known motifs:
SAMD4A, sterile alpha motif domain containing 4A motif (in gene CHRDL1), ARE,
AU-rich element (in gene CXCL2), hPUM, human pumilio motif (in gene MYOD1),
CDE, constitutive decay element (in gene RBBP5), and dPUM, Drosophila pumilio
motif (in gene SIPA1L2). fRelative activity scores of eachmutatedposition of known
motifs in HEK293 (red) and HeLa (blue) cells. Relative activity scores are averaged
across the 3 tested alternative alleles per position. The 95% confidence intervals are
shown as shades. e, f Source data are provided as a Source Data file.
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global level, we observed that functionalMapUTR variants significantly
altered RBP binding compared to nonfunctional or random dbSNPs
(Fig. 3c, Methods). RBPs that are known to regulate RNA stability, such
as HNRNPK, PCBP1 and ELAVL4, had significant binding score changes
due to the functional variants, as predicted by DeepRiPe (Supple-
mentary Fig. 10a). We further compared the relative activity of the
variantsmeasured byMapUTR and the predicted binding alteration by
DeepRiPe. A number of RBPs showed significant correlations (Fig. 3d,
Supplementary Fig. 10b). For instance, among functional variants, a
negative correlation was observed for ZFP36, binding to the AREs
WUUAUU and AUUUAU in HEK293 and HeLa, respectively (Fig. 3d),

consistent with the destabilizing function of AREs52. The nonfunctional
variants, in contrast, showed virtually no correlation for the sameRBPs
andmotifs. Altogether, these findings support the utility ofMapUTR in
identifying functional effects of variants that potentially alter RBP
binding.

Functional rareMapUTR variants enriched in genes with cancer-
relevance
To better understand the functional relevance of MapUTR variants, we
first performed aGeneOntology enrichment analysis of genes harboring
the top 500 variants (ranked by their absolute relative activity in
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MapUTR of either HEK293 or HeLa cells). We observed that these genes
were enriched in cell survival-related terms such as cell growth and cell
death (Fig. 4a, Supplementary Fig. 11a, b). Next, we examined the asso-
ciation of these genes with different types of diseases via the DisGeNET
database53. Interestingly, we found that cancerwas themost represented
disease (Fig. 4b), with 4,648 (70.4%) functional rare variants located in
genes associated with cancer. Furthermore, 9 out of the 10 canonical
oncogenic pathways54 harbored genes withMapUTR functional variants,
where genes in the PI3K/Akt, cell cycle, andMyc signaling pathways had

the highest overlap (Supplementary Fig. 11c). These results suggest that
functional rare 3′ UTR variants likely play a role in tumorigenesis.

To further examine the relevance of functional rare variants to
cancer, we asked whether cancer driver genes contain functional
MapUTR variants. We compiled a list of cancer driver genes based on
three different sources, including the Integrative OncoGenomics
(IntOGen) databases55, Pan-Cancer Analysis of Whole Genomes
(PCAWG)56, and the Catalogue of Somatic Mutations in Cancer (COS-
MIC) Cancer Gene Census tier 1 (v96)40. Among a total of 1,143 cancer
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driver genes, 267 had functional MapUTR variants (499 variants)
(Fig. 4c, Supplementary Data 2). Importantly, 47 (54.0%) oncogenes
harbored at least one functional variant leading to an increase of gene
expression levels, whereas 55 (61.8%) tumor suppressor genes had at
least one variant leading to a decrease of gene expression levels,
potentially contributing to tumorigenesis (Fig. 4c). These results sug-
gest that the functional rare MapUTR variants may be closely relevant
to cancer.

Functional 3′ UTR somatic mutations in cancer driver genes
identified by MapUTR
Basedon the abovedata on general rare variants, wehypothesized that
mRNA abundance alteration may be a function common to many
somatic mutations (mostly rare in the general population) in the 3′
UTR of cancer driver genes. Although many studies have aimed to
identify functional mutations in cancer driver genes, the majority of
these efforts has been centered onmutations occurring in the protein-
coding regions40,55–57. Consequently, there remains a significant
knowledge gap regarding the role of functional mutations in the 3′
UTRs that may contribute to cancer development via post-
transcriptional regulation. To this end, we tested 11,929 COSMIC
mutations40 in the 3′ UTRs of 166 highly confident cancer driver
genes40,55,56 (Methods). Among these somatic mutations, 3,928 (33%)
were confirmed to be functional by MapUTR (HeLa), affecting 155
genes (Fig. 4d, Supplementary Data 1). Note that a functional variant
can be detrimental (pro-cancer), neutral or beneficial in tumors
depending on its effect onmRNAabundance and the role of the cancer
driver genes (tumor suppressing or oncogenic). It is possible that one
detrimental mutation drive critical disease processes, despite the
existence of many non-detrimental mutations. Interestingly, 56 of the
62 (90%) tumor suppressor genes had at least one variant that
attenuates mRNA abundance, while 43 of the 50 (86%) oncogenes
harbored at least one variant that enhances mRNA abundance, indi-
cating that MapUTR can help to prioritize these detrimental variants.

For each cancer driver gene with more than 100 tested variants, a
notable proportion (at least 23%) of their respective tested variants
significantly altered mRNA abundance (Fig. 4e, top). In particular,
tumor suppressor genes CDKN2A and DNMT3A had the highest pro-
portions of functional variants (47.6% and 46.1%, respectively). All
genes had functional variants with potentially detrimental effects (i.e.,
increased expression of oncogenes or decreased expression of tumor
suppressor genes, Fig. 4e, bottom). Although each cancer driver gene
may have many possible mutations, only a small number of mutations
may occur in a particular patient and have a functional impact.
Nonetheless, even a single functional mutationmay cause detrimental
effects by enhancing oncogene expression or repressing expression of
a tumor suppressor.

Among the functional COSMIC variants in cancer driver genes,
405were identified in at least oneTCGApatient.Wenext examined the
co-occurrence of these functional variants in each TCGA patient. We
found that a small number of genes (e.g., RET, RECQL4, CUX1, FGFR4,
PIK3R1, FGFR3, and GNAS) had some co-occurring variants per patient

in different cancer types (Supplementary Fig. 12a). Interestingly, var-
iants co-occurred in the oncogenes FGFR3, CCND1, and MYC mostly
increased mRNA abundance (Supplementary Fig. 12b). In contrast,
those in the tumor suppressor gene PIK3R1 and ATMmostly decreased
mRNA abundance (Supplementary Fig. 12b). Thus, co-occurrence of
these detrimental variants (pro-cancer) may exhibit synergistic effects
on mRNA abundance regulation.

To understand how the functional MapUTR variants in cancer
driver genes altered mRNA abundance, we conducted trans-factor
analyses using a similar approach as for the gnomAD rare variants
(Methods). Although miRNA target sites were not notably altered, our
analysis showed that these variants significantly affected RBP binding.
Specifically, sequences surrounding downregulating variants were
enriched with the well-known destabilizing ARE (UAUUUA) motif
among others (Supplementary Fig. 13a). Upregulating variants also
showed significant enrichment with the CU-rich and GA-rich elements
known to play stabilizing roles (Supplementary Fig. 13b). Once asso-
ciating these motifs with RBNS data (Supplementary Fig. 13c, d) and
analyzing the effects of variants on RBP binding via DeepRiPe, we
observed significantly altered RBP binding strength by the functional
variants (Fig. 4f, Supplementary Fig. 13e). These observations are
consistent with the previous knowledge that RBP dysregulation
impacts tumorigenesis or tumor progression58, further suggesting that
RBP dysregulation via 3′ UTR sequences is a potential mechanism
implicated in cancer processes.

As an example, MapUTR revealed a total of 145 functional 3′ UTR
variants in the tumor suppressor geneCDKN2A. This gene encodes two
proteins p16Ink4a and p14ARF, involved in the anticancer Rb and p53
pathways, respectively59. Thus, down-regulating functional variants in
CDKN2A may weaken the Rb and p53 tumor suppressor pathways,
potentially leading to cancer progression. The majority of the down-
regulating functional variants in CDKN2A were enriched in a 200nt-
long region (shaded in Fig. 4g). Through motif analysis, we identified
several functional variants that created a destabilizing motif GCGACG
(possible targets of RBM4 and RBM45 based on RBNS data, same
below) or disrupted stabilizing motifs CCGCCA (possible targets of
PCBP1, RBM6, HNRNPK, and SRSF5), CCGGGC (possible targets of
RBM41, PRR3, and RBM22), or CGACCC (bound by PCBP1 and PCBP2)
(Fig. 4g). Interestingly, the twomotifs (CCGCCAandCGACCC) that can
bind PCBP1 were very close to each other in the 3′ UTR of CDKN2A
(Fig. 4g), suggesting a local region that might be sensitive to PCBP1-
mediated regulation. Notably, a number of down-regulating functional
variants in CDKN2A had elevated allele frequencies in multiple cancers
(Fig. 4h), including skin cutaneous melanoma (labeled as SKCM or
MELA) which is associatedwith CDKN2Amutations60. Besides CDKN2A,
we also performed motif analysis for other tumor suppressor genes
(Supplementary Fig. 14a–g) andoncogenes (SupplementaryFig. 14h, i).
Indeed, many pro-cancer functional variants could be explained by
RBP binding motifs. Altogether, MapUTR—coupled with the follow-up
analysis on functional variants—can prioritize cancer-relevant variants
and elucidate potential key RBPs that interact with the variant-
containing sequences.

