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A BAYESIAN LARGE DEVIATIONS PROBABILISTIC

INTERPRETATION AND JUSTIFICATION OF

EMPIRICAL LIKELIHOOD

By Marian Grendár∗ and George Judge

Bel University and University of California, Berkeley

In this paper we demonstrate, in a parametric Estimating Equa-
tions setting, that the Empirical Likelihood (EL) method is an asymp-
totic instance of the Bayesian non-parametric Maximum-A-Posteriori
approach. The resulting probabilistic interpretation and justification
of EL rests on Bayesian non-parametric consistency in L-divergence.

1. Introduction. Empirical Likelihood (EL) is first and foremost a
method of inference; cf. [17], but the EL criterion has also been used as
a regularization criterion in an Estimating Equations (EE) context; cf. [19].
We provide a Bayesian probabilistic justification and interpretation of EL
in the context of EE1. We show that EL is an asymptotic instance of the
non-parametric Maximum-A-Posteriori (MAP) approach, when embedded
in EE. The probabilistic argument also implies that, for finite samples, one
can use the MAP-EE estimator.

Despite several previous attempts, EL lacks a probabilistic interpretation.
An early attempt to replace likelihood by EL in the parametric Bayesian con-
text is [15]. Owen ([17], Ch. 9) notes a similarity between EL and Bayesian
bootstrap [21]. Bayesian bootstrap is a bootstrap performed in non-paramet-
ric Bayesian context, where a Dirichlet prior is assumed over a set of sam-
pling distributions. In [3], this type of Bayesian bootstrap was considered
in an EE context. Schennach [22] uses a specific prior over a set of sam-
pling distributions to get a Bayesian procedure that admits an operational
form similar to EL. In [20] a different prior over the set of probability mea-
sures (i.e., a non-parametric prior) is considered, and in this way a group
of EL-like methods is obtained. We highlight two features that distinguish
our argument from that of Schennach [22] and Ragusa [20] as well as from
the Bayesian bootstrap: 1) though Schennach as well as Ragusa consider the
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1For exposition, see [16], Chap. 12 and 13 and [17], Sect. 3.5.
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2 M. GRENDÁR AND G. JUDGE

Bayesian non-parametric setting, they study a particular prior distribution.
Consequently, the authors obtain in a non-parametric Bayesian way meth-
ods that are similar to EL. One could in principle imagine other ways of
constructing a prior over set of probability measures, that could admit an
operational representation similar to EL; 2) These authors do not perform
asymptotic considerations of Bayesian non-parametric consistency with their
procedures. We show, loosely put, that regardless of the prior used over a set
of data sampling distributions, asymptotically the Bayesian non-parametric
Maximum A-Posteriori selection turns into EL.

The probabilistic interpretation of EL we propose, is based on Sanov’s
Theorem for Sampling Distributions (cf. [1], [2], [6], [8], [9] for independent
developments in this direction). Sanov’s Theorem for Sampling Distribu-
tions (abbreviated LST due to the key role that L-divergence plays there)
is the basic result of Large Deviations for sampling distributions. We stress
that LST should not be confused with the standard Sanov’s Theorem for
Empirical Measures [5]. The starting point of our quest for a probabilistic
justification of EL was a key observation due to Kitamura and Stutzer [12].
They note that the Sanov’s Theorem for Empirical Measures and its Corol-
lary the Conditional Limit Theorem provide a probabilistic justification of
the Relative Entropy Maximization method [4] and can also be applied in
an EE context, to provide a probabilistic underpinning of Maximum En-
tropy Empirical Likelihood (MEEL) method. However, Sanov’s Theorem
for Empirical Measures cannot be used to justify the Empirical Likelihood
method. In this paper we show how Sanov’s Theorem for Sampling Distribu-
tions provides both a probabilistic interpretation and a justification of EL,
as an asymptotic instance of the Bayesian MAP, when embedded into EE
context.

While we phrase the interpretation and justification of EL in an EE con-
text, it holds wherever the underlying Bayesian non-parametric consistency
in L-divergence holds.

2. Bayesian Probabilistic Interpretation and Justification of EL.

Let X be a discrete random variable with probability mass function (pmf)
r(X; θ) parametrized by θ ∈ Θ ⊆ R

k. Let X take on m values from X .
Assume that a researcher is not willing to specify the data sampling distri-

bution q(X; θ), but is only willing to specify some of the underlying features
of the data-sampling distribution. These features can be characterized by
J unbiased estimating equations EXhj(X; θ) = 0, j = 1, 2, . . . , J , where J
might be different than the number of parameters k that parameterize the
data sampling distribution. Moreover, in general, the data sampling distri-
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bution r(X; θ) need not belong to the model set Φ(Θ) ,
⋃

θ∈Θ Φ(θ), where
Φ(θ) , {q(θ) :

∑m
i=1 qi(θ)hj(xi; θ) = 0, j = 1, 2, . . . , J}.

