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Abstract

Background: Angiotensin-converting enzyme 2 (ACE2) is the cell-entry receptor for
SARS-CoV-2. It plays critical roles in both the transmission and the pathogenesis of
COVID-19. Comprehensive profiling of ACE2 expression patterns could reveal risk
factors of severe COVID-19 illness. While the expression of ACE2 in healthy human
tissues has been well characterized, it is not known which diseases and drugs might
be associated with ACE2 expression.

Results: We develop GENEVA (GENe Expression Variance Analysis), a semi-automated
framework for exploring massive amounts of RNA-seq datasets. We apply GENEVA to
286,650 publicly available RNA-seq samples to identify any previously studied
experimental conditions that could be directly or indirectly associated with ACE2
expression. We identify multiple drugs, genetic perturbations, and diseases that are
associated with the expression of ACE2, including cardiomyopathy, HNF1A
overexpression, and drug treatments with RAD140 and itraconazole. Our joint
analysis of seven datasets confirms ACE2 upregulation in all cardiomyopathy
categories. Using electronic health records data from 3936 COVID-19 patients, we
demonstrate that patients with pre-existing cardiomyopathy have an increased
mortality risk than age-matched patients with other cardiovascular conditions.
GENEVA is applicable to any genes of interest and is freely accessible at http://
genevatool.org.

Conclusions: This study identifies multiple diseases and drugs that are associated
with the expression of ACE2. The effect of these conditions should be carefully
studied in COVID-19 patients. In particular, our analysis identifies cardiomyopathy
patients as a high-risk group, with increased ACE2 expression in the heart and
increased mortality after SARS-COV-2 infection.

Background
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute

respiratory syndrome coronavirus 2 (SARS-COV-2). The World Health Organization
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(WHO) declared the COVID-19 outbreak a pandemic on March 11, 2020. As of August

10, 2021, there have been 200 million recorded COVID-19 cases and over 4 million

deaths [1].

Angiotensin-converting enzyme 2 (ACE2) is the cell-entry receptor for SARS-CoV-2

[2]. The binding between ACE2 and spike (S) protein of SARS-COV-2 initiates the viral

entry into target cells. ACE2 plays key roles in both the transmission and pathogenesis

of SARS-CoV-2, as demonstrated by the following lines of evidence: (1) SARS-CoV-2

fails to infect the lung-derived cell line A549 in the absence of ACE2 expression. The

infection is restored after overexpressing ACE2 in the cell line [3]. (2) SARS-CoV-2 fails

to infect wild-type mice but can infect and cause pneumonia in transgenic mice ex-

pressing human ACE2 [4, 5]. (3) COVID19-related tissue damages are detected in or-

gans with ACE2 expression, including lungs, intestines, colons, and hearts [6–8]. (4)

ACE2 expression is increased in the lungs of patients with comorbidities associated

with severe COVID-19, suggesting that the level of ACE2 expression is associated with

disease severity [9]. Taking these lines of evidence together, it is crucial to comprehen-

sively characterize the ACE2 expression in human tissues.

To comprehensively profile the expression patterns of ACE2, we not only need to

characterize its expression in healthy tissues but also identify diseases, drugs, and gen-

etic perturbations that are associated with ACE2 expression changes. The expression of

ACE2 in healthy human tissues has been well characterized by resources such as the

Human Cell Atlas and GTEx, with the highest expression detected in the intestine,

testis, lung, cornea, heart, kidney, and adipose tissues [10, 11]. However, it is still not

clear which diseases and drugs are associated with the ACE2 expression. Since ACE2

expression is tightly linked with the pathogenicity of SARS-COV-2, characterizing the

expression pattern of ACE2 in different conditions will help us reveal and explain the

risk factors of severe illness from COVID-19.

RNA-sequencing data profiles the full transcriptome of samples. Currently, more

than 200,000 human RNA-seq samples are publicly available, providing an unprece-

dented opportunity for us to examine ACE2 expression in different human cell types

under a variety of conditions and treatments. Data harmonization efforts such as

ARCHS4 have uniformly preprocessed the RNA-seq data, making them readily avail-

able for analysis [12]. However, fully automated analysis of these datasets faces two

main obstacles. First, the metadata are non-standardized and are often unstructured,

making it difficult to extract experimental conditions from the studies. Second, experi-

mental designs are highly variable. While some studies adopt the simple control-

versus-treatment design, other studies are more complicated, involving multiple time

points, combination treatments, or stratified cohorts. The heterogeneous design makes

it difficult to analyze the datasets using a single statistical model.

