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Abstract

Recurrent event data, characterized by repeated occurrences of events associated with one or

more subjects, is prevalent in various fields, including neuroscience, healthcare, and social science.

Recent technological advancements in neuroscience have significantly increased the availability of

such data, presenting both new opportunities and challenges. This dissertation focuses on the sta-

tistical analysis of two common types of recurrent event data in neuroscience: neural firing activity

and functional connections between neurons. For each type of data, we discuss the unique chal-

lenges posed by the data and propose efficient statistical methods to address the challenges. The

proposed methods aim to identify groups of neurons with similar activity patterns while accommo-

dating temporal disparities among neurons. We establish conditions for the identifiability of model

parameters. We conduct extensive numerical experiments to evaluate the empirical performance of

the proposed methods. Additionally, we apply the proposed methods to real-world neural data to

reveal distinct roles of neurons and identify representative neural activity patterns.
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CHAPTER 1

Introduction

Recurrent event data is prevalent across various fields, such as neuroscience, healthcare, and

social science. This type of data contains repeated occurrences of events associated with one

or more subjects, where the event’s timing contains specific information about the subjects. In

neuroscience, the recurrent events may represent a series of firings of a neuron [see, e.g. Perkel

et al., 1967]. Analyzing neural firings can enhance our understanding of how neurons encode

information and perform computations [Knill and Pouget, 2004, Rolls and Treves, 2011, Steinmetz

et al., 2019]. In healthcare, the recurrent events may represent the repeated hospitalizations of a

patient. Studying patterns of hospitalizations can help identify high-risk patients that may benefit

from targeted interventions [Mudge et al., 2011, Rogers et al., 2014, Dini et al., 2020]. In social

science, the recurrent events may describe the recurring interactions such as tweets, phone calls,

and text messages among individuals. Analyzing these interactions can aid in identifying anomalies

in social behavior [McIntire et al., 2010, Chae et al., 2012, Mazza et al., 2019].

For a concrete discussion of the recurrent event data, we employ the framework of point pro-

cesses [Cox and Isham, 1980, Daley and Vere-Jones, 2003, Karr, 2017]. Consider a set of recurrent

events from n subjects O ≡
{
{ti,j}j=1,...,Ni(T ) : 0 < ti,1 < · · · < ti,Ni,r(T ) < T, i = 1, . . . , n

}
, where

ti,j denotes the occurrence time of the jth event associated with the ith subject, T denotes the du-

ration of the observation, Ni(T ) denotes the total number of events associated with the ith subject.

For i ∈ {1, . . . , n}, we model the recurrent events by adopting the definition of counting process [see,

e.g. Daley and Vere-Jones, 2003] as Ni(t) ≡
∑Ni(T )

j=1 1(ti,j ≤ t) for t ∈ [0, T ]. The counting process

Ni(t) can be characterized by the intensity function, which is defined as λi(t) ≡ E{dNi(t)/dt}. As

a concrete example, in the context of neural firing data, ti,j represents the time of the jth firing

of the ith neuron, Ni(t) represents the number of firings of the ith neuron up to time t, and λi(t)

represents the firing rate of the ith neuron at time t.

In this dissertation, we focus on neuroscience data arising from recent technological advance-

ments. These advancements have opened up new opportunities and raised interesting questions.
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For instance, Neuropixels [Jun et al., 2017, Steinmetz et al., 2018, 2021] allow researchers to record

the precise timing of recurrent firings of a large volume of neurons from specific brain regions or

circuits. This technology enables the exploration of how information is encoded and processed

in the brain [Steinmetz et al., 2019]. Additionally, calcium imaging [Grienberger and Konnerth,

2012, Dana et al., 2019, Zong et al., 2022] enables the tracking of individual neurons’ activities

over extended periods, offering opportunities to explore how neurons synchronize their activities to

establish functional circuits [Wan et al., 2019].

However, alongside the technological advancements, the increasing complexity and volume of the

neural data pose challenges in data analysis. One key issue is the heterogeneity of neurons across

subjects, where the identity of individual neurons cannot be directly mapped between subjects [see,

e.g., Zeng and Sanes, 2017]. This lack of a one-to-one mapping complicates the task of identify-

ing common firing patterns or functions of neurons across subjects [Connors and Gutnick, 1990,

Markram et al., 2004, Komendantov et al., 2019, Steinmetz et al., 2019]. Moreover, the high vol-

ume of data makes it impractical to analyze each neuron individually. In light of these challenges,

we aim to develop statistical methods to identify groups of neurons that exhibit similar activity

patterns.

