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Abstract

Finding Attacks and Vulnerabilities in Critical Systems

by

Dipanjan Das

Starting from that historic moment in 1948 when the first ever piece of software

was written and successfully executed on a stored-program computer to this era of su-

percomputers, software have continuously been evolving in tandem with the underlying

hardware to churn the last bit of performance out of the silicon. Long gone those days

when the only use of software was to perform some simple calculations, much like to-

day’s handheld calculators. In the last few decades, the software industry has witnessed

tremendous growth. The collective effort of the community has pushed software to its

limit—both in terms of complexity and criticality. Today, software is frequently used

in a multitude of critical applications, from solving existential problems to supporting

diverse business scenarios. Traffic control systems, medical devices, nuclear power grids,

the defense and military systems, autonomous vehicles, industrial control systems, the

on-board computer of spacecrafts, financial trading systems—all these systems have one

thing in common—even the most minor glitch in the software running on them can wreak

havoc.

Given the variety of use-cases, deployment scenarios, framework or language used to

develop the software, almost inevitably, no single technique is enough to deal with the

complexity of analyzing critical software components. For example, a financial trading

system runs in a very different environment than an operating system kernel, which would

bring in different set of security concerns from a researcher’s perspective. Similarly, the

impact of failure of both the systems would be different as well. On the other hand,
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an operating system kernel would be highly optimized for performance, which would, in

turn, influence the choice of the language it would be written in. Despite these challenges,

by the very nature of critical systems, the need of ensuring the safety and security of

such systems is paramount.

My Ph.D. is inspired by the diversity, challenges, and the importance of such critical

systems. In my research journey, I explored ways to understand, attack, and mitigate the

threats on critical systems through the lens of a security researcher. In this thesis, I will

first provide a detailed introduction of critical systems, along with the unique challenges

in their security analysis, highlighting why a one-size-fits-all technique is likely not to

work across systems. Then, I will present my research which pushes the limits of the

current advancements in the security analysis for critical systems. Specifically, I will

cover the following—(i) PeriScope, a technique to find vulnerabilities in the operating

system kernel through a non-traditional attack surface. In the Wi-Fi drivers of two

popular chipset vendors, PeriScope discovered 15 unique vulnerabilities, 9 of which

were previously unknown. (ii) An in-depth analysis of the multi-billion dollar Non-

Fungible Token (NFT) ecosystem, focusing on the security and privacy issues, and the

design weaknesses found in the NFT marketplaces. In the top 8 marketplaces (ranked

by transaction volume), we discovered a number of potential issues, many of which can

lead to substantial financial losses, and finally (iii) Hybrid Pruning, a novel program

analysis technique that injects run-time information in the traditional static analysis to

improve its precision. On our dataset of 12 CGC and 8 real-world applications, our hybrid

approach cuts down the warnings up to 21% over vanilla static analysis, while reporting

19 out of 20 bugs in total. For each approach, I will first present the technique, and then

establish its real-world applicability through thorough evaluations.
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Chapter 1

Introduction

Software has permeated every facet of our lives, from the moment we wake up until we

go to bed. It powers our smartphones, manages our social interactions through social

media platforms, and facilitates online shopping and banking transactions. It is the

backbone of industries such as healthcare, finance, transportation, and entertainment.

Yet, depending on the context the software is being used, some applications are more

critical than the others. Critical software systems are those that are essential for the

functioning and operation of the critical infrastructure, industries, or services. Critical

software systems have a profound impact on our lives, influencing various aspects of

modern society. For example, an air traffic control system enables safe air travel, while

power grid management systems ensure a stable supply of electricity. Medical device

software saves lives, and enhances patient care, while financial trading systems drive

global economic activity. Without these critical software systems, our daily lives would

be significantly disrupted, highlighting their immense importance in maintaining the

functioning and progress of society. Since these systems are designed to perform crucial

tasks, and have a direct impact on safety, security, or economic stability, they often require

high levels of reliability, availability, and security. Due to their critical nature, these
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Introduction Chapter 1

systems often undergo rigorous testing, certification, and security measures to mitigate

risks, and ensure reliable operation.

1.1 Taxonomization

According to the literature of software dependability and reliability [1], there are four

major types of critical systems:

• Safety critical. A system whose failure may lead to an injury, loss of life, or

serious environmental damage. An example of a safety-critical system is a control

system for a chemical manufacturing plant.

• Mission critical. A system whose failure may lead to the failure of some goal-

directed activity, or disrupt the overall system or project objectives, e.g., loss of

critical infrastructure or data. An example of a mission-critical system is a naviga-

tional system for a spacecraft.

• Business critical. A system whose failure may lead to significant tangible, or

intangible economic costs, e.g., loss of business, or damage to reputation. Such

a failure could result in very high costs for the business using that system. An

example of a business-critical system is the customer accounting system in a bank,

or a trading system run by a financial trading exchange, or a Non-Fungible Token

(NFT) marketplace.

• Security critical. A system whose failure may lead to the loss of sensitive data

through theft, or accidental loss. An example of a security-critical system is the

operating system kernel.

2
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It is worth mentioning that many systems have overlapping aspects of criticality, e.g.,

a system might be both safety-critical and business-critical at the same time.

1.2 Attack surfaces and attacks

Critical systems are diverse, and expose large attack surfaces. So, the attacks on

them are diverse as well. Attacks on them pose significant risks, and can have far-

reaching consequences. Malicious actors, often economically motivated and funded by

nefarious organizations, target these systems to disrupt essential services, compromise

sensitive data, and exploit vulnerabilities for personal gain, or to cause harm. From so-

phisticated cyber-attacks on power grids and transportation systems to targeted attacks

on healthcare and financial systems, the impact can be severe. These attacks may in-

clude techniques such as zero-day exploits, social engineering, ransomware, or distributed

denial-of-service (DDoS) attacks. The potential outcomes can range from financial losses,

and reputational damage to compromised safety, loss of life, and societal disruption. Since

critical systems are diverse in nature, I will primarily focus on two types of systems in

this dissertation—business-critical and security-critical systems.

Security-critical system. The OS kernel is a security-critical component that sits be-

tween the bare hardware and the user-space applications, and shields the applications

from the complexity of low-level interactions by providing critical system services, e.g.,

memory management, process management, user management, storage management, net-

working, interfacing with hardware devices, etc. Typically, it runs with an elevated priv-

ilege level enforced by the processor, e.g., ring 0 on Intel architecture. Therefore, the

compromise of a kernel component has a greater impact on the security of the entire

system than any user-space component, for example, attacks on the kernel can lead to

the compromise of sensitive data, unauthorized privilege escalation, system crashes, and

3
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the execution of arbitrary code in the extreme case. Worse, any compromise or exploita-

tion of the kernel can have cascading effects, enabling attackers to gain control on any

user-space application running atop.

OS kernels are found in computing devices of various sizes, processing abilities, ap-

plications, and complexities. General-purpose computing devices are often composed

of an application processor, surrounded by an array of peripheral devices, e.g., Wi-Fi,

Bluetooth, and various sensors. While the peripherals run proprietary, special-purpose

firmware; the application processor hosts the operating system (OS) kernel, usually Linux

or its derivative, with the user applications sitting atop. With the recent proliferation

of the peripherals present in such devices, both in types and numbers, the communi-

cation between these peripherals, and the OS kernel have become extremely complex

and chaotic. A probing framework allows an analyst to probe, record, mutate or replay

the data stream flowing both to and from the many peripherals. The OS kernel is an

attractive target for remote attackers. If compromised, the kernel gives adversaries full

system access, including the ability to install rootkits, extract sensitive information, and

perform other malicious actions, all while evading detection. Most of the kernel’s attack

surface is situated along the system call boundary. Ongoing kernel protection efforts

have focused primarily on securing this boundary; several capable analysis and fuzzing

frameworks have been developed for this purpose.

However, there are additional paths to kernel compromise that do not involve sys-

tem calls, as demonstrated by several recent exploits. For example, by compromising

the firmware of a peripheral device such as a Wi-Fi chipset, and subsequently sending

malicious inputs from the Wi-Fi chipset to the Wi-Fi driver, adversaries have been able

to gain control over the kernel without invoking a single system call. Unfortunately, the

lack of a practical probing and fuzzing frameworks that can help developers find and fix

such vulnerabilities occurring along the hardware-OS boundary is concerning.
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Business-critical system. An example of a business-critical system is a Non-Fungible

Token (NFT) marketplace (NFTM). Non-Fungible Tokens (NFTs) have emerged as a

way to collect digital art as well as an investment vehicle. Despite having been popu-

larized only recently, NFT markets have witnessed several high-profile (and high-value)

asset sales and a tremendous growth in trading volumes over the last year. Several NFT

marketplaces (NFTMs), e.g., OpenSea, Rarible, and Axie, emerged in recent years

to facilitate buying and selling NFTs. This has sparked the interest of both crypto art

collectors and traders. To put things into perspective, OpenSea, the largest NFTM, col-

lected $236M USD in platform fees generated out of a trading volume of $3.5B USD [2]

in August 2021 alone. This is around half of the volume [3] generated by the e-commerce

giant eBay during the same period. And the all-time combined trading volume of the top

three NFTMs—OpenSea, Axie, and CryptoPunks—surpassed $10B USD in Septem-

ber 2021 [4]. Individual NFT sales have also skyrocketed in recent months [5], with nine

out of ten of the most expensive sales [6] taking place between February and August 2021.

For example, the media widely reported on the digital artist Beeple, who sold an art piece

for $69.3M USD; as another example, the first tweet of Twitter CEO Jack Dorsey was sold

for $2.9M USD. Also, NFTMs have surfaced as the most gas-eating Ethereum contracts.

For example, OpenSea made it to the top of the list of gas-guzzlers in Etherscan [7],

consuming around 20% of the gas spent by the network.

As the NFT space exploded with multi-million dollar sales, cybercriminals and scam-

mers have inevitably flocked to the markets to make quick profits and cheat unsuspect-

ing users. As a result, numerous NFT scams also made recent headlines. Unfortu-

nately, these marketplaces have not yet received much security scrutiny. Instead, most

academic research has focused on attacks against decentralized finance (DeFi) proto-

cols and automated techniques to detect smart contract vulnerabilities. With enormous

funds flowing into decentralized finance (DeFi) applications, scams have become lucra-
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tive money-making opportunities. Previous research studied several different aspects of

crypto-economic attacks, e.g., financial repercussions due to transaction reordering [8–11],

flash loan abuse [12], arbitrage opportunities [13], and pump-and-dump schemes [14–16].

Besides protocol attacks, there also exists a substantial body of work on automated de-

tection of smart contract vulnerabilities, e.g., reentrancy, transaction order dependence,

integer overflows, and unhandled exceptions [17–29].

1.3 Automated vulnerability analysis

Analyzing attacks and finding vulnerabilities in critical systems pose certain chal-

lenges. The codebase of most of such systems is large, and ever-increasing in terms of

lines of code. In case of the kernel, it also deals with the complex aspects of supporting

a wide range of hardware and processor architectures, concurrency, and performance op-

timizations. Due to performance reasons, such code is often written in memory unsafe

languages, like C and C++. As it is for any large legacy codebase, they can hardly bene-

fit from the cutting-edge research on safe programming languages and their applications,

because it would require a significant amount of developers’ time and effort to port ex-

isting code to a new language and paradigm. The battle-tested tools in the researchers’

arsenal, i.e., most static (pointer and taint analysis) and dynamic (symbolic execution)

analysis techniques succumb to either time or resource budget; thereby causing severe

scalability issues.

The key techniques to automatically analyze large-scale software systems (which crit-

ical systems are a part of) are as follows:

Static analysis. Static program analysis analyzes a program without actually executing

it, and look for potential errors in the program behavior. Pointer and taint analyses

are the building blocks of several other static analysis techniques. Depending on the
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precision requirement, they can be flow-, context-, field-, or path-sensitive (in the extreme

case). However, as the analysis aims for a higher degree of sensitivity or a composition

of sensitivities, that makes them more memory and compute-intensive. Therefore, to

make the analysis practical, these techniques frequently (and unfortunately) sacrifice

precision in favor of scalability by over-approximating program behaviors by switching

to a lower sensitivity, and making certain approximate choices. Scaling these analyses

to real-world codebases written in memory-unsafe languages like the OS kernel, while

retaining precision under the constraint of practical time and resource budgets is an open

problem. Now, the imprecision from these basic analyses trickles down to their client

analyses (i.e., analyses that are dependent on them), thus making them imprecise as well,

in turn. Symbolic execution is another static technique which collects constraints along

a particular program path to derive the program input, or check for error conditions. It,

too, suffers from the scalability issues due to path explosion.

Dynamic analysis. Dynamic program analysis is a technique to analyze a program’s

behavior during execution. Fuzzing is a popular dynamic technique where the program

under test is typically fed with well-crafted, yet random data, and the program behavior is

observed for the presence of bugs. A complex system like the OS kernel has an enormous

state-space, which builds up over multiple inputs. Navigating through a state-space

of this magnitude without understanding the semantics and context of a program is

challenging for a fuzzer. System calls (syscalls) are the entry points to the OS kernel

from the user-space. A OS fuzzer invokes those syscalls with random arguments. Now,

those syscalls have mutual dependencies with each other. These dependencies along with

the statefulness hinder the exploration of the kernel code by any automated technique.

Data analysis. Depending on the system in question, oftentimes it is useful for ana-

lyzing past attacks from a security research standpoint. Such analyses have two distinct
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benefits—(i) they provide actionable insights to develop signatures for future attacks,

and (ii) they help developers close loopholes by making them aware of the past abuses.

Fortunately, in the blockchain world, data (the blockchain itself) is publicly available.

High-value financial attacks [30] are frequent in blockchain. But also, it brings in a

unique opportunity for the researchers to study such attacks, propose and deploy mitiga-

tion, and develop analysis tools to equip the community better for similar future attacks.

However, such analyses are not always straightforward; requiring deep understanding of

the financial protocol, attack simulation, and attack signature identification; oftentimes

across multiple protocols just to understand one single attack.

1.4 Contributions

In this dissertation, I present my research on two types of critical systems—Non-

Fungible Token (NFT) marketplace, which is a business-critical system, and operating

system (OS) kernel and application software, which are security-critical in their own right.

The security analysis of critical systems is challenging for many reasons. First, the nature

of interactions with critical systems vary across applications, which results in their attack

surfaces and attackers’ capabilities being different. For example, the attacker model

involved in case of an OS kernel is very different from an economic attacker launching

financial attacks on the NFT marketplaces. Second, such systems are developed using

different languages and framework that have their own security concerns. For instance,

OS kernels are highly performance-optimized, and therefore are typically written in a

low-level language like C, which is memory-unsafe. On the other hand, in the blockchain

world, they use languages like Solidity, which has got a different set of issues like

reentrancy. Third, critical systems are deployed in varied execution environments, e.g.,

a OS kernel is highly multi-threaded, where as, the Ethereum virtual machine (EVM)
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follows a linear execution model. Given the disparities, no single technique is evidently

not enough for the security analysis of the critical systems. What we rather need are

specialized techniques tailored to a particular class of critical system. In my Ph.D., I

demonstrated how traditional static and dynamic analysis can be used to automatically

find vulnerabilities in critical systems, and how we can derive meaningful insights on the

past attacks on such systems by a careful data analysis. In particular, this dissertation

makes the following contributions:

• We develop PeriScope, a generic probing framework that can inspect the in-

teractions between a driver and its corresponding device. PeriScope provides

the means to analyze the hardware-OS boundary, and to build more specialized

analysis tools. We extend PeriScope to build PeriFuzz, a vulnerability discov-

ery tool tailored to detect driver vulnerabilities occurring along the hardware-OS

boundary. The tool demonstrates the power of the PeriScope framework, and

it systematizes the exploration of the hardware-OS boundary. PeriFuzz fuzzes

overlapping fetches in addition to non-overlapping fetches, and warns about over-

lapping fetches that occurred before a driver crash. A warning observed before a

driver crash may indicate the presence of double-fetch bugs. As part of our eval-

uation, we discovered previously known and unknown vulnerabilities in the Wi-Fi

drivers of two of the most prominent vendors in the market. We responsibly dis-

closed relevant details to the corresponding vendors. We open-sourced our tool∗,

in order to facilitate further research exploration of the hardware-OS boundary.

• To the best of our knowledge, we are the first to study the market dynamics and

security issues of the multi-billion dollar NFT ecosystem. We systematize the

NFT ecosystem, looking at the participating actors—NFT marketplaces (NFTM),

∗https://github.com/securesystemslab/periscope
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external entities, and users—and we analyze their mutual interactions. We leverage

multiple sources of data, including the Ethereum blockchain, as well as asset and

event data sourced from the NFTM dApps, to paint a holistic picture of how the

ecosystem operates. We identify flaws in the NFTM designs, which, if abused, pose

a significant financial risk. We identify the off-chain external entities connected to

the NFT ecosystem, and how such entities can pose threats to users. We discover

and quantify trading malpractices, such as wash trading, shill bidding, and bid

shielding, which are taking place in the top marketplaces. The insight drawn from

our analysis sheds light on some of the prime factors responsible for driving up the

recent NFT frenzy. Interestingly, our findings show that at least half of such sales

show some suspicious signs. We open-sourced our analysis framework† along with

the data we collected to help researchers uncover further interesting insights about

the emerging NFT economy.

• We propose hybrid pruning, a new hybrid program analysis technique that combines

dynamic information with the vanilla static analysis to develop precise pointer

and taint analyses. To demonstrate the effectiveness of our hybrid technique, we

have further developed a vulnerability detection system as a client of our improved

pointer and taint analyses. It exhibits significantly lower false positive rate as

compared to its static counterpart. We implement our approach in a practical

prototype, and show its efficacy in an experimental evaluation on two different

datasets, i.e., CGC [31], and a collection of popular real-world programs.

1.5 Thesis organization

The rest of this thesis is structured as follows.

†https://github.com/ucsb-seclab/nft-security-study
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In Chapter 2, I present PeriScope, a Linux kernel based probing framework that

enables fine-grained analysis of device-driver interactions. PeriScope hooks into the

kernel’s page fault handling mechanism to either passively monitor and log traffic between

device drivers and their corresponding hardware, or mutate the data stream on-the-fly

using a fuzzing component, PeriFuzz, thus mimicking an active adversarial attack.

PeriFuzz accurately models the capabilities of an attacker on peripheral devices, to

expose different classes of bugs including, but not limited to, memory corruption bugs

and double-fetch bugs. To demonstrate the risk that peripheral devices pose, as well as

the value of our framework, we have evaluated PeriFuzz on the Wi-Fi drivers of two

popular chipset vendors, where we discovered 15 unique vulnerabilities, 9 of which were

previously unknown.

In Chapter 3, we first present a systematic overview of how the NFT ecosystem works,

and we identify three major actors: marketplaces, external entities, and users. We then

perform an in-depth analysis of the top 8 marketplaces (ranked by transaction volume) to

discover potential issues, many of which can lead to substantial financial losses. We also

collected a large amount of asset and event data pertaining to the NFTs being traded

in the examined marketplaces. We automatically analyze this data to understand how

the entities external to the blockchain are able to interfere with NFT markets, leading to

serious consequences, and quantify the malicious trading behaviors carried out by users

under the cloak of anonymity. Finally, we studied the 15 most expensive NFT sales to

date, and discovered discrepancies in at least half of these transactions.

In Chapter 4, we present a novel technique called hybrid pruning , where we inject

the information collected from a program’s dynamic trace, which is accurate by its very

nature, into a static pointer or taint analysis system to enhance its precision. We also

tackle the challenge of combining static and dynamic analyses, which operate in two dif-

ferent analysis domains, in order to make the interleaving possible. Finally, we show the
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usefulness of our approach by reducing the false positives emitted by a static vulnerability

detector that consumes the improved points-to and taint information. On our dataset of

12 CGC and 8 real-world applications, our hybrid approach cuts down the warnings up to

21% over vanilla static analysis, while reporting 19 out of 20 bugs in total.

Finally, I conclude my thesis by presenting the collective insight drawn from my

research in Chapter 5.
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Chapter 2

PeriScope: An Effective Probing

and Fuzzing Framework for the

Hardware-OS Boundary

Modern electronics often include subsystems manufactured by a variety of different ven-

dors. For example, in a modern cellphone, besides the main application processor running

a smartphone operating system such as Android, one might find a number of peripheral

devices such as a touchscreen display, camera modules, and chipsets supporting various

networking protocols (cellular, Wi-Fi, Bluetooth, NFC, etc.). Peripheral devices by dif-

ferent manufacturers have different inner workings, which are often proprietary. Device

drivers bridge the gap between stable and well-documented operating system interfaces

on one side and peripheral devices on the other, and make the devices available to the

rest of the system.

Device drivers are privileged kernel components that execute along two different trust

boundaries of the system. One of these boundaries is the system call interface, which

exposes kernel-space drivers to user-space adversaries. The hardware-OS interface should
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also be considered a trust boundary, however, since it exposes drivers to potentially

compromised peripheral hardware. These peripherals should not be trusted, because they

may provide a remote attack vector (e.g., network devices may receive malicious packets

over the air), and they typically lack basic defense mechanisms. Consequently, peripheral

devices have frequently fallen victim to remote exploitation [32–37]. Thus, a device

driver must robustly enforce the hardware-OS boundary, but programming errors do

occur. Several recently published attacks demonstrated that peripheral compromise can

be turned into full system compromise (i.e., remote kernel code execution) by coaxing a

compromised device into generating specific outputs, which in turn trigger a vulnerability

when processed as an input in a device driver [38,39].

The trust boundary that separates peripheral subsystems from kernel drivers is there-

fore of great interest to security researchers. We present PeriScope, which to our

knowledge is the first generic framework that facilitates the exploration of this bound-

ary. PeriScope focuses on two popular device-driver interaction mechanisms: memory-

mapped I/O (MMIO) and direct memory access (DMA). The key idea is to monitor

MMIO or DMA mappings set up by the driver, and then dynamically trap the driver’s

accesses to such memory regions. PeriScope allows developers to register hooks that it

calls upon each trapped access, thereby enabling them to conduct a fine-grained analysis

of device-driver interactions. For example, one can implement hooks that record and/or

mutate device-driver interactions in support of reverse engineering, record-and-replay,

fuzzing, etc.

To demonstrate the risk that peripheral devices pose, as well as to showcase versatility

of the PeriScope framework, we created PeriFuzz, a driver fuzzer that simulates

attacks originating in untrusted, compromised peripherals. PeriFuzz traps the driver’s

read accesses to MMIO and DMA mappings, and fuzzes the values being read by the

driver. With a compromised device, these values should be considered to be under an
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attacker’s control; the attacker can freely modify these values at any time, even in between

the driver’s reads. If the driver reads the same memory location multiple times (i.e.,

overlapping fetches [40]) while the data can still be modified by the device, double-fetch

bugs may be present [41, 42]. PeriFuzz accurately models this adversarial capability

by fuzzing not only the values being read from different memory locations, but also ones

being read from the same location multiple times. PeriFuzz also tracks and logs all

overlapping fetches and warns about ones that occurred before a driver crash to help

identify potential double-fetch bugs.

Existing work on analyzing device-driver interactions typically runs the entire sys-

tem including device drivers in a controlled environment [43–50], such as QEMU [51]

or S2E [52]. Enabling analysis in such an environment often requires developer efforts

tailored to specific drivers or devices, e.g., implementing a virtual device or annotating

driver code to keep symbolic execution tractable. In contrast, PeriScope uses a page

fault based in-kernel monitoring mechanism, which works with all devices and drivers in

their existing testing environment. As long as the kernel gets recompiled with our frame-

work, PeriScope and PeriFuzz can analyze device-driver interactions with relative

ease, regardless of whether the underlying device is virtual or physical, and regardless

of the type of the device. Extending our framework is also straightforward; for exam-

ple, PeriFuzz accepts any user-space fuzzer, e.g., AFL, as a plug-in, which significantly

reduces the engineering effort required to implement proven fuzzing strategies [53–57].

We validated our system by running experiments on the software stacks shipping with

the Google Pixel 2 and the Samsung Galaxy S6, two popular smartphones on the market

at the time of development. To simulate remote attacks that would occur over the air in

a real-world scenario, we focused on the Wi-Fi drivers of these phones in evaluating our

framework. The Google Pixel 2 and Samsung Galaxy S6 are equipped with Qualcomm

and Broadcom chipsets, respectively. These two are arguably the most popular Wi-Fi
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chipset manufacturers at the time of our experiments. In our experiments, our system

identified 15 unique vulnerabilities in two device drivers, out of which 9 vulnerabilities

were previously unknown, and 8 new CVEs were assigned. We have reported the discov-

ered vulnerabilities to the respective vendors and are working with them on fixing these

vulnerabilities. We hope that our tool will aid developers in hardening the hardware-OS

boundary, leading to better software security.

2.1 Background

In this section, we provide the technical background necessary to understand how

peripheral devices interact with the OS. We also discuss isolation mechanisms that allow

the OS to protect itself against misbehaving peripherals, as well as tools to analyze

hardware-OS interactions.

2.1.1 Hardware-OS Interaction

Figure 2.1 illustrates the various ways in which devices can interact with the OS and

the device driver. Although we assume that the device driver runs on a Linux system

with an ARMv8-A/AArch64 CPU, the following discussion generally applies to other

platforms as well.

Interrupts

A device can send a signal to the CPU by raising an interrupt request on one of the

CPU’s interrupt lines. Upon receiving an interrupt request, ARMv8-A CPUs first mask

the interrupt line so that another interrupt request cannot be raised on the same line

while the first request is being handled. Then, the CPU transfers control to the interrupt
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Figure 2.1: Hardware-OS interaction mechanisms

handler registered by the OS for that interrupt line. Interrupt handlers can be configured

at any time, though the OS typically configures them at boot time.

Processing Interrupts To maximize the responsiveness and concurrency of the sys-

tem, the OS attempts to defer interrupt processing so that the interrupt handler can

return control to the CPU as soon as possible. Typically, interrupt handlers only process

interrupts in full if they were caused by time-sensitive events or by events that require

immediate attention. All other events are processed at a later time, outside of the in-

terrupt context. This mechanism is referred to as top-half and bottom-half interrupt

processing in Linux lingo.