Multiple tools have been made to analyze transcriptomics data, including CREEDS

[13], scanGEO [14], GEM-TREND [15], StarGEO [16], SIGNATURE [17], SPIED [18],

Cell Montage [19], ProfileChaser [20], ExpressionBlast [21], and SEEK [22]. However,

the existing tools have several limitations, preventing them from fully exploring the

publicly available RNA-sequencing resources. First, some of the tools annotate the

metadata manually and are unable to cover the large number of datasets currently

available. Second, the tools focus on differential expression analysis between two groups
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(e.g., control versus treatment), preventing them from analyzing studies with more

complex study designs.

In this study, we developed GENEVA (GENe Expression Variance Analysis), a semi-

automated framework for exploring public RNA-seq datasets. For a given gene, GEN-

EVA identifies the most relevant datasets by analyzing the variance of the gene expres-

sion. GENEVA visualizes the relevant datasets for detailed manual analysis. GENEVA is

scalable and is agnostic to study designs. Using GENEVA, we identified multiple drugs,

genetic perturbations, and diseases that modulate the expression of ACE2, including

cardiomyopathy, HNF1A overexpression, and drug treatments with RAD140 and itra-

conazole. Our in-depth meta-analysis of seven datasets reveals increased ACE2 expres-

sion in all cardiomyopathy categories. By analyzing the clinical data of 3936 COVID19

patients at UCSF hospital, we demonstrate that patients with pre-existing cardiomyop-

athy have an increased mortality risk than other patients, including propensity score-

matched patients with other cardiovascular conditions.

Results
Analysis of 286,650 RNA-seq samples reveals complex transcriptional networks of ACE2.

Our study leverages human RNA-sequencing data from the ARCHS4 project, contain-

ing 286,650 uniformly preprocessed data from 9124 Gene Expression Omnibus (GEO)

series [12]. The large number of RNA-sequencing samples provides an unprecedented

resource for studying the expression of ACE2 in different human cell types under a var-

iety of conditions and treatments.

We first characterized the transcriptional networks of ACE2 using all 286,650 sam-

ples. We calculated the Pearson correlation between ACE2 and all other human genes.

Because of the large sample size, most of the correlations are statistically significant,

even after multiple testing adjustments. Therefore, we focused on the correlation coeffi-

cients themselves as a measure of effect size, rather than the p values or significance.

While most of the genes have correlation coefficients near 0, a small set of genes are

highly correlated with ACE2, with the highest correlation to be 0.72 between FABP2

and ACE2 (Additional file 1, Fig. S1A and B). The top correlated genes include FABP2,

MEP1B, and transcription factors such as HNF4G (Top 30 genes shown in Additional

file 1, Fig. S1B-C, and all correlations listed in Additional file 2 Table S1 and Additional

file 3 Table S2). The top correlated pathways include multiple pathways related to the

digestive process (Top 30 pathways shown in Additional file 1, Fig. S1D, and all path-

ways listed in Additional file 4, Table S3), consistent with the high expression of ACE2

in small intestines.

Dataset from the GEO database covers a variety of tissue types. To see how the tissue

differences affect the correlation between ACE2 and other genes, we examined tissue-

specific transcriptome data from the GTEx consortium. We found similar co-

expression relationship between ACE2 and other genes using data from GTEx or GEO

(correlation = 0.42, p value < 0.0001, Additional file 5, Table S4), suggesting that the

co-expression profile between ACE2 and other genes are heavily influenced by the tis-

sue differences. To avoid our analysis being dominated by tissue differences, we evalu-

ated the correlations between ACE2 and other human genes within each RNA-seq

dataset. We then calculated the mean and variances of the correlations across all
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datasets. Our analysis reveals a positive relationship between the mean and variance of

the correlation coefficients (Additional file 1, Fig. S1E). While some genes have a high

average correlation with ACE2, their correlation with ACE2 is highly variable in indi-

vidual datasets. The results suggest against a common transcriptional network around

the ACE2 gene. Rather, ACE2 is co-regulated with different sets of genes under differ-

ent conditions.