Fig. 4 | MapUTR identifies functional variants in cancer driver genes. a Gene
ontology terms enriched in the geneswith large-effect functional variants (top 500)
in HEK293 and HeLa. Top 10 terms were plotted. b Disease associations most
representedbyMapUTR functional variants. Top 10diseaseswereplotted. cCancer
driver genes containing MapUTR functional variants. For genes with multiple
functional variants, the variantwith the largest absolute relative activitywasplotted
in each cell line. d Relative activity scores and FDR of all cancer-related variants
(COSMIC somatic mutations) tested in HeLa. e Top: Proportion of functional var-
iants identified for cancer driver genes with at least 100 tested variants. The
number on top of each bar denotes the number of variants tested for each gene.
Bottom: Distribution of relative activity scores for oncogenes and tumor sup-
pressor genes (TSGs) in the top panel. Boxplots depict the median as the center

line, the boxes define the interquartile range (IQR: 25th to 75th percentiles) and the
whiskers extend up to 1.5 times the IQR. f Changes in RBP binding caused by
functional variants in cancer driver genes were significantly higher than expected.
P-values were calculated using a two-sided Kolmogorov–Smirnov test. g Many
functional variants in the 3′ UTR of the tumor suppressor gene CDKN2A decreased
RNA abundance, indicating the potential for a cancerous outcome. Motif matches
are denoted as triangles, with the specific motifs highlighted in different colors.
Genomic positions (hg19) are shown on the x-axis. h Allele frequency (somatic) of
down-regulating functional variants of CDKN2A in different cancers. The average
allele frequencyof all 3′UTRsomaticmutations in each cancer is indicated as a light
gray bar. A variant is labeled as a driver if it was found in other driver mutation
databases. a–h Source data are provided as a Source Data file.
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Functional MapUTR variants may underlie gene expression
outliers in TCGA and GTEx
Next, we asked if the above functional COSMIC mutations in cancer
driver genes may help to explain gene expression changes in cancer
patients. We obtained genotype data including both germline and
somatic mutations in The Cancer Genome Atlas (TCGA) from the Pan-
Cancer Analysis of Whole Genomes (PCAWG)56 database. For each

MapUTR-discovered functional COSMIC variant that was found in
patients of a certain cancer type, we extracted gene Fragments Per
Kilobase of transcript per Million mapped reads (FPKM) values in
patients with either the reference or the alternative allele and calcu-
lated gene expression z-scores for outlier detection (Methods). A total
of 113 functional variants were associated with patients whose gene
expression value was an outlier (Fig. 5a, Supplementary Data 3). Given
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Fig. 5 | Functional MapUTR variants are clinically relevant in cancer patients.
a Functional COSMIC variants associated with gene expression outliers in different
cancers. Cancer types and genes, genomic coordinates (hg19) and alternative
alleles of the variant are shown on top. Relative activity scores (lnFC) tested inHeLa
are also shown. b Similar as (a), but for functional rare variants. Relative activity
scores (lnFC) tested in both HEK293 (before ‘|’) and HeLa (after ‘|’) are shown.
c Higher uTMB of functional MapUTR variants is associated with worse
progression-free interval (PFI) in LUSC. uTMB_func_overall: uTMB of functional
variants in all tested genes, uTMB_driver_func_overall: uTMB of functional variants

in all tested cancer driver genes, uTMB_driver_func_detrimental: uTMB of func-
tional variants that increase oncogene expression or decrease TSG expression,
uTMB_nonfunc: uTMB of non-functional variants in all tested genes, uTMB_-
driver_nonfunc: uTMB of non-functional variants in all tested cancer driver genes,
uTMB_driver_func_benign: uTMB of functional variants that decrease oncogene
expression or increase TSG expression. Patients were grouped into high (orange)
and low (turquoise) groups by uTMB level tertiles. P-values were calculated by two-
sided log-rank tests. a–c Source data are provided as a Source Data file.
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our earlier observation of the enrichment of germline rare functional 3′
UTR variants in cancer-relevant genes, we expanded the outlier
detection analysis to include all functional variants identified by
MapUTR in this study. In total, we observed 508 functional variants
(including both COSMIC and gnomAD variants) associated with
gene expression outliers in multiple cancer types (Fig. 5b, Sup-
plementary Data 3). We repeated the above analysis using GTEx
data, which identified 352 functional variants with outlier
expression and consistent direction of change as detected in
MapUTR (Supplementary Fig. 15a). For each gene, only a few tis-
sues showed outlier patterns (Supplementary Fig. 15b), indicating
that there may exist heterogeneity in the variant effect as simi-
larly noted by other studies61,62. These results indicate that the
functional variants detected through MapUTR may help to
interpret the mechanisms underlying gene expression outliers in
cancer and normal tissues.

uTMB calculated based on functional MapUTR variants predicts
patient survival in LUSC
Given the roles of functional MapUTR variants in regulating cancer
driver genes, we investigated their potential in predicting cancer
patient survival. To this end, we defined a metric for each tumor
sample, namely uTMB, to represent the number of somatic mutations
that are functionalMapUTR variants. Using the TCGA Pan-Cancer Atlas
data63,64, we observed that higher uTMB (uTMB_func_overall) was sig-
nificantly associatedwith shorter progression-free interval (PFI) in lung
squamous cell carcinoma (LUSC) (Fig. 5c). The observation also holds
when only MapUTR variants in cancer driver genes (uTMB_-
driver_func_overall) or detrimental MapUTR variants (those that
increased oncogene expression or decrease tumor suppressor gene
expression, uTMB_driver_func_detrimental) were used (Fig. 5c). As
controls, no significance was observed when the “uTMB” was calcu-
lated using variants confirmed as non-functional by MapUTR
(uTMB_nonfunc or uTMB_driver_nonfunc), or variants that are benign
(those that decrease oncogene expression or increase tumor sup-
pressor gene expression, uTMB_driver_func_benign). Similar relation-
ships were observed between uTMB and overall survival in head and
neck squamous cell carcinoma (HNSC), albeit weaker than in LUSC
(Supplementary Fig. 16). Overall, these findings highlight the potential
clinical relevance of functional MapUTR variants, especially for LUSC
patients.

Functional rare MapUTR variants in MFN2, FOSL2, and IRAK1
regulate mRNA stability and cell proliferation
MapUTR may be an effective means to nominate cancer driver muta-
tions. To illustrate this capacity of MapUTR, we experimentally vali-
dated 3 functional MapUTR variants not previously known as cancer
driver mutations. These three variants are located in three cancer-
relevant genes. The first gene, Mitofusin 2 (MFN2), encodes a mito-
chondrial membrane protein regulating mitochondria fusion65. MFN2
has anti-tumor effects and is downregulated in multiple cancers66.
Previous studies found that MFN2 inhibits cell proliferation by sup-
pressing mTORC2/Akt or Ras-NF-κB signaling pathways67,68. In
MapUTR,we identified a functional rare 3′UTRvariant (rs777822288) in
MFN2, leading to a significant increase in mRNA expression (Fig. 6a).
We hypothesized that this variant may also play a role in inhibiting cell
proliferation. The second gene, FOS Like 2 (FOSL2), encodes a protein
serving as a subunit of the transcription factor complex AP-169. FOSL2
promotes cell proliferation, migration, and invasion in breast cancer
and ovarian cancer70,71. We discovered one rare variant (rs11884725) in
the 3′ UTR of FOSL2, which showed higher activity scores (RNA/DNA
ratio) compared to the reference allele (Fig. 6a). This variant may
facilitate cell proliferation by upregulating FOSL2 gene expression. The
third gene encodes interleukin-1 receptor-associated kinase 1 (IRAK1),

involved in the toll-like receptor and interleukin-1 signaling pathway72.
Overexpressed in several cancers, IRAK1 is a therapeutic target, whose
inhibition impairs tumor growth and metastasis72. We identified a rare
3′UTR variant (rs782486025) in IRAK1 that significantly decreased
mRNA expression (Fig. 6a). This variant may serve as an allele-specific
‘inhibitor’ for IRAK1, thus reducing cell proliferation.