Various clustering methods can be applied on the recurrent event data. For instance, when

recurrent events are associated with individual subjects, such as neural firings, functional clustering

methods [see, e.g., Jacques and Preda, 2014a, Wang et al., 2016] can be employed through the

modeling of intensity functions. In the realm of functional clustering, researchers have extended the

k-means clustering method to functional data via functional basis expansion [Abraham et al., 2003,

Garcia-Escudero and Gordaliza, 2005, Kayano et al., 2010]. Additionally, the k-means clustering

and mixture models have been integrated with the functional principal component analysis [Chiou

and Li, 2007, 2008, Bouveyron and Jacques, 2011, Jacques and Preda, 2013, 2014b, Yin et al.,

2021], where clusters are allowed to have different mean and covariance functions. When recurrent

events are associated with pairs of subjects, such as synchronization of activity between neurons,

the dynamic stochastic block models can be applied [see, e.g., Xing et al., 2010, Yang et al., 2011,

Xu and Hero, 2014, Xu, 2015, Matias and Miele, 2017, Matias et al., 2018, Kim et al., 2018, Lee

and Wilkinson, 2019].
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However, the aforementioned clustering methods are inadequate for the neural data analysis

due to the presence of unobserved time shifts in activities of individual neurons. These time

shifts are well known, and might result from various factors, such as different neural response

latency [Oram et al., 2002, Levakova et al., 2015, Lee et al., 2020] or varying functional maturation

progress [Overstreet-Wadiche and Westbrook, 2006, Nicholas et al., 2013, Wan et al., 2019]. Failing

to account for these time shifts may lead to misleading results and limited insights into neural

activity patterns.

To address this challenge, we propose to integrate curve alignment methods with clustering

methods. Curve alignment, or curve registration, involves finding an optimal transformation (such

as translation or scaling) to align a collection of curves as closely as possible. This task has been

explored in numerous studies [Kneip and Gasser, 1992, Ramsay and Li, 1998, James, 2007, Telesca

and Inoue, 2008, Cheng et al., 2016]. In cases where curves differ only by unknown time shifts, the

task of estimating these time shifts has been studied in the context of shape invariant models [Beath,

2007, Bigot and Gadat, 2010, Vimond, 2010b, Bigot et al., 2013, Bigot and Gendre, 2013, Bontemps

and Gadat, 2014]. These models aim to capture the common shape of a collection of curves while

accommodating their unique time shifts.

In this dissertation, we develop statistics methods to analyze recurrent event data in neuroscience.

In particular, we focus on analyzing the roles of neurons based on neural activities. In Chapter 2,

we propose an additive shape invariant mixture model capable of simultaneously decompose, align,

and cluster the neural spike trains. In Chapter 3, we propose a dynamic stochastic block model

that allows for unknown neuron-specific time shifts for analyzing neural circuit development. The

theoretical proofs and supplementary results for Chapter 2 and 3 are presented in Appendix A

and B, respectively.
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CHAPTER 2

Simultaneous Clustering and Estimation of Additive Shape

Invariant Models for Recurrent Event Data

2.1. Introduction

Recent technological advancements have greatly improved our ability to record neural activities

with high spatiotemporal resolution and over large volumes. Recording device such as Neuropix-

els [Jun et al., 2017, Steinmetz et al., 2018, 2021] enable scientists to record neurons across multiple

brain areas while subjects engage in behavioral tasks. The growing amount of neural data facili-

tates the exploration of how neural firing patterns encode information, but also presents challenges

to existing statistical methods. In this paper, we consider the problem of identifying subgroups of

neurons that share similar responses to stimuli. In a typical experiment, a subject will be exposed

to a series of stimuli (e.g., visual cue, auditory cue, reward) over the course of a trial, which means

that the recorded spike train is a superposition of neural responses to these stimuli [Benucci et al.,

2009, Capilla et al., 2011, Orhan and Ma, 2015]. It is challenging to disentangle the response to

each stimulus given the stochastic nature of neural activities. Moreover, even if two neurons share

the same responses to a stimulus, they might respond in different time due to the difference in their

response latency [Oram et al., 2002, Levakova et al., 2015, Lee et al., 2020], making the estimation

of shared neural responses more challenging. Lastly, even within the same area of the brain, we

cannot assume that neurons share the same responses [Molyneaux et al., 2007, Lake et al., 2016,

Cembrowski and Spruston, 2019]. In light of these intricacies, the primary objective of this study

is to develop statistical methods for recurrent events to simultaneously address three key tasks:

(i) decompose the neural firing activities into their constituent components, (ii) align neural firing

patterns across neurons, and (iii) cluster neurons based on their similar firing patterns. As a con-

crete example, we consider the representative experiment by Steinmetz et al. [2019], where mice

were exposed to a series of visual and auditory stimuli, and thousands of neurons were recorded
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throughout the experiment. We display four neurons selected by our method in Figure 2.1 with

distinct firing patterns to the stimuli.