We adopted a mixed-effect model to estimate the overall association between ACE2

and other genes across studies, allowing us to prioritize genes with relatively conserved

correlations with ACE2 across all studies. The top genes include MYO7B, CALML4,

and transcription factors such as HNF1A (Top 30 genes shown in Additional file 1, Fig.

S1 F-G, and all genes listed in Additional file 6, Table S5 and Additional file 7, Table

S6). Pathway analysis identified many metabolic processes to be correlated with ACE2

expression. The findings are consistent with previous observations that ACE2 is in-

volved in glucose metabolism and energy stress responses (Top 30 pathways shown in

Additional file1 Fig. S1 H, and all pathways listed in Additional file 8, Table S7) [23,

24].

Our analysis identified three transcription factors in the hepatocyte nuclear factor

family, including HNF4G, HNF1A, and HNF4A (Additional file 1, Fig. S1 C and G).

HNF4G has the highest overall correlation with ACE2 while HNF1A has the highest

standardized correlation coefficient within studies. We then tested the causal relation-

ship between the transcription factors and ACE2 expression. We identified two RNA-

seq datasets that compared human cells with or without genetic perturbation of

HNF4G and HNF1A. While HNF4G is positively correlated with ACE2 expression

(Additional file 1, Fig. S1 C), overexpression of HNF4G does not lead to significantly

increased ACE2 expression (Additional file 1, Fig. S1I). Rather, there is a trend of re-

duction in ACE2 expression. HNF1A overexpression leads to increased ACE2 expres-

sion and HNF1A knockdown reduced ACE2 expression (Additional file 1, Fig. S1J) in

LNCaP cells, a prostate cancer cell line. The result is consistent with the positive cor-

relation between HNF1A and ACE2 (Additional file 1, Fig. S1G). A previous study

showed that HNF1A induces ACE2 in pancreatic islets [25]. Our result in a prostate

cancer cell line further confirmed the role of HNF1A in regulating ACE2. However, it

should be noted that HNF1A and ACE2 are not correlated in all RNA-seq datasets

(Additional file 1, Fig. S1K), demonstrating the complexity of ACE2 regulation in differ-

ent tissues.

Gene expression variance analysis reveals diseases and therapeutics that modulate the

expression of ACE2

Next, we hope to identify conditions that are associated with the expression of ACE2.

We developed a computational framework named GENEVA (Gene Expression Vari-

ance Analysis) to identify the most relevant datasets for visualization and detailed man-

ual analysis (Fig. 1A and “Methods”). GENEVA prioritizes the datasets that have a large

variance of ACE2 expression. The rationale is that datasets with large ACE2 variance

are likely to contain conditions that modulate the ACE2 expression. At the same time,

GENEVA controls for the overall heterogeneity of the samples to prioritize datasets in

which ACE2 is specifically modulated by experimental conditions rather than due to
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tissue type differences. In addition, GENEVA embeds the metadata into numerical

space and prioritizes datasets with high correlations between ACE2 expression and the

metadata (Fig. 1B). This allows GENEVA to identify datasets in which ACE2 is regu-

lated by experimental conditions rather than randomness or unexplained factors. While

our study focuses on ACE2 and its role in COVID-19 disease, GENEVA is applicable

to all genes. We created a web application that allows researchers to apply GENEVA to

their gene of interest [http://genevatool.org].

We tested the significance of the GENEVA scores using a permutation procedure.

We randomly shuffle the samples across studies to generate a null distribution. We

compared each GENEVA score to the null distribution to calculate the p value. We ad-

justed for multiple testing using the false discovery rate (FDR) method [26]. We identi-

fied 27 significant datasets with FDRs less than 0.05 (Table 1). Interestingly, GENEVA

identified HNF1A as an ACE2 modulator, which was also identified in our correlation

analysis (Additional file 1, Fig. S1J). GENEVA additionally identified multiple drugs and

diseases that modulate or are associated with the ACE2 expression, revealing potential

risk factors for severe illness from COVID-19.