To measure the effect of functional variants in their native geno-
mic context, we utilized prime editing73 to introduce the MapUTR
variants into the genome of HEK293T cells, which have proven editing
efficiency with prime editing73 (Fig. 6b). In addition, HEK293T is a
daughter cell line derived from HEK293 cell line, in which all three
MapUTR variants were identified as functional candidates (Fig. 6a).
Thus, HEK293T cells likely possess the trans-factors required for the
MapUTR variant function. The genome-edited bulk HEK293T cells
were diluted and plated to isolate single-cell clones for both the
reference and variant alleles in each gene (Fig. 6b). To reducepotential
bias due to off-target effects in a specific single-cell clone, we picked
4–6 single-cell homozygous clones for each allele (Fig. 6c–e). In
addition, we checked the top three potential off-target sites predicted
byCRISPRitz74 via Sanger sequencing, for each epegRNAornick sgRNA
used in this study (Supplementary Table 3). Off-target editing was not
observed in these sites (Supplementary Note 1).

Through quantitative reverse transcription PCR (qRT-PCR), we
measured the mRNA stability of each gene in the single-cell clones by
treating the cells with actinomycin D (ActD) to block cell
transcription75 for different time periods (2 h, 8 h, and 24 h) (Fig. 6f–h).
Starting at 2 h post-ActD treatment, we observed significantly lower
mRNA expression levels of IRAK1 in the single-cell clones with IRAK1
variant alleles compared to thosewith IRAK1 reference alleles (Fig. 6h).
This observation is consistent with the MapUTR result, in which the
IRAK1 variant allele had a lower activity score (RNA/DNA) compared to
the reference allele (Fig. 6a). For MFN2 and FOSL2, we observed a
significant increase in mRNA expression levels in clones with the var-
iant alleles at 8 h or 24 h post-ActD treatment (Fig. 6f, g), which are
consistent with the higherMapUTR activity scores in the variant alleles
for these two genes (Fig. 6a). These results confirm that the MapUTR
variants in MFN2, FOSL2, and IRAK1 regulate mRNA stability in
HEK293T cells.

We next examined the functional impacts of the 3 MapUTR var-
iants on cellular phenotype. To this end, we performed cell prolifera-
tion assays using the single-cell clones with either reference or variant
alleles of MFN2, FOSL2, and IRAK1 (Fig. 6b). We found that single-cell
clones with the variant alleles of all three genes showed significantly
altered cell proliferation profiles (Fig. 6i–k). Specifically, we observed
reduced cell proliferation in clones with the variant alleles of MFN2
(Fig. 6i) and IRAK1 (Fig. 6k), as well as increased cell proliferation in
clones with the variant allele of FOSL2 (Fig. 6j). Importantly, the
directions of the cell proliferation change are consistent with the
expected consequenceof eachvariant, basedon their effects onmRNA
stability and previous studies on the roles ofMFN2, FOSL2, and IRAK1 in
cell proliferation68,71,72.

To further explore the functional impacts of these three MapUTR
variants, we conducted RNA-seq on the genome-edited single-cell
clones.We identified 124, 37, and 2151 differentially expressed genes in
the single-cell clones with alternative alleles of MFN2, FOSL2, and
IRAK1, respectively (Supplementary Fig. 17a). For MFN2, the differen-
tially expressed genes were enriched with those affecting the trans-
forming growth factor-β (TGF-β) signaling pathway (Supplementary
Fig. 17b), which regulates cell proliferation76. Similarly, the differen-
tially expressed genes in single-cell clones with the IRAK1 alternative
allele were enriched in GO terms involved in cell proliferation regula-
tion (Supplementary Fig. 17b). These observations are consistent with
our findings above that these MapUTR variants altered cell prolifera-
tion profiles (Fig. 6i, k). Together, supporting the in vivo function of
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MapUTR variants in HEK293T cells, our data demonstrate the cancer-
driving potential of these variants.

Discussion
Rare variants constitute the majority of human genetic variants1. Yet,
little is known about the function of non-coding rare variants due to
their scarcity in the population, which has made rare variant associa-
tion tests challenging77. In this study, we used a massively parallel
reporter assay, MapUTR, to identify 3′ UTR variants regulating mRNA
abundance post-transcriptionally. Based on the finding that a majority
of functional gnomAD rare variants resided in cancer-relevant genes,
we further tested the function of cancer somatic mutations via

MapUTR. Altogether, MapUTR uncovered 10,524 functional 3′ UTR
variants (germline or somatic). This large catalog of functional variants
enabled us to define a metric, uTMB, that quantifies TMB in untrans-
lated regions. We showed the potential of uTMB in predicting patient
survival in LUSC andHNSC, two types of squamous cell carcinoma.Our
data reveal a trend of rare variants playing a role in affecting cancer-
relevant genes and support the existence of many functional non-
coding cancermutations in 3′UTRs, which facilitates the identification
of non-coding cancer driver mutations.

It was previously reported that rare variants are enriched in gene
expression outliers across tissues compared to non-outliers78,79, indi-
cating their pivotal role in regulating gene expression. Among all

0.8 1.2 1.6

1.0 1.5 2.0

0.6 0.9 1.2 1.5 1.8

90

909090 1

90 190GAGGGAGTCC

GAGGGGGTCC

GAGGGAGTCC

GAGGGGGTCC

GAGGGAGTCC

GAGGGGGTCC

GAGGGAGTCC

GAGGGGGTCC

0h

2h

8h

24h

Normalized mRNA expression

Ti
m

e
po

st
Ac

tD
 tr

ea
tm

en
t IRAK1

0h

2h

8h

24h

Normalized mRNA expression

Ti
m

e
po

st
Ac

tD
 tr

ea
tm

en
t MFN2

0h

2h

8h

24h

Normalized mRNA expression

Ti
m

e
po

st
Ac

tD
 tr

ea
tm

en
t

FOSL2

i

0 24 48 72
0

25

50

75

100

Time(h)
C

on
flu

en
ce

 (p
er

ce
nt

)

FOSL2G3

A4

G8
G16

A20

G17

A7-1
A7-2

C
on

flu
en

ce
 (p

er
ce

nt
)

*

0 24 48 72
0

50

100

Time(h)

C
on

flu
en

ce
 (p

er
ce

nt
)

MFN2G2

T1

G4

T51

G6

T37-3

G20

T37-6

G47

T37-9

G49

T37-12

MF
N2

_G

MF
N2

_T

C
on

flu
en

ce
 (p

er
ce

nt
)

**

j

f

g

h

0 24 48 72
0

50

100

Time(h)

C
on

flu
en

ce
 (p

er
ce

nt
)

IRAK1
G9
G10
G9-2
A8-2
G9-3
A8-3-2
A8-3-4
A8-3-5

C
on

flu
en

ce
 (p

er
ce

nt
)

*k

270
GGAGATACCC GGAGATACCC GGAGATACCC GGAGATACCC GGAGATACCC GGAGATACCC

GGAGAGACCCGGAGAGACCC GGAGAGACCC GGAGAGACCCGGAGAGACCC GGAGAGACCC

c

Ref

Var

G2 G4 G6 G20 G47 G49

T1 T51 T37-3 T37-6 T37-9 T37-12

d

Ref

Var

G3 G8 G16 G17

A4 A20 A7-1 A7-2

110 0 11 110 110

GCATGAGCCC

GCATGGGCCC

GCATGAGCCC

GCATGGGCCC

GCATGAGCCC

GCATGGGCCC

GCATGAGCCC

GCATGGGCCC

e
G9 G10 G9-2 G9-3

A8-2 A8-3-2 A8-3-4 A8-3-5

Ref

Var

HEK293T

Prime editing

Isolation of single-cell clones

Ref Var Cycles

F
lu

or
es

ce
nc

e

Threshold

b

a

FOSL2

Activity score 

Ref
Var*** IRAK1

Activity score

Ref
Var

MFN2

Activity score

Ref
Var

*

mRNA stability Cell proliferation

0.4 0.6 0.80.50 0.75 1.00 1.25

***

0.0 0.5 1.0 1.5 2.0

20

40

60

80

20

40

60

80

IR
AK1_

G

IR
AK1_

A

50

60

70

80

90

FOSL2
_G

FOSL2
_A

Ref
Var

*

*

Ref
Var

*

*

*

Ref
Var

Fig. 6 | Functional rare 3′ UTR variants regulate mRNA stability and cell pro-
liferation in HEK293T cells. a MapUTR activity scores of functional variants
(MFN2: rs777822288, FOSL2: rs11884725, and IRAK1: rs782486025) measured in
HEK293 cells. P-values were calculated using MPRAnalyze’s two-sided likelihood
ratio test and corrected using the Benjamini–Hochberg method (N = 3 biologically
independent samples). *p <0.05, **p <0.01, ***p <0.001. b Experimental validation
workflow. HEK293T cells were transfected with plasmids expressing PEmax and
epegRNAs to introduce the variant of interest. Single-cell clones were isolated and
genotyped as either reference (Ref) or variant (Var) clones. The single clones were
then used for downstream assays to test for mRNA expression/stability or cell
proliferation. Created with BioRender.com. c–e Sanger sequencing results con-
firming the genotype of single clones with reference (Ref) and variant (Var) alleles
for MFN2 (c), FOSL2 (d), and IRAK1 (e). The alleles are underlined. f–h Normalized
mRNA expression level of reference (Ref) and variant (Var) alleles of MFN2 (f),