T
ri
al
s

Neuron 1 Neuron 2 Neuron 3
Visual
AuditoryNeuron 4

Time from visual stimulus onset (s)

Figure 2.1. Activities of four example neurons from Steinmetz et al. [2019]. The
four neurons are all from the midbrain region of the mouse brain, where their firings
are shown as black dots. Each panel corresponds to a single neuron, where the x-
axis represents time since visual stimulus onset, and the y-axis represents experiment
trials. Trials are aligned by the visual stimulus onset time shown as orange dots ,
and ordered by the auditory stimulus onset time shown as blue dots.

However, existing methods are inadequate in addressing these challenges at hand. Shape invariant

models [Beath, 2007, Bigot and Gadat, 2010, Vimond, 2010b, Bigot et al., 2013, Bigot and Gendre,

2013, Bontemps and Gadat, 2014] have been studied extensively to align a collection of curves

with identical means up to unknown time shifts. The combination of shape invariant models and

mixture models has led to the development of techniques for simultaneously aligning and clustering

curves [Chudova et al., 2003, Gaffney and Smyth, 2004, Liu and Yang, 2009, Lu and Lou, 2019].

In a related vein, Sangalli et al. [2010] propose an approach to simultaneously align and cluster

curves that share a common shape but are subject to non-linear distortions in temporal alignment.

Nonetheless, all of these methods are limited in their capacity to decompose curves comprising

multiple components.

A class of problems related to the decomposing superimposed curves has been studied in the con-

text of functional principal component analysis (FPCA) [Yao et al., 2005, Morris and Carroll, 2006,

Di et al., 2009, Crainiceanu et al., 2009]. FPCA aims to deconstruct functional data into orthogonal

components that effectively account for the variation within the dataset. Researchers have applied

the FPCA to analyze point processes through the modeling of intensity functions [Wu et al., 2013,

Xu et al., 2020]. Furthermore, the FPCA models have been combined with mixture models to

simultaneously cluster and decompose curves [Chiou and Li, 2007, Bouveyron and Jacques, 2011,

Jacques and Preda, 2013, Yin et al., 2021]. However, the orthogonal components derived from
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these methods may not match the components of our primary interest. Indeed, the congruence

between the outcomes of these methods and our proposed approach is limited to specific scenarios

(see Section 2.2.3). Besides, unknown time shifts have not been studied in FPCA.

In this paper, we propose an additive shape invariant mixture model (ASIMM) capable of simul-

taneously decompose, align, and cluster recurrent event data, such as neural firings. In Section 2.2,

we introduce an additive shape invariant model for simultaneous decomposition and alignment.

Section 2.3 expands upon the additive shape invariant model by integrating simultaneous cluster-

ing. In Section 2.4, we present a computationally efficient algorithm. The performance of ASIMM

is assessed through simulation experiments in Section 2.5. In Section 2.6, we use ASIMM to study

neural firing patterns in mice. Finally, we discuss potential future works in Section 2.7.

2.2. Additive Shape Invariant Model

2.2.1. Model. Consider a set of recurrent events from repeated measurements of n subjects

O ≡
{
{ti,r,j}j=1,...,Ni,r(T ) : 0 < ti,r,1 < · · · < ti,r,Ni,r(T ) < T, i = 1, . . . , n, r = 1, . . . , R

}
, where

ti,r,j denotes the time of the j-th event of the i-th subject in the r-th observation, T denotes the

duration of each observation, Ni,r(T ) denotes the total number of events associated with the i-th

subject and the r-th observation. For i ∈ [n] and r ∈ [R], we adopt the definition of counting

process [see, e.g. Daley and Vere-Jones, 2003] as Ni,r(t) ≡
∑Ni,r(T )

j=1 1(ti,r,j ≤ t) for t ∈ [0, T ]. We

use the intensity function, i.e., λi,r(t) ≡ E{dNi,r(t)/dt}, to characterize each counting process.

