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Abstract

Lysophosphatidic acid (LPA)-mediated activation of LPA receptor 1 (LPAR1) contributes to the
pathophysiology of fibrotic diseases such as idiopathic pulmonary fibrosis (IPF) and systemic sclerosis
(SSc). These diseases are associated with high morbidity and mortality despite current treatment options.
The LPA-producing enzyme autotaxin (ATX) and LPARI1 activation contribute to inflammation and
mechanisms underlying fibrosis in preclinical fibrotic models. Additionally, elevated levels of LPA have
been detected in bronchoalveolar lavage fluid from patients with IPF and in serum from patients with SSc.
Thus, ATX and LPAR1 have gained considerable interest as pharmaceutical targets to combat fibrotic
disease and inhibitors of these targets have been investigated in clinical trials for IPF and SSc. The goals
of this review are to summarise the current literature on ATX and LPARI1 signalling in pulmonary fibrosis
and to help differentiate the novel inhibitors in development. The mechanisms of action of ATX and
LPARL1 inhibitors are described and preclinical studies and clinical trials of these agents are outlined.
Because of their contribution to numerous physiologic events underlying fibrotic disease, ATX and LPAR1
inhibition presents a promising therapeutic strategy for IPF, SSc and other fibrotic diseases that may fulfil
unmet needs of the current standard of care.

Introduction

Fibrosis is a pathologic hallmark of diverse diseases and disease processes, including interstitial lung diseases
(ILDs) such as idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc)-ILD [1-4]. Although their
distinct disease aetiologies are not completely understood, IPF and SSc-ILD share the common pathologic
features of low-grade inflammation and excessive extracellular matrix (ECM) deposition within the lung.
Patients with SSc are also affected by fibrosis in other organ systems, including the skin, as well as by
vasculopathy in different organs [2, 5, 6]. Processes that contribute to fibrosis are necessary for several
physiologic events, including wound healing. However, uncontrolled, excessive ECM deposition and
inflammation are pathogenic and may lead to a chronic profibrotic state, culminating in fibrotic disease
[1, 5, 7, 8]. Among the multiple mechanisms that contribute to fibrosis, lipid mediators such as
lysophosphatidic acid (LPA) that primarily activate LPA receptors (LPARs) and are predominantly produced
by autotaxin (ATX) may play a central role in the convergence of inflammation and fibrosis [3, 4, 9—-13].
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This review will focus on the roles of ATX and LPART1 in IPF and SSc-ILD, diseases in which the leading
causes of death are progression of pulmonary fibrosis and respiratory failure [14, 15]. Therapeutic options
for these diseases are limited and may be tolerated poorly by patients [16, 17]. Thus, several mechanisms
that underly fibrosis are currently pursued as targets for the development of novel therapies such as
LPAR1 and ATX inhibition [12]. Activation of LPAR1 by LPA contributes to fibrosis, with some
preclinical studies suggesting LPAR1 may disproportionally contribute to fibrosis more so than other
LPAR family members [12, 18, 19]. The ATX/LPA/LPARI1 signalling axis also contributes to
inflammation through mechanisms such as macrophage survival and activation [20, 21]. Numerous
inhibitors of the ATX/LPA/LPARI1 signalling axis have entered clinical trials for fibrotic diseases [22—25].
Inhibitors of ATX and LPARI1 signalling in clinical development have varying mechanisms of action
(MOA) and are emerging as potential therapies for IPF and SSc-ILD. This review describes these
investigational therapies and their potential to intervene with these disease processes. The main objectives
of this review include the following: 1) review ATX and LPAR1 signalling and their roles in fibrotic
disease with a focus on IPF and SSc-ILD; 2) discuss ATX and LPART1 inhibition as a potential therapy for
fibrotic disease and differentiate the MOA of ATX and LPAR1 pathway inhibitors; and 3) review ongoing
clinical trials of ATX and LPART1 inhibitors.

Physiologic role of ATX/LPA/LPAR1 signalling

ATX

ATX is an enzyme with lysophospholipase D activity and is the predominant enzyme that converts
lysophosphatidylcholine (LPC) to LPA in the plasma [26, 27]. LPA is a bioactive phospholipid that
mediates a host of physiologic processes (e.g. cell migration, proliferation and differentiation, cytoskeleton
regulation, macrophage survival, inflammation, and alteration of cell-cell adhesions) and signals through a
six-member family of G-coupled protein receptors, LPAR1-6 [21, 28]. Because ATX largely contributes to
LPA availability, ATX activity is associated with outcomes of LPA signalling independent and dependent
of LPAR, including LPAR-mediated fibrosis and inflammation [9, 11, 21, 28-30]. In ATX-dependent LPA
synthesis, phospholipase A-1 or A-2 removes a fatty acid from the sn-1 or sn-2 position, respectively, from
membrane phospholipids resulting in LPC, which is subsequentially hydrolysed by the lysophospholipase D
activity of ATX to produce LPA [27, 28]. However, ATX is not the sole LPA producer, as LPA is also
produced via ATX-independent mechanisms, albeit to a lesser extent. At least four intracellular
ATX-independent pathways are capable of LPA production [28].

A recent study encompassing biochemical, cellular, and murine assays suggests that ATX also acts as an
LPA chaperone to facilitate delivery of LPA to LPAR, independent of its catalytic activity [31]. This study
revealed that ATX bound to LPA favours activation of LPAR6 more than LPAR1. Although in vitro and
in vivo studies support the notion that LPA species and ATX-mediated chaperoning may influence LPAR
isoform binding preference, questions remain regarding how ATX/LPA/LPAR signalling specificity affects
biologic functions.

LPAR1 pathway

LPARI1 belongs to a six-member family of LPARs, each with numerous and sometimes redundant
physiologic effects, including cell migration, proliferation and differentiation, cytoskeleton regulation,
inflammation, and alteration of cell-cell adhesions, all of which are processes that contribute to fibrosis
[8, 28]. LPA, the primary ligand of LPAR1, contains a glycerol backbone with a fatty acid chain at the sn-1
or sn-2 and a phosphate group at the sn-3 position [28]. Species of LPA are differentiated by the degree of
saturation and length of the fatty acid chain and have varying affinities for LPA receptor isoforms [28].
LPARI1 has broad LPA species selectivity and binds both saturated and unsaturated LPA [32].