In Linux, after performing minimal amount of work in the hardware interrupt context

(hardirq), the device driver schedules the work to be run in either software interrupt

context (softirq), kernel worker threads, or the device driver’s own kernel threads, based
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on its priority. For higher priority work, a device driver can register its own tasklet, a

deferred action to be executed under the software interrupt context, which also ensures

serialized execution. Lower priority work can further be deferred either to kernel worker

threads (using the workqueue API) or to the device driver’s own kernel threads.

Memory-Mapped I/O

Analogous to peripherals using interrupts to signal the OS and the device driver, the

CPU uses memory-mapped I/O (MMIO) to signal peripherals. MMIO maps a range

of kernel-space virtual addresses to the hardware registers of peripheral devices. This

allows the CPU to use normal memory access instructions (as opposed to special I/O in-

structions) to communicate with the peripheral device. The CPU observes such memory

accesses and redirects them to the corresponding hardware. In Linux, device drivers call

ioremap to establish an MMIO mapping, and iounmap to remove it.

Direct Memory Access

Direct memory access (DMA) allows peripheral devices to access physical memory

directly. Typically, the device transfers data using DMA, and then signals the CPU using

an interrupt. There are two kinds of DMA buffers: coherent and streaming.

Coherent DMA buffers (also known as consistent DMA buffers) are usually allocated

and mapped only once at the time of driver initialization. Writes to coherent DMA

buffers are usually uncached, so that values written by either the peripheral processor or

the CPU are immediately visible to the other side.

Streaming DMA buffers are backed by the CPU’s cache, and have an explicit owner.

They can either be owned by the CPU itself, or by one of the peripheral processors. Cer-

tain kernel-space memory buffers can be “mapped” as streaming DMA buffers. However,

once a streaming DMA buffer is mapped, the peripheral devices automatically acquires
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ownership over it, and the kernel can no longer write to the buffer. Unmapping a stream-

ing DMA buffer revokes its ownership from the peripheral device, and allows the CPU

to access the buffer’s contents. Streaming DMA buffers are typically short-lived, and are

often used for a single data transfer operation.

2.1.2 Input/Output Memory Management Unit

Since DMA allows peripherals to access physical memory directly, its use can be

detrimental to the overall stability of the system if a peripheral device misbehaves. Mod-

ern systems therefore deploy an input output memory management unit (IOMMU) (also

known as system memory management unit, or SMMU, on the ARMv8-A/AArch64 ar-

chitecture) to limit which regions of the physical memory each device can access. Similar

to the CPU’s memory management unit (MMU), the IOMMU translates device-visible

virtual addresses (i.e., I/O addresses) to physical addresses. The IOMMU uses transla-

tion tables, which are configured by the OS prior to initiating a DMA transfer. Device-

initiated accesses that fall outside of the translation table range will trigger faults that

are visible to the OS.

2.1.3 Analyzing Hardware-OS Interaction

Vulnerabilities in device drivers can lead to a compromise of the entire system, since

many of these drivers run in kernel space. To detect these vulnerabilities, driver de-

velopers can resort to dynamic analysis tools that monitor the driver’s behavior and

report potentially harmful actions. Doing this ideally requires insight into the communi-

cation between the driver and the device, as this communication can provide the context

necessary to find the underlying cause of a vulnerability. Analyzing device-driver com-

munication requires (i) an instance of the device, whether physical or virtual, and (ii)
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a monitoring mechanism to observe and/or influence device-driver communication. Ex-

isting approaches can therefore be classified based on where and how they observe (and

possibly influence) device-driver interactions.

Device Adaptation To exercise direct control over the data sent from the hardware to

the driver, an analyst can adapt the firmware of real devices to include such capabilities.

This can be done by reverse engineering the firmware and reflashing a modified one [58],

or by using custom hardware that supports reprogramming of devices [59]. However,

these frameworks are typically tailored to specific devices, and given the heterogeneity

of peripheral devices, their applicability is limited. For example, Nexmon only works for

some Broadcom Wi-Fi devices [58], and Facedancer11, a custom Universal Serial Bus

(USB) device, can only analyze USB device drivers [59].

Virtual Machine Monitor A driver can be tested in conjunction with virtual devices

running in a virtual environment such as QEMU [51]. The virtual machine monitor ob-

serves the behavior of its guest machines and can easily support instrumentation of the

hardware-OS interface. Previous work uses existing implementations of virtual devices

for testing the corresponding drivers [45,46]. For many devices, however, an implementa-

tion of a virtual device does not exist. In this case, developers must manually implement

a virtual version of their devices to interact with the device driver they wish to ana-

lyze [43]. Several frameworks alleviate the need for virtual devices by relaying I/O to

real devices [60, 61], but these frameworks generally require a non-trivial porting effort

for each driver and device, and/or do not support DMA.

Symbolic Execution S2E augments QEMU with selective symbolic execution [52].

Several tools leverage S2E to analyze the interactions between OS kernel and hardware

by selectively converting hardware-provided values into symbolic values [47–50]. How-
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ever, symbolic execution in general is prohibitively slow due to the path explosion and

constraint solving problem. Moreover, symbolic execution itself does not reveal vulner-

abilities, but rather generates a set of constraints that must be analyzed by separate

checkers. Writing such a checker is not trivial. Most of the checkers supported by Sym-

Drive, for example, target stateless bugs such as kernel API misuses, but ignore memory

corruption bugs [49].

2.2 PeriScope Design

We designed PeriScope as a dynamic analysis framework that can be used to ex-

amine bi-directional communication between devices and their drivers over MMIO and

DMA. Contrary to earlier work on analyzing device-driver communication on the device

side, we analyze this communication on the driver side, by intercepting the driver’s ac-

cesses to communication channels. PeriScope does this by hooking into the kernel’s

page fault handling mechanism. This design choice makes our framework driver-agnostic;

PeriScope can analyze drivers with relative ease, regardless of whether the underlying

device is virtual or real, and regardless of the type of the peripheral device.

At a high level, PeriScope works as follows. First, PeriScope automatically de-

tects when the target device driver creates a MMIO or DMA memory mapping, and

registers it. Then, the analyst selects the registered mappings that he/she wishes to

monitor. PeriScope marks the pages backing these monitored mappings as not present

in the kernel page tables. Any CPU access to those marked pages therefore triggers a

page fault, even though the data on these pages is present in physical memory.

When a kernel page fault occurs, PeriScope first marks the faulting page as present

in the page table ( 1 in Figure 2.2). Then, it determines if the faulting address is part

of any of the monitored regions ( 2 ). If it is not, PeriScope re-executes the faulting
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instruction ( 5 ), which will now execute without problems. Afterwards, PeriScope

marks the page as not present again ( 7 ), and resumes the normal execution of the

faulting code.

If the faulting address does belong to a monitored region, PeriScope invokes a pre-

instruction hook function registered by the user of the framework, passing information

about the faulting instruction ( 4 ). Then, PeriScope re-executes the faulting instruc-

tion ( 5 ). Finally, PeriScope invokes the post-instruction hook registered by the driver

( 6 ), marks the faulting page as not present again ( 7 ), and resumes the execution of the

faulting code.

2.2.1 Memory Access Monitoring

Tracking Allocations PeriScope hooks the kernel APIs used to allocate and deallo-

cate DMA and MMIO regions∗. We use these hooks to maintain a list of all DMA/MMIO

allocation contexts and their active mappings. PeriScope assigns an identifier to every

context in which a mapping is allocated, and presents the list of all allocation contexts

as well as their active mappings to privileged user-space programs through the debugfs

file system.

Enabling Monitoring PeriScope exposes a privileged user-space API that enables

monitoring of DMA/MMIO regions on a per-allocation-context basis. Once monitoring

is enabled for a specific allocation context, PeriScope will ensure that accesses to all

current and future regions allocated in that context trigger page faults.

Clearing Page Presence PeriScope marks all pages containing monitored regions

as not present in the kernel’s page tables to force accesses to such pages to trigger page

∗Establishing DMA and MMIO mappings is a highly platform-dependent process, so device drivers
are obliged to use the official kernel APIs to do so.
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Figure 2.2: PeriScope fault handling

faults. One complication that can arise here is that modern architectures, including

x86-64 and AArch64, can support multiple page sizes within the same page table. On

AArch64 platforms, a single page table entry can serve physical memory regions of 4KB,

16KB, or 64KB, for example. If a single (large) page table entry serves both a monitored

and a non-monitored region, then we split that entry prior to marking the region as not

present. We do this to avoid unnecessary page faults for non-monitored regions. Note

that, even after splitting page table entries, PeriScope cannot rule out spurious page

faults completely, as some devices support DMA/MMIO regions that are smaller than

the smallest page size supported by the CPU.

Trapping Page Faults PeriScope hooks the kernel’s default kernel page fault han-

dler to monitor page faults. Inside the hook function, we first check if the fault originated

from a page that contains one of the monitored regions. If the fault originated from some
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other page, we immediately return from the hook function with an error code and defer

the fault handling to the default page fault handler. If the fault did originate from a page

containing a registered buffer, PeriScope marks that page as present ( 1 ), and then

checks if the faulting address falls within a monitored region ( 2 ). If the faulting address

is outside a monitored region, we simply single-step the faulting instruction ( 5 ), mark

the faulting page as not present again ( 7 ), and resume normal execution of the faulting

code. If the faulting address does fall within a monitored region, however, we proceed to

the instruction decoding step ( 3 ).

Instruction Decoding In order to accurately monitor and (potentially) manipulate

the communication between the hardware/firmware and the device driver, we need to

extract the source register, the destination register and the access width of the faulting

instruction ( 3 in Figure 2.2). We implemented a simple AArch64 instruction decoder,

which provides this information for all load and store instructions. PeriScope carries

this information along the rest of its fault handling pipeline.

Pre-instruction Hook After decoding the instruction, PeriScope calls the pre-

instruction hook that the user of our framework can register ( 4 ). We pass the address

of the faulting instruction, the memory region type (MMIO or DMA coherent/stream-

ing), the instruction type (load or store), the destination/source register, and the access

register width to this hook function. The pre-instruction hook function can return two

values: a default value and a skip-single-step value. If the function returns the latter,

PeriScope proceeds immediately to step 6 . Otherwise, PeriScope proceeds to step

5 .

PeriScope provides a default pre-instruction hook which logs all memory stores

before the value in the source register is stored to memory. We maintain this log in a
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kernel-space circular buffer that can later be read from the file system using tracefs.

Single-stepping When execution returns from the pre-instruction hook, and the hook

function did not return the skip-single-step value, we re-execute the faulting instruction,

which can now access the page without faulting. We use the processor’s single-stepping

support to ensure that only the faulting instruction executes, but none of its successors

do ( 5 ).

Post-instruction Hook When PeriScope regains control after single-stepping, it

first clears the page present flag for the faulting page again so that future accesses to

the faulting page once again trigger a page fault. Then, it calls the post-instruction

handler, which, similarly to the pre-instruction handler, has a default implementation

that can be overridden through our API ( 6 ). The default handler logs all memory loads

by examining and logging the value that is now stored in the destination register.

2.3 PeriFuzz Design

We built PeriFuzz as a client module for PeriScope. PeriFuzz can generate and

provide inputs for device drivers. The goal of our fuzzer is to uncover vulnerabilities that

could potentially be exploited by a compromised peripheral device.

2.3.1 Threat Model

Peripheral Compromise We assume that the attacker can compromise a peripheral,

which, in turn, can send arbitrary data to its device driver. Compromising a peripheral

device is feasible because such devices rarely deploy hardware protection mechanisms or

software mitigations. As a result, silent memory corruptions occur frequently [62], which
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significantly lowers the bar to mount an attack. That peripherals can turn malicious after

being attacked was demonstrated by successful remote compromises of several network

devices such as ethernet adapters [32], GSM baseband processors [33, 37], and Wi-Fi

processors [34–36].

IOMMU/SMMU Protection For many years, a strict hardware-OS security bound-

ary existed in theory, but it was not enforced in practice. Most device drivers trusted

that the peripheral was benign, and gave the device access to the entire physical mem-

ory (provided that the device was DMA-capable), thus opening the door to DMA-based

attacks and rootkits [63, 64]. This situation has changed for the better with the now

widespread deployment of IOMMU units (or SMMU for AArch64). IOMMUs can pre-

vent the device from accessing physical memory regions that were not explicitly mapped

by the MMU, and they prevent peripherals from accessing streaming DMA buffers while

these are mapped for CPU access. The latter restriction can be imposed by invalidating

IOMMU mappings, or by copying the contents of a streaming DMA buffer to a tempo-

rary buffer (which the peripheral cannot access) before the CPU uses them [65, 66]. We

assume that such an IOMMU is in place, and that is being used correctly.

Summary In our model, the attacker can (i) compromise a peripheral such as a Wi-Fi

chipset over the air by abusing an existing bug in the peripheral’s firmware, (ii) exercise

control over the compromised peripheral to send arbitrary data to the device driver,

and, (iii) not access the main physical memory, except for memory regions used for

communicating with the device driver.
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Figure 2.3: PeriFuzz overview

2.3.2 Design Overview

PeriFuzz is composed of a number of components, as illustrated in Figure 2.3.

Our design is fully modular, so each component can be swapped out for an alternative

implementation that exposes the same interface.

Fuzzer We use a fuzzer that runs in user space. This component is responsible for

generating inputs for the device driver and processing execution feedback. Our modular

design allows us to use any fuzzer capable of fuzzing user-space programs. We currently

use AFL as our fuzzer, as was done in several previous works that focus on fuzzing kernel

subsystems [67–69].

Executor The executor is a user-space-resident bridge between the fuzzer (or any input

provider) and the injector. The executor takes an input file as an argument, and sends the

file content to the injector via a shared memory region mapped into both the executor’s
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and the injector’s address spaces. The executor then notifies the injector that the input

is ready for injection, and periodically checks if the provided input has been consumed.

PeriFuzz launches an instance of the executor for every input the fuzzer generates. The

executor is also used to reproduce a crash by providing the last input observed before

the crash.

Injector The injector is a kernel-space module that interfaces with our PeriScope

framework. The injector registers a pre-instruction hook with PeriScope, which allows

the injector to monitor and manipulate all data the device driver receives from the device.

At every page fault, the injector first checks if fuzzing is currently enabled, and if there

is a fuzzer/executor-provided input that has not been consumed yet. If both conditions

are met, the injector overwrites the destination register with the input generated by the

fuzzer.

Note that PeriFuzz manipulates only the values device drivers read from MMIO

and DMA mappings, but not the values they write. PeriFuzz, in other words, models

compromised devices, but not compromised drivers.

2.3.3 Fuzzer Input Consumption

We treat each fuzzer-generated input as a serialized sequence of memory accesses.

In other words, our injector always consumes and injects the first non-consumed inputs

found in the input buffer shared between the executor and injector. This fuzzer in-

put consumption model allows for overlapping fetch fuzzing as it automatically provides

different values for multiple accesses to the same offsets within a target mapping (i.e.,

overlapping fetches [40]). Providing different values for overlapping fetches enables us to

find double-fetch bugs, if triggering such bugs leads to visible side-effects such as a driver

crash. Our fuzzer also keeps track of the values returned for overlapping fetches, and can

28



PeriScope: An Effective Probing and Fuzzing Framework for the Hardware-OS Boundary
Chapter 2

Algorithm 1 Fuzzer Input Consumption at Each Driver Read
1: global variables ▷ Initialized when switching fuzzer input
2: Input ← [...]
3: InputOffset ← 0
4: PrevReads ← {}
5: OverlappingFetches ← {}
6: end global variables
7: function FuzzDriverRead(Address,Width, Type)
8: V alue ← Input[range(InputOffset,Width)]
9: for all Prev in PrevReads do
10: Overlap ← Prev.range ∩ range(Address,Width)
11: if Overlap is not empty then
12: if Type is DMA Streaming then
13: V alue[Overlap] ← Prev.value(Overlap)
14: else
15: OverlappingFetches ← OverlappingFetches ∪ {(Overlap, V alue)}
16: end if
17: end if
18: end for
19: InputOffset ← InputOffset+Width
20: PrevReads ← PrevReads ∪ {(Address,Width, V alue)}
21: return V alue
22: end function

output this information when a driver crashes, thereby helping us to narrow down the

cause of the crash. In fact, the double-fetch bugs we identified using PeriFuzz would

not have been found without this information (see Section 2.5).

Since we assume that the attacker cannot access streaming DMA buffers while they

are mapped for CPU access (see Section 2.3.1), we take extra care not to enable overlap-

ping fetch fuzzing for streaming DMA buffers. To this end, we maintain a history of read

accesses, and consult this history to determine if a new access overlaps with any previous

access. If they overlap, we return the same values returned for the previous access, and

do not consume any bytes from the fuzzer input. Algorithm 1 shows how we pick values

to inject for each driver read from an MMIO or DMA mapping.

An additional benefit of our fuzzer input consumption model is that it helps to keep

the input size small, because we only have to generate fuzzer input bytes for read accesses
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that actually happen and not for the entire fuzzed buffer, which may contain bytes that

are never read.

2.3.4 Register Value Injection

PeriScope provides the destination register and the access width when it calls into

PeriFuzz’s pre-instruction hook handler. The fuzzer input is consumed for that exact

access width, and then injected into the destination register. Our pre-instruction hook

function returns the skip-single-step value to PeriScope (see Section 2.2.1), as we have

emulated the faulting load instruction by writing a fuzzed value into its destination

register. Our post-instruction hook function increments the program counter, so the

execution of the driver resumes from the instruction that follows the fuzzed instruction.

2.3.5 Fuzzing Loop

Each iteration of the fuzzing loop consumes a single fuzzer-generated input. We align

each iteration of the fuzzing loop to the software interrupt handler, i.e., do softirq. We

do not insert hooks into the hardware interrupt handler, since work is barely done in

the hardware interrupt context. The two hooks inserted before and after the software

interrupt handler demarcate a single iteration of the fuzzing loop, in which PeriFuzz

consecutively consumes bytes in a single fuzzer input. This design decision allows us to

remain device-agnostic, but device driver developers could provide an alternative device-

specific definition of an iteration by inserting those two hooks in their drivers. Several

low priority tasks are often deferred to the device driver’s own kernel threads, and the

fuzzing loop can be aligned to the task processing loop inside those threads.
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2.3.6 Interfacing with AFL

We use AFL [70], a well-known coverage-guided fuzzer, as PeriFuzz’s fuzzing front-

end. This is in line with previous work on fuzzing various kernel subsystems [67–69]. To

fully leverage AFL’s coverage-guidance, we added kernel coverage and seed generation

support in PeriFuzz.

Coverage-guidance We modified and used KCOV to provide coverage feedback while

executing inputs [71]. Existing implementations of KCOV were developed for fuzzing

system calls and only collect coverage information for code paths reachable from system

calls. To enable device driver fuzzing, we extended KCOV with support for collecting

coverage information for code paths reachable from interrupt handlers. We also applied

a patch to force KCOV to collect edge coverage information rather than basic block

coverage information [72]. To collect coverage along the execution of the device driver, it

is first compiled with coverage instrumentation. This instrumentation informs KCOV of

hit basic blocks, which KCOV records in terms of edge coverage. The executor component

retrieves the coverage feedback from kernel, once the input has been consumed. Then

the executor copies this coverage information to a memory region shared with the parent

AFL fuzzer process, after which we signal KCOV to clear the coverage buffer for the next

fuzzing iteration.

Automated Seed Generation Starting with valid test cases rather than fully random

inputs improves the fuzzing efficiency, as this lowers the number of input mutations

required to discover new paths. To collect an initial seed of valid test cases, we use our

PeriScope framework to log all accesses to a user-selected set of buffers. We provide

an access log parser that automatically turns a sequence of accesses into a seed file

according to our fuzzing input consumption model (see Section 2.3.3). That said, this
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Table 2.1: LoC modified in the Linux kernel code and the PeriScope framework itself

Description LoC

Linux DMA and MMIO allocation/deallocation APIs 92

Linux kernel page fault and debug exception handlers 46

PeriScope framework 3843

step is optional; one could start from any arbitrary seed, or craft test cases on their own.

2.4 Implementation

2.4.1 PeriScope

We based our implementation of PeriScope on Linux kernel 4.4 for AArch64. Our

framework is, for the most part, a standalone component that can be ported to other

versions of the Linux kernel and even to vendor-modified custom kernels with relative

ease. The kernel changes required for PeriScope are relatively small compared to the

framework implementation itself as shown in Table 2.1.

Tracking Allocations PeriScope hooks the generic kernel APIs used to allocate/deal-

locate MMIO and DMA regions to maintain a list of allocation contexts. We insert these

hooks into the dma alloc coherent and dma free coherent functions to track coherent

DMA mappings, into the dma unmap page function† and dma map page to track streaming

DMA mappings, and into ioremap and iounmap to track MMIO mappings.

PeriScope assigns a context identifier to every MMIO and DMA allocation context.

This context identifier is the XOR-sum of all call site addresses that are on the call stack

at allocation time. We mask out the upper bits of all call site addresses to ensure that

†dma unmap page unmaps a streaming DMA mapping from the peripheral processor. Doing so trans-
fers ownership of the mapping to the device driver.
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Table 2.2: PeriFuzz implementation LoC

Component LoC

Injector Kernel-space 441

KCOV (modification) Kernel-space 176

Executor User-space 338

Python manager and utility scripts Host 924

context identifiers remain the same across reboots on devices that enable kernel address

space layout randomization (KASLR).

Monitoring Interface PeriScope provides a user-space interface by exposing debugfs

and tracefs file system entries. Through this interface, a user can list all allocation con-

texts and their active mappings, enable or disable monitoring, and read the circular buffer

where PeriScope logs all accesses to the monitored mappings.

As streaming DMA buffer allocations can happen in interrupt contexts, we use a

non-blocking spinlock to protect access to data structures such as the list of monitored

mappings. When accessing these data structures from an interruptible code path, we ad-

ditionally disable interrupts to prevent interrupt handlers from deadlocking while trying

to access the same structures.

2.4.2 PeriFuzz

We built PeriFuzz as a client for PeriScope. Table 2.2 summarizes the code we

added or changed for PeriFuzz.

Kernel-User Interface The injector registers a device node that exposes device-

specific mmap and ioctl system calls to the user-space executor. The executor can

therefore create a shared memory mapping via mmap to the debugfs file exported by
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Figure 2.4: Continuous fuzzing with PeriFuzz

the injector module. Through this interface, the executor passes the fuzzer input to the

injector running in the kernel space. The ioctl handler of the injector module allows

the executor (i) to enable and disable fuzzing, and (ii) to poll the consumption status of

a fuzzer input it provided. Similarly, KCOV provides the coverage feedback by export-

ing another debugfs file such that the executor can read the feedback by mmaping the

exported debugfs file.

Persisting Fuzzer Files Many fuzzers including AFL store meta-information about

fuzzing and input corpus in the file system. However, these files might not persist if the

kernel crashes before the data is committed to the disk. To avoid this, we ensure that all

the fuzzer files are made persistent, by modifying AFL to call fsync after all file writes.

Persisting all files allows us (i) to investigate crashes using the last crashing input and

(ii) to resume fuzzing with the existing corpus stored in the file system.

Fuzzing Manager The fuzzing procedure is completely automated through Python

scripts that run on a host separate from the target device. The continuous fuzzing loop

is driven by a Python program, as illustrated in Figure 2.4. The manager process runs

in a loop in which it (i) polls the status of the fuzzing process, (ii) starts/restarts fuzzing
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Table 2.3: Target smartphones

Google Pixel 2 Samsung Galaxy S6

Model Name walleye SM-G920F

Released October, 2017 April, 2015

SoC Snapdragon 835 Exynos 7420

Kernel Version 4.4 3.10

Wi-Fi Device Driver qcacld-3.0 bcmdhd4358

Wi-Fi IOMMU Protection Yes No

if required, (iii) detects device reboots, (iv) downloads the kernel log and the last input

generated before the crash after a reboot, and (v) examines the last kernel log to identify

the issue that led to the crash.‡ The manager stores the reports and the last crashing

inputs for investigation and bug reporting.

2.5 Evaluation

We evaluated PeriScope and PeriFuzz by monitoring and fuzzing the communica-

tion between two popular Wi-Fi chipsets and their device drivers used in several Android

smartphones.

2.5.1 Target Drivers

We chose Wi-Fi drivers as our evaluation target because they present a large attack

surface, as evidenced by a recent series of fully remote exploits [34, 36]. Smartphones

frequently connect to potentially untrusted Wi-Fi access points, and Wi-Fi drivers and

peripherals implement vendor-specific, complex internal device-driver interaction proto-

cols (e.g., for offloading tasks) that rely heavily on DMA-based communication.

‡We used Syzkaller’s report package to parse the kernel log.
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The Wi-Fi peripheral chipset market for smartphones is dominated by two major

vendors: Broadcom and Qualcomm. We tested two popular Android-based smartphones

that each have a Wi-Fi chipset from one of these vendors, as shown in Table 2.3. We

tested the Google Pixel 2, with Android 8.0.0 Oreo§ and Qualcomm’s qcacld-3.0 Wi-Fi

driver. We also tested the Samsung Galaxy S6, on which we installed LineageOS 14.1

and Broadcom’s bcmdhd4358 Wi-Fi driver. LineageOS 14.1 is a popular custom Android

distribution that includes the exact same Broadcom driver as the official Android version

for the Galaxy S6.

Note that although the Samsung Galaxy S6 has an IOMMU, it is not being used to

protect the physical memory from rogue Wi-Fi peripherals. Regardless, we did conduct

our experiments under the assumption that IOMMU protection is in place. Newer ver-

sions of the Samsung Galaxy phones do enable IOMMU protection for Wi-Fi peripherals.

2.5.2 Target Attack Surface

The code paths that are reachable from peripheral devices vary depending on the

internal state of the driver (e.g., is the driver connected, not connected, scanning for

networks, etc.). In our evaluation, we assume that the driver has reached a steady state

where it has established a stable connection with a network. We consider only the code

paths reachable in this state as part of the attack surface. We analyzed this attack surface

by counting (i) the number of allocation contexts that create attacker-accessible MMIO

and DMA mappings and (ii) the number of driver code paths that are executed while

the user is browsing the web.