We start with a model that tackles the first two of the aforementioned tasks: decomposition and

alignment. To be specific, we assume that the true underlying intensities are formed through the

superposition of multiple components, and these intensity components exhibit uniformity across

subjects, differing only in temporal shifts. We arrive at the following model

λi,r(t) = a +
∑

m∈[M ]

Svi,m+w∗
r,mfm(t),(2.1)

where a ∈ [0,∞) represents the baseline intensity, M ∈ N+ is the number of components, vi,m ∈

[0, V ] represents the subject-specific time shift associated with the i-th subject and the m-th com-

ponent, w∗
r,m ∈ [0,W ] represents the known observation-specific time shift of the m-th component

in the r-th observation, Sv is the shift operator defined as Svx(t) ≡ x(t − v), and fm(t) ∈ F rep-

resents the m-th intensity component. Here V,W ∈ (0, T ), and F ≡ {f ∈ L2(R) : f(t) = 0 for t ∈
6
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(a)
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λi,r
ti,r,j
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Figure 2.2. Graphical representation of the additive shape invariant model with
two components. Panel (a) shows the intensity components shared across subjects
and observations. Panel (b) shows the intensity components associated with subject
i and observation r where the intensity is shifted by vi,m + w∗

r,m. Panel (c) shows
the expected intensity of subject i in observation r, and one realization of the point
process {ti,r,j : j = 1, · · · , Ni,r(T )}.

R \ (0, T0)} with T0 ∈ (0, T ). For further clarity, a graphical representation of the model in (2.1) is

provided in Figure 2.2.

To provide a concrete example for Model 2.1, consider the experiment in Steinmetz et al. [2019]

where Ni,r(t) represents the recorded spike train of the i-th neuron in the r-th trial, and λi,r(t)

denotes the corresponding firing rate (see for instance Figure 2.1). The terms a and {fm(·) : m =

1, 2} can be interpreted as the spontaneous firing rate and the neural response elicited by the visual

gratings and auditory cue, respectively. The subject-specific time shift vi,m corresponds to the

response latency of the i-th neuron in response to the m-th stimulus. The observation-specific

time shift w∗
r,m corresponds to the occurrence time of the m-th stimulus in the r-th trial, which is

randomly generated by the experimenters.

2.2.2. Identifiability. We denote the collection of model parameters as θ0 ≡ (a, f ,v) ∈ Θ0,

where f ≡ (fm)m∈[M ], v ≡ (vi,m)i∈[n],m∈[M ], and Θ0 ≡ {(a, f ,v) : a ∈ [0,∞), f ∈ FM ,v ∈

[0, V ]n×M}. In addition, for any Ni,r(t), we denote its conditional intensity given the observation-

specific time shifts as λθ0,i(t,w
∗) ≡ Eθ0{dNi,r(t)/dt | w∗

r = w∗}, where w∗
r ≡ (w∗

r,m)m∈[M ]. We

further denote λθ0(t,w
∗) ≡ (λθ0,i(t,w

∗))i∈[n]. In this context, identifiability pertains to the injec-

tivity of the mapping θ0 7→ λθ0(·, ·) for θ0 ∈ Θ0.
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With these notations, we can formally present the identifiability results in Proposition 2.2.1.

Proposition 2.2.1. Suppose that the following assumptions hold.

(C2.1) T ≥ T0 + V +W .

(C2.2) E[η∗(ξ)η∗(ξ)⊤] is invertible for ξ ∈ R\{0}, where η∗(ξ) ≡ (ηm)m∈[M ], ηm ≡ exp{− j 2πξw∗
m}, j

denotes the imaginary unit, and η∗(ξ) denotes the complex conjugate of η∗(ξ).

Let (a∗, f∗,v∗) ∈ Θ0 denote the true parameters. Then, we can verify the following statements hold.

(P2.1) For m ∈ [M ], the intensity component f∗m is identifiable up to a time shift.

(P2.2) For m ∈ [M ] such that f∗m is non-zero on a set of positive measure, the subject-specific

time shifts {v∗i,m : i ∈ [n]} are identifiable up to an additive constant.

(P2.3) The baseline intensity a∗ is identifiable.

Assumption C2.1 posits that the observation duration sufficiently extends to avoid censorship.

Given C2.1, the model described in (2.1) can be formulated in the form of a linear regression model in

the frequency domain, where the response variables are determined by Ni,r’s, the explanatory vari-

ables depend on w∗
r,m’s, and the regression coefficients are functions of fm’s and vi,m’s. Within the

context of linear regression, the significance of Assumption C2.2 becomes straightforward. Specif-

ically, Assumption C2.2 effectively assumes no collinearity among explanatory variables. We note

that Assumption C2.2 is satisfied if either (i) the observation-specific time shifts are randomized, or

(ii) the gaps between the observation-specific time shifts are randomized, i.e., w∗
m = w∗

m−1 + δm−1

for m = 2, . . . ,M , where {δm ∈ C : m ∈ [M − 1]} are independent random variables with non-zero

variance. Detailed proof of Proposition 2.2.1 is presented in Section A.1 of Appendix A.