Assume for the sake of simplicity that Θ = {θ1, θ2}. Suppose a non-
parametric Bayesian using these EE puts a prior π(q; θ) over the set of
data-sampling distributions Φ(Θ) and arrives at the posterior π(q |xn; θ)
after a random sample xn = x1, x2, . . . , xn is drawn from r(X; θ0). Then, a
Bayesian may use the Maximum-A-Posteriori sampling distribution2

q̂(X; θ̂) , arg sup
θ∈Θ

sup
q∈Φ(θ)

π(q |xn; θ)

to estimate the true r(X; θ0). The θ̂ of {θ1, θ2} for which MAP is attained is
taken as the estimator of θ. We thus have a hybrid estimator q̂(X; θ̂) given
by

(1a) θ̂ = arg sup
θ∈Θ

π(q̂(X; θ) |xn; θ),

where

(1b) q̂(X; θ) = arg sup
q∈Φ(θ)

π(q |xn; θ).

We call the parametric component θ̂ of the hybrid estimator, the MAP-EE
estimator.

There is a strong probabilistic justification for picking a q̂(θ̂), that rests
on L-divergence consistency of non-parametric Bayesian procedures. The
asymptotic consistency in L-divergence is a direct consequence of Sanov’s
Theorem for Sampling Distributions; cf. Sect. 3. Loosely put, L-divergence
consistency means that, as n → ∞, the posterior probability π(q ∈ Φ |xn)
concentrates almost surely on the MAP sampling distribution. This distri-
bution is asymptotically equivalent to the L-projection q̂ of r on Φ

q̂ , arg inf
q∈Φ

−
m

∑

i=1

ri log qi.

In other words, the consistency result demonstrates that data sampling
distributions with Maximum-A-Posteriori probability, are asymptotically a
posteriori the only ones possible. Hence, in general, in a non-parametric
Bayesian setting, the consistency requirement precludes selecting say a Mean-
A-Posteriori data sampling distribution (or a distribution that minimizes
a discrepancy measure non-trivially different than L-divergence), since, it

2There arg stands for ’argument’, i.e., ’point of’.
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would be a selection of an asymptotically a posteriori zero-probable data
sampling distribution.

Observe that, since the L-projection is just the asymptotic form of Max-
imum Non-parametric Likelihood, the prior does not matter as n → ∞.
Hence, by L-divergence consistency as n → ∞, (1) becomes:

(2a) θ̂ = arg sup
θ∈Θ

m
∑

i=1

ri log q̂(Xi; θ),

where

(2b) q̂(θ) = arg sup
q∈Φ(θ)

m
∑

i=1

ri log q(Xi; θ).

We call this estimator the Maximum Non-Parametric Likelihood with
parametric Estimating Equations (MNPL-EE).

One can view MNPL-EE as an asymptotic instance of MAP-EE or as
MAP-EE with an uninformative prior over the entire Φ(Θ). However, it
is equally legitimate to view MNPL-EE as a self-standing method, which
implies that, for finite n, one selects

(3a) θ̂ = arg sup
θ∈Θ

m
∑

i=1

νn
i log q̂(Xi; θ),

where

(3b) q̂(θ) = arg sup
q∈Φ(θ)

m
∑

i=1

νn
i log q(Xi; θ),

and νn is the empirical pmf induced by the random sample xn. All of these
views comply with the Bayesian non-parametric consistency of L-divergence.

Note that, in the case of a discrete random variables, (3) can also be
written in the unconcentrated form:

(3a’) θ̂ = arg sup
θ∈Θ

1

n

n
∑

l=1

log q̂(Xl; θ),

where

(3b’) q̂(θ) = arg sup
q∈Φ(θ)

1

n

n
∑

l=1

log q(Xl; θ).

The estimator (3’), which we call the n-MNPL-EE estimator, is thus a
discrete-case instance of the Empirical Likelihood estimator.
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Turning now to the case of continuous X, observe that Bayesian non-
parametric consistency in L-divergence still holds, leading to the MNPL-EE
estimator θ̂ of θ as n → ∞:

(4a) θ̂ = arg sup
θ∈Θ

∫

r(X; θ0) log q̂(X; θ),

where

(4b) q̂(X; θ) = arg sup
q∈Φ(θ)

∫

r(X; θ0) log q(X; θ).