Table 2.4 summarizes the MMIO and DMA allocation contexts in both device drivers,

which create mappings that can be accessed by the attacker while the user is browsing

the web. MMIO and DMA coherent mappings were established during the driver initial-

§android-8.0.0 r0.28
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Table 2.4: The number of MMIO and DMA allocation contexts that create attack-
er-accessible mappings

Driver MMIO DMA Coherent DMA Streaming

qcacld-3.0 1 9 5

bcmdhd4358 4 11 29

Table 2.5: The number of basic blocks executed under web browsing traffic per kernel
control path. A basic block could run in interrupt context (IRQ), kernel thread or
worker context (Kernel Thread), or others (Others). Some basic blocks can be
reached in several contexts.

Driver IRQ
Kernel
Thread

Others Hit / Instrumented

qcacld-3.0
1633

(36.9%)
2902

(65.6%)
672

(15.2%)
4427/81637

bcmdhd4358
743

(68.9%)
284

(26.3%)
301

(27.9%)
1078/23404

ization, and were still mapped to both the device and the driver by the time the user

browses the web; DMA streaming mappings were destroyed after their use, but regularly

get recreated and mapped to the device while browsing the web. Thus, an attacker on a

compromised Wi-Fi chipset can easily access these mappings, and write malicious values

in them to trigger and exploit vulnerabilities in the driver.

We then analyzed the code paths that get exercised under web browsing traffic, and

classified these paths based on the context in which they are executed: interrupt context,

kernel thread context, and other contexts (e.g., system call context). Table 2.5 shows the

results. Of all the basic blocks executed under web browsing traffic, 36.9% and 68.9%

run in interrupt context for the qcacld-3.0 and bcmdhd4358 drivers, respectively. Some

of the code that executes in interrupt context may not be reachable from any system

calls through legal control-flow paths, and therefore may not be fuzzed by system call

fuzzers.
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Table 2.6: Allocation contexts selected for fuzzing. DC stands for DMA coherent, DS
for DMA streaming, and MM for memory-mapped I/O.

Driver
Alloc.
Context

Alloc.
Type

Alloc.
Size

Used For

qcacld-3.0

QC1 DC 8200 DMA buffer mgmt.

QC2 DC 4 DMA buffer mgmt.

QC3 DS 2112 FW-Driver message

QC4 DS 2112 FW-Driver message

bcmdhd4358

BC1 DC 8192 FW-Driver RX info

BC2 DC 16384 FW-Driver TX info

BC3 DC 1536 FW-Driver ctrl. info

BC4 MM 4194304 Ring ctrl. info

2.5.3 Target Mappings

We investigated how each of the active mappings are used by their respective drivers,

and enabled fuzzing for DMA/MMIO regions that are accessed frequently, and that are

used for low-level communication between the driver and the device firmware (e.g., for

shared ring buffer management). We used PeriScope to determine which regions the

driver accesses frequently, and we manually investigated the driver’s code to determine

the purpose of each region.

For qcacld-3.0, we enabled fuzzing for two allocation contexts for DMA coherent

buffers and two contexts for DMA streaming buffers. For bcmdhd4358, we enabled fuzzing

for three allocation contexts for DMA coherent buffers and one allocation context for an

MMIO buffer. Table 2.6 summarizes the allocation contexts for which we enable fuzzing;

all the mappings allocated in those contexts are fuzzed.
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Table 2.7: Unique device driver vulnerabilities found by PeriFuzz
Alloc.
Context

Alloc.
Type

Error Type Analysis Double-fetch Status (Severity) Impact

QC2 DC Buffer Overflow Unexpected RX queue index CVE-2018-11902 (High) Likely Exploitable

QC3 DS Null-pointer Deref. Unexpected message type Confirmed (Low)a DoS

QC3 DS Buffer Overflow Unexpected peer id Known Likely Exploitable

QC3 DS Buffer Overflow Unexpected number of flows Known Likely Exploitable

QC3 DS Address Leak/Buffer Ovf. Unexpected FW-provided pointer CVE-2018-11947 (Med)b Likely Exploitable

QC3 DS Buffer Overflow Unexpected TX descriptor id Known Likely Exploitable

QC4 DS Reachable Assertion Unexpected endpoint id Known (Med) DoS

QC4 DS Reachable Assertion Duplicate message Known (Med) DoS

QC4 DS Reachable Assertion Unexpected payload length Known (Med) DoS

BC1 DC Buffer Overflow Unexpected interface id ✓ CVE-2018-14852, SVE-2018-11784 (Low) Likely Exploitable

aQualcomm confirmed the vulnerability but they do not assign CVEs for low-severity ones.
bCVE assigned for the address leak.

2.5.4 Fuzzer Seed Generation

We used PeriScope’s default tracing facilities to generate initial seed input files. For

each selected allocation context, we first recorded all allocations of, and all read accesses

to the memory mappings while generating web browsing traffic for five minutes. We then

parsed the allocation/access log to generate unique seed input files. Finally, we used

AFL’s corpus minimization tool to minimize the input files. This tool replays each input

file to collect coverage information and uses that information to exclude redundant files.

2.5.5 Vulnerabilities Discovered

Table 2.7 summarizes the vulnerabilities we discovered using our fuzzer. Each entry

in the table is a unique vulnerability at a distinct source code location.

Disclosure We responsibly disclosed these vulnerabilities to the respective vendors.

During this process, we were informed by Qualcomm that some of the bugs had recently

been reported by external researchers or internal auditors. We marked these bugs as

“Known”. All the remaining bugs were previously unknown, and have been confirmed

by the respective vendors. We included CVE numbers assigned to the bugs we reported.

Also, we included the vendor-specific, internal severity ratings for these bugs if commu-
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nicated by the respective vendors during the disclosure process.

Error Type and Impact Vulnerabilities found by PeriFuzz fall into four categories:

buffer overflows, address leaks, reachable assertions, and null-pointer dereferences. We

mark buffer overflows and address leaks as potentially exploitable, and reachable asser-

tions and null-pointer dereferences as vulnerabilities that can cause a denial-of-service

(DoS) attack by triggering device reboots.

Double-fetch Bugs We did not attempt to find double-fetch bugs in streaming DMA

buffers, since we operated under the assumption that an IOMMU preventing such bugs

is in place (see Section 2.3.1). That said, we did identify several double-fetch bugs in

code that accesses coherent DMA buffers. These bugs can potentially be exploited, even

when the system deploys an IOMMU. We discuss these bugs in detail in Section 2.5.7.

2.5.6 Case Study I: Design Bug in qcacld-3.0

One of the vulnerabilities we found in qcacld-3.0 is in code that dereferences a

firmware-provided pointer. PeriFuzz fuzzed the pointer value as it was read by the

device driver. The driver then dereferenced the fuzzed pointer and crashed the kernel.

An analysis of this vulnerability revealed that it is in fact a design issue. The pointer

was originally provided by the driver to the device. Line 11 in Listing 1 turns a kernel

virtual address, which points to a kernel memory region allocated at Line 4, into a 64-

bit integer called cookie. The driver sends this cookie value to the device, thereby

effectively leaking a kernel address.

An attacker that controls the peripheral processor can infer the kernel memory lay-

out based on the cookie values passed by the driver. This address leak can facilitate

exploitation of memory corruption vulnerabilities even if the kernel uses randomization-
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1 A_STATUS ol_txrx_fw_stats_get(...)

2 {

3 ...

4 non_volatile_req = qdf_mem_malloc(sizeof(*non_volatile_req));

5 if (!non_volatile_req)

6 return A_NO_MEMORY;

7

8 ...

9

10 /* use the non-volatile request object's address as the cookie */

11 cookie = ol_txrx_stats_ptr_to_u64(non_volatile_req);

12

13 ...

14 }

Listing 1: Kernel address leak in qcacld-3.0

based mitigations such as KASLR. This bug can be fixed by passing a randomly generated

cookie value rather than a pointer to the device.

2.5.7 Case Study II: Double-fetch Bugs in bcmdhd4358

The bcmdhd4358 driver contains several double-fetch bugs that allow an adversarial

Wi-Fi chip to bypass an integrity check in the driver. Listing 2 shows how the driver

accesses a coherent DMA buffer that holds meta-information about network data. At

Line 4 and Line 5, the driver verifies the integrity of the data in the buffer by calculating

and checking an XOR checksum. The driver then repeatedly accesses this coherent DMA

buffer again. The problem here is that the device, if compromised, could modify the data

between the point of the initial integrity check, and the subsequent accesses by the driver.

PeriFuzz was able to trigger multiple vulnerabilities by modifying the data read

from this buffer after the integrity check was completed. We show one buffer overflow

vulnerability in Listing 3, which was triggered by fuzzing the ifidx value used at Line 4.

The overlapping fetch that occurred before this buffer overflow is a double-fetch bug,

because the overlapping fetch can invalidate a previously passed buffer integrity check.
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1 static uint8 BCMFASTPATH dhd_prot_d2h_sync_xorcsum(dhd_pub_t *dhd, msgbuf_ring_t

*ring, volatile cmn_msg_hdr_t *msg, int msglen)↪→

2 {

3 ...

4 prot_checksum = bcm_compute_xor32((volatile uint32 *)msg, num_words);

5 if (prot_checksum == 0U) { /* checksum is OK */

6 if (msg->epoch == ring_seqnum) {

7 ring->seqnum++; /* next expected sequence number */

8 goto dma_completed;

9 }

10 }

11 ...

12 }

Listing 2: Initial fetch and integrity check in bcmdhd4358

1 void dhd_rx_frame(dhd_pub_t *dhdp, int ifidx, void *pktbuf, int numpkt, uint8

chan)↪→

2 {

3 ...

4 ifp = dhd->iflist[ifidx];

5 if (ifp == NULL) {

6 DHD_ERROR(("%s: ifp is NULL. drop packet\n",

7 __FUNCTION__));

8 PKTFREE(dhdp->osh, pktbuf, FALSE);

9 continue;

10 }

11 ...

12 }

Listing 3: Buffer overflow in bcmdhd4358

Thus, in addition to safeguarding the array access with a bounds check, the driver should

copy the contents of the coherent DMA buffers to a location that cannot be accessed by

the peripheral device, before checking the integrity of the data in the buffer. Subsequent

uses of device-provided data should also read from the copy of the data, rather than the

DMA buffer itself.
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2.5.8 Case Study III: New Bug in qcacld-3.0

Listing 4 shows a null-pointer deference bug we discovered in the qcacld-3.0 driver.

The pointer to the netbufs ring array dereferenced at Line 9 is null, unless the driver is

configured to explicitly allocate this array. The driver configuration used by the Google

Pixel 2 did not contain the entry necessary to allocate the array. Although the driver

never executes the vulnerable code under normal conditions, we found that the vulnerable

line is reachable through legal control flow paths.

1 static inline qdf_nbuf_t htt_rx_netbuf_pop(htt_pdev_handle pdev)

2 {

3 int idx;

4 qdf_nbuf_t msdu;

5

6 HTT_ASSERT1(htt_rx_ring_elems(pdev) != 0);

7

8 idx = pdev->rx_ring.sw_rd_idx.msdu_payld;

9 msdu = pdev->rx_ring.buf.netbufs_ring[idx];

10 ...

11 }

Listing 4: Null-pointer dereference in qcacld-3.0

It is difficult to detect this bug statically, as it requires a whole-program analysis of

the device driver to determine if the netbufs ring pointer is initialized whenever the

vulnerable line can execute. PeriFuzz consistently triggered the bug, however. This

vulnerability discovery therefore bolsters the argument that fuzzing can complement

manual auditing and static analysis.

2.5.9 Performance Analysis

Page Fault

PeriScope incurs run-time overhead as it triggers a page fault for every instruction

that accesses the monitored set of DMA/MMIO regions. We quantified this overhead
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Table 2.8: Time consumed by PeriScope’s page fault handler (measured in µ seconds)

Mean Minimum Maximum

Tracing Only 117.6 99.8 194.5

Tracing + Fuzzing 227.8 182.7 379.7

by measuring the number of clock cycles spent inside PeriScope’s page fault handler.

We read the AArch64 counter-timer virtual count register CNTVCT EL0 when entering the

handler and when exiting from the handler, and calculated the difference between the

counter values, divided by the counter-timer frequency counter CNTFRQ EL0. To minimize

interference, we disabled hardware interrupts while executing our page fault handler. We

also disabled dynamic frequency and voltage scaling.

We tested the page fault handler under two configurations. In one configuration,

PeriScope calls the default pre- and post-instruction hooks that only trace and log

memory accesses. In the other configuration, we registered PeriFuzz’s instruction hooks

to enable DMA/MMIO fuzzing. Table 2.8 shows the mean, minimum, and maximum

values over samples of 500 page fault handler invocations for each configuration.

Note that we deliberately trade performance for deterministic, precise monitoring of

device-driver interactions, by trapping every single access to a set of monitored mappings.

In fact, this design allowed us to temporally distinguish accesses to the same memory

locations, which was essential to find the double-fetch bugs. The drivers still function

correctly, albeit more slowly, when executed under our system, making it possible to

examine device-driver interactions dynamically and enabling PeriFuzz to fuzz it.

Fuzzing

PeriFuzz builds on PeriScope and has additional components that interact with

each other, which incur additional costs. The primary contributors to this additional cost
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Table 2.9: Peak fuzzing throughput for each fuzzed allocation context

Driver
Alloc.
Context

Peak Throughput
(# of test inputs/sec)

qcacld-3.0

QC1 23.67

QC2 15.64

QC3 18.77

QC4 7.63

bcmdhd4358

BC1 9.90

BC2 14.28

BC3 10.49

BC4 15.92

are: (i) waiting for the peripheral to signal the driver, (ii) waiting for a software interrupt

to be scheduled by the Linux scheduling subsystem, (iii) interactions with the user-space

fuzzer, which involve at least two user-kernel mode switches (i.e., one for delivering fuzzer

inputs and the other for polling and retrieving feedback), and (iv) other system activities.

Peak Throughput We measured the overall fuzzing throughput to quantify the over-

head incorporating all interactions between the PeriFuzz components. We only report

the peak throughput in Table 2.9, since crashes and device driver lockups heavily im-

pact the average fuzzing throughput (see Section 2.6.1). The inverse of the peak fuzzing

throughput is a conservative lower bound for the execution time required to process a

single fuzzer-generated input. Although we did not optimize PeriFuzz for throughput,

we believe that these numbers are still in a range that makes PeriFuzz practical for

dynamic analysis.

Overhead Breakdown To illustrate how the fuzzing throughput can be optimized, we

present a breakdown of the fuzzing overhead. We divide each iteration of the fuzzing loop

into three phases: (i) waiting for fuzzer input to be made available to our kernel module,
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Figure 2.5: Fuzzing overhead breakdown

(ii) waiting for the device to raise an interrupt and for the driver to start processing it,

and (iii) fuzzing the data read from monitored I/O mappings upon page faults. Once

the driver has finished processing the interrupt, the next iteration begins. We measured

the execution time of each phase in each iteration. To evaluate the impact of page faults

on the fuzzing performance, we also counted the number of page faults triggered during

each iteration.

We performed the experiment while fuzzing the buffer having the highest peak through-

put (QC1). Figure 2.5a shows our measurements of per-phase execution time in a stacked

manner, over 100 consecutive iterations of the fuzzing loop. 60% of the total execution

time is spent on waiting for the next fuzzer input to be available. This delay is primarily

caused by a large number of missed page faults, as hinted by Figure 2.5b. The current

implementation of PeriFuzz can miss page faults, when they are triggered while Peri-

Fuzz is preparing for the next input. This delay can be reduced by disabling page faults
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until the next input is ready. The delay caused by waiting for relevant interrupts, which

accounts for 24.2% of the total execution time, can be reduced by forcing hardware to

raise relevant interrupts more frequently.

The actual fuzzing at each page fault still takes 15.8% of the total execution time. One

way to reduce this overhead is to trigger page faults only at first access to a monitored

mapping within each iteration. At first access, the underlying page can be overwritten

with the fuzzer input and then made present, so that subsequent accesses to the page

within the same iteration do not trigger extra page faults. This would come, however, at

the cost of precision, because it loses precise access tracing capability, effectively disabling

overlapping fetch fuzzing as well as detection of potential double-fetch bugs.

2.6 Discussion

2.6.1 Limitations

We discuss problems that limit both the effectiveness and efficiency of PeriFuzz.

These are well-known problems that also affect other kernel fuzzers, such as system call

fuzzers.

System Crashes

The OS typically terminates user-space programs when they crash, and they can

be restarted without much delay. Crashing a user-space program therefore has little

impact on the throughput of fuzzing user-space programs. Crashes in kernel space, by

contrast, cause a system reboot, which significantly lowers the throughput of any kernel

fuzzer. This is particularly problematic if the fuzzer repeatedly hits shallow bugs, thereby

choking the system without making meaningful progress. We circumvented this problem
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by disabling certain code paths that contain previously discovered shallow bugs. This

does, however, somewhat reduce the effectiveness of our fuzzer as it cannot traverse the

subpaths rooted at these blacklisted bugs. Note that this problem also affects other

kernel fuzzers, e.g., DIFUZE and Syzkaller [73,74].

Driver Internal States

Due to the significant latency involved in system restarts, whole-system fuzzers typi-

cally fuzz the system without restarting it between fuzzing iterations. This can limit the

effectiveness of such fuzzers, because the internal states of the target system persist across

iterations. Changing internal states can also lead to instability in the coverage-guidance,

as the same input can exercise different code paths depending on the system state. This

means that coverage-guidance may not be fully effective. Worse, when changes to the

persisting states accumulate, the device driver may eventually lock itself up. For exam-

ple, we encountered a problem where, after feeding a certain number of invalid inputs to

a driver, the driver decided to disconnect from the network, reaching an error state from

which the driver could not recover without a device reboot. Existing device driver check-

pointing and recovery mechanisms could be adapted to alleviate the problem [75, 76],

because they provide mechanisms to roll drivers back to an earlier state. Such a roll back

takes significantly less time than a full system reboot.

2.6.2 Augmenting the Fuzzing Engine

Although we used mutational, feedback-guided fuzzing to mutate the data stream

on the device-driver interaction path, our fuzzing framework can also benefit from other

fuzzing techniques. Like DIFUZE [73], static analysis can be introduced to infer the

type of an I/O buffer, which can save fuzzing cycles by respecting the target type when
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mutating a value. The dependencies between device-driver interaction messages can also

be inferred using static and trace analysis techniques [77, 78], which can help fuzzing

stateful device-driver interaction protocols. Alternatively, developers can specify the

format of an I/O buffer and/or interaction protocol in a domain-specific language [74,

79]. In addition to improving the mutation of the data stream, we could use system

call fuzzers such as Syzkaller that generate different user-space programs [74]. These

generated programs could actively send requests to the driver and potentially to the

device, which in turn can increase reachable interrupt code paths. We believe that our

modular framework allows for easy integration of these techniques.

2.6.3 Combining with Dynamic Analysis

Our framework runs in a concrete execution environment; thus, existing dynamic

analysis tools can be used to uncover silent bugs. For example, kernel sanitizers such

as address sanitizer and undefined behavior sanitizer can complement our fuzzer [80,

81]. Memory safety bugs often silently corrupt memory without crashing the kernel.

Our fuzzer, by itself, would not be able to reveal such bugs. When combined with a

sanitizer, however, these bugs would be detected. Other dynamic analysis techniques

such as dynamic taint tracking can also be adapted to detect security-critical semantic

bugs such as passing security-sensitive values (e.g., kernel virtual addresses) to untrusted

peripherals.
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2.7 Related Work

2.7.1 Protection against Peripheral Attacks

An IOMMU isolates peripherals from the main processor by limiting access to phys-

ical memory to regions configured by the OS. Markuze et al. proposed mechanisms that

can achieve strong IOMMU protection at an affordable performance cost [65, 66]. Sev-

eral other work proposed mechanisms that can limit functionalities exposed to potentially

malicious devices [82–84]. Cinch encapsulates devices as network endpoints [83], and US-

BFILTER hooks USB APIs [84], to enable user-configurable, fine-grained access control.

However, neither IOMMU protection nor fine-grained access control prevents exploitation

of vulnerabilities found in code paths that are still reachable from the device.

The effects of vulnerabilities on these valid code paths can be mitigated by isolating

device drivers from the kernel [85–88]. Android, for example, switched from the kernel-

space Bluetooth protocol stack [89] to a user-space Bluetooth stack [90]. The OS kernel

merely acts as a data path by forwarding incoming packets to the user-space Bluetooth

daemon process. This approach can mitigate vulnerabilities in the device driver because

the driver cannot access kernel memory and cannot execute privileged instructions. The

daemon process still runs at a higher privilege level than standard user-space processes,

however, and therefore remains an attractive target for adversaries looking to access

sensitive data [91]. Additionally, this approach is currently not viable for certain types of

device drivers. High-bandwidth communication devices such as Wi-Fi chips, for example,

cannot afford the mode and context switching overhead incurred by user-space drivers.
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2.7.2 Kernel Fuzzing

Most kernel fuzzing tools focus on the system call boundary [67,73,74,77,78,92–96].

DIFUZE uses static analysis and performs type-aware fuzzing of the IOCTL inter-

face, which can expose a substantial amount of driver functionality to user space [73].

Syzkaller, a coverage-guided fuzzer, fuzzes a broader set of system calls, based on system

call description written in a domain-specific language [74]. IMF infers value-dependence

and order-dependence between system call arguments by analyzing system call traces [77].

kAFL uses Intel Processor Trace as a feedback mechanism, to enable OS-independent

fuzzing [67]. Digtool uses virtualization to capture and analyze the dynamic behavior of

kernel execution [92].

PeriFuzz can be augmented with techniques that facilitate type-aware fuzzing [73,

74, 77, 78], as discussed in Section 2.6.2. Tools based on certain hardware features can

fuzz closed-source OSes [67, 92], but smartphones often do not contain or expose the

necessary hardware features to the end user. For example, most smartphone OSes block

access to the bootloader and to hypervisor mode, thus preventing end users from running

code at the highest privilege level [97]. None of these fuzzers target DMA/MMIO-based

interactions between drivers and devices, nor do they cover code paths that are not

reachable from system calls (e.g., interrupt handlers).

2.7.3 Kernel Tracing

There are many general-purpose tools to monitor events in the Linux kernel. Static

kernel instrumentation mechanisms such as Tracepoint allow the developer to insert so-

called probes [98]. Ftrace and Kprobe are dynamic mechanisms that can be used to

probe functions or individual instructions [99, 100]. eBPF, the extended version of the

Berkeley Packet Filter mechanism, can attach itself to existing Kprobe and Tracepoint
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probes for further processing [101]. LTTng, SystemTap, Ktap and Dprobe are higher

level primitives that build on the aforementioned tools [102–105].

These tools, however, are not well suited to monitoring device-driver interactions,

because they require developers to identify and instrument each device-driver interac-

tion. These manual efforts can be alleviated by using page fault based monitoring, which

Mmiotrace uses to trace MMIO-based interactions in x86 and x86-64 [106]. However,

Mmiotrace does not support the DMA interface, i.e., DMA coherent and streaming

buffers, and it lacks the ability to manipulate device-driver interactions. In contrast,

PeriScope can trace both MMIO and DMA interfaces, and can be used to manipu-

late device-driver interactions by plugging in PeriFuzz, enabling adversarial analysis of

device drivers.

2.7.4 Kernel Static Analysis

Static analysis tools can detect various types of kernel and driver vulnerabilities [40,

107–110]. Dr. Checker runs pointer and taint analyses specifically tailored to device

drivers, and feeds the analysis results to various vulnerability detectors [109]. K-Miner

uses an inter-procedural, context-sensitive pointer analysis to find memory corruption

vulnerabilities reachable from system calls [110]. Symbolic execution can complement

these static analyses to work around precision issues. Deadline [40], for example, uses

static analysis to find multi-reads in the kernel, and symbolically checks whether each

multi-read satisfies the constraints to be a double-fetch bug. With the help of this sym-

bolic checking, Deadline can precisely discern double-fetch bugs from statically identified

multi-reads. Generally speaking, however, techniques based on symbolic execution may

not scale well due to the path explosion problem.

Static analysis techniques have traditionally been applied to the system call interface
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only. Although the core ideas can apply to the hardware-OS interface too, statically

identifying the necessary entry points may not be as trivial as with system calls, since

accesses to an I/O mapping are difficult to distinguish from other memory accesses, and

interrupt processing code can run in different, unrelated contexts (e.g., software interrupt

context, kernel thread context, etc.).

2.7.5 Finding Double-fetch Bugs

Double-fetch bugs are a special case of time-of-check-to-time-of-use (TOCTTOU)

race conditions. They occur when privileged code fetches a value from a memory loca-

tion multiple times, while less privileged code is able to change the value between the

fetches [41, 42]. Previous work explored multiple reads of user-space memory from OS

kernels or from trusted execution environments [40, 42, 92, 108, 111], and multiple reads

of memory shared between different hypervisor domains [112]. They either use static

analysis (e.g., static code pattern matching [108] and symbolic execution [40]), or dy-

namic analysis (e.g., memory access tracing followed by pattern analysis [42,92,112] and

cache behavior-guided fuzzing [111]). PeriFuzz is also a dynamic approach, but targets

a different attack surface: I/O memory mappings shared between peripheral devices and

kernel drivers.

PeriFuzz and DECAF are currently the only two tools that are sufficiently generic

to support double-fetch fuzzing without instrumentation or manual analysis of the target

code [111]. DECAF cannot fuzz double-fetches from MMIO and DMA coherent map-

pings, however, because these mappings are typically uncached, and DECAF relies on

cache side channels to detect double-fetches.