2.2.3. Connections with existing models. In special scenarios, the model presented in (2.1)

has connections with three distinct branches of research. Firstly, considering a special case where

M = 1 and R = 1, the model in (2.1) can be simplified as follows:

λi,1(t) = a+ Svi,1+w∗
1,1f1(t) ≡ Svi,1g(t),(2.2)

where g(t) ≡ a + Sw∗
1,1f1(t). This model has been investigated in the realm of shape invariant

models [see, e.g., Beath, 2007, Bigot and Gadat, 2010, Vimond, 2010b, Bigot et al., 2013, Bigot and

Gendre, 2013, Bontemps and Gadat, 2014]. Consequently, the proposed model can be seen as a

generalization of shape invariant models to incorporate additive components. Various assumptions
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have been proposed to ensure the identifiability of shape invariant models, including availability of

repeated observations [Bigot and Gendre, 2013], partial knowledge of time shifts [Bigot and Gadat,

2010, Bigot et al., 2013], or the knowledge of the noise distribution [Bontemps and Gadat, 2014].

For the proposed additive shape invariant model, where M is allowed to exceed 2, a combination of

repeated observations and partial knowledge of time shifts suffices to ensure the model identifiability,

as elucidated in Proposition 2.2.1.

Secondly, considering the scenario where the intensity components {Svi,m+w∗
r,mfm(t) : m ∈ [M ]}

have non-overlapping supports for all i ∈ [n] and r ∈ [R], model (2.1) can be expressed as:

λi,r(t) = a+
∑

m∈[M ]

Svi,m+w∗
r,mfm(t) ≡ g{hi,r(t)},(2.3)

where g(s) ≡ a+
∑

m∈[M ] fm(s) and hi,r(t) ≡
∑

m∈[M ]{t−(vi,m+w∗
r,m)}×1[fm{t−(vi,m+w∗

r,m)} ≠

0]. The reformulated model in (2.3) means that λi,r’s are identical subject to unknown time warping

functions (i.e., hi,r(t)’s). The task of estimating time warping functions has been explored in the

domain of curve registration [Kneip and Gasser, 1992, Ramsay and Li, 1998, James, 2007, Telesca

and Inoue, 2008, Cheng et al., 2016].

Lastly, considering the scenario where the variances of vi,m’s and w∗
r,m’s are both close to zero,

model (2.1) can be approximated using Taylor expansion as:

λi,r(t) ≈ µ(t) +
∑

m∈[M ]

ζi,r,m ψm(t)(2.4)

where µ(t) ≡ a+
∑

m∈[M ] fm(t−Eui,r,m), ui,r,m ≡ vi,m+w∗
r,m, ζi,r,m ≡ −(ui,r,m−Eui,r,m)∥Dfm(t−

Eui,r,m)∥t, Dfm denotes the first order derivative of fm, and ψm(t) ≡ Dfm(t − Eui,r,m)∥Dfm(t −

Eui,r,m)∥−1
t . We defer the derivation of this approximation to Section A.3 of Appendix A. When

functions {SEui,r,mfm(t) : m ∈ [M ]} exhibit non-overlapping supports, the approximate model

in (2.4) corresponds to the models of functional principal component analysis (FPCA) [Yao et al.,

2005, Morris and Carroll, 2006, Di et al., 2009, Crainiceanu et al., 2009, Xu et al., 2020].

2.2.4. Estimation. We consider the case that Ni,r(t)’s are Poisson processes. To effectively

estimate the parameters in (2.1), we exploit the two sources of stochasticity of the Poisson processes.

Firstly, the number of events over [0, T ] for any Poisson process is a random variable that follows a

Poisson distribution, in other words, Ni,r(T ) ∼ Poisson(Λi,r), where Λi,r ≡
∫ T
0 λi,r(t)dt represents
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the expected event count. When Assumption C2.1 holds, we can derive from the model in (2.1) that

Λi,r = aT +
∑

m∈[M ]

∫ T
0 fm(t)dt, denoted as Λ for simplicity. Secondly, conditioning Ni,r(T ), the

event times {ti,r,j : j = 1, . . . , Ni,r(T )} can be regarded as independent and identically distributed

random variables. The probability density function of these event times, or event time distribution,

is characterized by λi,r(t)Λ
−1 = aΛ−1 +

∑
m∈[M ] S

vi,m+w∗
r,mfm(t)Λ−1.