LPARI1, expressed by macrophages and fibroblasts amongst others cell types, promotes inflammation
and fibrosis in various tissues (e.g. kidney, skin and lung) [4, 11, 12, 33-35]. After tissue injury
(e.g., bleomycin exposure) or during blood clotting, LPA levels increase locally to activate LPAR1
and promote a profibrotic state [4, 36]. The LPARI-associated G-protein (Goy, Goyg or Goyos3z) is
activated upon binding of LPA to LPAR1 and this activation is associated with the aforementioned
cellular events that contribute to fibrosis [3, 12, 37-42]. Preclinical evidence also suggests that LPAR1
indirectly increases ECM deposition through activation of fibroblast migration [4]. Additionally, LPAR1
increases activity of key inflammatory players such as NF-xB and c-jun N-terminal kinase; it also
increases expression of chemoattractants and proinflammatory cytokines (e.g. interleukin-6 (IL-6), IL-8,
chemokine C-X-C motif ligand 1 (CXCL1), CXCL8, C-C motif chemokine ligand 2 (CCL2) and CCL3)
[12, 20, 33, 34, 43, 44].
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Role of ATX and LPAR1 signalling in fibrotic diseases

IPF

IPF is characterised by progressive loss of lung function, dyspnoea and poor prognosis [1]. Approximately
70% of patients with IPF are males, with disease presentation usually occurring at an age of >60 years [16].
Risk factors for IPF include cigarette smoking, air pollution, other environmental exposures, genetics and
older age [16]. An analysis of IPF survival in the literature estimates a median IPF survival of 3.2 years, with
the majority of studies included in the analysis reporting median survival rates of 2-5 years [45]. Real-world
data, although inconsistent, have demonstrated that approved IPF therapies (i.e. pirfenidone and nintedanib)
are associated with improvements in survival [46-49]. For example, one study of 457 patients reported
transplant-free survival rates of 3.4 versus 2.2 years with approved treatment versus without, respectively
(p=0.005) [46]. However, although current pharmacologic therapies slow the decline of lung function in IPF,
they do not halt disease progression and may have poor tolerability (table 1) [50, 51]. Further, the failure and
termination of recent phase 3 clinical trials (Zephyrus-1 and ISABELA-1/2) that evaluated promising
antifibrotic molecules (pamrevlumab (anti—connective tissue growth factor) and ziritaxestat (ATX inhibitor))
highlights challenges in drug development for IPF [24, 52, 53]. Thus, there remains an urgent need for better
treatments for IPF with several phase 2 and 3 trials currently ongoing [54-59].

Preclinical and clinical studies have implicated ATX and LPA/LPARI1 signalling in IPF pathogenesis
(figure 1). In one study, increased protein levels of ATX were observed in lung tissue and alveolar
macrophages of the fibrotic interstitium from patients with IPF and in bronchoalveolar lavage fluid (BALF)
from mice with bleomycin-induced lung fibrosis. Moreover, conditional ATX knockout in bronchiolar
epithelial cells and macrophages protected mice from bleomycin-induced lung fibrosis [60]. Another study
in a mouse model of bleomycin-induced lung fibrosis found that ATX protein levels and activity increased
in BALF and lung homogenates (but not plasma) after bleomycin challenge and that the increase was
dependent on vascular leak rather than increased mRNA expression of ATX [29]. Therefore, lung LPA
production via ATX may be primarily dependent on ATX localisation via vascular leak and not local
production of ATX. Collectively, these data suggest that ATX may contribute to pulmonary fibrosis and
inflammation.

Regarding LPAR1 specifically, in a study of mice with bleomycin-induced pulmonary fibrosis, LPAR1
deficiency reduced fibroblast chemotaxis, vascular leakage and mortality [4]. Although LPAR1 deficiency
did not affect fibroblast to myofibroblast differentiation, LPAR1-deficient mice exhibited reduced collagen
accumulation following bleomycin injury, suggesting that LPAR1 indirectly drives collagen accumulation
through fibroblast chemotaxis [4]. In another study of bleomycin-induced pulmonary fibrosis, LPAR1
knockout mice exhibited less bronchial epithelial cell apoptosis than LPAR1 wild-type mice. Additionally,
serum-deprived primary mouse lung fibroblasts treated with LPA were more resistant to apoptosis than
were untreated cells and inhibitors targeting LPAR1 attenuated this apoptotic resistance [3]. Collectively,
these in vivo and in vitro observations suggest that LPAR1 contributes to vascular leakage, epithelial cell
apoptosis and fibroblast chemotaxis and survival, all of which are contributory mechanisms of pulmonary
fibrosis [3, 4] Further, LPAR1 mRNA expression is the highest among the LPAR family in pulmonary
fibroblasts, supporting the importance of this isoform in LPA signalling outcomes in pulmonary fibrosis [4].
Clinically, elevated levels of LPA have been observed in BALF and plasma from patients with IPF
[4, 12, 61]. Further, higher levels of plasma LPA associated with greater fibrosis in the lower lung and
decline in lung function as measured by diffusing capacity of carbon monoxide (Dyco) [61]. These
observations suggest that LPA/LPAR signalling is also relevant for human pathology.

In a study using the bleomycin-induced pulmonary fibrosis mouse model, LPAR1 deficiency did not
attenuate the inflammatory leukocyte response or leukocyte activation in BALF [4]. However, in humans
with IPF, serum LPA levels positively correlate with inflammation-related biomarkers (i.e. CCL17 and
CCL18) that also have profibrotic properties [61]. Thus, LPA may contribute to pathogenic fibrosis and
inflammation within IPF.