53



PeriScope: An Effective Probing and Fuzzing Framework for the Hardware-OS Boundary
Chapter 2

2.8 Conclusion

In this chapter, we discuss the remote attack vectors of the OS kernel, and the po-

tential disastrous consequences of a remote kernel compromise. While previous security

efforts have focused on securing the system call boundary, recent exploits have demon-

strated alternative paths to kernel compromise, such as through compromised peripheral

devices. We introduces PeriScope, a probing framework based on the Linux kernel,

designed to analyze device-driver interactions. It can passively monitor and log traffic,

or actively mutate data streams using the PeriFuzz fuzzing component. The framework

has been evaluated on Wi-Fi drivers of two popular vendors, uncovering 15 vulnerabil-

ities, including 9 previously unknown ones. This work emphasizes the importance of

addressing vulnerabilities along the hardware-OS boundary, and highlights the need for

a framework that can identify and mitigate such risks. The PeriScope framework fills

that void.
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Chapter 3

Understanding Security Issues in the

NFT Ecosystem

A Non-Fungible Token (NFT) is an ownership record stored on a blockchain (such as the

Ethereum blockchain). While digital items, such as pictures and videos, are the most

common assets traded as NFTs, the sale of physical assets, e.g., postal stamps [113,

114], gold [115], real estate [116], physical artwork [117], etc., is also steadily gaining

popularity. In the cryptocurrency world, an NFT is the equivalent of a conventional proof-

of-purchase, such as a paper invoice or an electronic receipt. Among other things, what

make NFTs attractive are verifiability and trustless transfer [118]. Verifiability means

that sales are recorded as blockchain transactions, which makes tracking of ownership

possible. In addition, the NFT concept allows for the trading of digital assets between

two mutually distrusting parties, as both the crypto payment and the asset transfer

happen atomically in a single transaction.

Legitimacy is one of the big issues with NFTs, as nothing prevents an impostor from

“tokenizing” and selling someone else’s art, while the creator remains oblivious of the

fraud. With the current state of affairs, the onus of verifying the token is on the buyer.
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Unfortunately, this is not always easy. For instance, in August 2021, a perpetrator

impersonated the popular British graffiti artist Banksy and sold an NFT [119] that

featured a “fake” art piece by the artist for $336K USD through an online auction. While

NFTMs try to thwart such attacks by mandating account validation, typically through

an artist’s social media presence, another scammer punched a hole through Rarible’s

verification process and managed to get a fake account associated with the renowned

artist Derek Laufman verified [120]. Counterfeits NFTs, also called copycats or parody

projects, resemble reputable collections and purport to have been created by reputable

sources. For example, the early NFT project CryptoPunks has numerous clones, such

as CryptoPhunks. In some scenarios, scammers set up unauthorized customer support

channels and social media accounts that pretend to be affiliated with NFTMs in an effort

to steal customer information and compromise accounts [121]. Also, there is evidence of

rug-pulls, where the owner/creator of an NFT unscrupulously hypes an asset in order to

inflate its value, only to cash out, leaving others to suffer from the subsequent decline

in value. One such example is the Eternal Beings collection, which was promoted

by the popular American rapper Lil Uzi Vert through his Twitter account with 8.5M

followers. Soon after the initial investment by the buyers, he deleted all of his tweets,

causing the token values to plummet [122].

To the best of our knowledge, however, the existing literature has not explored the

security challenges in the emerging NFT ecosystem, or performed a systematic and com-

prehensive analysis of the associated threats. Our work fills that void. First, we identify

three components constituting the NFT ecosystem. We then analyze each component

to discover security, privacy, and usability issues, as well as economic threats. We hope

that our work will be helpful both for NFT marketplaces and their users. We envision

this work as a guide to help NFTMs to avoid mistakes while making users aware of the

perils of the NFT space.
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3.1 Background

In this section, we introduce the building blocks of the Ethereum ecosystem, with an

emphasis on non-fungible tokens (NFTs) and the economy that has grown around them.

The Ethereum Blockchain. Ethereum is the technology powering the cryptocur-

rency Ether (ETH) and thousands of decentralized applications (dApps). The Ethereum

blockchain is a distributed, public ledger where transactions are mined into blocks by

miners who solve cryptographic Proof of Work (PoW) challenges. In this ecosystem, an

account is an entity represented by an address that is capable of submitting transactions.

There are two types of accounts in Ethereum: externally owned accounts (EOA), which

are controlled by anyone holding the corresponding private key, and contract accounts,

which contain executable pieces of code, called smart contracts. A smart contract is a

program run by the Ethereum Virtual Machine (EVM), which leverages the blockchain

to store its persistent state. A transaction is the transfer of funds between accounts,

or an invocation of a contract’s public method. The address that sends the funds or

interacts with the contract is denoted by msg.sender.

Non-Fungible Token (NFT). In the real world, tokens are representations of facts,

such as the position in a queue or the authorization to access a facility. In Ethereum,

tokens are digital assets built on top of the blockchain. Unlike Ether, which is the native

(built-in) cryptocurrency of the Ethereum blockchain, tokens are implemented by spe-

cialized smart contracts. There are two main types of tokens: fungible and non-fungible.

All the copies of a fungible token, usually conforming to the ERC-20 interface [123], are

identical and interchangeable. Such tokens can act as a secondary currency within the

ecosystem, or can represent someone’s stake in an investment. On the other hand, all

the copies of non-fungible tokens, usually conforming to the ERC-721 [124] interface, are

unique, and each token represents someone’s ownership of a specific digital asset, such
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setApprovalForAll(address _operator ,

bool _approved) external

approve (address _approved ,

uint256 _tokenId) external payable

transferFrom (address _from , address _to ,

uint256 tokenId) external payable

tokenURI (uint256 _tokenId)

external view returns (string)

Figure 3.1: Important methods defined in ERC-721.

as ENS domains [125] and CryptoKitties [126], or a physical asset, like a gold bar.

ERC-721 [124] is by far the most popular standard for implementing non-fungible

tokens on Ethereum. The standard interface defines a set of mandatory and optional

API methods that a token contract needs to implement. Figure 3.1 presents a few of

those API methods relevant to our discussion.

Each NFT has its own ID (to keep track of these unique tokens), which is referred

to as tokenId. In ERC-721, an operator is an entity that can manage all of an NFT

owner’s assets. In other words, an NFT owner can delegate the authority to act on

her assets to an operator. Depending on whether the approved argument is set, the

setApprovalForAll() method either adds or removes the address operator from/to

the set of the operators authorized by the msg.sender (the NFT’s owner). Unlike an

operator, who can operate on all the assets of an owner, ERC-721 defines a controller as an

entity who is authorized to operate on one single asset held by an owner. The approve()

method approves the address approved as the controller of the asset tokenId. An

operator, a controller, or the owner can call the transferFrom() method to transfer the

token tokenId from the current owner’s from address to the to address.

When an NFT is created (minted), the creator can optionally associate a URL with

the NFT. That URL, called metadata url, should point to a JSON file that conforms to

the ERC-721 Metadata JSON Schema [124]. The JSON file stores the details of the asset,
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Figure 3.2: Anatomy of the NFT ecosystem showing all the marketplace actors, and
their mutual interaction. The dotted and solid lines indicate data-centric and com-
mand-centric communication channels, respectively.

e.g., its name and description, and also contains an image field storing a URL, called

image url, that points to the asset. In this way, an NFT essentially connects an asset

with the record of its ownership. Given a tokenId, the associated metadata url can

be retrieved by querying the tokenURI() API of the contract. Interestingly, the creation

and destruction of NFTs (“minting” and “burning”) are not a part of the standard.

Typically, mint() is defined as a public function restricted to the contract creator, and

invoked by passing metadata url as an argument. Minting can also be done during

contract creation by calling mint() through the contract’s constructor.

InterPlanetary File System (IPFS). IPFS [127] is a distributed, peer-to-peer, permis-

sionless file system. Anyone can join the IPFS overlay network. A data item d is assigned

a unique immutable address, also known as content identifier (CID): cid = H(d), which

is the hash H of the file’s content d. Therefore, when the content of the file changes,
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the CID changes as well. The content of a file is first split into blocks. All the storage

elements, i.e., a directory, the files inside the directory, and the blocks within those files,

are stored in a directed acyclic graph structure called a Merkle DAG. IPFS maintains a

distributed hash table (DHT) split across all the nodes in the network to store provider

records, which locate those peers that store the requested content. To retrieve a data

item d, a node first looks up the providers P (d) in the DHT, and then requests d from

the members of P (d).

3.2 Anatomy of the NFT Ecosystem

In this section, we provide an overview (Figure 3.2) of the economy that has developed

around NFTs. Specifically, we identify the actors that participate in the ecosystem and

the components they interact with.

Users. NFTs are often used to sell digital collectibles and artwork, e.g., images, audio

files, and videos. The users in the NFT ecosystem belong to one of three categories:

content creator, seller, and buyer. First, the creators create digital content and upload

it 1 to hosting services (an external entity) to make the art publicly available. When

it comes to selling the content, some creators are not technical enough to turn their art

into an NFT, and put it as a token on the blockchain. Therefore, they authorize 2 sellers

to mint NFTs 6 and offer it on marketplaces. In other cases, a content creator is also

taking the role of the seller. Once listed on a marketplace 3 , buyers can buy the artwork

at a listed price, make offers, or place bids 7 . If their offer is accepted or they win an

auction, the NFT is transferred 8 by invoking the transferFrom() API (Section 4.1)

from the seller to the buyer to reflect the change in ownership.

Marketplaces. NFT marketplaces (NFTM) are dApp platforms where NFTs (also re-

ferred to as assets) are traded. There are typically two main components of an NFTM—
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a user-facing web frontend, and a collection of smart contracts that interact with the

blockchain. Users interact with the web app, which, in turn, sends transactions to the

smart contracts on their behalf 5 . Primarily, there are two types of contracts: (i) mar-

ketplace contracts, which implement the part of the NFTM protocol that interacts with

the blockchain, and (ii) token contracts, which manage NFTs. Marketplaces typically

allow users to perform the following activities: (a) user authentication, (b) token mint-

ing, (c) token listing, and (d) token trading. The token-related activities are collectively

called events. Depending on where these events are stored, three broad types of NFTM

protocol design are possible: (i) on-chain: all the events live on the blockchain. Since

every action costs gas, this design makes the NFTM operationally expensive for the users.

NFTMs that follow this design include Axie, CryptoPunks, Foundation, and Su-

perRare. (ii) off-chain: the events are recorded in a centralized, off-chain database

managed by the NFTM. Users perform various activities by interacting with the web

app, not the blockchain, and, therefore, this design is gas-friendly. Nifty is an example

of an off-chain NFTM. (iii) hybrid : depending on their type, events are stored either

on-chain or off-chain. To ensure the integrity of the operation, on-chain and off-chain

events are tied together with a cryptographic check. OpenSea and Rarible follow this

model.

▶ User authentication. Users first need to register with the NFTMs to access their

services. Post-registration, two different authentication workflows are possible: (a) clas-

sic credentials-based (username/password), or (b) signature-based. With the latter,

the user is first asked to sign a challenge string. Then, the marketplace recovers [128]

the address of the signer (user) from the elliptic-curve signature. OpenSea, Rarible,

Foundation, CryptoPunks, and SuperRare follow this model. Since Ethereum pri-

vate keys are essentially unguessable [129], this authentication method is generally more

secure than traditional passwords (passwords are typically drawn from a limited set of
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characters, shorter in length, and easier to brute-force).

▶ Token minting. A token is minted (created) 6 by calling the appropriate method

of the token contract, which generally complies with the ERC-721 or ERC-1155 stan-

dard. A single token contract can manage the ownership of a number of NFTs. Every

NFT is assigned an integer called tokenId. Therefore, an NFT is uniquely identified

by the ⟨token contract address, tokenId⟩ pair on the blockchain. A “family” of

NFTs, which are either similar, or based on a common theme, called a collection, e.g.,

CryptoPunks. An NFT can be minted in many different ways: (a) default contract :

the token is minted as part of a pre-deployed, designated token contract managed by the

marketplace. NFTMs likeOpenSea, Foundation, SuperRare, etc., provide a default

contract to hold NFTs when no custom contract is deployed by the creator. (b) replica

contract : the NFTM itself deploys a contract on behalf of the creator to manage the

collection that the NFT is a part of. Deployed contracts have identical bytecode, but are

customized through initialization parameters. Examples of such NFTMs includes Nifty

and Rarible. Since both default and replica contracts are managed by the NFTM,

together they are called internal token contracts. (c) external contract : the creator in-

dependently deploys a custom contract to manage the collection, and later imports it to

the marketplace. To be interoperable with the NFTMs, external contracts must follow a

well-established token standard. Otherwise, a custom integration is needed. OpenSea

and Rarible allow external contracts on their platforms. A single token contract can

manage one or more collection. Typically, replica or external contracts manage a single

collection, while the marketplace default contract manages several. In the latter case,

the NFTM dApp maintains an off-chain association between the set of tokenIds and

the collection those belong to.

▶ Token listing. Once created, a seller lists their assets for sale 3 . To list an NFT
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on a platform, some NFTMs, e.g., Foundation, SuperRare, Nifty, mandate either

the seller or the entire collection (that the NFT is a part of) to be verified. Even for

the NFTMs where verification is optional, for example, OpenSea, Rarible, getting

an artist or a collection verified provides credibility and increases buyers’ confidence.

NFTMs display special badges on verified profiles of artists and collections, which helps

in building a brand, and receive preferential treatment to boost sales – such as search

priority and safe-listing to suppress safety-related alerts before the purchase.

▶ Token trading. Buyers can make offers, or place bids 7 on the assets on sale. When

an offer is accepted, or an auction is settled, the NFTM transfers 8 assets from the

seller’s account to the buyer’s. Usually, this is when the NFTMs charge a fee for the

service they offer. A few key aspects of the NFTM bidding system are discussed below:

(i) Pricing protocol : The bid price can either increase or decrease with every bid. In an

English auction, the bid opens at a reserve price, which is the minimum price the seller

is willing to accept for an NFT. Subsequent bids from the buyer gradually increase the

price. The NFT goes to the highest bidder. The English auction approach is used by

most NFTMs, e.g., OpenSea, Foundation, and SuperRare. In a Dutch auction,

the bid opens at a high price. Subsequent bids from the seller gradually decrease the

price. The NFT goes to the bidder who first accepts a bid. Axie follows the Dutch auc-

tion pattern. (ii) Bid storage: Bids can be stored either on-chain, e.g., CryptoPunks,

Foundation, SuperRare, or off-chain, e.g., Nifty, Rarible, OpenSea. There are

protocols, such as Wyvern used by OpenSea, which keep both the sell order (listing)

and the bids off-chain for gas efficiency, though the order matching and the NFT transfer

happen on-chain. Therefore, the marketplace contract cryptographically verifies the buy

order against the associated sell order to prevent a malicious buyer from either buying an

item that is not on sale, or tampering with an existing sell order. (iii) Active bids : Some

NFTMs disallow multiple active bids on the same asset. For example, in CryptoPunks,
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Foundation, or SuperRare, when a bidder outbids the current top bidder, the latter

gets automatically refunded. (iv) Bid withdrawal : Some NFTMs, such as CryptoP-

unks, allow the withdrawal of bids, while others, for example, Foundation, do not.

(v) Bid settlement : Bid settlement does not require seller’s intervention in most cases,

i.e., the asset automatically goes to the highest bidder. However, for some NFTMs like

CryptoPunks, the bid has to be explicitly accepted by the seller.

When an item is sold by a seller other than the creator, it is called a secondary sale.

Royalty is the payment made to the creator for every such secondary sale. Before the

first (primary) sale takes place, the creator specifies the royalty amount, which is then

deducted from every secondary sales and given to the creator. The deduction happens

either (i) on-chain, where royalty is calculated by the marketplace contract during the

buy transaction, or (ii) off-chain, where the NFTM dApp keeps track of the royalty

accumulated from all the sales.

External entities. External to both NFTMs and blockchain, there are services and

devices that provide the necessary infrastructure for the system to work. For example,

creators store 1 their artwork on web servers or storage services such as Amazon S3 or

IPFS. When buyers purchase the NFT, they can exercise their bragging right by dis-

playing the art on photobook-style websites or digital NFT photo-frames. The websites,

photo-frames 11 , and NFTMs 4 fetch tokens from the blockchain 10 , and respective

artwork from those services.

3.3 Analysis approach

This section studies scams, malpractice, and security issues in the NFT ecosystem.

In particular, we investigate the following research questions related to the three entities

identified in the previous section, i.e., users, marketplaces, and external entities: (RQ1.)
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OpenSea [130] 4.32B 12,215,650 349,911,634 A, B A
Axie [131] 1.75B 891,238 487,486 B B
CryptoPunks [132] 1.18B 9,999 172,157 B B
Rarible [133] 199.42M 72,509 1,864,997 B B, W
SuperRare [134] 106.87M 28,676 198,848 B B
Sorare [135] 97.42M 298,219 1,392,292 B W, B
Foundation [136] 68.19M 112,120 508,349 B B
Nifty [137] 300.12M - - - -

Table 3.1: Characteristics of the marketplace dataset. A: API access, W: Web scrap-
ing, B: Blockchain parsing.

Are there weaknesses in the way NFTMs operate today, and can those be exploited

(Section 3.4)? (RQ2.) How and to what extent do external entities pose a threat to the

NFT ecosystem (Section 3.5)? (RQ3.) Are users involved in any fraud or malpractice

resulting in the financial loss for others (Section 3.6)?

We used a hybrid (both qualitative and quantitative) approach to answer RQ1, and a

quantitative approach for both RQ2 and RQ3. The rest of this section discusses how we

collected the data for the quantitative analysis, and we provide a rationale for choosing

the specific NFT marketplaces that we examined in more detail.

Marketplace selection. In line with previous work [138], we use DappRadar [4],

a popular tracker of dApps, to select the most relevant marketplaces. We selected 8

out of a total of 35 marketplaces (Table 3.1) listed in DappRadar. This selection was

based on the following two criteria: (a) backed by the Ethereum blockchain, and (b) the

“all-time” trading volume is over 50M USD as of June 15, 2021.

Data collection. We collect two different types of data: (a) information about the NFTs

(assets), e.g., collection name, asset URI, metadata URI, etc., traded on the different

marketplaces, (b) NFT-related events, such as mint, buy, sell, auction creation, placing

of a bid, acceptance of a bid, transfer, etc., generated as a result of marketplace activity.

We provide the details of the collected data in Table 3.4. To conduct differential analysis
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for one of the studies, we needed to monitor how the details of certain assets change

over a period of time. Therefore, we crawled the same set of assets three times with a

three-month interval between two subsequent crawls: in June 2021, September 2021, and

finally in December 2021. Moreover, we collected event information continuously between

the June and September crawls. We use CoinGecko [139] API to fetch historical prices

of the cryptocoins to convert the pricing information to their equivalent USD value.

Asset and event information: The first step to collect asset and event information

is asset enumeration, i.e., obtaining the list of assets traded on a marketplace. Once

enumerated, we collect the asset and event information for those assets. For both the

steps, we employ three different strategies, subject to marketplace restrictions:

1) API access : If a marketplace exposes an appropriate API, we use it to retrieve the list

of assets and events. Unfortunately, the APIs are often record-limited, e.g., for a specific

query, OpenSea’s API returns at most 10, 000 assets. However, the total number of

assets listed on their website was 18.2M at the time of crawling. As a workaround,

we generate API requests with combinations of sort and filter parameters to fetch

different sets of assets with every request.

2) Web scraping : If a marketplace does not provide an API interface, but its terms and

conditions (T&C) do not disallow scraping of their web interface, we crawl the assets and

events data from the website.

3) Blockchain parsing : If a marketplace neither provides an API nor allows web scrap-

ing, we retrieve asset and event data directly from the blockchain, if possible. Trading

activities of a decentralized marketplace are handled by smart contracts that are well-

known. Leveraging the ABI (Application Binary Interface) of the contracts published in

Etherscan, we parse historical transactions, e.g., atomicMatch() in case of OpenSea,

to retrieve asset and event details.

Our asset collection is best-effort, as it is impossible to enumerate all the listed as-
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sets in a marketplace. This is due to various reasons mentioned above, such as the

absence of marketplace APIs, their rate limits, and T&C prohibiting any crawling activ-

ity. Table 3.1 shows the number of assets and events collected for each marketplace, and

the strategies used to collect data. Since Nifty does not provide an API, prohibits web

scraping through T&C, and stores events off-chain, we were unable to collect data on the

marketplace activities.

Measurement study. We utilize the asset and event data we collected to perform

several measurement studies, which are described in the subsequent sections. We would

like to emphasize that we attain reasonable coverage, e.g., OpenSea, the largest NFTM

that accounts for 89.63% of assets in our dataset, listed 18.2M assets in their website

at the time of crawling. We crawled 12.2M assets, which is 66.94% of the size of the

marketplace. Since OpenSea contributes to the most number of assets in our dataset,

we use only OpenSea in Section 3.4 (unless the study requires cross-NFTM analysis)

and Section 3.5, as only that dataset would be representative enough to capture the

extent of the issues we quantified in those sections. However, since we measured the

occurrences of trading malpractices per NFTM in Section 3.6, we used assets from all the

marketplaces. We provide the Ethereum addresses of the major contracts relevant to our

study in Appendix 3.12.

3.4 Issues in NFT Marketplaces

In this section, we identify weaknesses in the design of NFTMs, which, when abused,

pose a significant risk in the form of financial loss to both the marketplaces and its users.

For this part of the study, we gathered information from public security incidents, attacks,

and abuses reported on various blogs and technical reports, direct interactions with indi-

vidual marketplaces, and marketplace documentation. We have systematized our findings
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User authentication
U1. Identity verification ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

U2. Two-factor authentication N ✗ N N N O N ✓

Token minting
M1. Verifiability of token contracts ✗ N N ✗ N N N ✗

M2. Tampering token metadata
M2.1 Changing metadata url P ✓ ✗ ✗ P P ✗ ✗

M2.2 Decentralized metadata O ✗ ✗ O O ✗ M O

Token listing
L1. Principle of least privilege ✓ ✓ ✓ ✓ P ✓ ✗ ✗

L2. Invalid caching ✓ N N ✓ N N N N
L3. Seller / collection verification O N N O M N M M

Token trading
T1. Lack of transparency ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

T2. Fairness in bidding ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗

T3. Royalty and fee evasion
T3.1 Cross-platform ✗ ✗ N ✗ ✗ ✗ P ✗

T3.2 Post-sales modification ✓ ✗ N ✓ ✗ ✗ ✗ ✗

Table 3.2: Issues in the NFT marketplaces. O: Optional, M : Mandatory, P: Partial,
N: Not applicable, ✓: Exists, ✗: Does not exist.

by connecting those issues with the marketplace activities discussed in Section 3.2, and

then quantified, whenever possible, the prevalence/impact of those issues. Lastly, we

systematically evaluated the existence of each of the issues across all the marketplaces

(Table 3.2).

3.4.1 User Authentication

(U1) Identity verification. Art in the physical world has been used in money laun-

dering schemes [140]. NFTs might make this process easier, as trades are executed by

anonymous users, and there are no physical artworks to be transported. Identity verifi-
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cation is the first step to deter such criminals. Major crypto exchanges, such as Coinbase

and Binance US, are highly regulated. To create an account with these exchanges, one

needs to provide personally identifiable information (PII), e.g., name, residential address,

social security number (SSN), along with supporting documents confirming these details.

Without getting the identity verified, it is either impossible to use the platform, or it

can only be used with tight financial restrictions in place. To investigate if the NFTMs

impose similar regulatory restrictions, we interacted with them by creating accounts.

We discovered that no NFTM has made any steps towards enforcing KYC (Know Your

Customer) rules nor implemented AML/CFT (Anti-Money Laundering/Combating the

Financing of Terrorism) measures. As a result, apart from being able to hide the identity,

a user can create several accounts on the platform that are hard to be traced back to one

single entity.

(U2) Two-factor authentication. Enabling 2FA (Two-Factor Authentication) greatly

enhances the security of a password-based authentication workflow. While traditional fi-

nancial institutions like banks, brokerages, and cryptocurrency exchanges, such as Coin-

base and Binance, provide 2FA as an option, it is not yet a ubiquitous option for

NFTMs. Sorare manages a user’s wallet on her behalf. As a result, an attacker who is

able to login into an account can download the user’s Ethereum private key associated

with the wallet, and transact on behalf of her. Though Sorare does support 2FA, it

is not enabled by default. 2FA was also optional for Nifty users until the infamous

hack [141] that compromised a number of accounts in March 2021. According to their

initial assessment, none of the impacted accounts used 2FA when the hack took place.
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3.4.2 Token Minting

(M1) Verifiability of token contracts. A token contract is considered “verifiable” if

its source code is submitted to Etherscan. Given the functional complexity of these to-

ken contracts, source code is much easier to audit than bytecode. Verifiability of external

token contracts is crucial as they can be malicious or buggy. As an example, OpenSea

users complained about a malicious token contract that did not transfer tokens after

purchase. Also, to make a particular NFT valuable, sometimes NFT projects promise to

circulate only a certain number (rarity) of that token. A malicious token contract can be

abused to mint more tokens than the rarity threshold, thus dropping the token’s price,

which hurts the buyers. A malfunctioning contract can burn gas without even doing any

real work, e.g., almost all Purchase events of the CelebrityBreeder contract failed with

errors. Ideally, an NFT project should make the source of the underlying token contract

available for public scrutiny before the NFTs are minted to make sure that they are

neither malicious nor buggy. Unfortunately, none of the NFTMs that support external

token contracts mandates such contracts to be open-source.

▶ Quantitative analysis. To enumerate how abundant closed-source NFT tokens are,

we queried Etherscan API for every token contract in our dataset to check if its source

is present. Out of 11,339 token contracts, 8,122 (71.63%) were open-source, while the

remaining 3,217 (28.37%) were closed-source, of which 7,850 (96.65%) and 3,209 (99.75%)

tokens belong to OpenSea, respectively.

Further, we intended to evaluate if closed-source tokens are more likely to exhibit

malicious behavior than open-source ones. Since NFTMs take down NFTs when they

observe or receive a report of either an abuse or a violation of the T&C, we consider “take-

down” as an indirect (yet strong) indication of a token being found malicious. According

to our observation, 1,765 (55.00%) closed-source tokens were taken down by OpenSea
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between June and December, which account for $328.8M USD in trading volume. On the

contrary, only 606 (7.72%) open-source tokens were taken down during the same span.