Accordingly, we estimate a, f ,v through the following reparameterization. Letting a′ ≡ aΛ−1and

f ′ ≡ (fmΛ−1)m∈[M ], we have the following optimization problem:

â′, f̂ ′, v̂ ≡ argmin
a′,f ′,v

L1(a
′, f ′,v)

≡ argmin
a′,f ′,v

∑
i∈[n],r∈[R]

βi,r
1

T

∥∥∥∥∥ yi,r(t)Ni,r(T )
−
{
a′ +

∑
m∈[M ]

Svi,m+w∗
r,mf ′m(t)

}∥∥∥∥∥
2

t

,

(2.5)

where ∥ · ∥t denotes the L2-norm with respect to t, βi,r ≡ Ni,r(T ), yi,r(t) ≡ {Ni,r(t + ∆t) −

Ni,r(t)}∆t−1, and ∆t represents a infinitesimally small value. In (2.5), the objective function

L1(a
′, f ′,v) measures the discrepancy between the empirical and estimated distributions of event

timings, where yi,r(t)Ni,r(T )
−1 and {a′ +

∑
m∈[M ] S

vi,m+w∗
r,mf ′m(t)} serve as the empirical distri-

bution and the estimated distribution of {ti,r,j : j = 1, . . . , Ni,r(T )}, respectively. The term βi,r

serves as the weight of the counting process Ni,r(t). For instance, setting βi,r = Ni,r(T ) means

equal weights for all events. Finally, we estimate Λ using the empirical mean

Λ̂ ≡ (nR)−1
∑

i∈[n],r∈[R]

Ni,r(T ).(2.6)

The parameters a, f can be estimated from Λ̂, â′, f̂ ′ by â ≡ â′Λ̂ and f̂ ≡ f̂ ′Λ̂.

2.3. Additive Shape Invariant Mixture Model

2.3.1. Model. We extend model (2.1) to simultaneously perform decomposition, alignment,

and clustering. Assume that the n subjects can be classified into K distinct clusters, that is,

[n] = ∪Kk=1Ck, where C1, . . . , CK represent mutually exclusive subsets of [n]. These clusters are

delineated based on the similarity of intensity components across subjects. Specifically, we introduce

the following model:

λi,r(t) = azi +
∑

m∈[M ]

Svi,m+w∗
r,mfzi,m(t),(2.7)
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where zi ∈ [K] represents the cluster membership of subject i such that zi = k if i ∈ Ck. We refer to

the model in (2.7) as the additive shape invariant mixture model, or ASIMM for short. Conditioning

on each cluster, the additive shape invariant mixture model in (2.7) simplifies to the additive shape

invariant model in (2.1). Similar to the connection between model in (2.1) and FPCA, the additive

shape invariant mixture model in (2.7) has a close connection with clustering methods based on

FPCA [Chiou and Li, 2007, Bouveyron and Jacques, 2011, Jacques and Preda, 2013, Yin et al.,

2021].

In the context of neural data [Steinmetz et al., 2019], Ck’s can be interpreted as functional groups

of neurons, wherein neurons exhibit similar firing patterns. The additive shape invariant mixture

model in (2.7) enables us to simultaneously identify functional groups of neurons (i.e., Ck’s), discern

representative neural firing patterns (i.e., fk,m’s), and estimate individual neural response latencies

(i.e., vi,m’s). It is worthwhile to emphasize that the applicability of the proposed method extends

beyond neural data analysis. For instance, the additive shape invariant mixture model in (2.7) can

be employed in analyzing recurrent consumer activity in response to advertising [Xu et al., 2014,

Zadeh and Sharda, 2014, Tanaka et al., 2016, Bues et al., 2017], or studying hospital admission

rates following the implementation of societal disease prevention policies [Barone-Adesi et al., 2006,

Sims et al., 2010, Klevens et al., 2016, Evans et al., 2021].

2.3.2. Identifiability. We denote the collection of unknown parameters in (2.7) as z ≡

(zi)i∈[n], a ≡ (ak)k∈[K], f ≡ (fk,m)k∈[K],m∈[M ], v ≡ (vi,m)i∈[n],m∈[M ]. Let (z
∗,a∗, f∗,v∗) ∈ Θ1 denote

the true parameters, where Θ1 ≡ {(z,a, f ,v) : z ∈ [K]n,a ∈ [0,∞)K , f ∈ FK×M ,v ∈ [0, V ]n×M}.

When conditioning on z∗, Proposition 2.2.1 establishes the identifiability of a∗, f∗,v∗. However, to

ensure the identifiability of z∗, an additional assumption regarding the separability of clusters is

required. The formal presentation of model identifiability is provided in Proposition 2.3.1.

Proposition 2.3.1. Suppose that Assumptions C2.1 and C2.2 hold, and furture assume that

(C2.3) For any k, k′ ∈ [K] that k ̸= k′, there exists m0 ∈ [M ] such that for any x ∈ R, {t ∈ R :

Sxf∗k,m0
(t) ̸= f∗k′,m0

(t)} has a positive measure.

Then, we can verify the following statements hold.

(P2.4) The cluster memberships z∗ are identifiable up to a permutation of cluster labels.

(P2.5) The baseline values a∗ are identifiable up to a permutation of cluster labels.
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(P2.6) The response components f∗ are identifiable up to a permutation of cluster labels and time

shifts.