S$Sc and SSc-associated ILD

SSc is a chronic connective tissue disease characterised by autoimmunity, vasculopathy and fibrosis of the
skin and internal organs [5]. Categorised into two clinical subsets on the basis of cutaneous involvement
(limited cutaneous SSc (IcSSc) and diffuse cutaneous SSc (dcSSc)), SSc is a heterogeneous disease and no
therapeutic regimen has been found to be effective across various SSc phenotypes [5]. Patients with dcSSc
experience profound skin fibrosis that is proximal as well as distal to the elbows/knees and generally
progresses at a more rapid rate than those with 1cSSc. However, both cutaneous subtypes are associated
with serious internal organ involvement [62, 63]. Further, patients with dcSSc have a poor prognosis and
low survival rate, estimated at 88 and 74% at 5 and 10 years, respectively [64].
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¥207-GT00°LT90009T/€8TT"0T/340'10p//:sdy

TABLE 1 Positive trials for idiopathic pulmonary fibrosis (IPF), systemic sclerosis (SSc), SSc-interstitial lung disease (ILD) and ILDs including SSc-ILD

Medication Trial name; identifier Patient population Primary outcome Relevant secondary outcome(s) Safety

Positive phase 3 trials and currently ongoing phase 3 trials for IPF

Pirfenidone NA; JAPICCTCI-050121 IPF (n=267) Significantly less decline in PFS time increased with high-dose Photosensitivity, anorexia, dizziness, elevated
versus FVC with pirfenidone (p=0.04) pirfenidone (p=0.03); no significant change v-glutamyl-transpeptidase
placebo [110] in lowest oxygen saturation measured by
pulse oximetry during exercise test
Pirfenidone CAPACITY- IPF (n=779) 004: significantly less FVC%  Categorical change in FVC >10%, PFS time  Nausea, dyspepsia, vomiting, rash, dizziness,
versus 004 and 006; decline at week 72 and mean change in 6MWT distance abdominal distension, stomach discomfort,
placebo [103] NCT00287729, NCT00287716 006: no significant change in  significantly favoured pirfenidone versus abdominal pain, photosensitivity, anorexia,
FVC% decline at week 72 placebo in the pooled data of both studies arthralgia, insomnia, weight reduction,
asthenia, pharyngolaryngeal pain, pruritus,
hot flush
Pirfenidone ASCEND; NCT01366209 IPF (n=555) Significant change in FVC%  Significant improvement in 6MWT (p=0.04) Nausea, dyspepsia, vomiting, gastro-oesophageal
versus at week 52 (p<0.001) and risk of death (p<0.001) reflux, headache, rash, dizziness, anorexia,
placebo [50] decrease in weight, insomnia
Nintedanib INPULSIS-1 and 2; IPF (n=1066) Adjusted annual rate of Significant increase in time to first acute Diarrhoea, nausea, vomiting
versus NCT01335464, NCT01335477 change in FVC favoured exacerbation with nintedanib in INPULSIS-2
placebo [51] nintedanib versus placebo  but not INPULSIS-1; no significant change
(p<0.001) in SGRQ in INPULSIS-1 and significant

improvement in INPULSIS-2 (p=0.02)
Positive and pivotal phase 2 and 3 trials and currently ongoing phase 3 trials for SSc, SSc-ILD and ILDs including SSc-ILD

CYC versus MMF SLSII; NCT00883129 SSc-ILD (n=142) Significant improvement in  Significant improvements in TDI, SGRQ and Leukopenia and thrombocytopenia were more

[111-113] FVC% in both arms at 12, 18, radiologic fibrosis common in CYC arm (p<0.05); anaemia

21 and 24 months; no occurred similarly in both arms (CYC, 26;
significant difference between MMF, 18)
arms

CYC versus The Scleroderma Lung SSc-ILD (n=158) Improved FVC% at 12 months At 12 months, significant improvements in Leukopenia and neutropenia

placebo [114, Study; NCT00004563 in CYC versus placebo group  TLC%, TDI, radiologic fibrosis and HAQ-DI

115] (p<0.05) in CYC versus placebo (all p<0.05); no

significant difference in D co or D:VA
All improvements (CYC versus placebo)
besides dyspnoea waned 12 months
post-treatment

RTX versus CYC RECITAL; NCT01862926 CTD-ILD* (n=101; Significant improvement in  No significant difference in D, co, 6MWT or Gl disorders, general disorders, administration
[116] SSc-ILD: n=37) FVC in both arms, similar disease and QoL assessments, with site reactions, neurologic disorders in CYC
between arms (weeks 24 exception of improved GDA score at week versus RTX arm
and 48) 48 favouring the CYC arm (p=0.025)
RTX/MMF versus EVER-ILD; NCT02990286 ILD" (n=122; SSc-ILD:  CFB to 6 months in FVC% PFS was greater in RTX/MMF versus Infection, infusion-related reaction,
placebo/MMF n=23) favoured RTX/MMF versus placebo/MMF group (p=0.03) cardiac disorders
[117] placebo/MMF groups No between-group differences for SF-36,
(p=0.027) glucocorticoid doses, 6MWT, D, o,

dyspnoea, cough, HRCT ILD extent or
bronchiectasis scores

Continued
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TABLE 1 Continued

Medication Trial name; identifier Patient population Primary outcome Relevant secondary outcome(s) Safety
RTX versus DESIRES; NCT04274257 SSc (n=56; SSc-ILD:  CFB to week 24 in mRSS was  SSc-ILD subset: improved FVC% with RTX Adverse drug reaction, pulmonary valve
placebo [118] n=48) improved in RTX (—5.81) (week 24: +0.02%; week 48: +0.46%) disease’, diarrhoea, mucositis oral, decreased
versus placebo (2.14) neutrophil count, decreased white blood
cell count
Tocilizumab focuSSced; NCT02453256 dcSSc (n=210; No significant difference in Significant CFB to week 48 in FVC% and Injection site reactions
versus SSc-ILD: n=136) CFB to week 48 in mRSS median HRCT QLF-LM favoured tocilizumab
placebo [67] score between tocilizumab versus placebo (p=0.0002, p=0.02,
and placebo groups respectively); no significant change in
patient- or physician-assessed VAS
or HAQ-DI
Nintedanib INBUILD; NCT02999178 Progressive ILD Adjusted annual rate of Adjusted annual rate of decline for patients Diarrhoea and abnormal liver function
versus (n=663; SSc-ILD: decline in FVC was improved  with UIP-like fibrotic patterns in FVC was
placebo [119] n=39) in nintedanib versus placebo improved in nintedanib versus placebo
group (p<0.001) group (p<0.001)
Nintedanib SENSCIS; NCT02597933 SSc-ILD (n=576) Adjusted annual rate of No significant change in mRSS or SGRQ Diarrhoea
versus decline in FVC was better in score between treatment groups
placebo [66] nintedanib versus placebo
group (p=0.04)
MMF/pirfenidone SLS 1l SSc-ILD (n=51) Similar improvement in FVC%  No significant differences in treatment Higher Gl disorders and photosensitivity with
versus MMF/ over 18 months between arms pirfenidone
placebo [120] arms (p=0.93)
HSCT versus CYC Autologous Stem Cell Early dcSSc (n=156; Event-free and overall survival CFB to 2-year follow-up showed Death and viral infections were more common
[121] Transplantation lung involvement: time-varying hazard ratios improvements in the HSCT versus CYC in the HSCT group versus CYC (each p<0.01)
International; Scleroderma n=135) favoured HSCT- versus treatment groups in mRSS, FVC%, TLC%,
trial (ASTIS); CYC-treated patients (p=0.04 HAQ-DI, physical component score of SF-36
ISRCTN54371254 and 0.03, respectively) and EQ-5D (all p<0.05)
mHSCT versus SCOT; NCT00114530 SSc with pulmonary  Global rank composite score Global rank composite score favoured Myelodysplastic syndrome, death
CYC [122] or renal involvement  favoured mHSCT versus CYC ~ mHSCT versus CYC at month 48 (p=0.008) Percentage of patients with serious AEs and
(n=75; lung at month 54 (p=0.01) rates of serious infections were higher in
involvement: n=36) mHSCT group (p<0.01 each)