(M2) Tampering with token metadata. The metadata of a token holds the pointer to

the corresponding asset. Hence, if the metadata changes, the token loses its significance.

The ERC-721 standard for NFTs actually allows for the possibility to change a token’s

metadata. However, when an NFT represents a particular asset (such as a piece of

art) that is sold, changing the metadata violates the expectation of the buyer. The

location and the content of the metadata are decided at the time of minting. A malicious

creator/owner A can alter the metadata by manipulating either of the two post-minting:

(i) by changing the metadata url, and (ii) by modifying the metadata itself. Even if (i)

can be disallowed at the contract level, metadata hosted on third-party (web) domains

can be freely modified by A, if she controls the domain. This second attack can be

prevented if the metadata is hosted in IPFS. Since the URL of an object stored in IPFS

includes the hash of its content, the metadata cannot be modified while retaining the

same URL recorded in the NFT.

For internal token contracts, CryptoPunks, Foundation, Rarible, and Nifty

offer no way to update the metadata url of an NFT. Axie allows the creator to modify

the URL at any time. OpenSea, SuperRare, and Sorare allow modification by the

creator until the first sale. Since only Foundation mandates storing the metadata on

IPFS, other NFTMs are susceptible to the second attack for the internal contracts. Since

no NFTM supporting external token contracts employs any check to prevent metadata

tampering, both attacks are feasible.

▶ Quantitative analysis. We performed a differential analysis to determine the change

in the metadata urls of external assets over a period of time. Specifically, we monitored

the metadata urls of all 9,064,767 external OpenSea assets three times over a span of

six months in an uniform interval—in June 2021, September 2021, and December 2021,
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respectively. Since ERC-721 metadata extensions are optional (explained in Section 3.5),

metadata urls were completely missing for some of the assets. Also, OpenSea took

down some assets during this time period, which is why their metadata urls could not

be retrieved in the subsequent crawl. After excluding these two kinds of assets, we were

left with 3,079,139 assets that had metadata urls in all three crawls. According to our

observation, the metadata urls of 89,089 (2.89%) and 35,446 (1.15%) assets changed

between the first two and the last two crawls, respectively.

3.4.3 Token Listing

(L1) Principle of least privilege. While listing an NFT, the NFTM takes control

of the token so that when a sale is executed, it can transfer the ownership of the NFT

from the seller to the buyer. To this end, the NFTM needs to be either (i) the owner

of the NFT: that is, the current owner transfers the asset to an escrow account E during

listing, or (ii) a controller : an Ethereum account C that can manage that specific NFT

on behalf of the owner, or (iii) an operator : an Ethereum account O that can manage

all the NFTs in that collection. The escrow model in case (i) is risky because one single

escrow contract/wallet E managed by the NFTM holds all assets being traded on the

platform. Therefore, the security of all assets in a marketplace depends on the security

of the escrow contract or the external account that manages such contract. This design

essentially violates the principle of least privilege. As a result, either a vulnerability

in the contract or a leak of the private key of the external account could compromise

the security of all the stored NFTs. Nifty, Foundation, SuperRare follow this

approach. A safer alternative would be to adopt (ii) or (iii), where a proxy contract C

or O deployed by the NFTM becomes the controller of the NFT, or the operator of the

entire NFT collection, respectively. As enforced by the marketplace contract, the NFTM
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is able to transfer an NFT only when it has been put on sale and the required amount

is first paid to the seller. This ensures the safety of the NFT token even in case of a

marketplace hack. If the private key of a seller (owner of an NFT) gets leaked, it can,

at most, compromise the safety of that specific NFT or collection, as opposed to all the

NFTs as in the case of the escrow model.

▶ Quantitative analysis. Among the NFTMs in our dataset, Foundation holds

tokens in an escrow contract, while Nifty uses an Externally Owned Account (EOA)

as escrow wallet. SuperRare escrows tokens only when an auction is ongoing. The

larger the number of NFTs held in escrow, the greater is the risk. On December 31,

2021, SuperRare, Foundation and Nifty held 55, 64079, and 90988 NFTs in their

escrow accounts, respectively. In Appendix 3.8, we show how the number of escrowed

NFTs increased over time for both NFTMs.

(L2) Invalid caching. While displaying an NFT on sale, OpenSea and Rarible

leverage a local caching layer to avoid repeated requests to fetch the associated images.

If the image is updated, or disappears, the cache goes out of sync. This could trick a

buyer into purchasing an NFT for which the asset is either non-existent or different from

what the NFTM displays using its stale cache.

▶ Quantitative analysis. To understand the potential impact of this caching issue,

we measured how many image urls in our OpenSea dataset are inaccessible (non-200

HTTP response code), but OpenSea still serves the corresponding cached versions. Out

of total 12,215,650 NFTs, image urls of 3,945,231 (32.30%) tokens were inaccessible.

However, OpenSea still cached 2,691,030 (68.21%) of those inaccessible images, thus

creating the illusion that the asset linked to the NFT is still alive. One such broken

collection is Gods Unchained, a verified collection with an overall trading volume of

19.8K Ethers.
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Count
Total
Sales

Average
Sales

Taken
Down

Verified 502 $114.5M $228,028 -
Seller

Non-verified 124,398 $2.7B $22,001 -
Verified 1,805 $3.3B $1,824,882 88
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Collection
Non-verified 234,112 $403.4M $1,723 11182

Table 3.3: Number of verified and non-verified sellers and collections, along with
corresponding sales volumes.

(L3) Seller and collection verification. Listings by verified sellers/collections are not

only given preferential treatment by the NFTMs, but they also attract greater attention

from the buyer community. However, the verification mechanism is typically ad-hoc,

and the final decision is at the discretion of the NFTMs. Common requirements include

sharing the social media handles of the sellers and proving their ownership, sharing

contact information, collections needing to reach certain trading volume, submitting the

draft files of the digital artworks, etc. Marketplaces such as Foundation adopt a stricter

policy by mandating verification of all the sellers on their platform. However, there are

NFTMs, e.g., OpenSea, Rarible, where verification is optional. Buyers are expected

to exercise self-judgment when trading on these platforms, which, unfortunately, puts

them at greater risk.

Since verification comes with financial benefits, it has been abused in different ways:

(i) Forging verification badge. Scammers forged profile pictures with an image of the

verification badge overlaid on them, making the profiles appear visually indistinguishable

from the verified ones at a cursory glance. (ii) Impersonation. Abusing weak verifica-

tion procedures, scammers got their fake profiles verified by just submitting social media

handles, without actually proving the ownership of the corresponding accounts [120].

(iii) Wash trading. One of the requirements of OpenSea to verify a collection is to

have at least 100 ETH in trading volume [142], which is possibly hard to attain for a

newly launched collection. Historically, this requirement has incentivized people to per-

form wash trading, i.e., performing fictitious trades between multiple accounts that are
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all under the control of the attacker, to artificially inflate sales volumes.

▶ Quantitative analysis. To highlight the economic incentive behind verification

abuse, we present the number of sales and the sales volume generated by the verified

and non-verified sellers and collections in OpenSea in Table 3.3. Though only 0.40%

sellers and 0.77% collections of OpenSea are verified, the average sales per verified

seller and collection are 10 and 1,059 times more that their non-verified counterparts,

respectively.

Next, we measure how effective the NFTM verification mechanisms are in preventing

abuse. Had the verification mechanism been foolproof, then a verified collection could not

be malicious, and in turn, it should never have been taken down. However, we observed

that 4.88% of the verified and 4.78% of the non-verified OpenSea collections were taken

down in six months (between June and December 2021). This indicates that though

verification attempts to reduce abuse, it fails to eliminate it completely. The fact that

the verified collections are still taken down shows that bad actors do “slip through” the

system and verify their collections.

3.4.4 Token Trading

(T1) Lack of transparency. NFTs are asset-ownership records that should be stored

on the blockchain to allow for public verifiability. In a decentralized setting, an NFT sale

is handled by a marketplace contract Cm that invokes the transfer() API of the token

contract Ct to transfer the token from the seller to the buyer. Every sale transaction

and the associated transfer, for example, the atomicMatch() call in case of OpenSea,

is visible on the blockchain. Among other things, each transaction includes the following

information: (i) address of the seller (current owner), (ii) address of the buyer (new

owner), (iii) how much the NFT was sold for, (iv) time of ownership transfer. Querying
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for ownership has further been made easier by ERC-721 ownerOf() API that returns the

current owner of a token. The sales records, in conjunction with the API, permit one to

reconstruct the precise sales and ownership history of an NFT.

On the other hand, if sales records and transactions are stored off-chain, it becomes

impossible to verify any trades and the ownership history of an NFT. Moreover, a ma-

licious NFTM can abuse this fact to forge spurious sales records to inflate the trading

activity and volume. Off-chain records are susceptible to tampering, censorship, and

prone to disappear if the NFTM database goes down. Among the NFTMs we surveyed,

only Nifty maintains off-chain records. When an item is listed, Nifty takes control

of the NFT by first having it transferred (T1) to an escrow wallet. Thereafter, multiple

trades can take place while Nifty holds the custody of the asset, but no sales record is

ever emitted on the blockchain. If and when the owner decides to take the NFT out of

Nifty, the marketplace transfers (T2) the token back to the owner’s account. Since only

T1 and T2 are visible from the blockchain, no intermediate ownership and sales activity

can be verified.

(T2) Fairness in bidding. NFTMs implement bidding either (i) on-chain, through a

smart contract that requires the bid amounts to be deposited while placing the bid, or

(ii) off-chain, through the NFTM dApp which maintains an orderbook without requiring

any upfront payment. Off-chain bidding is unfair as it can be abused by both the NFTM

and the users. Since bids are not visible from the blockchain, NFTMs can inflate the bid

volume to create hype. Also, placing bids is inexpensive, as there is no money transfer

involved. Therefore, such NFTMs are more susceptible to bid pollution, a form of abuse

where a large number of casual bids are placed on items. Since no money is locked, most

of these bids are likely to fail due to a shortage of funds in the bidder’s account at the time

of execution. Since on-chain bidding costs gas to place/cancel bids, it deters scammers

from placing spurious bids, making abuses less frequent. Moreover, on-chain bids reserve
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the bid amount upfront. Therefore, such bids invariably succeed during settlement. In

OpenSea, we observed sellers complain that (attempted) sales of their items fail because

the WETH balances of the winning bidders drop below the offered amounts.

▶ Quantitative analysis. Unless a bid fails due to lack of funds, an NFT gets trans-

ferred to the highest bidder at the end of the auction. To measure the extent of bid

pollution in the NFTMs, we enumerated the auctions where the highest bidder did not

receive the item. This is unfair to the seller, because the bid immediately below might

be a lowball offer. Our analysis uncovered 16,215 and 15,368 such instances out of 48,862

and 19,109 total auctions in OpenSea and Rarible, respectively. We did not find any

evidence of the same in the Foundation, Axie, and SuperRare marketplaces.

(T3) Royalty distribution and marketplace fee evasion. If a royalty is set, every

trade should earn a fee for the creator. However, we identified ways in which users can

potentially abuse the royalty implementations: (i) Cross-platform. As explained in

Section 3.2, royalty is enforced by either the marketplace contract or the dApp, both of

which are specific to an NFTM. Also, NFTMs do not share royalty information with each

other. Therefore, royalty set on one platform is not visible from the other. Leveraging

this lack of coordination, a malicious seller can evade royalty by trading the NFT through

a platform where royalty is not set, though it is set on another. (ii) Non-enforcement.

Neither royalty nor marketplace fees are enforced in ERC-721 token contracts. A ma-

licious seller can thus avoid both payments by transferring (ERC-721 transfer()) the

NFT to the buyer directly and settling the payment off-platform. Both royalty and fees

could be levied inside the transfer method of the token contract, though the additional

logic makes the API more expensive. (iii) Post-sales modification. OpenSea and

Rarible allow the creator to modify the royalty amount even after the primary sale.

Now, the royalty is calculated on the price listed by the seller. In a potential abuse

scenario, a creator can first lure a buyer B by setting a low royalty and then increasing
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it post-sales. During secondary sales, B may not notice this change at all, and may end

up giving more royalty to the creator than initially advertised.

▶ Quantitative analysis. We discovered potential abuses of unconditional token trans-

fer (case ii) to evade NFTM fees and royalty. The question of evasion appears when a

seller S lists an NFT on a marketplace to gain popularity, but executes the trade off-

platform, entirely bypassing the marketplace protocol. There could be two possible cases.

Seller S might trust the buyer B and, therefore, transfers the NFT first. After that, B

settles the payment. In the other case, the order is reversed. For the assets listed in

each NFTM, we counted the number of occurrences on the blockchain where an address

(seller) S transferred the NFT to another address (buyer) B, and B sent a payment to S

on-chain within 15 minutes (before or after) the transfer transaction. We found 56920,

302, 2777, 5, 814, 56, and 0 such instances for assets listed in OpenSea, SuperRare,

Rarible, Foundation, CryptoPunks, Sorare, and Axie, respectively. Note that

this estimate is conservative, because the payment could be made either off-chain or

outside the time window that we considered for our analysis.

We also measured how often creators abuse sellers by increasing the royalty after the

primary sale (case iii). For each OpenSea asset, we enumerated the “sell” events in

increasing order of time, and counted the number of times the royalty was increased with

respect to the previous sale. We discovered 157,450 instances of such royalty modifications

across 20,802 (8.81%) collections.

3.5 Issues Related to External Entities

The asset (picture, video) that an NFT points to must be accessible for this NFT

to be “meaningful.” NFTs can point to assets in two ways. If the NFT contract is

ERC-721-compliant and implements the metadata extension, then the token includes a
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metadata url on-chain, which points to a metadata record (JSON). This record, in turn,

includes an image url field that points to the actual digital asset. Many older tokens, on

the other hand, are not standard-compliant and do not contain any on-chain image url.

Instead, they use some ad-hoc, off-chain scheme to link to an asset. For such NFTs,

NFTMs implement custom support so that they can generate valid image URLs. Since

both the metadata record and the asset are stored off-chain, those do not enjoy the same

guarantee of immutability as the NFT itself. When any URL becomes inaccessible, that

breaks the link between the NFT and the corresponding asset. In practice, the URLs

frequently point to a distributed storage service, e.g., IPFS, or centralized storage, e.g.,

a web-domain or Amazon S3 bucket. For IPFS URLs, if the NFT owner is aware, she

can keep the NFT “alive” by pinning the resource (i.e., storing it persistently). Even

that could also be problematic, because NFTs do not store the hash value of the actual

resource but rather store URLs that point to an IPFS gateway web service. If the gateway

becomes unavailable, the NFT “breaks.” In general, NFTs that include URLs that point

to domains outside the control of the NFT owners risk getting invalidated when the

corresponding domains go away.

▶Quantitative analysis. We performed an analysis to quantify the number ofOpenSea

NFTs that were “lost” due to the reasons outlined above. As of June 15, 2021, out of

our 12,215,650 assets from OpenSea, there were only 3,175,644 assets with a valid

metadata url field. Querying OpenSea’s API, we obtained 8,363,550 assets with non-

empty image url fields. The remaining 3,860,607 assets did not have an image url field,

which means that they are hosted directly onOpenSea (content creators have the option

to leave the image URL field empty, in which case OpenSea handles the hosting). We

first check whether the image and metadata URLs point to resources hosted on IPFS.

Next, we check whether the URLs are still accessible. To this end, we perform an HTTP

HEAD query. If the query returns with a response code other than 200 (OK), we perform
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an HTTP GET query next. If that also returns a non-200 response code, we mark that URL

as inaccessible. We take this two-step approach to optimize for performance, and not to

generate false negatives due to web servers that do not respect HEAD queries. Also, the

servers hosting the assets could be offline at the time of testing, but later come back up

online. To account for this possibility, we repeated the above URL-check three times in

a span of 15 days. Only the assets marked as inaccessible in the previous attempt were

tested for accessibility each time. An asset is finally marked as inaccessible only if all

three attempts agree.

Figure 3.3 reports our findings. Two important observations are: (i) Only 3.91% of the

assets (images) and 9.04% of metadata records hosted on IPFS have disappeared in our

dataset between June and December; as expected, NFTs hosted on IPFS are less likely

to disappear than those hosted on non-IPFS domains. (ii) Though IPFS is supposed to

be more resilient to disappearance of the assets, a majority of asset URLs (88.71%) as

well as metadata URLs (80.69%) are hosted on non-IPFS domains. Looking at all lost

NFTs, they have generated a staggering amount of $160,761,805 USD in revenue from
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118,294 transactions. Not only that, due to the caching issue we discussed in Section 3.4,

it is very well possible that a fraction of them are still in circulation. As this analysis

shows, persistence is a pressing issue in the NFT space.

3.6 Fraudulent User Behaviors

In this section, we study the impact of various fraudulent user activities that occur in

NFTMs. In particular, we look at counterfeit NFT creation as well as trading malprac-

tices, such as wash trading, shill bidding, and bid shielding. In Appendix 3.13, we then

cover a few more types of malicious activities that were reported in blogs and articles.

3.6.1 Counterfeit NFT Creation

The authenticity of an NFT is endorsed by the smart contract managing the collection.

Therefore, to ensure that the token one is buying is legitimate, buyers are advised to verify

the contract address of the collection from official sources, e.g., the project’s web page,

before making a purchase. Unfortunately, buyers are not always aware of the existence of

counterfeits, or of how they can verify an NFT’s authenticity. Instead, they only rely on

the names and visual appearances of items in the marketplaces. This makes it possible

for malicious users to offer “fake” NFTs. We observed the following types of counterfeits:

(i) Similar collection names. There are fake NFTs that use the name of a collection

or individual piece that resembles the original (victim) one. A common trick is to sub-

stitute ASCII characters in the original name with non-ASCII characters that look alike.

To prevent such abuse, OpenSea restricts users from using popular collection names

and certain special characters. Still, it is often possible to circumvent these limitations,

e.g., by adding a dot(.) at the end of the name or substituting an upper-case character

with a lower-case one, e.g., a fake of “CryptoSpells” collection used the name “Cryp-
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tospells.” Moreover, restrictions can cause problems for legitimate users, e.g., French

users complained about not being able to use the accented characters in collections.

(ii) Identical image URLs. Some fake NFTs point to existing assets, i.e., they simply

copy the image urls of legitimate NFTs. For example, CryptoPunks is a well-known

collection. Of course, nothing prevents a scammer from deploying her own token contract

on the blockchain and mint tokens that point to CryptoPunks. A buyer who just looks

at the appearance of items in a collection will see the CryptoPunks images and might

mistake the NFTs for the originals.

(iii) Similar images. Instead of copying the image url, a scammer might copy the

digital asset and then mint an NFT that points to this copy. As of now, no NFTM runs

any similarity check to detect if a media file has already been used by other NFTs.

▶ Quantitative analysis. We looked for each type of counterfeits present in the

OpenSea dataset comprising of 12,215,650 NFTs spread across 236,057 collections.

(i) To check for (potential) counterfeits that abuse similar collection names, we com-

pute the Levenshtein distance, an edit distance metric between pairs of collection names

(strings). Since a shorter distance indicates greater similarity, we considered a maximum

distance of 2 characters, which means that we only consider collection names as similar if

they differ in at most two characters. We considered 52,399 collections that have names

longer than 7 characters, and a minimum of 10 NFTs in it (collections with fewer NFTs

could be insignificant) to avoid spurious matches. Given that it is more beneficial to

imitate verified collections, we only considered collection pairs that include one verified

collection (and the other one is considered to be its replica).

Our analysis found 322 collection pairs with similar names. We noticed that the names

of most of the replica collections were minor modifications of the names of the respective

verified collections, for example, pluralizing a noun, adding whitespace at hard-to-notice

positions, etc., which indicates a potential intent to mislead. We then randomly picked
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100 pairs and checked if those replica collections indeed contain images that are similar

to the verified ones and that could mislead buyers. Since judging the similarity visually

could be subjective, two researchers independently performed the assessment, and a

pair was marked “visually similar” only if both the decisions agreed. We discovered 11

such collections, which we reported to OpenSea requesting a take-down. Moreover, we

identified an additional 11 collections that were already taken down by OpenSea (which

indicates wrongdoing) between June and December 2021.

(ii) To check for counterfeits that leverage identical image urls, we first collected

8,363,550 image urls comprising of 944,420 IPFS, and 7,419,130 non-IPFS URLs from

our dataset. Objects on IPFS are accessed through IPFS gateways, which are web

services. An IPFS URL is typically of the form: http(s)://<gateway>/<ipfs hash>.

Any gateway can be used to access the object pointed to by <ipfs hash>. Therefore,

we pre-processed those URLs to extract only the hash component. In the last step, we

performed a string comparison between every pair of IPFS hashes and non-IPFS URLs,

which reported 356,377 and 2,082,119 identical IPFS, and non-IPFS URLs with at least

one duplicate, respectively.

(iii) To find potential counterfeits due to image similarity, we crawled the images

pointed by the image url for all NFTs in our dataset. Since the individual assets linked

to NFTs can be very large, we decided to focus on downloading just the smaller resolution

version of an asset generated and cached by OpenSea. We then used the perceptual

algorithm [143] of ImageHash [144], a popular (2.1K GitHub stars) image hashing

tool, to compute a “fuzzy” hash that is tolerant to small perturbations of the images.

Lastly, we compare every pair of hashes to find similar images. We refrain from comparing

hashes of the images that are part of the same collection, as they are likely similar (but not

counterfeits). We downloaded 9,991,013 images, and we discovered 59,425 hash collision

pairs. We randomly picked 100 such pairs, and manually verified that 90% of those image
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pairs are indeed visually identical.

3.6.2 Trading Malpractices

In this section, we explore illicit trading practices, specifically, wash trading, shill bid-

ding, and bid shielding [145–147]. We first discuss how these malpractices are relevant

in the context of NFTMs, and then build heuristic models to detect such attacks. Fi-

nally, we apply these models to all 13,628,411 assets and 354,535,763 events we collected

(Section 3.3). The goal is to measure the extent and impact of these trading activities

on the top 7 NFTMs.

Data modeling. From the event data and the Ether flows collected from blockchain

transactions, we extract actions (such as transfers, sales, bids, ...) that operate on NFTs.

Figure 3.7 shows the types of predicates (actions) that we record for users u, assets a,

auctions id and prices p. These predicates capture relationships that we use to build four

different graphs: A sales graph Gs (sale), a bidding graph Gb (auction, bid, cancel bid,win),

a payment graph Gp (paid), and an asset transfer graph Gt (transfer). Gb contains two

types of nodes: users (u) and assets (a), and directed edges from u to a annotated with

property tuples of the form (p, t, id). All of Gs, Gp, and Gt contain only one type of node:
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sale(u1, a, p, t, u2) : − u1 sold a to u2 at price p
at time t

auction(u, p, t, id, a) : − u started auction with id id
at time t with starting price p

bid(u, p, t, id, a) : − u placed bid p on a at time t
on an auction with id id

cancel bid(u, p, t, id, a) : − u canceled bid p on a at t
on an auction with id id

win(u, p, t, id, a) : − u won auction id on a
at time t with price p

paid(u1, e, u2) : − u1 transfered e ethers to u2

transfer(u1, a, u2) : − u1 transfered a to u2

Figure 3.7: Relationships in graphs Gs,Gb,Gp,Gt.

users (u), and directed edges from u1 to u2. Edges in Gs, Gp, and Gt are annotated with

property tuples of the form (a, p, t), (e), and (a), respectively.

Wash Trading

In wash trading, the buyer and the seller collude to artificially inflate the trading

volume of an asset by engaging in spurious trading activities. In NFTMs, users wash trade

to either create the illusion of demand for a specific asset, artist, etc., or to inflate metrics

that are of their financial interest, such as getting a profile/asset verified, or collecting

rewards. For example, Rarible users are incentivized by $RARI governance tokens

where the more a user spends, the more tokens they receive [148]. It is suspected that

many high-value NFT sales related to popular projects such as CryptoKitties [126]

and Decentraland [149] are instances of wash trading [146].

Detection. In the NFT space, wash traders primarily intend to increase the sales volume

of NFT collections. To detect wash trading, given a set of assets A = {a1, a2, ..., an} that

are part of a collection, we check for a set of users (addresses) U = {u1, u2, ..., um} who

heavily trade those assets with each other. We assume a limited number of colluding users
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to make the problem tractable (we use an empirical threshold of 50 users). In other to

generate wash trades, these users repeatedly trade that set of assets among them, which

often results in cycles in the sales graph Gs. Hence, we check Gs for the existence of cyclic

relationships among these users. In a strongly connected component (SCC) of a graph,

there exist paths between all pairs of vertices. Therefore, this type of wash trade can be

detected [150] by checking if two users: u1 and u2 appear in any SCC of the sales graph

Gs. In other words, if SCC(u1, u2,Gs) holds, it means that both the users are involved in

round-trip trades, i.e., there exist either direct, or indirect sale relations between them in

both the directions. Now, two users being a part of an SCC can be accidental, and does

not indicate the frequency of trades between them. However, in a wash trade, users are

involved in frequent sales. Therefore, we only consider SCCs where the number of sale

relationships between every two intermediate users is above (indicating ‘heavy’ trading

volume) an empirically determined threshold (ϵ). We use ϵ = 10 in our analysis.

However, bad actors can come up with more intricate strategies to conceal apparent

connections so that such simple detection can be evaded. We manually analyzed the

blockchain transactions history and found two evasion strategies that would throw off

the prior analysis. In the first case, when we investigated an otherwise legitimate-looking

sale relation ui → uj → uk, we realized that both uj and uk are funded (Ether transfer)

by the same “parent” user ui. We capture this case by checking if two users: u1 and u2

appear in any weakly connected component (WCC) of the payment graph Gp. In other

words, if WCC(u1, u2,Gp) holds, it means that direct or indirect Ether-flow exists between

those two users in either direction. In the second case, for a sale relation ui → uj → uk,

we identified multiple unconditional asset transfers (ERC-721 transfer()) from ui to

uk, giving a strong indication of a close tie between those users. We capture this case

by checking if two users: u1 and u2 appear in any WCC of the transfer graph Gt. In

other words, if WCC(u1, u2,Gt) holds, it means that direct or indirect unconditional asset
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transfer relationships exist between those two users in either direction.