If, in the continuous case, one views the MNPL-EE estimation method as a
self-standing method rather than an asymptotic instance of the continuous-
case MAP-EE, then one faces the problem of finding a finite-n counterpart
of (4). Calculating (3) is clearly not viable, but evaluation of (3’) is feasible
with the use of a technique suggested by Owen ([17], [16], Ch. 12.1.2.a): let
the sample x1, x2, . . . , xn, become a support of an auxiliary random variable
S. The finite-n form of (4) is thus

(5a) θ̂ = arg sup
θ∈Θ

1

n

n
∑

l=1

log q̂(xl; θ),

where

(5b) q̂(X; θ) = arg sup
q∈Φ(θ)

1

n

n
∑

l=1

log q(xl; θ),

and Φ(θ) = {q :
∑n

l=1 q(xl; θ)hj(xl; θ) = 0, j = 1, 2, . . . , J}. The result-
ing estimator is identical to the EL estimator. One can also arrive at the
continuous-case EL estimator (5) without using Owen’s technique; cf. [12].

In the next section, a formal statement of the Large Deviations result is
given.

3. Bayesian non-parametric consistency in L-divergence. Let
M = {q1, q2, . . . } be a countable set of probability density functions with
respect to the Lebesgue measure. Suppose a Bayesian puts a strictly pos-
itive prior probability mass function π(·) on this set. Let r be the true
sampling distribution of a random sample Xn , X1, X2, . . . , Xn. Provided
that r ∈ M, the posterior distribution π(·|Xn = xn) over M is expected
to concentrate in a neighborhood of the true sampling distribution r as
n → ∞. The conditions under which this indeed happens is a subject of
Bayesian non-parametric consistency investigations. Surveys regarding this
issue include [7], [23], [24].



6 M. GRENDÁR AND G. JUDGE

Let Me , {q : q ∈ M, π(q) > 0} be the support of a prior pmf which
does not necessarily contain r. Thus, we are also interested in Bayesian
consistency under misspecification, i.e., when π(r) = 0.

For two densities p, q with respect to the Lebesgue measure λ, the I-
divergence I(p||q) ,

∫

p log(p/q). The L-divergence L(q||p) of q with respect
to p is defined as L(q||p) , −

∫

p log q. The L-projection q̂ of p on Q is
q̂ , arg infq∈Q L(q||p), where Q is a set of probability densities defined on
the same support. The value of L-divergence at an L-projection of p on Q is
denoted by L(Q||p). It is implicitly assumed that all the relevant values of
L-divergence at L-projections are finite. Note that L-projection is formally
identical with the reverse I-projection; cf. [8] for a discussion of the pros
and cons of stating Sanov’s Theorem for Sampling Distributions in terms of
L-projection rather than reverse I-projection.

Bayesian non-parametric consistency in L-divergence is a direct conse-
quence (corollary) of Sanov’s Theorem for Sampling Distributions (LST).

LST [9] Let N ⊂ Me. As n → ∞,

Pr

(

1

n
log π(q ∈ N|xn) → −{L(Me||r) − L(N||r)}

)

= 1.

Proof Let ln(q) , exp(
∑n

l=1 log q(Xl)), ln(A) ,
∑

q∈A ln(q), and ρn(q) ,

π(q)ln(q), ρn(A) ,
∑

q∈A ρn(q). In this notation π(q ∈ N|xn) = ρn(N )
ρn(Me) . The

posterior probability is bounded above and below as follows:

ρ̂n(N )

l̂n(Me)
≤ π(q ∈ N|xn) ≤

l̂n(N )

ρ̂n(Me)
,

where l̂n(A) , supq∈A ln(q), ρ̂n(A) , supq∈A ρn(q).
1
n
(log l̂n(N ) − log ρ̂n(Me)) converges with probability one to L(N||r) −

L(Me||r). This is the same as the ’point’ of a.s. convergence of 1
n

log of the
lower bound.

Let NC
ε (Me) , {q : L(Me||r) − L(q||r) > ε, q ∈ Me} for ε > 0. Then, we

have the consistency result:

Corollary Let there be a finite number of L-projections of r on Me. For

any ε > 0, as n → ∞,

Pr
(

π(q ∈ NC
ε (Me)|xn) → 0

)

= 1.
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L-divergence consistency shows that, as n → ∞, the posterior measure
π(q ∈ N |xn) concentrates in an arbitrarily small neighborhood of the L-
projection(s) of r on N .