#: including SSc, idiopathic inflammatory myositis (including polymyositis or dermatomyositis) or mixed connective tissue disease with associated severe or progressive ILD. *: CTD-ILD or

idiopathic interstitial pneumonia; 23 participants (53% of the CTD-ILD group) had SSc. *: all patients with pulmonary valve disease in this study had physiologic pulmonary valve regurgitation
that was not pathologic. 6MWT: 6-min walk test; AE: adverse event; CFB: change from baseline; CTD-ILD: connective tissue disease-associated interstitial lung disease; CYC: cyclophosphamide;
dcSSc: diffuse cutaneous systemic sclerosis; D, co: diffusing capacity for carbon monoxide; D,:VA: diffusing capacity adjusted for alveolar volume; EQ-5D: Euro Quality of Life; FVC: forced vital
capacity; FVC%: FVC as a percentage of predicted value; GDA: global disease activity; Gl: gastrointestinal; HRCT: high-resolution computed tomography; HAQ-DI: Health Assessment Questionnaire
Disability Index; HSCT: haematopoietic stem cell transplantation; mHSCT: myeloablative autologous HSCT; MMF: mycophenolate mofetil; mRSS: modified Rodnan skin score; NA: not applicable;
PFS: progression-free survival; QLF-LM: quantitative lung fibrosis-most affected lobe; QoL: quality of life; RTX: rituximab; SF-36: 36-ltem Short Form Health Survey; SGRQ: St. George’s Respiratory
Questionnaire; SLS: Scleroderma Lung Study; TDI: translational dyspnoea index; TLC%: total lung capacity as a percentage of predicted value; UIP: usual interstitial pneumonia; VAS: visual
analogue scale.

M3IINTY AHOLVYIdSIY NVY3Id0odN3

"IV 13 NNYIWYTOA 83 | SISO¥EId AYYNOIWTNd



EUROPEAN RESPIRATORY REVIEW

PULMONARY FIBROSIS | E.R. VOLKMANN ET AL.

Injury

™

e g

0-p-OH

Om\“
el
LPAR3 LPARg , EE\

¢
0-P-O N
&

Dermis Lung Lung Lung
. ° 4 \f °
L) » g
Myofibroblast Collagen Cytokine Fibroblast Epithelial ~ Vascular Collagen Myofibroblast ~ Neutrophil ~ Cytokine
accumulation  deposition  secretion recruitment cell leak deposition accumulation infiltration  secretion
and survival apoptosis
Increased Increased

»
»

bo o

3 o
=k

o

Pulmonary
fibrosis

Dermal
fibrosis

FIGURE 1 Model of autotaxin (ATX) and lysophosphatidic acid receptor (LPAR) 1 in systemic sclerosis and pulmonary fibrosis. Model is derived from
empirical data collected from preclinical dermal and pulmonary fibrotic models. After injury, local levels of ATX rise. In the extracellular space, ATX
catalytically converts lysophospholipids such as lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), thus elevating local levels of LPA. LPA
activates the LPAR family of G protein-coupled receptors. Additionally, ATX can chaperone LPA to LPARs, with heightened specificity for LPAR6
compared with LPAR1. Activation of LPAR1/2 and their G protein-coupled receptors leads to downstream signalling that results in cellular processes
involved in fibrosis. Bleomycin-induced dermal fibrotic mouse models support that LPAR1, but not LPAR2, contributes to cellular events that
culminate in dermal fibrosis. Bleomycin-induced pulmonary fibrotic mouse models support that LPAR1 and LPAR2 contribute to cellular events that
culminate in pulmonary fibrosis. The effect of LPAR3-6 is not as well characterised in the development of dermal and pulmonary fibrosis.

Positive clinical trials of therapies for SSc and SSc-ILD are reviewed in table 1. Although these therapies
may slow disease progression and improve symptoms and certain organ manifestations, treatments are not
generally curative and do not arrest fibrosis [5, 17, 65]. Further, current treatments are ineffective in
comprehensively treating the broad spectrum of SSc clinical manifestations. For example, the IL-6 receptor
antagonist tocilizumab and the antifibrotic, nintedanib, are both approved for slowing the rate of
pulmonary function decline in adults with SSc-ILD; however, neither was associated with improvement in
skin fibrosis compared with placebo [66-69]. To fulfil the unmet need of the current treatment landscape,
novel agents that target underlying mechanisms of both inflammation and fibrosis are being developed as
potential therapies for SSc (e.g. ATX and LPARI1 inhibitors).

Pulmonary involvement is a potentially severe SSc manifestation that may manifest as ILD and is
associated with high rates of morbidity and mortality [1, 70, 71]. An estimated prevalence of ILD in
patients with SSc (n=1168) from the Canadian Scleroderma Research Group registry was 52% (95% CI
46-59%) [71]. Although ILD is common in patients with dcSSc, ILD occurs in patients with 1cSSc, as
well (dcSSc: 70%; 1cSSc: 39% (Registry of the Spanish Network for SSc)) [72]. These estimates are
possibly underestimated due to lack of uniform screening for early SSc for ILD [73]. The prevalence of
progressive pulmonary fibrosis (PPF) among patients with SSc-ILD varies by patient population, but
studies report that approximately 27-39% of SSc-ILD cases can be classified as PPF [74, 75].