To summarize, our model considers any sale(u1, , , , u2) relation a potential wash

trade if: SCC(u1, u2,Gs) ∨WCC(u1, u2,Gt) ∨WCC(u1, u2,Gp).

▶ Quantitative analysis. We detected 9,393 instances of wash trading that generated

$96,858,093 USD in trading volume across 5,297 collections involving 17,821 users in

all NFTMs except Axie, Foundation, and CryptoPunks. Moreover, out of 238,180

collections in our dataset, only 8,869 collections had more than $2K in trading volume,

out of which 2,569 (28.97%) collections show signs of wash trading.

We define wash trade factor (WTF) as the fraction of the total trading volume of

a collection generated by wash trading, i.e., if WTF is 1, then all the trades are wash

trades. In Figure 3.4, we show the distribution of the wash trade factor across collec-

tions where wash trading has been detected. Of all the wash traded collections, 1,824

(34.43%) collections had less than 5% (WTF < 0.05) of the trades generated by wash

trades. Interestingly, we discovered 1,571 (29.66%) collections which were heavily abused,

because more than 95% of all of their trades are wash trades, totaling $3,407,284 USD

in the trading volume. Figure 3.5 shows the relative volumes of wash trades that have

happened in different NFTMs. Though nearly equal volume of wash trades were discov-

ered in both Rarible (49.30%) and OpenSea (50.43%), given that the overall trading

volume of OpenSea is 21 times more (Table 3.1) than that of Rarible, it seems that

wash trading is significantly more frequent in Rarible than OpenSea. Our finding is

also corroborated by discussions we saw on Rarible Discord, which indicates a heavy

amount of past wash trading incidents as malicious users attempted to secure $RARI

tokens.

▶ Manual analysis. In our analysis, the size of a connected component represents the

number of addresses involved in a wash trade. We observed that 98.88% (9,288 of 9,393)
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of the reports had a component size at most 10. Therefore, for our manual analysis, we

randomly selected 100 reports, and checked whether one of the following two conditions

holds: (i) if a addresses are involved in t transactions on n NFTs, then both t ≥ 2a

and n ≪ t need to hold. The intuition is that if a set of users “heavily” trades on only

a small number of assets, then those are likely to be wash trades. Alternatively, (ii)

the addresses involved in trading are all funded by a common, on-chain funding source.

This is true when the “supposed” buyers, in reality, are all funded directly by the seller,

or by a seller-controlled address, before making (pseudo) purchases. If one of these two

conditions holds, we consider a detected wash trade instance as a true positive. We

determined all the sampled instances as true positives.

Limitation. Ethereum mixers (informally “tumblers”), such as Bitmix [151], ETH

Mixer [152], and Tornado Cash [153], are anonymity services that help to conceal the

true source of a payment by breaking the link between the receivers and the sender of

the funds. Specifically, these services accept Ethers from a user, and either route it to

a smart contract, or relay it through a complex, large network of addresses by splitting

the amount into a number of micro-transactions; essentially mingling that fund with

hundreds of other users. Since our wash trade detection strategy leverages information

about Ether flows between two addresses, mixers can lead to false negatives.

Shill Bidding

Shill bidding is a common auction fraud where a seller artificially inflates the final

price of an asset either by placing bids on her own asset, or colluding with other bidders

for placing spurious bids with increasingly higher bid amounts. This can lead to honest

bidders paying higher prices than they would have otherwise. With high-value bids on

assets becoming increasingly common, it is suspected that many sales suffer from artificial

price inflation [147].
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Detection. Detecting shill bidding is difficult when looking at a single auction in iso-

lation. It becomes even harder when malicious users take turns, placing bids on each

others’ auctions so that the seller-bidder relation changes. In this work, we only con-

sider the simple case where a specific user repeatedly places bids in auctions, yet never

(or rarely) purchases anything. Moreover, we check whether there is some relationship

between this user and the seller. Thus, our findings should be viewed as a lower bound

on the actual number of shill bidding occurrences in NFTMs. Our detection mechanism

draws on our insight from the manual analysis of NFTM activities and prior work [154].

Let bid(ub, pi, ti, id, a) denote the i-th bid placed by user ub with amount pi at time

ti on asset a in an auction with id id created by the seller us. Then, user ub is a shill

bidder if:

Rule 1. ub places at least n bids on an asset a auctioned by us with monotonically

increasing bid amounts. That is, ∀i ∈ [1, n], bid(ub, pi, ti, id, a), the following holds:

∀i,∀j, ti > tj =⇒ pi > pj

Rule 2. ub never buys the asset a, i.e., win(ub, , , id, a) is false .

Rule 3. ub has limited buying/selling activity, i.e., |{sale(ub, , , , )}∪{sale( , , , , ub)}| <

σ, where σ is an empirically determined threshold. We set σ = 10 for our analysis.

Rule 4. ub is “connected” to the seller us either through Etherflows (Gp) or asset transfers

(Gt). That is, WCC(ub, us,Gt) ∨WCC(ub, us,Gp)) holds.

Rule 5. We define shill score as the ratio of the number of times ub participates in

an auction created by us and the total number of auctions that ub participated in. In

our detection approach, the shill score must be greater than µ, another empirically

determined threshold. We set µ = 0.8 for our analysis.

▶ Quantitative analysis. We detected 703 instances of shill bidding across 282 collec-

tions involving 1,211 users in all NFTMs except Axie and CryptoPunks. We estimate

shill profit as the profit made by the seller due to shill bidding. Specifically, assume le-
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gitimate bidders place bids on an item first, and then shill bidding drives the price up. If

bl is the offer made by the last legitimate bidder before shill bidding starts, and the item

is finally sold at bs due to artificial inflation, we compute (bs− bl) as the shill profit. Ac-

cording to our analysis, malicious sellers have collected a cumulative profit of $13,014,662

USD from all the shill bidding instances detected. In Figure 3.6, we show the frequency of

shill bidding instances discovered across collections where shill bidding has been detected.

The majority (197) of the collections have just one instance of shill bidding, while almost

all collections (281) have fewer than 20 shill bids.

The one exception is the official collection of Foundation, which seems to be heavily

affected by shill bidding. With 212 instances (30.16% of all instances detected) of shill

bids in that collection alone, it becomes the one with the most number of shill bids on any

individual collection. Our model also reports frequent shill bidding activity on the official

collection of SuperRare (15 instances) and CryptoVoxels (11 instances), which is an

OpenSea verified collection with 5.8K items and a cumulative trading volume of 19.2K

ETH.

▶ Manual analysis. Since shill bidding often closely resembles legitimate bidding

behavior, it is harder to detect than other malpractices. Therefore, to remain conservative

during ground-truth determination, we looked for the following conditions: (i) the shill

bidder S placed at least 3 bids in an auction, and (ii) if the average price of the items

that S bought is p, and the average bid that S placed in that auction is b, then p≪ b, and

(iii) S never bought any NFT from that seller. We manually verified 100 reports that we

randomly selected from the instances that our approach detected. Out of these 100 cases,

61 show strong indications of being instances of shill bidding. For the remaining 39, we

could not draw any definitive conclusion from the trading patterns alone. We observed

an interesting shill bidding case in Foundation, where the initial reserve price of an

NFT was 2 ETH. The item was targeted by a shill bidder who bid [3.3, 4.4, 5.5, 6.71, 8.14]
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Figure 3.8: Distribution of bid shielding across collections

ETH on that item, thereby making the item finally sell at 9 ETH. However, all the NFTs

owned by the bidder were worth between (0, 2] ETH, and the bidder never bought any

items from that seller.

Bid Shielding

In bid shielding, a malicious bidder u2 guards a low bid, possibly from a colluding

bidder u1, with a bid high enough to deter legitimate bidders from placing any additional

bids. Immediately before the auction ends, u2 retracts the bid, thus uncovering the low

bid from u1 to let her win the auction.

Detection. We apply the following heuristics to detect instances of bid shielding in

NFTMs. If for two users u1 and u2, bid(u1, p1, t1, id, a), bid(u2, p2, t2, id, a) and cancel bid(u2, p2, t3, id, a)

hold, then u2 is shielding a bid from u1 if:

Rule 1. For all bids {bid(ui, , ti, id, a)}ni=1 placed on asset a, t3 ¿ ti holds, i.e., no new

bid was placed after u2 retracted her bid on asset a.

Rule 2. u1 won the auction with id id. That is, win(u1, p1, t4, id, a) holds, and u1 ̸=
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u2 ∧ p1 < p2.

▶ Quantitative analysis. We detected a total 316 instances of bid shielding across

117 collections involving 471 users only in OpenSea. It is expected, because other

NFTMs implement bidding policies (Section 3.2) to deter such malpractices, for exam-

ple, on-chain bids, removal of the the previous bid when outbid, etc. We compute

shielded bid difference, the difference in the bid amounts of the two colluding parties, the

potential bid shielder and the auction winner. While the minimum shielded bid difference

amount was $200.77 USD, the maximum was as high as $152,606.31 USD for one of the

token in Mirandus Vaults, a verified collection. Additionally, all 316 instances to-

gether shielded a total of $942,061 USD worth of bids. Figure 3.8 shows the number of

instances of bid shielding discovered across collections where bid shielding has been de-

tected. For most of the collections (113 out of 117), we find less than ten instances of bid

shielding per collection. Ethereum Name Service (ENS), a popular Ethereum name

lookup service, makes it to the top of the list with 49 bid shielding instances. Another

notable finding in this category was the CryptoVoxels collection. We noticed several

complaints by CryptoVoxels collectors on their Discord server about the recent in-

crease of bid shielding activity. According to our analysis, $24,519.27 USD worth of bids

were shielded by 35 instances of bid shielding, which corroborates this prior observation.

Our results show that bid shielding is frequent in verified collections as 66.67% (78 out

of 117) of the bid shielded collections were verified.

▶ Manual analysis. We have manually verified randomly chosen 100 instances flagged

by our analysis. During manual analysis, we mark an instance as a true positive if (i) the

potential bid shielder B and the (colluding) auction winner W are the last two highest

bidders on that auction in that order, and (ii) B cancels her bid just before (≤ 2h) the

auction ends, and (iii) during the auction, they never outbid each other. Out of the
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100 instances, our manual analysis confirms 90 such instances as true positives. Our

detection model produced some false positives because it does not take into account the

last condition listed above. Let bi and wi be the bids from B and W , respectively. Now,

first they outbid each other, i.e., b1 → w1 → b2 → w2 → b3, and then B removes b3

at the last moment (possibly B just changes her mind). This is not a bid shielding

scenario, as the bids from B drove up the price for W . This would not happen in a bid

shielding scenario as B and W are colluding. However, the first two conditions are still

met, and therefore our model incorrectly flags this case. We also observed that most of

bid shielding activities are performed in verified collections, such as CryptoVoxels,

ENS, etc., as they are popular and in high demand.

3.7 Related Work

To the best of our knowledge, we are the first to perform an in-depth study of security

and privacy risks in the NFT ecosystem. Our research fits into the recent line of work

on cryptoeconomic attacks in decentralized finance (DeFi) systems. The transparency

of blockchains opens up the possibility of launching economic attacks by manipulating

the market. Since uncommitted Ethereum transactions and their gas bids are visible to

other network participants, an attacker can offer a higher gas price to get their mali-

cious transactions mined early in a block, before the victim transaction. This behavior

is called front-running [8]. The authors in FlashBoys [9] demonstrated how arbitrage

bots front-run transactions in decentralized exchanges (DEX) to generate non-trivial rev-

enues. Sandwich attacks take this idea a step further by both front- and back-running

victim transactions. Zhou et. al. [10] quantified the probability of being able to per-

form such an attack and the profits it can yield. In fact, a recent paper [11] reported

the profit extracted from the blockchain to be a staggering $28.8M USD in just two
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years, leveraging sandwiching, liquidation, and arbitrage. The authors also measured

the prevalence of other profit-making operations, e.g., clogging and private mining. An-

other DeFi trading instrument, flashloans, allows a borrower immediate access to a large

amount of funds without offering any collateral, under the condition that the loan needs

to be repaid in the same transaction. Qin et. al. [12] analyzed how flashloans have been

used to execute arbitrage and oracle manipulation attacks, and they presented a con-

strained optimization framework to cleverly choose the attack parameters that maximize

the profit. DefiPoser [13] proposes trading algorithms to generate profit by crafting

complex DeFi transactions, both with and without flashloans. Recent research [14–16]

has also characterized and quantified pump-and-dump, a price manipulation scheme that

attempts to inflate the price of a crypto asset by spreading rumors and misinformation.
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Figure 3.9: Count of NFTs escrowed by Foundation over time

94



Understanding Security Issues in the NFT Ecosystem Chapter 3

Date

N
FT

 C
ou

nt

0

50000

100000

150000

200000

2020-07-01 2021-01-01 2021-07-01

Figure 3.10: Count of NFTs escrowed by Nifty over time

3.9 Data Collection

In Table 3.4, we provide the details of the types of data, i.e., assets and events we

collected from different marketplaces and blockchain.

3.10 Analysis of Top-15 NFT Sales

In this section, we first discuss a few desirable properties of an NFT ecosystem. Then,

we analyze the top 15 NFT sales by price with respect to those desirable properties.

We report a number of interesting observations with regards to the corresponding sales

transactions. Note that collecting information about our high-profile NFT sales was

challenging since as is no source of ground truth. We primarily utilized four main sources:

(a) search engines, (b) hashtag search in Twitter, (c) searches on Reddit, and (d)

the blockchain.
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E
n
ti
ty

Attribute Description

A
ss
e
t

Token contract address Ethereum address of the token contract that manages the asset

Token ID Integer ID that uniquely identifies the token among all the tokens
managed by the token contract

Collection name Name of the collection that the NFT belongs to

Image URL URL of the resource (picture/video) that is pointed to by the NFT

Metadata URL URL of the metadata JSON if the token is ERC-721-compliant and
implements the metadata extension

Asset listing URL URL of the listing page of that asset on the NFTM dApp

Source code availability
of the token contract

Boolean flag indicating if the source code of the token contract is
available in Etherscan

Verification status of
the collection

Boolean flag indicating if the collection which this asset belong to is
verified by the NFTM

E
v
e
n
t

Mint (Asset creation) Minter’s (Creator’s) address, minting time, asset being minted

Sell Seller’s address, Buyer’s address, Timestamp, Transaction hash, As-
set being sold, Sell price (USD, ETH)

Asset transfer From address, To address, Asset being transferred, Timestamp,
Transaction hash

Auction start Asset on which the auction started, Auction creator, Timestamp,
Transaction hash

Bid Bidder, Asset on which bid is placed, Auction creator, Bid amount
(USD, ETH), Timestamp, Transaction hash

Bid cancel Bidder, Asset on which bid is canceled, Auction creator, Cancel price,
Timestamp, Transaction hash

Win Winner, Asset being won, Auction creator, Sell price (USD, ETH),
Timestamp, Transaction hash

Auction end Asset for which the auction ended, Auction creator, Timestamp,
Transaction hash

ETH transfer From address, To address, Amount (ETH), Timestamp, Transaction
hash

Table 3.4: Details of the data collected for this study.
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NFT
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1. Beeple’s Everydays 69.30M 03/11/21 03/13/21 ✗
2. CryptoPunk #7523 11.80M 06/10/21 07/15/21 ✗
3. CryptoPunk #7804 7.56M 03/11/21 03/11/21 ✓
4. CryptoPunk #3100 7.51M 03/11/21 03/11/21 ✓
5. Beeple’s Crossroad 6.66M 02/24/21 N/A ✗
6. Beeple’s OceanFront 6.00M 03/23/21 N/A ✗
7. CryptoPunk #5217 5.44M 07/30/21 07/30/21 ✓
8. WWW source code 5.43M – 09/10/21 ✗
9. CryptoPunk #7252 5.30M 08/24/21 08/24/21 ✓
10. Snowden’s StayFree 5.27M 04/16/21 04/16/21 ✓
11. Save 1000s of Lives 5.10M 05/08/21 05/08/21 ✓
12. CryptoPunk #2338 4.40M 08/06/21 08/06/21 ✓
13. Micah’s Replicator 4.10M – 04/27/21 ✗
14. Fidenza #313 3.30M 08/23/21 08/23/21 ✓
15. Jack Dorsey’s Tweet 2.90M 03/22/21 N/A ✗

Table 3.5: Top 15 most expensive NFT sales in descending order of sales price. Dates
are in MM/DD/YY format. Missing information is denoted by ‘–’, and N/A denotes
that the corresponding event has not taken place yet.

3.10.1 Desirable properties of the ecosystem.

Since NFTs are built around cryptocurrency and blockchain, it is not unfair to ex-

pect the ecosystem to draw on the benefits offered by those technologies. We identify

the following properties that an NFTM protocol must hold in order to set it apart from

traditional e-commerce platforms like Amazon, eBay, etc. In other words, an NFTM

that lacks in one or more of the following benefits should be deemed less valuable as a

new platform—(P1) Decentralization. NFTs should be stored on blockchain to en-

sure persistence, censorship-resistance, immutability, and public verifiability of the asset-

ownership record. Keeping verifiability in mind, ERC-721 standard offers the ownerOf()

API which returns the address of the current owner given a tokenId. Since transfer

events alter the ownership of an NFT, all those events should be recorded on-chain for

an NFT to be verifiable. Blockchain transaction history allows one to track when the

NFT was created, who the previous owners were, and how much it was traded for each

time. If an NFTM protocol escrows a token to a wallet W , no sale record is emitted on
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the blockchain, except the one where the current owner withdraws the token from W to

her own wallet. Such a model makes the token opaque and unverifiable. Also, as opposed

to blockchain, if the ownership record is stored in a centralized database, it is suscep-

tible to tampering, censorship, and prone to disappear if the database goes away. An

NFTM protocol should not sacrifice any of these guarantees in its design. (P2) Crypto

payment. The payment toward the NFT trade must be made in cryptocurrency, e.g.,

a primary token like Ether (ETH), or a secondary token like Wrapped Ether (WETH),

etc. (P3) Trustless trading. The trade must happen in a trustless manner, without

relying on a third-party T (other than the buyer B and the seller S) who mediates either

the transfer of assets or the payment. For example, a protocol where T escrows the token

from S, accepts the payment from B, and then exchanges the token and the payment—

beats the very purpose of decentralization by making the parties put trust on T . (P4)

Atomic swap. The transfer of assets and the Crypto payment must take place in the

same transaction in an atomic manner, i.e., either both succeed, or both fail. Atomicity

enables two mutually distrusting parties to get involved in a trade without risking losing

the asset or the funds. (P5) Token minting. A token has to be minted before or at the

time of sales (e.g., lazy-minting), but not after. This must hold because, in a trustless

setting, an NFT cannot technically be sold, or transferred, unless it exists when the trade

is executed.

3.10.2 Analysis of top sales

In Table 3.5, we consolidate the sales information available in the public domain. As

can be seen, at least half of the sales in Table 3.5 violate one or more of our desirable

properties. We indicate the principle(s) a specific sale violates inside the parentheses.

For Beeples’s Everydays, the highest valued ($69.3M) sale, we found the ownership
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transfer record one the blockchain. However, payment is not present (P4). In other

words, we failed to find any evidence that $69.3M was indeed transferred from MetaKovan

(the buyer) to Beeple (the artist and seller).

For the second-largest transaction, several tweets [155, 156] indicated that CryptoP-

unk #7523 was sold on June 10, 2021. However, the actual transfer on the blockchain

took place more than a month later (July 15, 2021) (P4). Moreover, the transfer trans-

action had a value of zero ETH, thus making it impossible to confirm the reported sales

amount ($11.8M).

Beeple’s CrossRoad, which was reportedly sold for $6.6M, was traded on Nifty,

which uses an escrow contract (P3). Thus, it does not have any sale or transfer record on

the blockchain (P1). Likewise, no public history exists for the sale of Beeple’s OceanFront

(P1, P3). In fact, querying the blockchain with ownerOf( tokenId) returns the address

of the Nifty gateway as its current owner.

For both the WWW source code and Micah’s Replicator, the advertised payment

amounts are not verifiable from the blockchain transfer records (P4). And Twitter

CEO Jack Dorsey’s first tweet was sold on a platform called Valuables. This market-

place also uses an escrow contract, and, therefore, no sales or transfer details are publicly

available (P1, P3). At the time of writing, querying the Valuables token contract on

the Polygon sidechain returns an address owned by the platform as the owner.

3.11 Non-Technical Aspects of the Ecosystem

In this section, we discuss a few non-technical questions surrounding the NFT ecosys-

tem. While we don’t claim to be legal experts nor do we offer any tax advise, we fre-

quently encountered certain issues during our work and wanted to bring them to our

readers’ attention.
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Misconceptions around NFT purchase. Here we clarify some frequent mispercep-

tions of the users interacting with the NFT space. (i) Originality. Since digital artworks

are infinitely and identically reproducible, the “originality” of a piece of art in the NFT

world is ascertained by the smart contract managing the corresponding token. Unfortu-

nately, fraudsters have been able to trick victims into buying NFTs pointing to someone

else’s art, for example, by deploying their own smart contracts. The NFT infrastructure

is unable to provide any technical solution to this issue. (ii) Ownership. NFTs are used

to introduce the concept of “ownership” to digital art. However, what that form of own-

ership actually means is somewhat subjective to individual’s interpretations. When an

NFT is purchased, what the buyer really purchases is the NFT “token” on a blockchain.

Whether and how that purchase translates to the ownership of the linked digital asset is

debatable. (iii) Copyright. “Copyright” grants the owner of the copyright the rights

to control (a) the manufacture of copies of the original piece, (b) the sale, licensing, or

transferring of the copyright itself, and (c) who can produce “derivatives.” Merely pur-

chasing an NFT does not transfer the copyright to the buyer. In one common scenario,

the buyer posts the linked artwork to social media. This essentially creates a digital copy

of the art. Therefore, this might infringe on the copyright of the artist, unless the terms

of sale (ToS) explicitly allows the NFT buyer to do so. (iv) Terms of sale. A frequent

misconception in the NFT space is that the ToS are encoded in the smart contract. Smart

contracts are executable code. Therefore, they can enforce certain aspects related to a

trade, such as the sales price and royalty. But what if the seller were to include a term

that precludes buyers from using the underlying digital art for commercial purposes? A

smart contract cannot enforce that provision. A seller would have to resort to traditional

methods of enforcement, e.g., demand letters, litigation, etc.

Valuation of NFT collections. The value people place in a work of art is largely

subjective. In the past, the price of an artwork has typically been decided by community
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consensus. Moreover, a (valuable) artwork typically has a rich history associated with

it. The fact that the NFT market is so young means that such history is not available.

As a result, a certain amount of hype (and maybe market maniulation) drives up prices.

For example, the descriptions of a large number of NFT projects are rife with hyperbole,

and it is not uncommon to find token owners on Twitter and Reddit providing long

explanations of why a token they own is particularly meaningful. Since NFTs lack any

intrinsic value, it is non-trivial for a newcomer to judge its true merit. Hence, they can

easily fall prey of such promotions, and sometimes run into exit scams.

Tax implications. Law practitioners seem to agree that the purchase or sale of NFTs

is a taxable transfer of property, and is therefore subject to capital gains tax. We noticed

users gifting NFTs to others, which might trigger a gift tax. Unfortunately, taxation on

NFTs is still a gray zone, as the tax laws are unclear and classic securities laws need

to be reapplied. NFTMs are open markets, and cross-border sales can make matters

complicated, as NFT buyers and sellers have to deal with different jurisdictions’ tax

regimes. Also, NFT trades could violate U.S. sanctions law, which prevents U.S. residents

or citizens from conducting business with individuals or entities from sanctioned nations.

Experts are not even ruling out the possibility of NFTs being used for money laundering

to support illicit activities. While taxation regulations are already complicated, none of

our examined marketplaces help user to remain tax-compliant by generating tax forms,

e.g., 1099K. Instead, we see disclaimers such as OpenSea’s terms of service (ToS),

which states: “You are solely responsible for determining what, if any, taxes apply to your

Crypto Assets transactions. Neither OpenSea nor any other OpenSea Party is responsible

for determining the taxes that apply to Crypto Assets transactions.” Given the lack of

clarity and support, it is possible for unsuspecting, law-abiding users to inadvertently

violate tax rules while interacting with these marketplaces.

Lack of support for selling physical assets. Though NFTs are being used to trade
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physical assets in limited cases, the current state of the affairs not only violates the basic

principles of blockchain sales, but also it gives rise to the potential of an abuse. NFTMs

enable two mutually distrusting parties to execute trades in a trustless environment while

retaining their anonymity. However, delivery of physical goods requires sharing the details

of the buyer with the seller. In a centralized marketplace, e.g., Amazon, the platform

itself acts as the trusted third-party (TTP) that protects the buyer information from the

seller, often handling the delivery on the seller’s behalf. Unfortunately, no current NFTM

offers such a service. In fact, even if they would do so, that would violate the spirit of a

trustless, peer-to-peer marketplace. The alternative, which is the current practice, is to

have the buyer share her contact details directly with the seller. For example, it is not

uncommon to find NFTs sold by photographers where they promise the buyer a physical

print of the photo, and, therefore, they request the buyer to email their address to the

seller. Needless to say, this poses a significant threat to the buyer’s privacy. In addition,

the absence of a TTP makes arbitration harder in case of any disputes, e.g., non-delivery

of the purchased asset. To summarize, no current marketplace protocol satisfies all three

desirable yet mutually conflicting requirements, viz., trustlessness, decentralization, and

anonymity. Thus, NFT markets are not entirely suitable as platforms to sell physical

assets.