FOSL2 (g) and IRAK1 (h). Cells were treatedwith 10μg/ml actinomycin D (ActD) and
harvested at 2 h, 8 h, and 24h post-treatment to test for mRNA stability. ForMFN2,
six biological replicates (N = 6 clones) for each allele were included in the experi-
ment. For FOSL2 and IRAK1, four biological replicates (N = 4 clones) per allele were
included. P-values were calculated using one-tailed Student’s t test. *p <0.05.
i–k Cell proliferation assay of single clones with reference (Ref) and variant (Var)
alleles forMFN2 (i), FOSL2 (j), and IRAK1 (k). ForMFN2, six biological replicates
(N = 6 clones) for each allele were included in the experiment. For FOSL2 and IRAK1,
four biological replicates (N = 4 clones) per allele were included. The vertical
dashed line indicates the cell confluence values at 48h, which are plotted on the
right. P-values were calculated using one-tailed Student’s t test. *p <0.05, **p <0.01.
a, f–k Boxplots are plotted asmedian, the 25% and 75% percentiles, and non-outlier
maxima and minima. Specific p-values are provided in the Source Data file.
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tested gnomAD rare variants (17,301) in our experiments, 6,598 (38%)
led to significant mRNA abundance alterations in at least one cell line,
with an average of 24.5% variants identified as functional in each cell
line. This prevalence of functional variants is much larger than pre-
viously reported for common 3′UTR variants18, where 19.5% (2,368 out
of 12,173 total)were reported as functional variants in at least oneof six
human cell lines, with an average of 5.7% functional rate in each cell
line. While the functional proportion may be arbitrary resulting from
differences in themethods used to call functional variants in these two
assays, a similar cutoff of an adjusted p-value less than 0.1 was applied
in both assays, with MapUTR having an additional cutoff of relative
activity ≥ 0.1. The higher proportion of functional variants in the rare
variant screen may be explained by the purifying selection during
evolution80. This observation is in line with a previous study that
assessed the contribution of alleles with different allelic frequencies to
gene expression in lymphoblastoid cell lines81, revealing a higher
contribution of rare variants to gene expression heritability.

We observed that the majority (70%) of functional rare 3′ UTR
germline variants were in cancer-relevant genes, enriched in gene
ontology terms such as cell growth and cell death (Fig. 4a, Supple-
mentary Fig. 11a, b). However, the percentage of functional rare var-
iants in cancer-related genes is not higher than that of all rare variants
tested in MapUTR. Thus, it is interesting to note that, in general,
gnomAD rare variants frequently occur in cancer-related genes, which
is consistent with the expectation that rare variants are often detri-
mental and selected against, and the fact that we observed a larger
effect size of functional rare variants, compared to common variants
(Supplementary Fig. 6b). These data prompted us to analyze the other
type of rare variants, somatic mutations, located in the 3′ UTRs of
cancer driver genes, via MapUTR. Among the 11,929 COSMIC muta-
tions we tested, 3,928 (33%) were detected to regulate mRNA abun-
dance of their host genes in HeLa cells. This fraction is significantly
larger than that of functional rare germline variants (4694 of 17,194
(27%)) detected inHeLa cells (p <0.00001, proportion test). The above
results suggest that somatic mutations located in 3′ UTRs have the
potential to drive expression changes of important cancer driver
genes. Indeed, altered gene expression, regulated by either DNA
transcription or mRNA stability82, is one of the major changes in
cancer83. In a previous study on rare predisposition variants across 33
cancer types, around half of the variants located in tumor suppressor
genes or oncogenes were associatedwith low or high gene expression,
respectively84. Our data provide a genetic perspective that may
account for the frequent gene expression changes observed in cancer.

Previous studies have primarily focused on identifying cancer
driver mutations located in protein-coding regions, mainly due to
limited methodologies and power in detecting non-coding cancer
driver mutations. Indeed, non-coding driver mutations were believed
to be less common than protein-coding drivers85. However, our data
challenge this proposition by demonstrating the functional impact of
over 10,000 rare germline or somaticmutations present in the 3′UTRs
of cancer-related genes. The large number of functional 3′ UTR var-
iants reported in this study provides a valuable resource for future
investigations into cancer driver mutations. Many of the genes that
contain these functional mutations, such as CDKN2A highlighted in
Fig. 5, are well-established cancer driver genes involved in multiple
types of cancer. The functional implications of their 3′ UTRmutations
should be tested thoroughly. As examples, we experimentally vali-
dated three rare variants in cancer-associated genes (MFN2, FOSL2, and
IRAK1), confirming their functional roles in regulating mRNA stability
and cell proliferation. Future studies characterizing additional func-
tional 3′ UTR variants will help to elucidate their driver potential in
cancer.

We introduce a concept, uTMB, that captures the somatic muta-
tional burden in the non-coding genomeof a tumor, specifically 3′UTRs.
The calculation of uTMB is enabled by the large catalog of functional

MapUTR mutations. Traditionally, TMB is computed using somatic
mutations in the coding regions, often focusing on non-synonymous
mutations86. TMB has been extensively examined as a predictive bio-
marker of immunotherapy response87. Here, we showed that the metric
uTMB calculated via functional MapUTR variants has the potential to
serve as a predictive biomarker for LUSC and HNSC patient survival.
Although it remains unknownwhy this relationship ismost prominent in
LUSC, our results support the possible clinical relevance of functional
MapUTR variants. Since the function of genetic variants may be cell
type- or tissue-specific, e.g., depending on RBP or miRNA expression,
future studies should focus on specific cell types related to different
types of cancer to uncover cancer-specific functional variants that
improve the prognostic potential of uTMB. Our MapUTR assay is gen-
erally applicable to such studies, with a number of strengths, e.g.,
unbiased detection of both upregulating and downregulating variants
(Fig. 2c), incorporation of UMI, and the minimal DNA/Cell ratio in cell
transfection to mimic a physiologically relevant condition.

It is important to acknowledge that MapUTR comes with certain
limitations. First, variants were tested in limited sequence context
due to the oligo synthesis limit (up to 300 nt), preventing the
identification of isoform-specific functional variants. Future endea-
vors, such as CRISPR editing-based screens combinedwith long-read
sequencing, may be helpful in addressing this question. Addition-
ally, only two cell lines (HeLa and HEK293) were tested with
MapUTR. Both cell lines undergo active proliferation which may
have contributed to the enrichment of cancer-relevant functional
variants. Expanding the assay to more cell types would facilitate a
better understanding of functional variants relevant to different
biological processes in different tissues and diseases. Specifically,
additional efforts are needed to address the low transfection effi-
ciency in post-mitotic cells, e.g., using lentivirus to deliver the
reporters. Third, in addition to functional variants affecting mRNA
abundance, MapUTRmay bemodified to identify variants that affect
alternative polyadenylation (i.e., creating an alternative proximal
polyA signal), which could be a topic for future investigation.

The presence of outlier associations in TCGAor GTEx data provides
support for the functional roles of a given variant. However, it should be
noted that the absence of such associations does not necessarily imply
non-functionality. Gene expression is intricately regulated by diverse
mechanisms, and multiple genetic variants may collectively contribute
to the regulation of a single gene. Consequently, the functional impact
of a particular mutation may not manifest as a sole driver of gene
expression (thus leading to outlier expression) but could be part of a
broader network of regulatory elements.

In conclusion, our study uncovered more than 10,000 functional
rare 3′ UTR variants regulating mRNA abundance post-tran-
scriptionally, many of which reside in cancer driver genes. In general,
the discoveries from MapUTR may help to nominate non-coding
cancer driver mutations, uncover predictive biomarkers for patient
survival, and explain heritability for complex diseases.