https://doi.org/10.1183/16000617.0015-2024 6
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As previously described, two studies of bleomycin-challenged pulmonary fibrotic mice have demonstrated
an association between ATX and pulmonary fibrosis [29, 60]. Because bleomycin mouse models are used
for both SSc-ILD and IPF, these studies suggest a link between ATX and SSc-ILD, while another study
demonstrated that ATX is additionally involved in dermal fibrosis. In a bleomycin-induced dermal fibrosis
mouse model, dermal ATX mRNA and protein levels were enhanced compared with saline-injected
mice [76]. Inhibition of ATX reduced collagen and myofibroblast accumulation in the dermis as well as
dermal thickening after bleomycin challenge [76]. This involvement of ATX in dermal fibrosis is also
observed in humans. Messenger RNA ATX levels are elevated in skin from patients with dcSSc compared
with healthy skin [76]. Further, ATX, LPA and IL-6 participate in an amplification loop in dermal
fibroblasts, wherein LPA produced by ATX increases IL-6 expression and IL-6, in turn, enhances ATX
expression [76]. This feedback mechanism is more pronounced in SSc versus healthy fibroblasts in vitro
and implicates ATX in fibrotic-related inflammation [76]. Therefore, ATX may contribute to both dermal
and pulmonary fibrosis and may thus be a mediator in SSc and SSc-ILD pathogenesis (figure 1).

Preclinical and clinical evidence also support LPAR1 as a contributor to SSc. Two studies involving
bleomycin-induced pulmonary fibrotic mice with LPAR1 deficiency, one of which also involved primary
mouse lung fibroblasts treated with LPAR1 inhibitors, concluded that LPAR1 contributes to physiologic
mechanisms associated with pulmonary fibrosis and thus SSc-ILD (reviewed in the IPF section) [3, 4].
Mice with bleomycin-induced dermal fibrosis and LPAR1 knockout have reduced dermal thickening as
well as collagen and myofibroblast accumulation compared with wild-type bleomycin-induced dermal
fibrotic mice. Skin fibroblasts from patients with SSc had elevated LPA-activated CI™ current activity, a
phenomenon involved in lung fibroblast differentiation [77]. Dermal fibroblasts and skin biopsies from
patients with SSc contain more LPAR1 mRNA than mRNA encoding other LPAR isoforms [12].
Inhibition of LPARI1 in SSc dermal fibroblasts led to decreased CCL2, CXCL1 and IL-6 protein secretion
in response to LPA, supporting a proinflammatory role of LPAR1 [12]. Moreover, patients with SSc have
elevated total serum LPA:lypophosphatidylcholine ratios compared with healthy controls [78]. Together,
these observations associate LPAR1 activity with SSc.

In addition to its fibrotic and immunomodulatory effects, LPAR1 activation exerts vascular effects such as
intimal hyperplasia in response to vascular injury due to interactions with smooth muscle and
vasoconstriction [79, 80]. Therefore, LPAR1 activity may also contribute to SSc-related vasculopathy,
which may be improved with LPAR1 inhibition. In summary, evidence of ATX and LPAR1 involvement
in fibrotic disease and potential involvement in vasculopathy suggests that modulation of ATX or LPAR1
may attenuate fibrosis and that this antagonism may be an effective strategy in the development of
therapies for IPF and SSc.

Preclinical and phase 1 clinical trials of ATX and LPARL1 inhibitors

ATX inhibition

The contribution of ATX in pathological fibrosis has motivated the design of multiple ATX inhibitors that
have been reviewed extensively elsewhere [81, 82]. Although ATX inhibition may decrease activation of
LPAR1 (via LPA depletion), because LPA engages LPARs 1-6, ATX inhibition is not specific to LPAR1
and may indirectly inhibit LPARs 2-6, as well (figure 2) [28]. Several ATX inhibitors are under preclinical
development and three ATX inhibitors have entered clinical trials for IPF, namely BLD-0409
(cudetaxestat) [55], GLPG1690 (ziritaxestat) [83] and BBT-877 [84, 85]. In mice with bleomycin-induced
lung fibrosis, all three inhibitors reduced the fibrosis versus vehicle [85-87].

In bleomycin-challenged mice, cudetaxestat reduced expression of ATX/LPA target genes in RNAseq
experiments, plasma LPA levels, mRNA expression of key drivers of lung fibrosis and eventually lung
fibrosis in a dose-dependent manner [86]. The safety of cudetaxestat was evaluated in four phase 1 clinical
trials of healthy volunteers (n>200) [88]. A single/multiple ascending dose study of oral cudetaxestat
solution reported only transient, mild gastrointestinal treatment-emergent adverse events (TEAEs), while a
bioavailability study of oral cudetaxestat tablets reported no gastrointestinal TEAEs. A drug—drug
interaction study reported that cudetaxestat is safe to use in combination with nintedanib or pirfenidone
with no significant changes in drug exposure during concomitant use. No serious adverse events (AEs)
were reported in the phase I studies [88].

Ziritaxestat inhibits ATX catalytic and chaperone function and has higher selectivity for LPAR6 than for
LPAR1 [31]. Ziritaxestat was shown to be more efficient at protecting mice from radiation-induced
pulmonary fibrosis than was an ATX catalytic inhibitor that did not inhibit chaperone activity, supporting
the premise that ATX chaperone inhibition may contribute to pulmonary fibrosis protection [31].
Ziritaxestat also reduced LPA 18:2 levels in BALF of bleomycin-challenged mice [85]. In the first
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lung fibrosis, while decreased LPAR2 signalling leads to decreased pulmonary fibrosis. Inhibition of LPAR3-6 is not as well characterised because
data for LPAR3-6 signalling in dermal and pulmonary fibrotic models are lacking. Inhibition of ATX chaperone function may lead to a more
pronounced inactivation of LPAR6 and thus decreased pulmonary fibrosis. In panel b), during LPAR1 selective inhibition, upstream signalling and
activation of LPAR2-6 is maintained. Inhibition of LPAR1 leads to decreased cellular events that improve dermal and pulmonary fibrosis. Because
LPARL1 is expressed at higher levels compared with other LPARs in pulmonary fibroblasts and systemic sclerosis dermal fibroblasts, this selective
inhibition targets cell types involved in dermal and pulmonary fibrosis. LPA: lysophosphatidic acid; LPC: lysophosphatidylcholine.

in-human study of ziritaxestat in healthy men, headache was the only reported TEAE and no serious AEs
were reported [89].

BBT-877 reduced LPA 18:2 and 20:4 with higher potency than GLP1690 in ex vivo enzymatic assays that
used human plasma. BBT-877 also reduced body weight loss, lung weight, Ashcroft score and collagen
content in bleomycin-challenged mice compared with the vehicle. A phase I trial of BBT-877 in 80
healthy volunteers resulted in only mild AEs and no serious AEs [87].