3.12 Contract Addresses

We provide the Ethereum addresses of the important contracts used in this chapter

in Table 3.6.
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Marketplace Purpose Contract Address

OpenSea Marketplace 0x7be8076f4ea4a4ad08075c2508e481d6c946d12b
OpenSea Token 0x495f947276749ce646f68ac8c248420045cb7b5e
Axie Marketplace 0xf4985070ce32b6b1994329df787d1acc9a2dd9e2
Axie Token 0xf5b0a3efb8e8e4c201e2a935f110eaaf3ffecb8d
CryptoPunks Marketplace 0xb47e3cd837ddf8e4c57f05d70ab865de6e193bbb
CryptoPunks Token 0xb47e3cd837ddf8e4c57f05d70ab865de6e193bbb
Rarible Marketplace 0x9757f2d2b135150bbeb65308d4a91804107cd8d6

Rarible Token
0x60f80121c31a0d46b5279700f9df786054aa5ee5
0xd07dc4262bcdbf85190c01c996b4c06a461d2430
0x6a5ff3ceecae9ceb96e6ac6c76b82af8b39f0eb3

SuperRare Marketplace
0x2947f98c42597966a0ec25e92843c09ac17fbaa7
0x8c9f364bf7a56ed058fc63ef81c6cf09c833e656
0x65b49f7aee40347f5a90b714be4ef086f3fe5e2c

SuperRare Token 0xb932a70a57673d89f4acffbe830e8ed7f75fb9e0
Sorare Marketplace 0xaeb960ed44c8a4ce848c50ef451f472a503456b2

Sorare Token
0x629a673a8242c2ac4b7b8c5d8735fbeac21a6205
0x9844956f1d45996aa8d322f3483cc58abe34d449
0xd2c98d651a02e34c279ed470a1447a36aa0423ee

Foundation Marketplace 0xcda72070e455bb31c7690a170224ce43623d0b6f
Foundation Token 0x3b3ee1931dc30c1957379fac9aba94d1c48a5405
Nifty Marketplace off-chain
- CelebrityBreeder 0xa33ab4b0c9905ebc4e0df5eb2f915bee728b8253
- Mirandus Vaults 0x495f947276749ce646f68ac8c248420045cb7b5e
- Gods Unchained 0x0e3a2a1f2146d86a604adc220b4967a898d7fe07

Table 3.6: Ethereum addresses of important contracts.

3.13 Fraudulent User Behaviors - Extended

Digital scarcity. Digital scarcity [157] is the limitation, typically imposed through

software, to control the abundance of a digital resource. The more abundant an asset

is, the lesser becomes its intrinsic value. Since NFTs are created by smart contracts, it

is possible to impose appropriate limitations to ensure scarcity, provided: (i) the rarity

parameter is stored on-chain, and (ii) the contract uses the parameter to prohibit minting

beyond promised limits.

Currently, most of the items that claim to be a limited edition, or rare—it is word of

mouth, than any contract-level guarantee. In fact, we found users complaining about a

‘supposed’ limited edition item being minted beyond the promised limit. CryptoMo-

tors, a verified collection inOpenSea, claims to have only 150 GEN1 cars in circulation.
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However, the rarity parameter (GEN) is stored off-chain inside the JSON metadata, mak-

ing it impossible to enforce rarity at the contract level. Additionally, the totalSupply

parameter, which controls the total supply of a token, is also not fixed, which makes it

possible to mint unlimited cars.

Giveaway scams. NFT giveaways are campaigns to distribute free NFTs in exchange

for having users promote the newly launched collection on social media. In giveaways

scams, scammers lure the users of free NFTs, but ask for ‘small’ fees to cover the gas

cost. In reality, the fee they ask for is several times greater than the gas cost required

for the transfer. Sometimes, NFT platforms use a fungible token as the native currency

for their services. For example, NFT-Art.Finance [158] is powered by their platform

token called $NFTART. In some scams, the scammers pretend to put either the NFT,

or the platform token ‘on-sale’. Users who fall for this send funds to the designated ac-

counts, but never receive the NFT or the tokens in return. Interestingly, there have also

been instances where legitimate giveaways were targeted by scammers where they im-

personated the ‘winner’ by faking social media accounts, and had the reward transferred

to their wallet, thus forfeiting the real winner.

Front-running. In a front-running attack, an attacker gets a malicious transaction

mined before a victim by paying a higher gas price. When a transaction is broadcast in

the Ethereum network, it appears in themempool. A replay attack synthesizes a malicious

transaction from a profit-making mempool transaction, oftentimes just by copying the

arguments verbatim—only to front-run the victim to bag the profit. In reality, automated

bots sniff the mempool for such profitable victims. Since NFTs are managed by smart

contracts, those are susceptible to front-running.

Also, it has been shown that by merely front-running the giveBirth call [159] of

the CryptoKitties token, an attacker would make a profit of $111K USD. In Febru-
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ary 2021, an attacker exploited a weakness in CryptoPunks’s bid acceptance mecha-

nism [160], for which a bid that was supposed to be closed for 26.25 ETH, returned only

1 Wei (= 10−18 ETH) in profit due to being front-run.

Insider trading. An insider is one who has access to some confidential information

about publicly traded security. Any trade involving an insider is an insider trade. How-

ever, it is illegal when the investor leverages that information in deciding when to buy

or sell the security, because it gives them an unfair advantage to make a profit from

that information. The regulatory gap in the NFT ecosystem surfaced out recently once

again when an OpenSea employee was found to be involved in an illegal insider trade

in September 2021. Leveraging internal information, that employee bought NFT just

before it was featured on the front page of the marketplace, and then sold it right after

it soared in price—making a profit of 18.875 ETH in total.

3.14 Conclusion

In this chapter, we discuss the emergence of Non-Fungible Tokens (NFTs) as a means

of collecting digital art and investment. We point out that despite the rapid growth and

popularity of the NFT markets, they have not received much security compared to other

decentralized finance (DeFi) protocols. In this work, we aim to study the dynamics and

security issues of this multi-billion dollar NFT ecosystem. We first provide an overview

of how the NFT ecosystem works, identify the major actors involved, and analyze the

top NFT marketplaces for potential issues that could result in financial losses. Further,

we explore the risks posed by external entities, and examine malicious trading behaviors

carried out by the users. Additionally, our research has uncovered and quantified various

unethical trading practices, including wash trading, shill bidding, and bid shielding,

that are occurring in the major NFT marketplaces. This work offers a comprehensive

105



Understanding Security Issues in the NFT Ecosystem Chapter 3

analysis of the NFT ecosystem, leveraging data from blockchain transactions, and NFT

marketplaces, and proposes mitigations to improve the security and awareness of NFT

marketplaces and users.
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Chapter 4

Hybrid Pruning: Towards Precise

Pointer and Taint Analysis

Pointer analysis is a fundamental static program analysis technique that computes the

set of abstract program objects that a pointer variable may or must point to. Pointer

information is an indispensable pre-requisite for various techniques operating across a

spectrum of domains, ranging from programming languages, to software engineering, to

system security. One such notable client is taint analysis, which determines the set of

objects in a program that are affected by external inputs. The analysis is bootstrapped

by marking an initial set of objects that can directly be influenced by an external source

(e.g., an attacker) as tainted. During taint propagation, the taint engine consults the

points-to set of the destination operand of a program instruction, and propagates taint

labels according to the taint policy, and the taint labels of the source operands. There-

fore, an over-approximated points-to set quickly leads to taint explosion, resulting in

most of the program objects getting incorrectly tainted. Many static vulnerability detec-

tion techniques employ either pointer, or taint analysis, or a combination of both [161].

In order to not miss bugs, these techniques strive to be sound, rather than complete.
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Consequently, such vulnerability detection clients generate numerous false positives. A

precise pointer or taint analysis improves the false positive rate of a static vulnerability

detector, thereby making the overall result more amenable to manual triaging.

As the size of the target program grows, precise, whole program pointer and taint

analyses become prohibitively expensive. Though field, context, or flow sensitivity in-

creases the analysis precision, such an analysis pays the price in terms of the overhead

associated with the metadata management, and enumeration of individual field, context,

or flow. Oftentimes, the analyses make unsound choices in order to remain scalable,

e.g., restricting the exploration within a specific sub-system, or making certain soundy

assumptions [161] .

We propose hybrid pruning—a novel program analysis paradigm that augments the

state-of-the-art static analysis techniques with dynamic trace information. Our algo-

rithm improves both the pointer and taint analyses at those program points where static

reasoning is imprecise, and precise dynamic information is available. With the recent

tide of research in fuzzing, it has become easier to generate high-quality dynamic traces

with deeper program penetration. If the dynamic trace is available along a certain pro-

gram path, our algorithm injects guaranteed, precise yet partial ground truth to aid the

static analysis component. Although inherently unsound in principle, our strategy tran-

sitively improves the analysis at all those program points which were previously using

the imprecise static information, thus multiplicating the advantage. However, leveraging

a dynamic trace for static analysis is non-trivial, as they operate in two different analysis

domains, e.g., concrete instructions and run-time memory allocations vs. SSA-based IR

and abstract memory objects. Our approach lifts the dynamic trace to the static domain

to make the interleaving possible. Of course, dynamic analysis tools, such as fuzzers,

will likely not succeed in exercising all possible program paths. To compensate for the

lack of dynamic coverage, we fall back to the conservative static analysis for all other
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program paths for which a dynamic trace is absent. We demonstrate two different modes

of hybrid pruning – opportunistic (Ho) and propagation-only (HP), and show when one is

better than the other depending on the quality of the dynamic trace collected. These

two modes operate along a spectrum of soundness and usability. The improvement in

points-to and taint analyses is positively correlated with the dynamic coverage. If the

dynamic coverage is moderate, the Ho mode is preferred. This mode is designed to be

more robust against the lack of dynamic information, because it conservatively switches

to pure static mode where dynamic information is unavailable. On the other hand, the

HP mode shows promise when we have high confidence in the quality of dynamic infor-

mation, as just the dynamic facts are propagated using the static analysis algorithms in

this mode.

Our work is motivated by the observation that the static bug detectors are oftentimes

notorious in emitting warnings in a volume which far surpasses the triaging ability of the

human experts. For example, as on May 7, 2022, Coverity [162], a popular static bug

detector, has emitted 47, 038 warnings in the Linux kernel version 5.18.0-rc4, of which

9, 137 are still outstanding. We envision hybrid pruning as a technique to improve the

state-of-the-art in the static bug detection. Therefore, to evaluate the applicability of

our technique in the real world, we extended Dr.Checker [161], a purely static bug

finder, to make use of hybrid pruning. As we anticipated, the precise points-to and taint

information indeed reduced the number of false positives, while maintaining a comparable

true positive rate. On our evaluation of 12 CGC [31] applications, the bug detectors relying

on the Ho mode emit up to 36% less warnings, while the HP mode reduces warnings up

to 56%. We additionally show that, in spite of reducing significant fraction of warnings,

the vulnerability detectors are still able to detect 15 (HP) and 19 (Ho) out of 20 bugs in

the CGC [31] and the real-world datasets combined.
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p = &x

lx ∈ PtsTo(p)
Address-Of

p = q

PtsTo(p) ⊇ PtsTo(q)
Copy

p = *q

PtsTo(p) ⊇ PtsTo(∗q)
Dereference

*p = q

PtsTo(∗p) ⊇ PtsTo(q)
Assign

Figure 4.1: The premise (highlighted) of an inference rule represents the type of the
statement encountered in a program, and the conclusion corresponds to the constraints
in SPT.

4.1 Background

In this section, we equip the reader with the background information required to

understand our approach.

4.1.1 Flow-sensitive, static points-to analysis

We provide a brief overview of an Andersen-style, flow-sensitive, static points-to

(SPT) analysis technique, which we will use later on to demonstrate our hybrid ap-

proach. The goal of any static points-to analysis is to determine the set of objects that a

given pointer can point to, at any point in the program. Specifically, a points-to analysis

answers a membership query IsPtsTo(p, x), which indicates whether a memory object

x is in the points-to set of the pointer p. A flow-sensitive points-to analysis computes

the points-to set of the pointers according to the control-flow of the program. Given

a program, the analysis starts by generating constraints for every pointer according to

their usage in the program. The solution to the generated constraints gives the points-to

results for all the pointers. A points-to analysis either categorizes, or transforms any

program statement into one or more of the statements in Figure 4.1.

Constraint generation. The analysis iterates over the statements in a program, and

collects the constraints according to the rules in Figure 4.1, where lx and PtsTo(p) denote

the location of the variable x, and the points-to set of the pointer p respectively. The

constraints are usually managed by creating a constraint graph, where the nodes represent
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PtsTo(p) ⊇ PtsTo(q) lx ∈ PtsTo(q)

lx ∈ PtsTo(p)
Copy

PtsTo(p) ⊇ PtsTo(∗q) lr ∈ PtsTo(q) lx ∈ PtsTo(r)

lx ∈ PtsTo(p)
Dereference

PtsTo(∗p) ⊇ PtsTo(q) lr ∈ PtsTo(p) lx ∈ PtsTo(q)

lx ∈ PtsTo(r)
Assign

Figure 4.2: Rules to solve the SPT constraint graph.

pointers or memory objects, and edges represent the constraints.

Constraint solving. Once the constraints are generated, each of the constraints will

be solved until a fixed point is reached, i.e., no changes occur to the points-to set of all

the pointers. The rules in Figure 4.2 are used to solve the generated constraints.

4.1.2 Static taint tracking

Static Taint Tracking (STT) [163] is a data-flow tracking technique used to track the

flow of the tainted data within a program. STT is most commonly used in vulnerability

detection, where the program input is tainted, and vulnerabilities are modeled as an usage

of unsanitized data in the sensitive operations. For example, a usage of tainted data in

an arithmetic operation can cause an integer overflow or an underflow bug. Similarly, an

out-of-bounds access bug can occur when tainted data is used as the index in an array.

STT consists of the following components:

Taint source. Functions that read an input from the user, or the environment, e.g.,

read, scanf are considered as taint sources. The variables into which the data is read

are labeled as tainted.

Taint propagation. Typically, the result (destination) of an operation is labeled tainted

if any one of its operands (source) is already tainted, e.g., for a binary operation r ←

f(a, b), taint propagates to r if either a or b is tainted.

An STT requires points-to information to track the flow of tainted data through
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pointers. To inject taint, the STT must know to which objects the source pointer can

point, so that it can taint all those objects. Note that an imprecise pointer analysis could

result in over-tainting, resulting in many data elements being incorrectly considered as

tainted [164]. In this work, we use the taint propagation rules similar to the ones proposed

in Dr. Checker [161].

4.2 Motivation

4.2.1 Running example

We use the code in Listing 4.1 to explain various aspects of our technique. To generate

execution traces, we exercise the program with a test suite. However, the part of the

code highlighted in red is not executed in any of the dynamic runs.

Points-to. The process buf() function returns either of its char pointer arguments

(res at Line 10, or req at Line 13) depending on the value of r (Lines 8 and 11). c buff

gets assigned the pointer returned by the process buf() call once at Line 28 (res buff),

then again at Line 35 (greq), and lastly at Line 47 (q).

Taint. At Line 32, the program reads user data into the buffer pointed to by c buff,

which, in turn, points to res buff.

Bugs. There are five array indexing operations (Lines 37 − 41, 50). However, the

operation at the Line 39 could lead to an out-of-bounds write of buff, because res buff

gets tainted at Line 32 (via c buff). In turn, the index res buff[0] can contain a value

greater than the size of buff (i.e., 16). Likewise, the write at Line 50 can lead to an

out-of-bounds write of the buffer pointed by c buff (i.e., q from Line 47). The remaining

three indexing operations are safe.
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4.2.2 Imprecision in vanilla static analysis

Consider an STT technique based on the SPT analysis that we presented in Section 4.1

on our example in Listing 4.1. The call to read user data taints object ids {3, 1, 4, 2}

because of the points-to set of c buff@28. At Lines 37, 39, 40, 41, and 50, we are using

data from the tainted objects (i.e., {3, 1, 4, 2}) as indices to write to arrays. Consequently,

any static vulnerability detection technique that relies only on the STT information, and

checks for the use of tainted data as an array index (unsafe operation) will raise a potential

out-of-bounds alert. However, as described in Section 4.2.1, only the buffer pointed to

by res buff contains tainted data. Therefore, only the warnings raised at Lines 39 and

50 are true positives. Next, we show how we use dynamic information to improve the

precision of static analysis techniques to eliminate these false positives.

1 #de f i n e BSIZE 512

2 // global object , ID: 1

3 char greq [ BSIZE ] ;

4 // global object , ID: 2

5 char g r e s [ BSIZE ] ;

6 char ∗ p ro c e s s bu f ( IOLevel r , char ∗ res , char ∗ req ) {

7 switch ( r ) {

8 case IORECV:

9 . . .

10 r e turn r e s ;

11 case IOSEND:

12 . . .

13 r e turn req ;

14 }

15 r e turn NULL;

16 }

17

18 i n t main ( . . . ) {

19 // stack object , ID: 3

20 char r e q bu f f [ BSIZE ] ;

21 // stack object , ID: 4

22 char r e s b u f f [ BSIZE ] ;
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23 // stack object , ID: 5

24 char bu f f [ 1 6 ] ;

25 char ∗ c bu f f , ∗ t b u f f ;

26 . . .

27 // The return value will be res_buff

28 c bu f f = pro c e s s bu f (IORECV, r e s bu f f , r e q bu f f ) ;

29 . . .

30 // Read user (tainted) data into the buffer

31 // pointed to by c_buff , i.e., res_buff

32 r ead us e r da ta ( c bu f f , BSIZE) ;

33 . . .

34 // The return value will be greq

35 c bu f f = pro c e s s bu f (IOSEND, gres , greq ) ;

36 . . .

37 bu f f [ r e q bu f f [ 0 ] ] = 'R' ;

38 // BUG: Potential out -of-bounds write

39 bu f f [ r e s b u f f [ 0 ] ] = 'S' ;

40 bu f f [ greq [ 0 ] ] = 'r' ;

41 bu f f [ g r e s [ 0 ] ] = 's' ;

42 . . .

43 i f ( . . . ) {

44 // heap object , ID: 6

45 char ∗q = getenv ( . . . ) ;

46 t b u f f = c bu f f ; // c_buff points to greq here

47 c bu f f = q ;

48 . . .

49 // BUG: Potential out -of-bounds write

50 c bu f f [ r e s b u f f [ 0 ] ] = 'I' ;

51 . . .

52 }

53 . . .

54 r e turn 0 ;

55 }

Listing 4.1: Example program to demonstrate the effectiveness of hybrid pruning. The
region highlighted in red is never executed in any of the dynamic runs.
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Objects Tainted data?
(Ground Truth)

Static Taint Tracking (STT)
ID Name Flow-Sens PT HP-PT Ho-PT

1 greq ✗ ✓ ✗ ✗

2 gres ✗ ✓ ✗ ✗

3 req buff ✗ ✓ ✗ ✗

4 res buff ✓ ✓ ✓ ✓

5 buff ✗ ✗ ✗ ✗

6 q ✗ ✗ ✗ ✗

Table 4.1: Tainted objects (✓: Tainted, ✗: not Tainted)
when different points-to analysis techniques are used.
The colors green and red represent true positives, and
false positives respectively.
Vulnerability Warnings

(Ground Truth)
Static Taint Tracking (STT)

Flow-Sens PT HP-PT Ho-PT

Out-of-bounds write on Line 39 1 1 1
Out-of-bounds write on Line 50 1 0 1

False positives 3 0 0

Total warnings 5 1 2

Table 4.2: Vulnerability warnings of static taint tracking
when different points-to analysis techniques are used.
The color green represents true positives, and red rep-
resents false positives and false negatives respectively.

Pointer Dynamic points-to

q N/A
buff {5}

req buff {3}
greq {1}

res buff {4}
gres {2}
req {1,3}
res {2,4}

return {3,1,4,2}
c buff@28 {4}
c buff@35 {2}
c buff@47 N/A

Table 4.3: Dynamic
points-to information
collected for the example
in Listing 4.1. N/A
indicates that the code
corresponding to the
pointer is not executed in
any of the dynamic runs.

4.2.3 Precision gain due to hybrid pruning

First, we exercise the program either using tests, or by fuzzing, to collect dynamic

points-to and taint facts. Then, we augment the static pointer and taint analysis tech-

niques with the recorded dynamic facts in either of the following two ways – propagation-

only (HP), or opportunistic (Ho).

Propagation-only (HP). In this mode, the static analysis is first initialized with the

recorded dynamic facts. Then, the static pointer and taint analysis algorithms propagate

those dynamic facts even to those program points that are not executed dynamically. In

other words, the information generated at any program point is derived only from the

dynamic information, but propagated by the static analysis rules. The benefit of the

HP over dynamic-only analysis is that the former compensates for the lack of dynamic

information by static propagation of dynamic facts, at the program points where the

dynamic information is absent. Greater the dynamic coverage is, more effective the HP
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mode will be in eliminating the spurious points-to and taint sets. The HP hybrid pruning

strategy, when applied to static points-to (SPT) and static taint-tracking (STT) analyses,

yields HP-PT (propagation-only points-to) and HP-TT (propagation-only taint-tracking)

analyses, respectively.

In Listing 4.1, HP-PT prunes the over-approximated SPT set of c buff@28 from

{3, 1, 4, 2} to {4}. Consequently, an STT that relies on HP-PT correctly taints only

the object with id 4 (res buff), thus improving the precision of the taint analysis, as

shown in Table 4.1 (Column HP-PT). Furthermore, as shown in Table 4.2 (Column HP-

PT), a static vulnerability detection technique that uses this hybrid taint-tracking emits

no false warnings. However, for cases where dynamic information is inadequate, e.g.,

the points-to information of c buff@47 is absent, the HP mode might fail to compute

certain information. The missing information might introduce false negatives, as shown

in Table 4.2 (Column HP-PT), where using HP-PT resulted in missing the vulnerability in

Line 50 of Listing 4.1.

▶ Difference between HP and classic dynamic analysis. Since HP mode propagates dy-

namic facts using static algorithms, it essentially compensates for the ‘lost’ information

at certain program points. In Listing 4.1, a purely dynamic approach would compute an

empty points-to set for t buff@46, because Line 46 was never executed in any of the dy-

namic runs. However, Line 35 was dynamically executed, which made c buff@35 point to

greq. That information will be propagated in HP mode, resulting in t buff@46 correctly

pointing to the greq buffer.

Opportunistic (Ho). As explained above, the points-to and taint information that the

HP mode propagates might be incomplete due to lack of dynamic coverage at certain

program points – resulting in false negatives. To alleviate this issue, we use the dynamic

information in the Ho mode only at those program points that are executed dynamically.
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For all other program points, we use the static information. Opportunistic use of the

dynamic facts conservatively preserves the static points-to and taint sets at those program

points where the dynamic information is not available. The only difference between the

Ho and the HP modes is that the Ho allows static information to be generated, while the

HP does not. The Ho hybrid pruning strategy, when applied to static points-to (SPT) and

static taint-tracking (STT) analyses, yields Ho-PT (opportunistic points-to) and Ho-TT

(opportunistic taint-tracking) analyses, respectively.

In Listing 4.1, though the code highlighted in red is not dynamically executed, Ho-PT

infers the points-to relation between c buff@47 and object with id 6. Consequently,

an STT that relies on Ho-PT correctly taints the relevant buffer, as shown in Table 4.1

(Column Ho-PT). Furthermore, as shown in Table 4.2 (Column Ho-PT), a static vulner-

ability detection technique that uses this hybrid taint-tracking emits no false warnings,

yet discovers both the vulnerabilities.

4.3 Hybrid Pruning

Our technique works in three steps. First, we generate the dynamic facts (Section 4.3.1),

e.g., points-to and taint sets, by exercising the program with a test suite, or using fuzzing.

In the next phase, which we call domain re-mapping (Section 4.3.2), we lift the dynamic

facts to the same domain as that of the static ones, so that a unified analysis becomes

possible. Finally, we run the static analysis, and inject (Section 4.3.3) the dynamic facts,

wherever available, thus eliminating potentially spurious points-to and taint sets at those

program points. Note that the precision improvement is not only local to the point of

injection, but also carried forward to the downstream analysis sites by the static algo-

rithms. For example, “fixing” an over-approximated points-to set progressively taints

fewer objects further down the analysis. Finally, we run a number of vulnerability de-
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tectors (Section 4.3.4), which uses the hybrid facts to eliminate spurious warnings.

4.3.1 Generation of dynamic facts

During a program’s execution, we record (i) the allocation and deallocation of pro-

gram objects, (ii) the read and write accesses on those objects, (iii) the callsite-based

program context of the instructions involved in (i) and (ii), and (iv) the arguments of

the input API, e.g., read. Once this information is collected, we compute the dynamic

points-to and taint information corresponding to those memory objects from the recorded

trace. Next, we describe how we recover the dynamic facts from the collected trace in

detail.

Dynamic context. We keep track of a function’s call-stack c at run-time, by emulating

a parallel stack updated at every call and ret instruction. For every instruction I, we

compute its dynamic context ∆(I) = (c, τ), where c is the call-stack with which I is

executed, and τ is an unique identifier for each I.

Memory objects. We maintain the tuple (sz, rt,∆(I)) for each memory object o allo-

cated, or deallocated by an instruction I, where sz is the size of the object (in bytes),

rt is its run-time address, and ∆(I) being its dynamic context. We extract the size sz

of the local and global memory objects from their types. The size of the heap object is

extracted from the size argument passed to the allocation routines, e.g., malloc. Note

that, different instances of an object o with the same context ∆(I) might get created at

different points in time in an execution, or even across different executions. We merge

the dynamic facts associated with all those instances of an object o, by its context ∆(I),

at the end of trace collection. For each object o created by the same instruction I with

the same context ∆(I), we compute its id π(o) = {hash(∆(I), τ(I))}, which uniquely

identifies the object for a given context.
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Points-to facts. To compute the points-to sets, we track all the write operations to

the program objects. Assume, a memory write instruction writes to the address wd of

a memory object od = (szd, rtd, ). If the value being written to is a memory address

ws of an object os = (szs, rts, ), then we make the offset (wd − rtd) of the object od

point to the offset (ws − rts) of the object os. Formally, the updated points-to set

ρ(od, wd − rtd) = ρ(od, wd − rtd) ∪ (π(os), ws − rts).

Taint facts. We use the same taint sources as that of static taint analysis. However,

different from the static case, dynamically we taint the exact number of bytes read by

an input API, e.g., a read(fd, buf, count) call taints count bytes of the buffer buf.