Methods
Generation of the MapUTR master plasmid
The MapUTR master plasmid was derived from the pEGFP-C1 plasmid
(Clontech) with several modifications (See Supplementary Method,
Supplementary Note 2: plasmid map). First, SacI restriction enzyme
site was introduced via a synonymous G-to-C mutation in the eGFP
gene to allow for easy cloning. Via this cloning site (NEB, Cat# R3156S)
and a HpaI site (NEB, Cat# R0105S), extra sequences in the 3′ UTR of
the eGFP gene were removed by re-cloning the eGFP and multiple
cloning sites into the vector. Second, the CMV promoter was replaced
with the CAGpromoter,whichwas obtained from the CYP800plasmid
(gifted by Rockie Chong) via restriction enzymes NdeI (NEB, Cat#
R0111S) and SacI-HF (NEB, Cat# R3156S). Third, the reverse transcrip-
tion (RT) primer sequences, which were adapted from Illumina Read
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1 sequencing primer sequences, were inserted between the multiple
cloning site (MCS) and apolyA signal site by re-cloning the polyA signal
fragment using BamHI-HF (NEB, Cat# R3136S) andMluI-HF (NEB, Cat#
R3198S). Lastly, to avoid truncated transcripts mediated by alternative
splicing at the end of the eGFP gene, we generated a synonymous G-to-
A mutation (CAAGTAAGA to CAAATAAGA) at the potential 5′ splice
site of the eGFP gene, which reduced theMaxEntScan score88 from 7.61
to −0.57. Additionally, we alsomodified the end of the eGFP sequences
that served as adaptors for library amplification. We introduced
synonymous mutations (ACCTTA instead of ACTCTC) in the eGFP
sequence such that the corresponding complementary primer had a
lower chance of forming heterodimers with the P5 adaptors in other
library amplifying primers. Primers used for master plasmid cloning
are listed in Supplementary Data 4.

Design of DNA oligonucleotides with random mutations within
known motifs
Known 3′ UTR cis-regulatory elements (Supplementary Table 1) were
chosen fromprevious literature25. To test if MapUTRcould capture the
regulatory effects of these motifs, we designed oligos containing
random mutations at every base (mutated to all 3 possible alleles
respectively) within the regulatory motif region as well as its flanking
regions (22–23 nt upstream and 22-23 nt downstream). The sequence
context for themotif was chosen from an isoform that allows themotif
to be at the center of the designed sequence. In case this was not
possible, the sequence context was extended beyond the end of the
annotated 3′ UTR region. Each oligo in the oligo pool is 200 nt in
length, with 158 nt being the tested 3′ UTR sequences containing the
variant of interest. The rest of the oligo contains forward primer
binding site (21 nt), reverse primer binding site (15 nt), and restriction
enzyme site EcoRI (6 nt) for cloning. All oligos were included in the
oligo pool 1.

Design of DNA oligonucleotides containing rare 3′ UTR variants
We extracted human variants from the Exome Aggregation Con-
sortium (ExAC)89, now cataloged in the gnomAD37, and excluded
indels using GATK SelectVariants tool90. Further, with a threshold of
adjusted minor allele frequency (MAF) less than 0.01, we obtained
1,017,886 rare variants. Based on GENCODE91 basic v24 annotation,
we selected 54,959 SNPs that were located in the 3′ UTR. To avoid
unwanted enzyme digestion and amplification within the oligos, we
removed sequences that contain additional restriction enzyme sites
and subpool primer sequences (Supplementary Table 2). We over-
lapped rare 3′ UTR ExAC variants with a collection of clinically
relevant variants reported in ClinVar38, CIViC39, COSMIC40, and
iGAP41. The resulting 1,044 SNPs, which we refer to as clinically
relevant rare 3′ UTR variants, were prioritized for final testing. In
total, we included 17,301 variants, separated into three oligo pools
(pool 1-3) for synthesis. Each oligo pool contains 3 to 4 subpools with
different 5′ and 3′ adaptors that can be amplified using subpool
primers, respectively (See Supplementary Method). Both reference
and alternative alleles for each variant were included in the same
subpool. In the oligo pool 2 and 3, each oligo is 200 nt in length, with
164 nt being the flanking sequence centered around the variant of
interest. The sequence context for the motif was chosen from an
isoform that allows the motif to be at the center of the designed
sequence. In case this was not possible, the sequence context was
extended beyond the end of the annotated 3′UTR region. The rest of
the oligo contains forward subpool primer binding site (15 nt),
reverse subpool primer binding site (15 nt), and restriction enzyme
site EcoRI (6 nt) for cloning (Supplementary Table 2, design 1: F
+rec1+lib+R). 2,737 rare variants were included in the oligo pool 1
with a similar oligo design but slightly shorter flanking sequences
(158 nt instead of 164 nt), and one additional restriction enzyme site
BamHI (Supplementary Table 2, design 2: F+rec1+lib+rec2+R).

Cloning of synthesized oligonucleotides into MapUTR master
plasmids
We resuspended the lyophilized oligo pools (Twist Bioscience) with
ultrapure distilled water (Thermo Fisher Scientific, Cat# 10977015) at a
final concentration of 1 ng/μl. Each subpool was amplified using
subpool-specific primers (See Supplementary Method). The reverse
subpool primer contains a BamHI restriction enzyme site, which allows
subsequent digestion and ligation into the master plasmid. To avoid
potential bias due to over-amplification, we first assembled qPCR
reactions with PowerUp™ SYBR® Green Master Mix (Thermo Fisher
Scientific, Cat# A25742) with 1 ng oligos as templates in a 50μl reac-
tion. We determined the cycle number with preliminary qPCR experi-
ments to avoid overamplification of the oligo pools. With this cycle
number (typically 17–19), we then repeated the PCR using the Q5
polymerase (NEB, Cat# M0492L). The PCR products were cleaned up
via the DNA Clean & Concentrator kit (Zymo Research, Cat# D4004).

Next, DNA digestion reactions were set up for both the PCR pro-
ducts (oligo inserts) and master plasmids using the EcoRI-HF (NEB,
Cat# R3101S) and BamHI-HF (NEB, Cat# R3136S) enzymes, followed by
overnight incubation at 37°C. All digestion reactions were terminated
with enzyme heat inactivation at 65°C for 20min. For purification, the
digested plasmids were resolved in 1% agarose gel and the desired
band was gel purified using Zymoclean™ Gel DNA Recovery Kit (Zymo
Research, Cat# D4002). The digested PCR products were directly
cleaned up using the DNA Clean & Concentrator kit (Zymo Research,
Cat# D4004). Cleaned-up PCR products and digested plasmids were
ligated at a 10:1 molar ratio with the T7 DNA ligase (NEB, Cat#M0318).
Ligation reactions were incubated at 25°C on a thermal cycler for 1 h,
followed by a clean-up using the DNA Clean & Concentrator kit (Zymo
Research, Cat# D4004), with water elution.

Finally, the purified ligation products were electroporated into
the 10-beta Electrocompetent E. coli cells (NEB, Cat# C3020K) using
the Gene Pulser Xcell Electroporation Systems (NEB, Cat# 1652660) at
2.0 kV, 200 Omega, and 25 μF. The transformed E. coli were spread
onto 150mm selective plates at 37°C overnight. Colonies to achieve at
least a 100X coverage of the oligo library (e.g., 0.2M colonies for 2000
designed oligos) were harvested for plasmid isolation using the
ZymoPURE II PlasmidMidiprep Kit (Zymo Research, Cat# D4200). For
an initial quality check, the isolated plasmid library was sent for Sanger
sequencing with a sequencing primer (See Supplementary Method)
complementary to the polyA signal region shared by all plasmids.

Cell culture and transfection
HEK293 cells were gifted by Prof. Jing Huang at UCLA. HEK293 cells
were not authenticated. HeLa cells were obtained from ATCC (Cat#
CCL-2). HEK293 andHeLa cells weremaintained in DMEM (Gibco, Cat#
11995065) with 10% FBS (Gibco, Cat# 26140079) and antibiotic-
antimycotic reagent (Gibco, Cat# 15240062) at 37°C with 5% CO2

supply. Cells were passaged the day before electroporation to make
sure they were actively dividing by the time of the electroporation.
Prior to electroporation, HEK293/HeLa cells were disassociated with
Trypsin-EDTA (Gibco, Cat# 25300120), washed with growth media,
and resuspended in OptiMEM (Gibco, Cat# 31985062) at a cell density
of 10M/ml. For a typical subpool library with 0.2 million (M) colonies,
3μg plasmid library was electroporated into 15M HEK293/HeLa cells
(See DNA/Cell ratio optimization below) for each biological replicate,
for a total number of three biological replicates. Electroporation was
carried out using the Gene Pulser Xcell Electroporation System (NEB,
Cat# 1652660) with the following settings: square wave, 25 msec,
220 V, 0.4 cm. After electroporation, HEK293 and/or HeLa cells were
incubated in growth media at 37°C for 24 h.

mRNA isolation
Twenty-four hours after electroporation, HEK293/HeLa cells were
lysed usingTRIzol (ThermoFisher Scientific,Cat# 15596026). Each 500
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μl TRIzol-lysed solution was mixed with 100 μl chloroform (Fisher
Chemical, Cat# C298-500) to allow phase separation. The upper aqu-
eous phasewas transferred andmixedwith equal volumeethanol (200
proof, Fisher BioReagents). The mixture was loaded to the column
supplied by theDirect-zol RNAMiniprep Plus kit (ZymoResearch, Cat#
R2072) to isolate total RNA following the manufacturer’s protocol.
PolyA selection was carried out to isolate mRNA from total RNA using
Dynabeads™ Oligo(dT)25 (Thermo Fisher Scientific, Cat# 61002). The
concentration ofmRNA in each sample was quantified using the Qubit
RNA HS Assay Kit (Thermo Fisher Scientific, Cat# Q32852) with the
Qubit 2.0 Fluorometer (Thermo Fisher Scientific).