LPAR1 inhibition

Although ATX and LPARI1 inhibitors both reduce fibrosis via inhibition of LPA signalling, their MOA vary
considerably. Unlike ATX inhibitors, which deplete LPA production, LPAR1 inhibitors bind LPAR1 and
specifically inhibit its activation by LPAs [12, 90]. Hence, LPAR1 inhibitors may have no or a limited effect
on LPARs 2-6, depending on binding specificity for LPAR1 within the LPAR family (figure 2) [12].
Examples of LPAR1 inhibitors are fipaxalparant (HZN-825), BMS-986020 and BMS-986278 [23, 54, 91].
Although these inhibitors target the same receptor, in vitro and in vivo evidence suggests that their binding
mechanisms differ, which may lead to differences in efficacy and safety profiles in the clinic [90, 92].

Fipaxalparant behaves as a selective allosteric LPAR1 inhibitor [12, 90]. In vitro, fipaxalparant inhibited
LPAR1-mediated activation by five different LPA species, including 20:4 LPA, which is increased in
serum of patients with SSc [12, 78]. In cellular assays, fipaxalparant blocked calcium response in Chinese
hamster ovary cells treated with serum from patients with SSc, prevented LPA-mediated differentiation of
IPF fibroblasts, decreased Wnt signalling and decreased secretion of inflammatory markers (IL-6, CCL2
and CXCL1) in SSc dermal fibroblasts [12]. Additionally, in Tsk1 mice, fipaxalparant reduced hypodermal
thickening, myofibroblast accumulation, hydroxyproline content and secretion of CCL2 and CXCL1 [12].
Notably, fipaxalparant was inactive on LPAR2, 3 and 5 and had some activity with LPAR6 [12]. Thus,
fipaxalparant exerts its effect primarily on LPARI, but it has limited effect on other LPARs, whose
contributions to dermal and pulmonary fibrosis are not as well established [3, 4, 12, 19]. For example,
evidence from mice subcutaneously injected with bleomycin indicates that LPAR2 does not contribute to
dermal fibrosis, while evidence from a bleomycin-induced fibrotic mouse model supports that LPAR2 does
contribute to pulmonary fibrosis [19, 93]. Together, these data suggest that fipaxalparant selectively
inhibits LPAR1 and attenuates fibrotic processes in preclinical models. Five phase 1 safety trials of
fipaxalparant in healthy volunteers (n=94) reported no severe AEs. The most frequently reported TEAEs
were headache, orthostatic hypotension, postural dizziness, flatulence and abdominal pain (unpublished
data, Horizon Theraputics).

BMS-986020 and BMS-986278 are structurally related yet distinct inhibitors of LPAR1 [92, 94]. An in
vitro study suggested that BMS-986020 binds LPARI1 differently than fipaxalparant [90]. BMS-986020
also inhibits hepatic resident transporters, particularly bile salt export pump (BSEP) and mitochondrial
function in hepatic cells and, therefore, has off-target effects that likely caused the hepatobiliary toxicity
observed in a phase 2 clinical trial [23, 92]. Conversely, BMS-986278 inhibition of BSEP was weak in in
vitro assays, suggesting that BMS-986278 may have a better safety profile than BMS-986020 [92].
BMS-986278 did not cause hepatobiliary toxicity in rat or monkey models [95]. In addition, a phase 1 trial
of BMS-986278 in healthy individuals did not report hepatic toxicity. Most AEs were mild and the most
frequent one was headache. Decreased blood pressure was also reported (ClinicalTrials.gov identifier:
NCT03429933) [96, 971].

Phase 2/3 clinical trials of ATX and LPARL1 inhibitors

Phase 2 and 3 clinical trials of ATX and LPARI1 inhibitors are reviewed in this section. Notably, the
eligibility criteria pertaining to background therapy have not been uniform throughout trials and use of
background therapy may have influenced outcomes [22, 83]. Therefore, the ability to holistically interpret
results may be limited.
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ATX inhibitors

Three ATX inhibitors have entered phase 2 of clinical development: BBT-877, cudetaxestat and ziritaxestat
(table 2) [55, 83, 84]. ISABELA 1 and 2 were phase 3, double-blind, placebo-controlled, global,
randomised clinical trials that evaluated the safety and efficacy of ziritaxestat in participants with IPF
(n=525; n=781) [24]. Participants were randomised 1:1:1 to receive ziritaxestat 600 mg, ziritaxestat 200 mg
or placebo for at least 52 weeks. Participants were permitted, but not required, to receive standard-of-care
treatment (nintedanib, pirfenidone) during the study. Both trials were terminated early after a review by an
independent data safety monitoring committee that concluded there was increased mortality in the 600 mg
ziritaxestat group and lack of efficacy in all treatment groups [24]. Despite early termination, most patients
were included in the analysis (1300/1306) and mean (sp) total treatment duration for ISABELA-1 and
ISABELA-2 were 345 (188) and 339 (161) days, respectively. Ziritaxestat treatment did not result in
benefits in the primary end-point (annual rate of forced vital capacity (FVC) decline versus placebo) or in
key secondary end-points versus the placebo group. Outcomes for time to first respiratory-related
hospitalisation were worse in the ziritaxestat groups versus placebo. Pooled all-cause mortality rates for
ziritaxestat 600 mg, ziritaxestat 200 mg and placebo were 8.9, 7.0 and 5.5%, respectively, and
respiratory-specific mortality rates were 3.6, 3.5 and 1.8%, respectively. The most common TEAEs were
gastrointestinal disorders. Serious AEs were reported similarly across treatment groups (ISABELA 1: 22,
22 and 21%; ISABELA 2: 25, 24 and 16%; for 600 mg, 200 mg and placebo, respectively). Of
participants treated with ziritaxestat, 74% had reduced LPA C18:2 plasma levels and 26% had increased
LPA C18:2 levels, indicative of target engagement by ziritaxestat in a portion of participants [24]. Clinical
development of ziritaxestat was stopped after termination of the ISABELA trials [83].