Here, we highlight three ACE2-modulating conditions, manually picked based on

their effect on ACE2 expression and their potential impact on public health. Data from

GSE89714 show upregulated expression of ACE2 in hypertrophic cardiomyopathy (Fig.

2A, B). Hypertrophic cardiomyopathy is the most common inherited heart disease, af-

fecting an estimated 15,188,000 individuals (0.2%) worldwide [27]. Our finding is con-

sistent with an increased death rate in COVID-19 patients with heart conditions [28–

30] and suggests that higher ACE2 expression can contribute to the increased risk. Data

from GSE104177 showed that RAD140, a selective androgen receptor modulator,

Fig. 1 Mining RNA-seq data using Gene Expression Variance Analysis (GENEVA). A The workflow of GENEVA.
B The procedure for embedding metadata into numerical vectors
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induces ACE2 expression in human breast cancer xenografts (Fig. 2C, D). Data from

GSE114013 show that itraconazole, an antifungal drug, upregulates ACE2 expression in

two colorectal cancer cell lines, HT55 and SW948 (Fig. 2 E, F). These findings suggest

that these drugs should be studied with respect to ACE2 expression in lung and cardiac

cells and tissues and that patients on these drugs should be studied closely during the

pandemic. If these subsequent studies do continue to suggest this effect on increasing

ACE2 expression, heightened caution could be warranted when using these drugs dur-

ing the COVID-19 pandemic.

Joint analysis shows ACE2 upregulation in all types of cardiomyopathy

GENEVA prioritizes datasets with large variances in ACE2 expression. However, the

procedure may introduce bias, as studies with small ACE2 variations are ignored. Con-

sider an example in which multiple studies have profiled the effect of a drug. Some

studies show that the drug upregulates ACE2 while other studies show that the drug

has no effect on ACE2. The effect of the drug will be overestimated if a researcher only

includes the studies with positive results. Therefore, after the GENEVA analysis, a joint

analysis of all related datasets is required to confirm the findings.

We performed a comprehensive search for datasets related to the three highlighted

conditions, including cardiomyopathy, itraconazole treatment, and RAD140 treatment.

Table 1 RNA-seq datasets with GENEVA scores of ACE2 expression that are statistically significant
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We did not find additional datasets related to itraconazole and RAD140 treatment. For

cardiomyopathy, we identified a total of 7 datasets. We performed a meta-analysis using

a mixed-effect model (with cardiomyopathy as the fixed effect and the dataset as the

random effect), taking data from all 7 datasets into account. The result confirmed that

ACE2 expression is significantly elevated in heart tissue samples from cardiomyopathy

patients (p value < 0.001).

We next examined the ACE2 expression in different types of cardiomyopathy. The

most common types of cardiomyopathies include dilated cardiomyopathy (DCM),

hypertrophic cardiomyopathy (HCM), restrictive cardiomyopathy (RCM),

Fig. 2 Highlighted conditions that modulate ACE2 expression. A,B Plots showing data from a study with
GEO accession GSE89714. A A scatter plot showing the association between ACE2 expression and the
embedded metadata. All metadata fields are concatenated for embedding. The plot only shows the sample
title as labels. The labels are jittered to avoid perfect overlap. The color code represents the ACE2
expression level. B Box plot showing the ACE2 expression in normal hearts and hearts with hypertrophic
cardiomyopathy. C,D Plots visualizing data from a study with GEO accession GSE104177, showing the ACE2
expression in breast cancer xenografts with or without RAD140 treatment. E,F Plots visualizing data from a
study with GEO accession GSE114013, showing the ACE2 expression in two prostate cancer cell lines with
or without itraconazole treatment
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arrhythmogenic right ventricular cardiomyopathy (ARVC), and left ventricular non-

compaction (LVNC) [31–35]. These cardiomyopathy types have different causes and

show distinctive morphology and physiology characteristics. Although previous studies

have demonstrated ACE2 upregulation in DCM and HCM [36, 37], how ACE2 is regu-

lated in other types is unknown. Within the 7 datasets, we were able to identify all the

common cardiomyopathy types. Our analysis revealed significantly increased ACE2 ex-

pression in most of the cardiomyopathy types (Fig. 3), including DCM, HCM, RCM,

and LVNC. Although the result of ARVC is not statistically significant, the data show a

clear trend of ACE2 upregulation (Fig. 3D). We performed Egger regression and did

not observe significant publication bias in the cardiomyopathy datasets [38] (Additional

file 1, Figure S2).