To the best of our knowledge, Bayesian Sanov’s Theorem has not been
developed for a general setting. In [1], [2], the Theorem is proved for a con-
tinuous set of sampling distributions with a finite support X and in [6] under
the additional assumption that π(r) > 0. Without using the Large Devia-
tions approach, Kleijn and van der Vaart [14] developed sufficient conditions
for posterior concentration on L-projection(s) for the case of continuous prior
over a set of continuous sampling distributions. In the same general setting,
Bayesian Sanov’s Theorem for n-data sampling distributions is studied in
[8].

A simple illustrative example is presented in the Appendix.

4. Summary. Despite several attempts, the Empirical Likelihood (EL)
criterion lacks a probabilistic underpinning. In this paper we have, within
an Estimating Equations (EE) context, demonstrated that Empirical Like-
lihood is an asymptotic instance of the non-parametric Bayesian Maximum-
A-Posteriori approach. This interpretation arises directly from L-divergence
consistency of Bayesian non-parametric methods and provides a probabilis-
tic interpretation and justification of the EL criterion function. Indeed, in
this context, application of any other criterion (e.g. Euclidean likelihood)
for construction of empirical estimator, would, in general, violate Bayesian
asymptotic consistency; cf. [10], [11] for further discussion.

The Large Deviations approach to Bayesian non-parametric consistency
(i.e., Bayesian Sanov’s Theorem) is capable of picking up pseudo-metrics
under which it is natural to study consistency. For iid -sampling, the natural
discrepancy measure turns out to be L-divergence. In general, for a sampling
scheme other than iid, a discrepancy measure other than L-divergence, will
govern the posterior concentration. In this sense, EL is limited to the iid

sampling scenario. Study of non-iid settings is subject of current research.

Appendix. This example is not meant to illustrate convergence, but to
accompany the discussion of Section 2.

Let X be a discrete random variable with support X = {1, 2, 3, 4} and a
pmf r(X; θ) that is unknown to us. Let Φ(θ) = {q(θ) :

∑

X qi(θ)(xi−θ) = 0}
and let Θ = {1.5, 3.2}. To make Φ(θ) conformant with LST (i.e., countable),
we arbitrarily restrict the set Φ(θ) to those pmf’s that are rational and have
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Table 1

Data related to the Example.

i 10q1 10q2 10q3 10q4 π(q) π(q | ν20)
∑

ν20 log q

1 8 0 1 1 0.3014 0.3365 ? -1.8867
2 7 2 0 1 0.1507 0.3061 -1.2883 ?

θ1 3 7 1 2 0 0.1005 0.1680 -1.4829
4 6 3 1 0 0.0753 0 −∞
5 5 5 0 0 0.0603 0 −∞

6 2 1 0 7 0.0502 0.0999 -1.310
7 2 0 2 6 0.0431 0 −∞
8 1 2 1 6 0.0377 0.0506 -1.7016
9 0 4 0 6 0.0335 0 −∞
10 1 1 3 5 0.0301 0.0390 -1.7393

θ2 11 0 3 2 5 0.0274 0 −∞
12 1 0 5 4 0.0251 0 −∞
13 0 2 4 4 0.0232 0 −∞
14 0 1 6 3 0.0215 0 −∞
15 0 0 8 2 0.0201 0 −∞

all denominators equal to 10. Then, there are 5 such pmf’s for θ1 = 1.5 and
10 such pmf’s for θ2 = 3.2 (see Table 1). Thus, there are 15 pmf’s in Φ(Θ),
which we index with i. Suppose a non-parametric Bayesian puts the prior
π(q; θ) ∝ 1

i
over the data-sampling distributions from Table 1. Then, if a

random sample of size n = 20 arrives and induces type ν20 = [4, 9, 7, 0]/20,
the Bayesian finds posterior probabilities π(q | ν20; θ); see Table 1. The MAP
sampling distribution is q̂(θ1) = [8, 0, 1, 1]/10, belonging to those sources
that satisfy the EE for θ1 = 1.5. Hence, the MAP-EE estimator of the
parameter θ is θ̂ = 1.5. Values of the likelihood

∑

ν20 log q are also given
in Table 1. The n-MNPL-EE estimator is the second sampling distribution
q̂ = [7, 2, 0, 1]/10, which belongs to the θ1 group. Hence, the n-MNPL-EE
estimator of θ is θ̂ = 1.5.
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