NOVESA was a randomised, double-blind, placebo-controlled phase 2A clinical trial for ziritaxestat in
participants with dcSSc (n=33). This trial included patients with early dcSSc (first manifestation of SSc other
than Raynaud’s phenomenon within the last 5 years) and excluded patients with FVC <45%. Most
participants (90%) were receiving background immunosuppressant standard-of-care therapy. The NOVESA
trial met its primary end-point of reduced mean modified Rodnan skin thickness score (mRSS) at week 24
(p=0.04; ziritaxestat versus placebo groups), with no significant differences in the change from baseline in
FVC between groups. Diarrhoea and headaches were the most frequently reported TEAEs in the ziritaxestat
group and 9.5 and 8.3% of patients experienced serious AEs in the ziritaxestat and placebo groups,
respectively. In ziritaxestat-treated participants, circulating LPA C18:2 was significantly reduced (p<0.0001
versus placebo group), demonstrating ATX inhibition. Multiple fibrosis biomarkers in the blood were
stabilised in the ziritaxestat group and increased in the placebo group (between-group difference (p<0.04)),
while no differential gene expression was observed in the skin of ziritaxestat versus placebo groups. Further,
membrane-spanning 4-domains A4A RNA, a biomarker of M2 macrophages, was significantly reduced
1.9-fold in blood samples from patients treated with ziritaxestat compared with placebo (p=0.03) [83].

31 of the 33 participants enrolled in the NOVESA trial entered the 104-week open-label extension study.
However, premature termination of the NOVESA study following results from ISABELA trials precluded
analysis of the NOVESA open-label extension beyond week 52. At week 52 of the open-label extension,
the mean (standard error) change from baseline in mRSS was —11.6 (3.0) and —12.2 (1.6) units in the
ziritaxestat—ziritaxestat and placebo-ziritaxestat groups, respectively. All participants experienced at least
one TEAE and serious AEs were reported in 29% of all participants [83].

LPAR1 inhibitors

The clinical profile of fipaxalparant is being investigated in two ongoing phase 2 trials in individuals with
IPF and dcSSc (NCT05032066 and NCT04781543) (table 2). The safety and tolerability of fipaxalparant
were demonstrated in 32 participants with dcSSc in a phase 2a study wherein participants were treated with
fipaxalparant or placebo for 8 weeks, followed by a 16-week extension during which all participants
received treatment. Most patients (24/32) were receiving background immunosuppressive therapy.
Headache was the most commonly reported TEAE in the fipaxalparant-treated group and one (6.7%)
participant in the fipaxalparant-treated group experienced a serious AE [22].

At the end of the extension period, participants treated with fipaxalparant for the entire 24-week study
duration experienced a clinically meaningful decrease in mean total mRSS from baseline (mean: —7.36;
median: —7.5) [98]. Participants treated with placebo for 8 weeks and fipaxalparant for 16 weeks also
experienced a clinically meaningful decrease in mRSS from baseline (mean: —7.31; median: —7.00)
[22, 99]. Clinically meaningful improvements in Health Assessment Questionnaire Disability Index were
observed in fipaxalparant-treated participants at week 8 (—0.14) and week 24 (—0.15) and in placebo/
fipaxalparant—treated participants at week 24 (—0.23) [22]. The most commonly reported TEAEs were
infection and headache. Two (6.7%) serious AEs were reported, one in each treatment group.
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TABLE 2 Agents targeting autotaxin (ATX) and lysophosphatidic acid receptor 1 (LPAR1) in phase 2-3 of clinical development

Agent Identifier Patient Primary end-point Secondary efficacy end-points Estimated
population completion date
ATX inhibitors
BBT-877 [84] NCT05483907  IPF (n=120) CFB to week 24 in FVC CFB to week 24 in FVC%, D, co, 6MWT, SGRQ and L-IPF November 2024
Cudetaxestat [55] NCT05373914  IPF (n=200) CFB to week 26 in FVC Time to disease progression, CFB to week 26 in QLF March 2024
LPAR1 inhibitors
Fipaxalparant [123] NCT04781543 dcSSc CFB to week 52 in FVC% CFB to week 52 in HAQ-DI, MDGA, PtGA and physical July 2025
(n=300) effects and limitations subscales of the SSPRO-18; proportion
of patients with improved mRSS, HAQ-DI, PtGA, MDGA and
FVC% from baseline to week 52
Fipaxalparant [54] NCT05032066  IPF (n=153) CFB to week 52 in FVC% CFB to week 52 in 6MWT, K-BILD, L-IPF and LCQ; proportion July 2025
of participants with a decline in FVC% from baseline to
week 52; time to first hospitalisation and first onset of PFS
BMS-986278 NCT04308681  IPF (n=276) Mean FVC% improvement=1.4% (60 mg Results of secondary end-points to be reported Completed
[25, 91, 100, 124] twice daily versus placebo)
ILD cohort Mean FVC% improvement=1.6% (30 mg Results of secondary end-points to be reported Completed
(n=125) twice daily versus placebo); 3.2% (60 mg

twice daily versus placebo)

6MWT: 6-min walk test; CFB: change from baseline; dcSSc: diffuse cutaneous systemic sclerosis; D, co: diffusing capacity for carbon monoxide; FVC: forced vital capacity; FVC%: FVC as a
percentage of predicted value; HAQ-DI: Health Assessment Questionnaire Disability Index; ILD: interstitial lung disease; IPF: idiopathic pulmonary fibrosis; K-BILD: King’s Brief Interstitial Lung
Disease; LCQ: Leicester Cough Questionnaire; L-IPF: Living with IPF; MDGA: Physician Global Assessment; mRSS: modified Rodnan skin score; PFS: progression-free survival; PtGA: patient’s global
assessment of disease activity; QLF: quantitative lung fibrosis; SGRQ: St. George’s Respiratory Questionnaire; SSPRO-18: Skin Patient-reported Outcome-18 items.
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Once-daily and twice-daily BMS-986020 were evaluated in a phase 2, multicentre, three-group,
randomised, double-blind, placebo-controlled clinical trial in individuals with IPF. Twice-daily
BMS-986020 significantly decreased FVC decline compared with placebo at week 26 (p=0.49).
BMS-986020 caused hepatobiliary toxicity in participants with IPF, inciting early termination of the study
after three cases of cholecystitis occurred. Of the 143 participants, 108 completed the 26-week dosing
phase and 35 participants withdrew from the study, 13 because of AEs [23].