COVID-19 patients with pre-existing cardiomyopathy show an increased mortality rate

While COVID19 patients with cardiovascular conditions show a higher mortality rate,

it is not clear how cardiomyopathy, in particular, affects the survival of the patients. Be-

cause the ACE2 expression is significantly elevated in the heart of cardiomyopathy pa-

tients, we hypothesize that pre-existing cardiomyopathy leads to increased mortality in

patients with COVID19.

We identified 3936 COVID19 patients from the electronic health records (EHR) of

the University of California San Francisco (UCSF) hospital. We divided the patients

into three groups, including patients with pre-existing cardiomyopathy (N = 43), pa-

tients with other pre-existing cardiovascular diseases (N = 624), and patients without

cardiovascular diseases (N = 3269) (Table 2). The most common non-cardiomyopathy

cardiovascular diseases include hypertension (N = 424), atherosclerotic heart diseases

(N = 120), and cardiac arrhythmia (N = 105).

We first compared the cardiomyopathy patients to patients without cardiovascular dis-

eases. Patients with cardiomyopathy have a larger proportion of males and older ages.

They also have a higher percentage of patients with pre-existing conditions such as can-

cer, diabetes, and hyperlipidemia. A higher percentage of cardiomyopathy patients have

severe COVID-19 disease presentations, including ventilator use, respiratory failure, chest

pain, and death (Table 2). We then performed survival analysis to test the effect of cardio-

myopathy while controlling for differences in age, gender, and pre-existing conditions

using a multivariable Cox proportional-hazards model. We confirmed that cardiomyop-

athy is significantly associated with the risk of death (p = 0.004) (Fig. 4A).

We next compared the cardiomyopathy patients to patients with other cardiovascular

diseases. Cardiomyopathy patients have a higher proportion of males compared to pa-

tients with other cardiovascular diseases. Age, race, and pre-existing conditions are

comparable between the two groups. Again, we observe that a higher percentage of car-

diomyopathy patients have severe COVID-19 presentations, including ventilator use,

chest pain, and death (Table 2). Multivariable Cox proportional-hazards regression con-

firms that cardiomyopathy is significantly associated with the risk of death (p = 0.038,

438% increase in observed death rate) (Fig. 4A). We further confirmed the increased

mortality by comparing cardiomyopathy patients with a propensity score-matched co-

hort of patients with other cardiovascular diseases (Fig. 4B and Additional file 1, Table

S8).
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We then examined the survival of cardiomyopathy patients who are COVID-19 nega-

tive. We compared the survival of COVID-19-negative cardiomyopathy patients (N =

2250) with a propensity score-matched cohort of patients with other cardiovascular dis-

eases (N = 18,000). The two cohorts are comparable in demographics and non-

cardiovascular diseases (Additional file 1, Table S9). The 5-year mortality rate is only

slightly higher in the cardiomyopathy patients (p = 0.034, 22% increase in observed

death rate) (Fig. 4C). When we consider the patient’s survival at 160 days, a time frame

comparable to the COVID-19-positive dataset, there is no significant difference be-

tween the survival of the two groups (Fig. 4C).

Taken together, the results show that cardiomyopathy itself does not pose large add-

itional risk of mortality among patients with cardiovascular diseases. Rather, the inter-

action between SARS-CoV-2 infection and pre-existing cardiomyopathy leads to

Fig. 3 Meta-analysis confirms ACE2 upregulation in all major types of cardiomyopathy. A The ACE2
expression in normal hearts and hearts with DCM. Data are from five RNA-seq datasets and one microarray
dataset. The overall p value is calculated using a mixed model, with the dataset as the random effect and
DCM as the fixed effect. B–E The ACE2 expression in normal hearts and hearts with HCM, RCM, LVNC, and
ARVC. p values in B–E are calculated using t-tests
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increased mortality in patients. Our transcriptomics analysis suggests that the upregulated

ACE2 expression may contribute to the disease severity of COVID-19 in patients with pre-

existing cardiomyopathy. However, further mechanistic studies are needed to establish the

causal relationship between ACE2 upregulation and mortality in COVID-19 patients.