Generation of UMI-containing libraries
We generated UMI-containing libraries from the plasmid library (DNA)
before electroporation, as well asmRNA isolated after electroporation.
To compare the DNA libraries made from plasmids before and after
electroporation, we also isolated plasmid DNA from the transfected
cells using PureLink™ Quick Plasmid Miniprep Kit (Thermo Fisher
Scientific, Cat# K210011).

The mRNA was reverse transcribed into cDNA using the Super-
Script™ IV Reverse Transcriptase (Thermo Fisher Scientific, Cat#
18090010) and a gene-specific reverse transcription (RT) primer
(MPP3) that contains a 15-mer uniquemolecular identifier (UMI),which
was synthesized as -NNNNNNNNNNNNNNN- (See Supplementary
Method for primer sequences). After RT, mRNA was removed via
RNase H treatment.

Both cDNA and plasmid DNA underwent two rounds of PCR
(Supplementary Fig. 1). The first-round (3 cycles) utilized primers
(MPP2 &MPP3) to addUMIs to the cDNAor plasmidDNA samples. The
low-cycle number was utilized tominimize PCR amplification bias. The
first-round PCR products were cleaned up using the DNA Clean &
Concentrator kit (ZymoResearch, Cat# D4004). Next, a second-round
PCR was performed using the purified first-round PCR products and
primers (MPP2 & MPP4), which added sample indexes and Illumina
sequencing adaptors (P5/7). To avoid over-amplification, a pilot reac-
tion for the second-step PCR was performed using the PowerUp™
SYBR® Green Master Mix (Thermo Fisher Scientific, Cat# A25742) and
ran on a qPCR thermal cycler. An amplification curve was obtained for
each sample to determine the cycle number before the plateau. This
cycle number (or a smaller value) was then used in the second-round
PCR (See SupplementaryMethod). All PCR steps for sequencing library
generation were performed using the Q5 polymerase (NEB, Cat#
M0492L).

PCR reactions for the samesamplewerepooled andpurifiedusing
the DNA Clean & Concentrator kit (Zymo Research, Cat# D4004).
Purified PCR products were resolved on a 2% agarose gel and the band
at the expected library size (377 bp) was cut out and purified using the
Zymoclean™ Gel DNA Recovery Kit (Zymo Research, Cat# D4002).
UMI-containing libraries made from DNA/RNA were mixed and
sequenced using custom sequencing primers (See Supplementary
Method) on Illumina Hiseq3000 PE150 or Novaseq SP PE150 with 15%
PhiX spike-in.

DNA/Cell ratio transfection optimization
To optimize the DNA/Cell ratio for MapUTR, plasmid libraries were
electroporated into 7.5M HEK293 cells with increasing amount of
DNA/Cell ratios (i.e., 40 ng/1M, 200ng/1M, and 4μg/1M), respec-
tively. Total RNA was isolated 24 h following electroporation. UMI-
containing libraries were generated from the plasmid libraries before
electroporation and the mRNA isolated from transfected cells (see
details above). To verify the allelic ratios for the three control SNPs in
the genes CXCL225 and ESR133, each control gene was amplified by a
gene-specific reverse primer and the common P5 forward primer (See
SupplementaryData 4). Toavoidoveramplificationof the target genes,
a qPCR reaction was assembled for each condition to determine the

cycle number before the plateau. Control genes were then amplified
from each UMI library with the cycle numbers determined by qPCR
using the Q5 polymerase (NEB, Cat# M0492L). PCR amplicons were
gel-purified and sent for Sanger sequencing. The allelic ratio for each
SNP was estimated based on the peak signal for each base, which was
quantified using 4Peaks (Nucleobytes). RNA/DNA ratios were calcu-
lated by dividing the allelic ratios in the RNA samples by the allelic
ratios in the DNA samples.

Mismatch rate analysis for DNA and RNA reads
To assess the quality of sequencing data obtained from MapUTR, we
examined the mismatch rate at any given position of the designed
sequences. For each position that was covered by sequencing reads,
we calculated the mismatch rate as follows:

Mismatch rate ið Þ= Number of reads withmismatches at position i
Total number of reads covering position i

× 100

ð1Þ

The 15 nt primer sequence on the ends of the designed sequence
was excluded from this calculation.

Estimation of variant effect sizes
Paired-end reads (2 x 150 nt) were obtained for each DNA and RNA
library (3 biological replicates of each type). Read 1 contains a UMI
(15 nt), reverse transcription (RT) primer (14 nt), REC2 restriction
enzyme site (6 nt), subpool primer (15 nt), and 100 nt of the designed
sequence. Read 2 consists entirely of the designed sequence. UMIs,
together with the RT primer, REC2 restriction enzyme site, and sub-
pool primer, were extracted from read 1 and added to the read name
using UMItools92. The reads were then aligned to the reference
sequences using Bowtie 293, allowing up to 1 mismatch per alignment.
We only retained perfectly mapped reads or reads with 1 mismatch at
positions other than the designed SNPs.

PCR duplicates were removed by retaining only one read with the
same UMI that mapped to the same reference sequence. The UMIs
were then counted in theDNA- andRNA-seq libraries, respectively. The
counts were quantile-normalized across the 3 biological replicates. For
each allele of a SNP, we calculated its activity score as follows:

Activity Score ðAÞ= CRNA

CDNA
, ð2Þ

where CRNA is the normalized RNA count and CDNA is the normalized
DNA count for the allele.

The relative activity score of the two alleles of a SNP was defined
as:

Relative Activity Score ðlnFCÞ= ln Aalt

Aref

 !
, ð3Þ

where Aalt is the activity score of the alternative allele and Aref is the
activity score of the reference allele.

To compare the relative impact of the alternative alleles of a
variant onmRNA abundance, wemodeled RNA counts as a function of
DNA counts using MPRAnalyze42. To call functional variants, we
required an FDR ≤ 10% and a minimum absolute relative activity score
of 10%. The latter cutoff was determined by inspecting the relative
activity scores of mutations in known functional motifs, which mostly
exceeded 10% (Fig. 1f).

Analysis of MapUTR variants in miRNA target sites
We obtained genomic locations of all TargestScan miRNA target site
predictions (version 7.2)94, including both conserved and non-
conserved families and sites. We required each predicted miRNA

Article https://doi.org/10.1038/s41467-024-46795-7

Nature Communications |         (2024) 15:3335 14



target site to have a minimum context++ score percentile of 50 as
recommended by the authors of TargetScan. We then examined the
overlap between functional MapUTR SNPs (reference alleles) and
predicted miRNA seeds, thus focusing on variants whose alternative
alleles disrupted miRNA targets. Next, we used a one-tailed Wilcoxon
rank sum test to evaluatewhether the overlapping variants had relative
activity scores biased toward upregulation.

Motif discovery
To conduct motif analysis, we first grouped the reference and alter-
native sequences based on their observed effects in the MapUTR
results. Briefly, we compared the mRNA abundance of the reference
and alternative allele of each rare variant. If the alternative allele yiel-
ded higher expression than the reference, the sequence containing the
alternative allele was included in the upregulating sequence group,
and the reference allele-harboring sequence in the downregulating
sequence group, and vice versa. Subsequently, we obtained a 11 nt
sequence around the variant position (5 nt on each side) for the
reference and alternative alleles, respectively. For the upregulating
and downregulating sequence groups, respectively, a de novo motif
search of the RNA sequences was conducted with HOMER48, with an
upper limit of 25motifs. Note that the downregulating sequences were
used as background when identifying motifs in the upregulating set,
and vice versa.