A phase 2, randomised, double-blind, placebo-controlled clinical trial evaluated BMS-986278 in patients
with IPF (n=276; ClinicalTrials.gov identifier: NCT04308681). Participants were permitted background
therapy (pirfenidone or nintedanib) and/or immunosuppressive therapy if they were receiving a stable dose
before screening [91]. The primary end-point was rate of change in FVC% over 26 weeks. Patients
randomised to receive placebo, 30 mg or 60 mg of BMS-986278 twice daily exhibited a mean rate of change
in FVC of —2.7, —2.8 and —1.2%, respectively. Thus, the mean FVC% difference of 60 mg twice daily
compared with placebo was +1.4%. A subgroup analysis concluded that 60 mg of BMS-986278 had an
effect regardless of background antifibrotic therapy use. Serious AEs occurred in 17, 11 and 11% of patients
receiving placebo, 30 mg and 60 mg, respectively. The most frequently reported AEs were diarrhoea, cough
and orthostatic hypotension [25]. A parallel cohort including 123 patients with PPF (defined as having
fibrotic ILD with prior progression within 2 years) exhibited a mean rate of change in FVC of —4.3, 2.7
and —1.1%, for those treated with placebo, 30 mg and 60 mg, respectively. The mean FVC difference
between the BMS-986278 and placebo groups was 1.6% for 30 mg and 3.2% for 60 mg. Treatment
differences in the PPF cohort were independent of background antifibrotics and usual interstitial pneumonia
pattern. AEs occurred in 78, 83 and 67% of the placebo, 30 mg and 60 mg groups, respectively [100].
Findings from both the TPF and PPF cohorts of this phase 2 trial support progression to phase 3 [25, 100].

The future of ATX and LPAR1 inhibitors

The failure of ISABELA-1/2 may trigger concerns regarding ATX and LPARI inhibitors. However,
lessons from ISABELA-1/2 and positive phase 2 data for BMS-986278 provide optimism for future trials
of therapies targeting the ATX/LPA/LPAR]1 axis.

Clinical trial design challenges

Background therapy has been inconsistent throughout IPF/ILD trials and may affect trial outcomes.
ISABELA-1/2 were the first phase 3 trials in IPF to allow pirfenidone (n=454/1281) and nintedanib
(n=444/1281) background therapy [24, 101]. A drug—drug interaction between ziritaxestat and nintedanib
caused elevated plasma levels of nintedanib and may have contributed to high rates of AEs (e.g. diarrhoea
and nausea overall; nondiarrthoeal TEAEs (600 mg ziritaxestat arm)) [24]. Moreover, greater rates of annual
FVC decline were observed in the placebo arm for patients with background therapy versus without (least
squares mean, nintedanib: —163.1 mL; pirfenidone: —189.0 mL; neither: —149.1 mL) [24]. Comparatively,
nintedanib and pirfenidone pivotal trials reported a greater decline for placebo-treated patients (adjusted
annual rate: —207 and —240 mL; linear rate at week 52: —280 mL, respectively) [50, 51], suggesting an
enrolment bias for patients with poor response to antifibrotic therapy or with less progressive disease that
has also occurred in smaller IPF trials [101, 102]. Prior to nintedanib and pirfenidone trials, low rates of
FVC decline in the placebo arm have proved challenging (e.g. CAPACITY 006 failure) [103]. Future trial
designs should consider novel strategies to overcome these challenges, such as leveraging precision
medicine or biomarkers (e.g. phase 3 PRECISIONS trial) [104] to increase the likelihood of success.

Despite permitted background antifibrotic use, a 26-week phase 2 trial of BMS-986278 in patients with
IPF (n=276) and ILD (n=125) yielded positive results [25, 100]. Comparatively, the phase 2a study of
ziritaxestat in IPF was smaller (n=23) and shorter (12 weeks); rapid progression into ISABELA-1/2 had
uncertain risks because drug—drug interactions may not have been fully characterised [105]. Therefore, the
BMS-986278 trial provides optimism for its phase 3 trial despite persisting challenges.

MOA: ATX versus LPAR1 inhibitors

The failure of the ISABELA-1/2 phase 3 trials stand in contrast to the promising results of the
BMS-986278 phase 2 trial, suggesting an association between MOA and clinical outcomes. Increased
levels of plasma ATX were detected in participants in ISABELA-1/2, indicative of disease progression or a
regulatory feedback loop that has previously been observed in mice treated with an ATX inhibitor [106, 107].
Raised ATX levels suggest that the broad effect of ATX inhibition (e.g. cellular responses via ATX
substrate accumulation and LPAR1-6 inhibition) may cause unwanted upstream effects, whereas LPAR1
selective inhibition may confer a more regulated effect. Furthermore, LPAR1 inhibitors may initially cause
increased LPA levels that could trigger a feedback mechanism, resulting in reduced levels of ATX and
LPA [107]. Therefore, LPAR1 inhibitors may attenuate ATX activity more than that of ATX inhibitors
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(i.e. reduced expression versus pharmacological inhibition). To date, no drug—drug interactions between
BMS-986278 or fipaxalparant and nintedanib or pirfenidone have been reported [108]. Although
association of MOA and clinical outcome is not currently confirmed, the MOA of LPAR1 inhibitors may
contribute to success in forthcoming trials of BMS-986278 and fipaxalparant. Moreover, synergy between
LPAR1 inhibitors and antifibrotic therapies may occur due to distinct MOAs. Forthcoming trials will assist
in testing these hypotheses.

Conclusions

Despite current therapeutic approaches, pulmonary fibrotic diseases such as IPF and SSc-ILD are
associated with high morbidity and mortality [109]. Current therapies are not universally effective across
the spectrum of pulmonary fibrosis and some have poor tolerability. An unmet need remains for therapies
that improve quality of life, stabilise or even improve lung function, and are safe and well tolerated.

Although the pathology of fibrotic diseases is multifactorial, evidence to date indicates that the ATX/LPA/
LPAR axis plays an important role in contributing to pathogenic fibrosis and inflammation. Therefore,
inhibition of LPA production via ATX inhibition or more selective inhibition of LPAR1 may decrease
fibrosis and inflammation and, thus, disease pathology. Because studies do not confirm the ATX/LPA/
LPAR1 axis as the sole driver of fibrosis, combination of treatments with additive effects may be required
for optimal treatment of fibrotic diseases. Developing ATX- or LPARI-targeted therapies may be a
promising avenue for stabilising lung function decline and improving outcomes in patients with SSc, IPF
and other ILDs, and thereby have the potential to reduce disease burden, improve quality of life and
increase long-term survival.
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