Discussion
The disease severity of COVID-19 patients varies from asymptomatic to life-

threatening. While we do not fully understand the reason behind such variation, it is

Table 2 Demographic and clinical information of COVID-19 patients

Fig. 4 Patients with pre-existing cardiomyopathy show an increased mortality rate. A Kaplan-Meier curve of
COVID19 patients with pre-existing cardiomyopathy (N = 43), patients with other pre-existing cardiovascular
diseases (N = 624), and patients without cardiovascular diseases (N = 3269). P values are from Cox
proportional-hazards models, controlling for differences in the demographics and non-cardiovascular
conditions between the groups. B Kaplan-Meier curve of COVID19 patients with pre-existing
cardiomyopathy (N = 43) and a cohort of propensity score-matched patients with other pre-existing
cardiovascular diseases (N = 344). P values are from a log-rank test. C Kaplan-Meier curve of COVID-19-
negative patients with pre-existing cardiomyopathy (N = 2250) and a cohort of propensity score-matched
patients with other pre-existing cardiovascular diseases (N = 18,000). P values are from a log-rank test
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clear that the disease severity is determined by multiple factors, including age, gender,

the status of the immune system, and the pre-existing conditions [7, 39–41]. ACE2 ex-

pression is a key determinant of the disease severity, as shown by multiple studies in

humans and in animal models [3, 5, 9]. Therefore, it is critical to identify conditions

are associated ACE2 expression, as the information will help us reveal and explain fac-

tors associated with increased risk of severe illness from COVID-19.

We leveraged the massive amount of publicly available RNA-seq data to identify the

ACE2-modulating conditions. While many tools exist for analyzing bulk GEO data,

they are not optimized for this purpose. First, some tools require researchers to search

for datasets using keywords, such as the name of a drug or a disease. These tools do

not address our needs, as we are looking for any conditions that modulate ACE2 ex-

pression. Second, some tools require manual annotation of experimental groups in the

studies, which are not scalable and often only cover a small subset of currently available

datasets. Finally, the existing tools focus on differential expression analysis of two

groups and are unable to address more complex experimental designs.

We address the problems using a variance analysis approach. Instead of comparing

two experimental groups, we quantify the variance of the gene expression across all

samples in a study. The rationale is that datasets with large ACE2 variances are likely

to contain conditions that are associated with ACE2 expression. We improved our ap-

proach by using two modifications. First, we numerically embedded the metadata and

calculated the regression coefficient R2 between ACE2 and the embedding. This allows

us to prioritize datasets in which the ACE2 variation is associated with metadata. Sec-

ond, we controlled for the overall heterogeneity of samples in the study, this allows us

to prioritize datasets in which ACE2 are specifically modulated rather than as a result

of cell-type differences.

Our study identifies multiple diseases, conditions, and genetic perturbations that are

associated with ACE2 expression. When interpreting these findings, readers should take

into account several limitations of our study. First, many of the conditions are discov-

ered based on data from one study with small sample sizes. These results should be

viewed as data-driven hypotheses rather than definitive proofs. Additional data is re-

quired to confirm the findings. Second, our analysis does not establish a direct link be-

tween COVID-19 risk and the identified ACE2 modulators. Clinical studies are

required to test if these ACE2-modulating conditions alter the risk of COVID-19 infec-

tion and pathogenesis. Third, many of the RNA-seq datasets are derived from observa-

tional studies. The association between conditions and ACE2 expression does not

indicate causal relationships. Finally, the datasets profile the ACE2 expression in bulk

tissues. Therefore, it is not clear if the variation of ACE2 expression is due to a change

in cellular composition or a change in transcriptional regulation. Single-cell analysis is

required to identify the cause of ACE2 expression change.

Heart diseases are associated with severe COVID-19 illness through two mechanisms.