Motif strength analysis
To evaluate whether a variant altered the strength of the motifs more
significantly than expected, we carried out the following motif
strength analysis. Given the position-weight matrix (PWM) of a motif
and assuming a uniform background distribution of bases, we scored
all sequences containing the motif for changes in strength upon the
presence of the variant. As a control, we shuffled the PWM and cal-
culated the change in motif strength again. Then, we compared the
distribution of changes in the true motif to the control for significant
differences using a two-sided Kolmogorov–Smirnov test. We also
incorporated another set of controls by randomly sampling the same
number of nonfunctional variants as the functional ones and scoring
them against the motifs. The change in motif strength was calculated
as follows:

Δvar = jSvar � Sref j ð4Þ

where the strength of themotif with the variant allele, Svar, is defined as
Svar =

Πpi
0:25n. Similarly, the strength of themotif with the reference allele,

Sref , is defined as Sref =
Πpi
0:25n, where pi is the probability of the base at

position i of the PWM and n is the length of the motif.

Integrative analyses of RBPs and discovered motifs
To examine whether functional variants fromMapUTRwere located in
RBP binding sites, HOMER-identifiedmotifs werematched withmotifs
of each RBP reported by a previous RBNS study50. For each variant, we
used the HOMER-identified motif and its associated RBPs from RBNS
to assess the effect of the variant on RBP binding. Specifically, we used
the DeepRipe model51 to calculate the predicted difference in RBP
binding between the reference and alternative alleles of a variant. As
controls, nonfunctional variants and random rare dbSNPs were sepa-
rately sampled matching the number of tested variants per chromo-
some. Subsequently, for each RBP, control SNPs were randomly
chosen to match the number of functional variants bound by the RBP.
Then, the control SNPs were scored with DeepRiPe similarly as for
functional variants. The distribution of absolute changes in binding
(reference versus alternative alleles) was compared between the
functional variants and random control SNPs. These steps were con-
ducted for data derived from HEK293 and HeLa cells respectively.

Gene ontology (GO) enrichment analysis
Functional variants fromMapUTR experiments in HEK293 and HeLa
cells were combined to generate the top 500 unique variants ranked
by their relative activity. The resulting 324 genes were chosen as the
query genes for GO enrichment analysis. GO analysis was also con-
ducted for each cell line separately using a similar strategy (436 and
404 query genes in HEK293 and HeLa, respectively). For each query
gene, a control gene was randomly chosen from the background
genes (excluding all query genes) tested in MapUTR. In this way, a
control set of genes was constructed that has the same number of
genes as the query set. This process was repeated 10,000 times. To
evaluate the enrichment of each GO term in the query genes, a p-
value was calculated by fitting a normal distribution to the occur-
rence frequencies of the same GO term in the 10,000 sets of con-
trols. A FDR < 0.05 and occurrence (number of genes associated
with a term) ≥ 5 were required for significance. GO terms were
ranked based on -log10(FDR), and the top 10-16 GO terms were
plotted.

Cancer driver genes in MapUTR results for rare variants
A list of cancer driver genes was compiled from three different sour-
ces: (1) IntegrativeOncoGenomics (IntOGen) databases55 (https://www.
intogen.org/download), (2) Pan-Cancer Analysis of Whole Genomes
(PCAWG)56, (3) Catalogue of Somatic Mutations in Cancer (COSMIC)
Cancer Gene Census tier 1 (v96)40. All cancer driver genes were divided
into three groups (oncogenes, tumor suppressor genes, or ambig-
uous). Genes were labeled as ambiguous unless an agreement could be
achieved across the three sources. Genes containing MapUTR func-
tional rare variants were overlapped with the cancer driver genes. To
plot the heatmap of the overlapped cancer driver genes, the variant
with the largest relative activity (absolute value) was reported for each
gene in each cell line.

Design of DNA oligos containing 3′ UTR somatic mutations in
cancer driver genes
A subset of highly confident cancer driver genes was defined by
taking an intersect of genes listed in the IntOGen databases55,
PCAWG studies56, and COSMIC Cancer Gene Census with the hall-
mark descriptions (v96)40. From GENCODE91 comprehensive v41
annotation, we extracted the 3′ UTR regions of the highly confident
cancer driver genes (180 genes) and overlapped them with all the
non-coding somatic mutations cataloged in COSMIC (v96). We
applied a sample count (CNT) filter of greater than 1 to make sure
one mutation is supported by at least two samples, resulting in
14,579 mutations to be tested with MapUTR. We further removed
variants whose flanking sequences contain restriction enzyme sites
or subpool primer sequences that rendered them incompatible with
theMapUTR cloning steps (Supplementary Table 2). Following these
filters, we included 11,929 somatic mutations in 166 highly confident
cancer driver genes in the oligo pool 4. Each oligo in the oligo pool is
200 nt in length, including forward subpool primer binding site (15
nt), restriction enzyme site EcoRI (6 nt), flanking sequence centered
around the variant of interest (164 nt), and reverse subpool primer
binding site (15 nt).

Functional testing of 3′ UTR somatic mutations in cancer driver
genes via MapUTR
The same MapUTR procedures as described for rare variants were
applied to test the somatic mutations in cancer driver genes. Briefly,
oligos from the oligo pool 4 were cloned into the master plasmid via
restriction enzymes EcoRI-HF (NEB, Cat# R3101S) and BamHI-HF (NEB,
Cat# R3136S). The plasmid libraries were then electroporated into
HeLa cells (at 200ng/1M DNA/Cell ratio), which were lysed after
incubation in 37°C with 5% CO2 supply for 24 h. The plasmid libraries
and the isolated mRNA were used to make UMI-containing libraries
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(See Supplementary Method). The libraries were pooled and
sequenced on Novaseq SP&S1 PE150 with 15% PhiX spike-in.

Allele frequency of functional somatic mutations in cancer
Aggregated simple somatic mutation data was downloaded from the
ICGC Data Portal (https://dcc.icgc.org/releases/release_28/Summary).
For a variant that was found in multiple projects for the same type of
cancer, the allele frequency of this variant in each project was plotted
as an individual data point under the same cancer type (Fig. 4h). The
background level was defined as the average allele frequency of all 3′
UTR single nucleotide variants reported in the aggregated file for each
cancer type. The 3′ UTR somatic mutations were extracted by over-
lapping the aggregated list of mutations with GENCODE91 compre-
hensive v41 annotation.

Expression outlier detection in TCGA and GTEx
Genotype data including both germline and somatic mutations in The
Cancer Genome Atlas (TCGA) was obtained from the Pan-Cancer
Analysis of Whole Genomes (PCAWG)56 through the ICGC Data Portal
(http://dcc.icgc.org/pcawg/). FPKM data was downloaded from the
Genomic Data Commons (GDC) portal (https://portal.gdc.cancer.gov/).
For MapUTR variants that are present in TCGA samples, z-scores of
gene FPKM values were calculated for individuals with reference alleles
(homozygous) or variant alleles (heterozygous or homozygous var-
iant). An expression outlier is defined by a z-score > 2 or z-score < −2.
For GTEx data, genotype and gene expression data were obtained for
838 individuals across 55 tissues from the GTEx portal (https://www.
gtexportal.org/). Outlier expression was detected similarly as for TCGA
data. Using Fisher’s exact test, we compared the proportion of samples
with functional variants that are outliers to the proportion of homo-
zygous reference samples that are outliers in each gene and in each
tissue.

Quantification of untranslated tumor mutational burden
(uTMB) in TCGA
Weobtained somaticmutations of 33 tumor types from the TCGA Pan-
Cancer Altas63 (http://api.gdc.cancer.gov/data/1c8cfe5f-e52d-41ba-
94da-f15ea1337efc). For each patient, we extracted the somatic muta-
tions from the aggregatedfile andoverlapped themwith the functional
MapUTR variants. We then counted the total number of somatic
mutations that are also functional MapUTR variants as the untrans-
lated tumor mutational burden (uTMB_func_overall) for that patient.
We also calculated uTMBusing only the functionalMapUTR variants in
cancer driver genes (uTMB_driver_func_overall). Depending on the
relative activity score of each variant in cancer driver genes, we further
defined detrimental variants (uTMB_driver_func_detrimental) as those
that increaseoncogene expression or decrease tumor suppressorgene
expression, and benign variants as those decreasing oncogene
expression or increasing tumor suppressor gene expression were
considered benign (uTMB_driver_func_benign). For control purposes,
we also calculated the uTMB using non-functional MapUTR variants in
all tested genes and cancer driver genes (uTMB_nonfunc and
uTMB_driver_nonfunc).

Survival associations
To obtain progression-free interval and survival times in cancer
patients, we acquired the TCGA Pan-Cancer Clinical Data
Resource64 from https://api.gdc.cancer.gov/data/1b5f413e-a8d1-
4d10-92eb-7c4ae739ed81. Patients were divided into high and low
uTMB groups based on tertiles of uTMB levels in each cancer type.
We compared progression-free interval and overall survival
between the two groups using two-sided log-rank tests in different
cancer types with the R package survival. Significance was deter-
mined with a p-value of < 0.05. We then generated the Kaplan-Meier
survival curves using the R package survminer.