4.3.2 Domain re-mapping

Hybrid pruning seeds static analysis algorithms with the dynamic information. Static

analysis operates on an intermediate representation (IR), and models program memory in

terms of abstract objects. However, dynamic analysis executes native CPU instructions,

and objects are created at run-time on the program stack, or heap. We use the following

two-fold approach to bridge this gap. First, we assign a unique instruction id τ to each

IR instruction. Additionally, to represent a memory object, we use a unique object id

π as discussed earlier. We include both the τ and π in the dynamic events, and the

generated dynamic facts. During the static analysis, we re-use the same τ as that of

the dynamic analysis, and use identical definition of static context as that of dynamic

context ∆(I). Hence, the static and dynamic object id π evaluates to be the same, for

the same object, created in the same context. The hybrid pruning leverages this fact to

establish the equivalence between a dynamic memory object, and its static counterpart.
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PtsTo(p) ⊇ PtsTo(q) dynV (q) lx ∈ DynPtsTo(q)

lx ∈ PtsTo(p)
DynCopy

PtsTo(p) ⊇ PtsTo(q) ¬dynV (q) lx ∈ PtsTo(q)

lx ∈ PtsTo(p)
ICopy

PtsTo(p) ⊇ PtsTo(∗q) lr ∈ PtsTo(q) dynV (r) lx ∈ DynPtsTo(r)

lx ∈ PtsTo(p)
DynDereference

PtsTo(p) ⊇ PtsTo(∗q) lr ∈ PtsTo(q) ¬dynV (r) lx ∈ PtsTo(r)

lx ∈ PtsTo(p)
IDereference

Figure 4.3: Rules to solve the hybrid constraint graph.

4.3.3 Injection of dynamic facts

We augment both the static pointer and taint analyses with the dynamic information

to achieve hybrid pruning . For the pointer analysis, we leverage the flow-sensitive analysis

from SVF [165]. Our static taint analysis engine is flow-, context-, and field-sensitive. In

addition to the family of input APIs, e.g., scanf, gets, etc., we consider the command-line

arguments of the program as the taint sources. The taint analysis is parameterized by the

underlying pointer analysis, i.e., while propagating the taint labels, it queries the pointer

analysis for the points-to sets of the destination operand of an instruction. Taint sinks

are determined by the taint policies of the respective vulnerability detectors. Depending

on how we inject dynamic facts during static analysis, we develop two modes of hybrid

pruning – propagation-only and opportunistic.

Propagation-only (HP). In this case, we propagate just the dynamic facts using static

analysis rules. For the SPT we presented in Section 4.1, we can achieve HP hybrid pruning

by (i) not generating any Address-Of constraints, and (ii) modifying the Copy and

Dereference constraints to consider only the dynamic information. While (i) prevents

generation of any new static fact, (ii) ensures propagation of dynamic facts following the

SPT rules. We split the constraint-solving rules in Figure 4.2 depending on the availability

of the dynamic information. Specifically, we follow the DynCopy and DynDerefer-
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ence rules as shown in Figure 4.3, to process the Copy and Dereference instructions

in the HP mode. The dynV (p) predicate checks whether the program point corresponding

to the pointer p has been dynamically executed. If so, we consider the dynamic points-to

set returned by the DynPtsTo(p) predicate. In the HP mode of STT, we ignore all the

static taint sources. We use just the dynamic taint information for all the dynamically

executed instructions. In effect, we consider only those instructions that have been both

dynamically executed, and found to be tainted. Due to the space constraint, we refrain

from presenting the modified transfer functions for the taint propagation.

Opportunistic (Ho). In this case, we generate new static facts, if dynamic information

is unavailable. If the later is available at a program point, it is given priority over its

static counterpart. For the SPT we presented in Section 4.1, we can achieve the Ho hybrid

pruning by (i) generating the Address-Of constraints, and (ii) modifying the Copy

and Dereference constraints to give preference to dynamic information, if available.

Otherwise, the constraint solving rules are made to use static information. Policy (i)

ensures the generation of new static facts, which compensates for the lack of dynamic

coverage. In fact, if the dynamic information is available, we use the same constraint-

solving rules as in the case of the HP mode, while processing theCopy andDereference

instructions. However, we also introduce two new rules, viz., ICopy and IDereference

as shown in Figure 4.3, to deal with those cases when dynamic information is absent. The

Ho strategy falls back to SPT in that case. In the Ho mode of STT, we enable the static

taint sources. Also, we propagate the static taint except when the dynamic information

is available at an instruction, it is given priority. In other words, the taint engine never

taints an instruction that has been dynamically executed, yet was never tainted.
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4.3.4 Vulnerability detection

The vulnerability detectors use the taint information to detect potentially buggy

program points. Since, the taint analysis itself is a client of the pointer analysis, the

checkers run when both the pointer and taint analyses are over. In our research prototype,

we only use detectors capable of finding spatial vulnerabilities, e.g., buffer overflow, out

of bounds, etc. Temporal bugs, e.g., use after free, double free, etc., are considered

out of scope. Specifically, we use the taint-based bug detectors, i.e., Improper Tainted-

Data Use Detector (ITDUD), and Tainted Loop Bound Detector (TLBD) from the Dr.

Checker [161] project. ITDUD monitors whether tainted data is used in risky functions

e.g., strcpy, memcpy, etc. Where as, TLBD checks if the loop bound can possibly be

tainted.

4.3.5 Implementation

To generate the dynamic facts, we instrument the program using LLVM 7.0 [166]. The

static and hybrid analysis engines are based on SVF 7.0 [165]. We extended SVF to add

support for taint analysis, while using its pointer analysis (fspta) out-of-the-box. We

use the DataFlowSanitizer [167] (DFSan), a generic dynamic data flow analysis LLVM

pass, which instruments the program to perform dynamic taint tracking. The DFSan

also handles memory taint by maintaining a shadow memory [168]. Our analysis injects

and propagates taint automatically, and collects all the tainted instructions and memory

objects. The vulnerability checkers are adapted from the Dr. Checker [161].
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4.4 Evaluation

We evaluate the effectiveness of our approach in a downstream security application,

e.g., vulnerability detection. We show that using our hybrid points-to and taint analysis

we generate fewer false-positives (warnings that are not real bugs), while still detecting

real bugs.

4.4.1 Evaluation setup

Dataset Our approach was evaluated on the following two datasets.

CGC. The corpus of 246 programs [31] used by DARPA in the Cyber Grand Challenge

(CGC) [169]. We chose to use cb-multios [170], a port of the CGC challenge set to

Linux x86 by Trail of Bits. cb-multios project failed to port five programs to

Linux. Moreover, the programs are meant to be compiled in 32-bit, while our DFSan

based implementation generates only 64-bit binaries owing to the limitation imposed by

the shadow memory mechanism. Due to unsupported architecture, 89 programs aborted

with an early memory corruption inside the custom heap allocator. From the remaining

ones, we randomly sampled 12 programs containing spatial vulnerabilities to include in

our dataset.

Real-world. Though CGC programs mimic real-world applications both in terms of com-

plexity and functionality, we collected 8 vulnerable versions (Table 4.4) of 4 distinct real-

world GNU applications containing only spatial vulnerabilities from the CVE database [171].

We used the test suites available with the respective versions of those utilities to exercise

those programs.

Instrumentation. This step was carried out on an Ubuntu 18.04.3 LTS, 64-bit sys-

tem equipped with an Intel Core i7-4770 (3.40GHz) CPU, and 32GB of memory, under

moderate workload.
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Trace collection. We re-used the same setup from the previous phase. The programs

were exercised by their respective test suite. Real-world applications were let to run until

they gracefully exit. However, many CGC programs being interactive, and menu-driven in

nature, they run in a waiting loop until a specific program option is chosen, e.g., sending

a QUIT command. It is not guaranteed that the test cases will drive the programs to

completion. To ensure the convergence of the experiment, we imposed a hard time-limit

of 15 seconds per program execution by sending a SIGTERM signal, and installed signal

handlers to record traces at termination.

Hybrid analysis. We deployed this analysis to a Celery [172] cluster consisting of 8

servers with an analysis time-limit of 6 hours per program, per configuration. Each server

was equipped with an Intel Xeon E5645 2.40GHz CPU, and 96GB of memory, running

Ubuntu 16.04.6 LTS, 64-bit. Despite the time-limit in place, none of the analyses was

observed to hit the limit.

4.4.2 Vulnerability detection

We measured the effectiveness of our pruning strategy in terms of the reduction of

warnings due to the following two reasons—(i) We were interested to understand if our

technique is able to significantly bring down the number of warnings emitted by a static

bug detector such that those alarms can be verified by the analysts manually. (ii) We

had the partial knowledge of the vulnerabilities (ground truth) present in our dataset. In

other words, we did not have the knowledge of all the bugs contained in our subjects. Both

the sources of building the ground truth—the bugs documented with the CGC dataset,

and the CVE database records for the vulnerable real-world programs—were incomplete.

Therefore, we could only confidently determine the true positives for bugs by associating

the warnings to our known bugs. However, a similar strategy would incorrectly flag a
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warning, which is indeed a bug, as a false positive just because the associated bug report

is not present in our (incomplete) ground truth. Establishing a complete ground truth

would not only require the involvement of human experts, but also would be hard to

scale to all the programs included in our dataset.

Warning Reduction Factor (WRF). To measure the effectiveness of hybrid pruning ,

we introduce the notion of warning reduction factor (WRF), a metric that captures the

effect of hybrid pruning on emitted warnings, w.r.t. the baseline static vulnerability

detection technique. An WRF = 0%, the worst-case scenario for our technique, corresponds

to no improvement due to hybrid pruning over the static analysis. A non-zero WRF

quantifies the improvement in performance induced by hybrid pruning. We define WRF as

the fraction of warnings that are not raised by our hybrid (Ho/HP) analysis. Formally,

WRF = (|ωB| − |ωH|)/|ωB|, where |ωB| and |ωH| denote the number of warnings reported

by the baseline and the hybrid analyses respectively.
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Figure 4.4: Analysis of warning reductions

Results and analysis. In this experiment, we ran the bug detectors (Section 4.3.4) in

three different configurations: (A) static-only : flow-sensitive static points-to + static
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Subject
Warnings

Static Ho Bug Found? HP
Bug

Found?

CROMU 00026 249 199 ✓ 158 ✗
CROMU 00027 141 99 ✓ 98 ✓
CROMU 00029 261 223 ✓ 177 ✗
CROMU 00030 305 210 ✓ 148 ✓
CROMU 00076 321 233 ✓ 141 ✗
CROMU 00084 700 459 ✓ 389 ✓
CROMU 00088 528 357 ✓ 320 ✓
KPRCA 00001 209 163 ✓ 105 ✓
NRFIN 00033 93 77 ✓ 51 ✓
NRFIN 00041 268 196 ✓ 196 ✓
TNETS 00002 33 26 ✓ 25 ✓
YAN01 00011 32 29 ✓ 29 ✓

readelf-2.28 (CVE-2017-6969) 2255 1872 ✓ 999 ✗
readelf-2.28 (CVE-2017-8398) 2255 1872 ✓ 999 ✓
readelf-2.30 (CVE-2018-10372) 3038 2582 ✓ 1231 ✓
readelf-2.32 (CVE-2019-14444) 3061 2663 ✓ 1176 ✓

readelf-c0e331c

(CVE-2017-15996)
2369 2037 ✗ 996 ✗

date-15fca2a (CVE-2014-9471) 581 238 ✓ 192 ✓
locate-4.2.30 (CVE-2007-2452) 1038 571 ✓ 343 ✓
grep-235aad7 (CVE-2012-5667) 539 426 ✓ 270 ✓

Table 4.4: Warnings emitted, and corresponding bugs (true positives) discovered by
bug finders based on pure static, Ho, and HP modes of points-to and taint analyses. ✓

and ✗ denote if the bug has been found or missed by an analysis.

taint (B) Ho-only : flow-sensitive Ho points-to + Ho taint, and (C) HP-only : flow-sensitive

HP points-to + HP taint. To demonstrate the reduction in the warnings, we evaluated our

approach on the CGC [31] dataset. The static-only configuration, which emits the most

number of warnings, serves as the baseline for this experiment. Figure 4.4a shows the

reduction in the number of warnings when Ho-only and HP-only analyses are used. Further

we observe that the WRF increases as the size (lines of code), and the complexity (e.g.,

pointer-heavy programs), the number of taint sources, or the dynamic coverage increases.

Intuitively, the first three factors make the analysis harder for a static bug detector, thus

generating larger number of spurious warnings. The fourth factor, i.e., the dynamic

coverage, indeed benefits the hybrid analysis, as we show in Section 4.4.3. The Ho-only

configuration reduces the warnings up to 36% (WRF=0.36), while the reduction in the HP-

only configuration is higher, up to 56% (WRF=0.56). We argue that this is no worse than
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any dynamic-only analysis system (e.g., fuzzing) which suffers from insufficient coverage.

HP-only mode is helpful only when we have high confidence in the completeness of the

dynamic information, e.g., the test suite is exhaustive, providing good coverage. If the

dynamic coverage is lacking, Ho-only mode is preferred.

This study reinforces the trade-off [173] between usability and soundness. We envi-

sion our bug detection system to be used in practice in either of these two modes: (a)

Conservative: When an analyst chooses to minimize the likelihood of missing bugs, but

is ready to tolerate a reduced reduction in the warnings; Ho-only mode is helpful. (b)

Priority: When an analyst prioritizes finding the most number of bugs in a small time

window, thus requiring a significant reduction in spurious warnings; HP-only mode is a

perfect fit.

While cutting down the number of warnings is desirable, it is not sufficient because

of the potential risk of missing the true bugs. To evaluate the impact of hybrid pruning

on the bug detection capability of the static bug detectors, we ran the same on both the

CGC [31] and the real-world datasets. Table 4.4 summarizes the bugs discovered by the

bug detectors while running in the HP-only and Ho-only configurations. While the former

is found to miss five bugs, the later misses just one bug. Intuitively, though insufficient

dynamic coverage exhibits greater warning reduction in the HP-mode, it misses more

bugs than the Ho-mode, which compensates for the lack of dynamic coverage, by design.

Please note that, even Ho-mode can also miss true bugs in some cases. We discuss that

in Section 4.5.

Hence, we show that hybrid pruning enable scalable and efficient bug triaging by

cutting down on false alarms while retaining comparable true-positive rate.
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4.4.3 Effect of dynamic trace

An important aspect to consider is how the quantity of dynamic information avail-

able affects the overall performance of hybrid pruning. We conducted this experiment on

three subjects, i.e., YAN01 00011, grep and readelf in Homode; where we gradually in-

ject more dynamic traces into our analysis system. We use fuzzing as an inexpensive way

of trace generation, and randomly pick 100 traces. Every time a new trace is introduced,

we continuously monitor the performance of our analysis system in terms of warning

(WRF) reductions. With more traces being made available, pointer analysis improves, as

additional dynamic information yields new points-to sets not discovered before. More-

over, taint analysis improves due to the combined improvement in the points-to sets, as

well as the reduction in the spurious static taint sets. Since the bug detectors consume

both the pointer and the taint information, the number of warnings reduces over time.

Initially, the WRF increases, and then becomes stable at the point when the dynamic

coverage saturates. We observe that the performance of hybrid pruning is positively cor-

related with the amount and the quality (coverage) of the dynamic trace. We present in

Figure 4.4b. Specifically, for every subject, the corresponding line gradient in Figure 4.4b

represents the correlation of WRF with the trace count, e.g., gradient increases mean

WRF increases as we add more traces.

Gradient increases. Points-to result improves when additional dynamic information

yields new points-to sets that has dynamically never been seen before by the analysis.

Also, taint can improve either due to more precise points-to sets, or additional dynamic

taint information overriding its static counterpart at newer program points. Warning

improves as it is positively correlated to the improvement of either or both the factors.

Gradient unchanged. Neither points-to, nor taint improves. Typically, it is the case

when multiple traces exercise the same program path.
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Gradient decreases. Increased dynamic information can discover more target objects

pointed to by the same pointer; thereby increasing the size of its points-to set. Similarly,

extensive dynamic information available at the same program point can newly taint an

object which was found not to be tainted in prior runs.

4.5 Limitations and Discussion

Potential false negatives. Our pruning strategy is context-insensitive, meaning that

the different call contexts of the same callee method are indistinguishable from each

other.

1 void square ( i n t ∗ p) {

2 ∗p = (∗p) ∗ (∗p) ; // Unsafe binary operation

3 }

4

5 i n t main ( ) {

6 i n t n , c = 50 , i ;

7 s can f ( "%d" , &i ) ;

8 i f ( i < 100) {

9 s can f ( "%d" , &n) ; // Tainted input

10 square(&n) ;

11 } e l s e

12 square(&c ) ;

13 r e turn 0 ;

14 }

Listing 4.2: False negative of hybrid pruning. Instructions in green are dynamically
executed while the red ones are not.

In Listing 4.2, square is being called from two different contexts at Line 10 and Line 12,

making p point to {n, c}. The tainted input n can flow to the multiplication operation

at Line 2, if and only if i is less than 100. However, assume that the program is ex-

ercised only with test cases having i greater than 100. Therefore, in all the dynamic

runs, the constant c is passed to the square call at Line 12, which establishes the dy-
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namic points-to relation p→ c. During hybrid pruning, when the algorithm evaluates the

points-to set of p due to the call at Line 10, it will find that the instructions of square

have already been dynamically visited, albeit from a different context (Line 12). The

context-insensitive pruning strategy disregards the difference in call-sites. At this point,

the dynamic points-to set will be given preference, and consequently the static points-to

relation p → n gets killed. Due to the missing points-to relation, the taint engine will

no longer propagate the taint to the multiplication operation at Line 2. In turn, the

ITDUD vulnerability detector will fail to detect the potentially unsafe binary operation.

To summarize, the context-insensitive pruning strategy can lead to false negatives in

both the pointer and taint analyses, as well the vulnerability detection. As we show in

Section 4.4, the performance of hybrid pruning is positively correlated with the quantity,

and the quality (coverage) of the available dynamic trace.

Theoretical limitation. To detect temporal bugs, e.g., use-after-free (UAF), double

free, etc., a bug detector needs to have both the reachability (if the attacker can trigger the

events), and the timing (if the attacker can control the sequence of events) information.

Therefore, the taint information alone is not enough in order to detect this kind of bugs.

However, such a bug detector could still benefit from the precise pointer information to

infer if different events, e.g., use, free, etc., are operating on the same program objects.

Hence, how the hybrid points-to information improves the discovery of the temporal bugs

could be an interesting research direction to explore.

Applicability to other analyses. Since hybrid pruning is inherently unsound, it is the

best fit for applications where soundness is not a strict necessity, for example, in static

vulnerability detection, limited cases of call-graph and control-flow graph construction,

dynamic symbolic execution, etc. Indirect call resolution is a challenging problem—a

purely static pointer analysis is likely to miss potential targets unless it is configured to be
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‘overly’ conservative, in which case, it may become unusable. Hybrid pruning can indeed

be effective, because it can restrict such a pointer to a smaller set of interesting targets.

4.6 Related Work

In this section we will discuss state-of-the-art techniques related to our work.

Pointer analysis: Pointer analysis is a fundamental program analysis technique with a

very rich literature [174–177], and wide applications [178, 179]. Steensgaard et. al. [176]

provides a linear time algorithm based on type inference techniques for pointer analy-

sis. Anderson inclusion-based pointer analysis is another important milestone for pointer

analysis which provides good precision compared to Steensgaard et. al. with an accept-

able performance overhead [177]. Yulei et. al.perform value-flow, and pointer analysis in

an iterative manner to improve the precision of both [165]. Pointer analysis techniques are

designed to be sound as they are mostly used in compiler optimization. However, there

are other clients of pointer analysis that does not have this requirement. Vulnerability

detection is one such client where less false positives [180], and more precision is required.

There are few unsound pointer analysis techniques tailored for bug detection [181–183].

Similarly, speculative execution is one such client where the occasional lost of soundness

is acceptable [184]. In order to achieve precision, one can also use dynamic analysis which

is precise, but can never be sound. Marcus et. al.proposes a technique to compute pointer

analysis results dynamically, which are called dynamic points-to results [185,186]. They

also show that the static pointer analysis results are an order of magnitude imprecise

than dynamic points-to results. Another work shows how the dynamic points-to results

can be used for program slicing [187]. Additionally, David et. al.integrates pointer anal-

ysis with Dynamic symbolic execution to increase the precision of pointer analysis [188].

However, dynamic information heavily relies on the tests, and can never be sound. In
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this work, we explore the possibility of augmenting the static pointer analysis—which is

imprecise but sound with dynamic points-to—which are precise but unsound. We then

show how this can be used to increase the precision of vulnerability detection techniques.

Taint analysis: Taint tracking is a data flow tracking technique to track the effect of

user data at various program points [163]. Static taint tracking [189] requires a precise

pointer analysis, else it usually ends up with Taint explosion [164], tainting all program

data. Consequently, almost all the static taint tracking techniques are developed for

Java [189] and other strongly typed languages where the pointer analysis results are

relatively precise. Dynamic taint tracking(DTT) [163,190] is usually performed by instru-

menting program instructions [190], resulting in memory and run-time overhead. Though

several techniques have been developed to improve the run-time overhead; it still suffers

from the lack of dynamic coverage [191–194].

Vulnerability detection. Nevertheless imprecise, the importance of static analysis in

vulnerability detection is undeniable. A large body of work on the static detection of vul-

nerabilities in C/C++ programs has evolved over the last two decades. Engler et al.first

explored this domain using various static analysis techniques [195–197]. Other techniques

target only specific classes of vulnerabilities, such as, buffer overflows [198–200], mem-

ory leaks [201], integer anomalies [202, 203], and format string errors [204]. However, as

the complexity of software grows, these techniques either do not scale, or incur a large

number of false positives.

The key motivation behind this work is to bring the best of both the worlds to-

gether,i.e., the scalability offered by the static analysis, and the precision guaranteed

by the dynamic analysis. We attempt to combine both in a novel way, such that, we

can draw on the strengths of each. There exists previous attempts that combine static

and dynamic analysis for various applications [205–211]. Tapti et. al.combines static

analysis with dynamic data flow tracking (DFT) to increase the the precision of pointer
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analysis [212]. They used this precise pointer analysis to protect memory disclosure,

and transient execution attacks. Other techniques have aimed to improve vulnerabil-

ity detection as a downstream client, e.g., using dynamic analysis to verify the results

of static analysis, guiding fuzzing through static program analysis, using static analysis

to localize program faults in untested code from fuzzer generated crash, etc. [205–208].

However, none of them combine the static and dynamic analysis in an interleaved way

to improve the points-to, and taint analysis—which is further used in vulnerability de-

tection to reduce the false warnings. To our knowledge, we are the first to explore this

direction.

4.7 Conclusion

In this chapter, we introduce a new prgroam analysis technique called hybrid pruning

that enhances the precision of static analysis techniques like pointer and taint analysis by

using dynamic information extracted from a program’s runtime trace. These static-only

analyses often sacrifice precision for scalability when dealing with large programs. Our

hybrid technique injects accurate information from a program’s dynamic trace into the

static analysis system, thus improving its precision. While doing so, we also tackle the

challenge of combining static and dynamic analyses, which operate in two different anal-

ysis domains. The paper demonstrates the usefulness of this approach by reducing false

positives emitted by a static vulnerability detector. While a vanilla static vulnerability

detector emits a large number of alarms, thereby making it challenging for a manual anal-

ysis to review the legitimacy of all the alarms, our hybrid system cuts down the number

of warnings significantly, thus making the task easy for an analyst. The hybrid pruning

technique shows promise in improving static bug detection and has been evaluated on

real-world applications.
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Conclusion

In this dissertation, I presented novel approaches of finding attacks and vulnerabilities in

two major types of critical systems. For NFT marketplace, which is a business-critical

system, I presented our findings on past attacks and abuses, along with data analysis

techniques and mathematical models to spot similar future attacks. For operating system

(OS) kernel and application software, which are security-critical systems, I presented

novel dynamic and hybrid analysis techniques, respectively, to discover latent bugs.

First, we focused on the interaction between peripheral devices and respective ker-

nel drivers, which can be complex, and hence writing correct device driver software is

hard. Unfortunately, as it has been recently demonstrated, vulnerabilities in wireless

communication peripherals and corresponding drivers can be exploited to achieve remote

kernel code execution without invoking a single system call. Nonetheless, no versatile

framework existed that could analyze this interaction domain. We present PeriScope, a

generic probing framework that addresses the specific analysis needs of the two peripheral

interface mechanisms MMIO and DMA. Our fuzzing component PeriFuzz builds upon

this framework and can help the end user find bugs in device drivers reachable from a

compromised device; uniquely, PeriFuzz can expose double-fetch bugs by fuzzing over-
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lapping fetches, and by warning about overlapping fetches that occurred before a driver

crash. Using these tools, we found 15 unique vulnerabilities in the Wi-Fi drivers of two

flagship Android smartphones, including 9 previously unknown ones.

Then, we conducted the first systematic study of the emerging NFT ecosystem on 8

top NFT marketplaces (NFTM). To start with, we perform a large-scale data collection

from various sources, viz., Ethereum mainnet, NFTM websites, and their documentation.

We then compile a comprehensive list of design weaknesses originating from the NFTMs

and external entities, which often lead to financial consequences. Further, we develop

models to detect common trading malpractices, and quantify their prevalence in these

marketplaces.

Finally, we introduce hybrid pruning , a technique to improve the precision of static

points-to and taint analyses by combining dynamic information collected from program’s

run-time trace. We propose two different modes of operation, viz., opportunistic and

propagation-only, whose applicability is decided by the amount of dynamic information

available. Our in-depth evaluation demonstrates both significant improvement in the

precision of the points-to sets, and the reduction of the taint sets. When static vulnera-

bility detection is used as a client of the improved pointer and taint analyses, the former

is able to find 19 out 20 bugs in CGC and real-world software, where as cutting down 21%

of the false warnings—making the analysis outcome more amenable to manual triaging.
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