Pre-existing heart conditions are comorbidities of COVID19 [28, 41]. On the other

hand, SARS-COV-2 infection can induce acute myocardial injury [30]. Cardiomyopathy

is one of the most common heart diseases. Compared to other age-related heart condi-

tions, cardiomyopathy can affect individuals at any age. However, clinical studies were

lacking to specifically characterize the disease severity of COVID-19 in patients with

cardiomyopathy. Our transcriptional analysis highlights the significantly increased
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ACE2 expression in the hearts of cardiomyopathy patients, suggesting that cardiomyop-

athy patients are at an increased risk of heart damage caused by COVID-19.

Consistent with the RNA-seq finding, we found that COVID19 patients with pre-

existing cardiomyopathy show increased mortality risk than other populations, even

compared with age-matched populations with other cardiovascular conditions. While

mechanistic research is needed to establish the causal relationship between ACE2 up-

regulation and the increased mortality, our result identifies the cardiomyopathy patients

as a high-risk group that needs extra protection and care.

This project demonstrated public RNA-sequencing data as a valuable resource for

biomedical knowledge discovery. The existing RNA-seq data can be quickly repurposed

to address pressing problems, such as identifying the risk factor of COVID19. While

this study focused on analyzing the expression of ACE2, researchers can identify modu-

lators for any genes or gene signatures of interest using the GENEVA web portal at

genevatool.org.

Conclusions
We applied GENEVA (GENe Expression Variance Analysis) to 28,6650 publicly avail-

able RNA-seq samples to identify any previously studied experimental conditions that

could directly or indirectly modulate ACE2 expression. We identified multiple drugs,

genetic perturbations, and diseases that modulate the expression of ACE2, including

cardiomyopathy, HNF1A overexpression, and drug treatments with RAD140 and itra-

conazole. Our unbiased meta-analysis of seven datasets confirms ACE2 upregulation in

all cardiomyopathy categories. Using electronic health records data from 3936

COVID19 patients, we demonstrate that patients with pre-existing cardiomyopathy

have an increased mortality risk than matched patients with other cardiovascular

conditions.

Methods
Data preparation

We downloaded the uniformly processed RNA-seq data from ARCHS4 website

(https://amp.pharm.mssm.edu/archs4/download.html) on August 03, 2020. The down-

loaded data include gene-level count data of 286,650 samples from 9124 datasets and

sample-level metadata. We transformed the gene count data into percentile rank data,

which reduces the influences of library size, batch effects, and extreme values [42, 43].

We downloaded study-level metadata using the entrez_search and entrez_summary

function from the rentrez library [44].

Co-expression analysis

We first calculated the Pearson correlation between ACE2 and other genes using data

from all 286,650 samples. For related dataset that share samples with each other, we

only included one dataset with the largest sample size and exclude the other related

dataset to make sure the studies are independent. Transcription factors are identified

by selecting genes with the Gene Ontology term “DNA-binding transcription factor ac-

tivity (GO:0003700).” We also performed mixed-effect regression to assess the associ-

ation between ACE2 and other genes while controlling for study differences [Gene ~
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ACE2 (fixed effect) + dataset ID (random effect for intercept and slope)]. The lme4 R

package was used to fit the mixed-effect models. To identify pathways associated with

ACE2, we used the associations with ACE2 (measured by the t statistics of the fixed ef-

fect in the mixed-effect model) as a signature. We used the signature to query the Gene

Ontology Biological Process database [45]. The fgsea function from the fgsea library

was used to calculate the enrichment score [46].

Metadata embedding

We first concatenated the metadata of each sample into a single string, including the

title, tissue type, and other characteristics (e.g. demographics, time points, treatment,

genetic information, and disease status). We then calculated the pairwise Levenshtein

distance between the strings that belong to the same study (GEO series). We applied

multidimensional scaling to the pairwise Levenshtein distance and embedded the

strings into 2-dimensional space for visualization and downstream analysis.

GENEVA analysis

For a given gene in a given dataset, we first calculated the variance of the gene (VARg).

We measure the overall heterogeneity of the samples by calculating the average vari-

ance of all genes (VARm). We run a regression using the expression of the gene as the

dependent variable and the embedded metadata as independent variables (expression ~

first embed dimension + second embed dimension). The regression coefficient (R2) rep-

resents the association between the expression of the gene and the embedded metadata.