Generation of single-cell clones containingMapUTR variants via
prime editing
To introduce a MapUTR variant to the HEK293T genome using prime
editing73,95,96, the spacer and extension sequences for epegRNAs and
nick gRNAs were designed using pegFinder97. A linker pattern was
designed for each epegRNA using pegLIT96. For epegRNA constructs,
the spacer, extension (contains a unique linker), and pegRNA scaffold
sequences (See Supplementary Data 4) were cloned into the pU6-
tevopreq1-GG-acceptor vector (Addgene, Plasmid#174038) viaGolden
Gate assembly. Similarly, the spacer and nick sgRNA scaffold sequen-
ces (See SupplementaryData 4) were cloned into the pU6-pegRNA-GG-
acceptor vector (Addgene, Plasmid #132777) to generate nick gRNA-
expressing constructs.

HEK293T cells were obtained from ATCC (Cat# CRL-11268).
HEK293T cells were not authenticated. HEK293T cells weremaintained
inDMEM (Gibco, Cat# 11995065)with 10% FBS (Gibco, Cat# 26140079)
and the antibiotic-antimycotic reagent (Gibco, Cat# 15240062) at 37°C
with 5%CO2. HEK293T cells were seeded in 48-well plates to reach 50%
confluency by the time of transfection. The enhanced prime editing
system73, consisting of plasmids expressing the epegRNA (250ng),
nick gRNA (83 ng), and prime editor (750ng), i.e., pCMV-PEmax-P2A-
hMLH1dn (Addgene, Plasmid #174828), was used for cell transfection.
For MFN2, only the epegRNA and prime editor were used for cell
transfection due to a higher editing efficiency compared to the other
strategy that includes an additional nick gRNA. Cell transfection was
performed with the Lipofectamine™ 3000 Transfection Reagent
(Thermo Fisher Scientific, Cat# L3000015) according to the manu-
facturer’s protocol. For genotyping, genomic DNA (gDNA) was
extracted and amplifiedwithprimers specific to eachcandidate variant
(See Supplementary Data 4). PCR amplicons were purified and sent for
Sanger sequencing with one of the PCR primers. Three days after cell
transfection, the transfected cells were re-plated into 96-well plates by
serial dilution to generate single-cell clones. Single-cell clones were
then expanded and genotyped via Sanger sequencing.

To examine the potential off-target effects of prime editing, we
tested three off-target sites predicted by CRISPRitz74, for each
epegRNA or nick sgRNA applied to the cells. Specifically, we searched
for off-target sites allowing 4 mismatches, 1 DNA bulge, and 1 RNA
bulge. We further ranked and selected the top 3 off-target sites based
on the cutting frequency determination (CFD) score98. Next, we per-
formedPCRandSanger sequencing using the isolated genomicDNAof
each single-cell clones to check for off-target editing.

Measurement of mRNA expression levels via qRT-PCR
Single-cell clones with MapUTR variants were maintained in DMEM
(Gibco, Cat# 11995065) with 10% FBS (Gibco, Cat# 26140079) and
antibiotic-antimycotic reagent (Gibco, Cat# 15240062) at 37°C with 5%
CO2. For RNA isolation, cells were washed with PBS (Gibco, Cat#
14190144) and lysed with TRIzol (Thermo Fisher Scientific, Cat#
15596026). Total RNA was isolated using the Direct-zol RNA Miniprep
Plus kit (Zymo Research, Cat# R2072) following the manufacturer’s
protocol. 1 to 2μg of total RNA was used for cDNA synthesis with
SuperScript™ IV Reverse Transcriptase (Thermo Fisher Scientific, Cat#
18090010) using random hexamers. To measure mRNA expression
levels of genes containing MapUTR variants, 1 μl cDNA was used for
qPCR reactions using the PowerUp™ SYBR® Green Master Mix
(Thermo Fisher Scientific). Primers used for qPCR (same as gDNA PCR
primers) are listed in Supplementary Data 4. The reaction was per-
formed in theCFX96TouchReal-TimePCRdetection system (Bio-Rad)
with the following settings: 50°C for 10min, 95°C for 2min, 95°C for
15 s, 60°C for 30 s, and with the last two steps repeated for 45 to 55
cycles. The expression of genes containing MapUTR variants (MFN2,
FOSL2, and IRAK1) was normalized against the expression of TBP. For
mRNA stability assays, single-cell clones with MapUTR variants were
treated with 10μg/ml actinomycin D (Sigma-Aldrich) in growthmedia.
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Cells were harvested at different time points (2 h, 8 h, and 24h) post-
actinomycin D (ActD) treatment for RNA isolation and RT-qPCR. Two
technical replicates were performed for each single-cell clone during
RT-qPCR. For each gene, 4 to 6 single-cell clones were used for either
reference or variant alleles. Samples of reference and variant alleles
collected at the same time point were analyzed in one PCR plate to
allow for proper comparisons. P-values were calculated using one-
tailed Student’s t test. To call significance, p-value < 0.05 was required.

Cell proliferation assay
Single-cell cloneswithMapUTRvariants were seeded at 3,000 cells per
well in the 96-well plates. For each single-cell clone, five technical
replicates (wells) were performed. After 24 h incubation at 37°C, the
plate was transferred to the Incucyte® S3 live-cell analysis system
(Sartorius) to monitor cell proliferation. Images were taken every 2 h
and analyzed for confluency. Data were analyzed and plotted using
GraphpadPrism7.P-valueswere calculatedusingone-tailed Student’s t
test. To call significance, p-value < 0.05 was required.

RNA-seq analysis of prime-edited single-cell clones
For each gene, we randomly picked three single-cell clones per allele
(except for the IRAK1 alternative allele, which we only included two
single-cell clones) and extracted total RNA for RNA-seq library
generation at the UCLA Technology Center for Genomics and
Bioinformatics (TCGB). The libraries were sequenced on Novaseq SP
PE100. Reads were mapped to the human genome and tran-
scriptome with HISAT299. To identify differentially expressed (DE)
genes between single-cell clones with the alternative allele and
reference allele for each gene, we used DESeq2100. To call sig-
nificance, we required cutoffs of |log2FoldChange| > 0.5 and FDR <
0.1. For IRAK1, we used the top 500DE genes ranked by FDR as query
genes for GO enrichment analysis. ForMFN2 and FOSL2, all DE genes
were included for GO enrichment analyses. For each query gene, a
control gene was randomly chosen from the background genes
(excluding all query genes) tested in DESeq2. We also required a
control gene tomatch the query gene in gene length and GC content
(±10%). To calculate the enrichment of a GO term in the query genes,
we fit a normal distribution of the occurrences of the same GO term
in 10,000 sets of control genes. A FDR < 0.05 and occurrence
(number of genes associated with a term) ≥ 5 were required for
significance. GO terms were ranked by −log10(FDR), and the top 15
GO terms were plotted.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The rare 3′ UTR variants tested in this study were obtained
from gnomAD (https://gnomad.broadinstitute.org). The predicted
miRNA target sites were obtained from the TargetScan database at
https://www.targetscan.org/vert_72/vert_72_data_download/All_Target_
Locations.hg19.bed.zip. Thegene-disease associationdatawas obtained
from the DisGeNET database at https://www.disgenet.org/downloads.
The Intogen data used in this study are available at https://intogen.org/
download. The Cancer Genome Atlas (TGCA) data are available under
restricted access adhere to the National Institutes of Health (NIH)
Genomic Data Sharing (GDS) policy as well as the National Cancer
Institute (NCI) GDS policy; FPKM values for cancer patients were
obtained through the Genomic Data Commons (GDC) portal (https://
portal.gdc.cancer.gov/); Genotype data were obtained through the
ICGC Data Portal (http://dcc.icgc.org/pcawg/). ProcessedMapUTR data
generated by this study is available at https://github.com/gxiaolab/
mapUTR101. The GTEx data was obtained from the GTEx portal (https://
www.gtexportal.org/). All raw MapUTR data have been deposited in

NCBI’s Gene Expression Omnibus and are accessible through GEO Ser-
ies accession number GSE232573. Source data are provided with
this paper.

Code availability
Third-party tools were used for data analysis, such as UMItools (ver-
sion 0.5.5), Botwtie2 (version 2.3.5), MPRAnalyze (https://github.com/
YosefLab/MPRAnalyze), HOMER (verson 4.11), and DeepRiPe (https://
github.com/ohlerlab/DeepRiPe). Scripts to use these tools are avail-
able upon request from the corresponding author.
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