(P2.7) For k ∈ [K],m ∈ [M ] such that the set {t : f∗k,m(t) ̸= 0} is of positive measure, the set

(v∗i,m)i∈C∗
k
is identifiable up to a constant independent of i.

Assumption C2.3 mandates that each cluster exhibits at least one signature intensity compo-

nent that is unique to this cluster. Statement P2.4 directly stems from Assumption C2.3. State-

ments P2.5, P2.6, and P2.7 can be derived by applying Proposition 2.2.1 to each individual cluster.

Detailed proof of Proposition 2.3.1 is presented in Section A.2 of Appendix A.

2.3.3. Estimation. We estimate the parameters in (2.7) by generalizing the optimization

approach in Section 2.2.4 to incorporate the cluster structure. For any k ∈ [K] and m ∈ [M ], let

Λk ≡ akT +
∑

m∈[M ]

∫ T
0 fk,m(t)dt, a′k ≡ akΛ

−1
k , and f ′k,m ≡ fk,mΛ−1

k . Denoting a′ ≡ (a′k)k∈[K],

f ′ ≡ (f ′k,m)k∈[K],m∈[M ], and Λ ≡ (Λk)k∈[K], we propose the following optimization problem:

ẑ, â′, f̂ ′, v̂, Λ̂ ≡ argmin
z,a′,f ′,v,Λ

{
L1(z,a

′, f ′,v) + γ L2(z,Λ)
}
,(2.8)

where

L1(z,a
′, f ′,v) ≡

∑
i∈[n],r∈[R]

βi,r
1

T

∥∥∥∥∥ yi,r(t)Ni,r(T )
−
{
a′zi +

∑
m∈[M ]

Svi,m+w∗
r,mf ′zi,m(t)

}∥∥∥∥∥
2

t

,(2.9)

L2(z,Λ) ≡
∑

i∈[n],r∈[R]

∣∣Ni,r(T )− Λzi

∣∣2,(2.10)

and γ ∈ (0,∞) is a tuning parameter. In essence, L1 and L2 assess the within-cluster variance of

event time distributions and event counts, respectively. When the number of clusters is reduced to

one (i.e., K = 1), the definitions of L1 in (2.9) is identical to the definition in (2.5). The tuning pa-

rameter γ modulates the relative importance of L2 compared to L1 in the optimization with respect

to z. When γ is sufficiently small, the estimator ẑ defined in (2.8) is predominantly determined by

L1, resulting in a potentially suboptimal value of L2. Conversely, when γ is sufficiently large, the

dominance shifts towards L2, resulting in a ẑ that achieves the minimum value of L2, while L1 may

be relegated to suboptimal values. Subsequent to addressing the optimization problem in (2.8), the

estimations of a and f can be established via âk ≡ â′kΛ̂k and f̂k,m ≡ f̂ ′k,mΛ̂k for k ∈ [K], m ∈ [M ].
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The optimization problem in (2.8) involves two tuning parameters γ and K. To determine these

tuning parameters, we employ a heuristic method. We first establish a preliminary estimate of

K using simple methods, such as applying the k-means algorithm on Ni,r(T )’s and selecting K

using the elbow method [Thorndike, 1953]. Given this preliminary estimation of K, we choose the

largest γ before observing a significant increase in L1. We provide simulation experiments to justify

this heuristic method and demonstrate the robustness of selected γ to changes of the preliminary

selection of K in Section A.6.2. Finally, conditioning on the selected γ, we refine the value of K by

identifying the elbow point on the curve of the objective function in (2.8) against K.

2.4. Algorithm

We now present an algorithm for solving the optimization problem (2.8). This optimization

problem aims to minimize the within-cluster variances pertaining to event time distributions and

event counts. To this end, we propose an algorithm that resembles the k-means algorithm that

alternates between a centering step and a clustering step presented as follows.

(centering step) â′, f̂ ′ = argmin
a′,f ′

L1(ẑ,a
′, f ′, v̂), Λ̂ = argmin

Λ
L2(ẑ,Λ),(2.11)

(clustering step) ẑ, v̂ = argmin
z,v

{L1(z, â
′, f̂ ′,v) + γ L2(z, Λ̂)}.(2.12)

In the centering step (2.11), the estimators of a′, f ′ and Λ are updated conditioned on the values

of ẑ and v̂. In the clustering step (2.12), the estimators of z and v are updated conditioned on the

values of â′, f̂ ′ and Λ̂. This alternating scheme facilitates a closed-form solution in the centering

step and an effective optimization process in the clustering step.