The product between VARg and R2 represents the variance of the gene explained by

the embedded metadata. The GENEVA score is defined as VARg × R2 / VARm.

To test the significance of the GENEVA scores, we shuffled the samples within each

dataset. We then calculated the GENEVA scores of all shuffled datasets to create a null

distribution. Given a GENEVA score G, its p value is defined as the probability that the

null distribution is greater than G: p value = Prob(null > G). We adjust the p values for

multiple testing using the false discovery rate method.

Joint analysis of cardiomyopathy datasets

We searched the gene expression omnibus using the keyword “cardiomyopathy.” We

then filter the results to only include studies that (1) profiled the transcriptome of heart

tissues from humans and (2) compared cardiomyopathy samples with healthy samples.

We identified 7 studies. We used a mixed-effect model to test the effect of cardiomyop-

athy on ACE2 expression: ACE2 expression ~ study (random effect) + cardiomyopathy

status (fixed effect).

To examine the ACE2 expression in different types of cardiomyopathy, we separated

the cardiomyopathy samples based on their subtype. We matched the cardiomyopathy

samples with healthy controls within the same study. We used unpaired T-tests to test

the effect of each cardiomyopathy type on ACE2 expression. Since data from multiple

studies are available for dilated cardiomyopathy (DCM), we used a mixed-effect model

to test the effect of DCM on ACE2 expression: ACE2 expression ~ study (random ef-

fect) + cardiomyopathy status (fixed effect).
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To test for publication bias, Egger regression was performed by fitting a linear model

using effect size/standard error as the dependent variable and 1/standard error as the

dependent variable. The p value of the intercept term was used to assess the signifi-

cance of the publication bias.

Analysis of electronic health records

The UCSF COVID-19 Data Mart records the clinical information of COVID19 pa-

tients and selected control patients using the Observational Medical Outcomes

Partnership (OMOP) data format. We identified COVID19 patients from the clin-

ical data using the ICD10 code U07. 1. We identified cardiomyopathy patients

using the ICD10 codes I42 and I43, entered before their first COVID19 diagnosis.

We identified patients with other cardiovascular diseases using the following

ICD10 codes I00 - I99. We compared the cardiomyopathy patient with patients

with other cardiovascular diseases and patients without cardiovascular diseases. We

tested if the demographic and clinical variables are significantly different between

the groups using single variable logistic regressions (cardiomyopathy ~ clinical vari-

able). We used the coxph function in the survival R package to perform the sur-

vival analysis, controlling for the variables that are significantly different in the

logistic regressions. Patient survival time is defined as the time between their first

COVID19 diagnosis and their death date. Live patients are censored on the last

day of their encounter. In the COVID-19-negative cohort, cardiomyopathy patients

are defined as patients whose first cardiovascular-related diagnosis is cardiomyop-

athy (ICD10 code I42 or I43). Patients with other cardiovascular diseases are de-

fined as patients who have cardiovascular diseases (ICD10 code I00 - I99), but do

not have cardiomyopathy. Patient survival time is defined as the time between their

first cardiovascular disease and their death. Live patients are censored on the last

day of their encounter. To perform propensity score matching, we first calculated

the propensity score using logistic regression (cardiomyopathy ~ age + race + gen-

der + non-cardiovascular pre-existing conditions). We subsampled the non-

cardiomyopathy cohort so that the distribution of its propensity score matches with

the cardiomyopathy cohort.

GENEVA web portal

GENEVA web tool is an open-source application available under GNU General

Public License at http://genevatool.org. It is implemented in python web framework

Django. The source code for the tool is available in the public Git repository at

https://github.com/NavchetanKaur/geneva-webtool. The tool offers an intuitive

interface and user guide on the home page. Users can select either of the two op-

tions from “Gene Query” and “Gene Signature Query” and query their gene of

interest or set of upregulated and downregulated genes of interest. The results are

displayed in tabular form with calculated GENEVA scores. GSE descriptions are

further represented in plots and tables.

All experimental methods comply with the Helsinki Declaration.

Supplementary information
The online version contains supplementary material available at https://doi.org/10.1186/s13059-021-02589-4.
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