2.4.1. The centering step. The centering step (2.11) involves two optimization problems.

To solve the first optimization problem, we formulate it in the frequency domain as follows:

â′, ϕ̂′ = argmin
a′,ϕ′

∑
i∈[n],r∈[R]

βi,r
∑
l∈Z

∣∣∣∣∣ ηi,r,l
Ni,r(T )

−
{
a′ẑi1(l = 0) +

∑
m∈[M ]

exp
{
− j 2πl(v̂i,m + w∗

r,m)T−1
}
ϕ′ẑi,m,l

}∣∣∣∣∣
2

,

(2.13)

where ϕ′ ≡ (ϕ′k,m,l)k∈[K],m∈[M ],l∈Z, {ϕ′k,m,l : l ∈ Z} denotes the Fourier coefficients of f ′k,m(t),

{ηi,r,l : l ∈ Z} denotes the Fourier coefficients of yi,r(t), and j denotes the imaginary unit. Notably,
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the multiplicative term exp(− j 2πl[v̂i,m+w∗
r,m]T−1) serves as the frequency domain counterpart of

the shift operator S v̂i,m+w∗
r,m . In essence, the Fourier transformation converts the shift operators

into multiplication. As a result, the objective function becomes more tractable compared to its

counterpart in the original domain. Indeed, an analytical solution for ϕ̂′ can be derived. Let

ϕ′
k,∗,l ≡ (ϕ′k,m,l)m∈[M ] for any k ∈ [K] and l ∈ Z. For l ̸= 0, the solution to (2.13) with respect to

ϕ′
k,∗,l can be expressed as follows:

ϕ̂′
k,∗,l =

(
Ek,l

⊤
Bk Ek,l

)−1 (
Ek,l

⊤
Bk hk,l

)
, for l ̸= 0,(2.14)

ϕ̂′
k,∗,0 = −

∑
|l|≤ℓ0,l ̸=0

ϕ̂′
k,∗,l, for l = 0.(2.15)

Here, Ek,l is defined as

Ek,l ≡ [exp{− j 2πl(v̂i,m + w∗
r,m)T−1}](i,r)∈Ĉk×[R],m∈[M ],(2.16)

where Ĉk ≡ {i ∈ [n] : ẑi = k}. Ek,l denotes the complex conjugate of Ek,l, Bk is a diagonal matrix of

(βi,r)(i,r)∈Ĉk×[R], hk,l ≡ (ηi,r,lNi,r(T )
−1)(i,r)∈Ĉk×[R], and ℓ0 ∈ N is a truncation parameter introduced

to ensure the numerical feasibility of computing ϕ̂′
k,∗,0. For l ̸= 0, the objective function concerning

ϕ′
k,∗,l in (2.13) is a weighted sum of squares, hence the estimate in (2.14) can be derived using the

well-known least squares estimator. For l = 0, the estimate in (2.15) can be obtained by exploiting

the definition of F . The detailed derivations of (2.14) and (2.15) can be found in Section A.4.

Upon obtaining ϕ̂′, the solution to the first optimization problem in (2.11) can be derived as

follows. For k ∈ [K] and m ∈ [M ],

â′k = T−1 −
∑

m∈[M ]

ϕ̂′k,m,0,(2.17)

f̂ ′k,m(t) =
∑
|l|≤ℓ0

ϕ̂k,m,l exp(j 2πltT
−1),(2.18)

where (2.17) is obtained by substituting ϕ̂′ into (2.13), and (2.18) follows from the inverse Fourier

transformation.

The second optimization problem in (2.11) aims to minimize the within-cluster variances of event

counts given cluster memberships. The solution to this optimization problem is straightforward:
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for any k ∈ [K],

Λ̂k = argmin
Λk

∑
i∈Ĉk,r∈[R]

∣∣Ni,r(T )− Λk

∣∣2 = (|Ĉk| R)−1 ∑
i∈Ĉk,r∈[R]

Ni,r(T ),(2.19)

where |Ĉk| denotes the cardinality of the set Ĉk. In summary, the solution to the centering step is

encapsulated by equations (2.17), (2.18), and (2.19).

2.4.2. The clustering step. The optimization problem in (2.12) can be scaled down to the

subject level, allowing for the independent estimation of parameters associated with each subject.

For any subject i ∈ [n], let vi ≡ (vi,m)m∈[M ] denote its associated time shifts. In (2.12), the

parameters zi and vi are estimated through the following sub-problem:

ẑi, v̂i = argmin
zi,vi

{L1,i(zi, â
′, f̂ ′,vi) + γ L2,i(zi, Λ̂)},(2.20)

where L1,i and L2,i are defined as

L1,i(zi, â
′, f̂ ′,vi) ≡

∑
r∈[R]

βi,r
1

T

∥∥∥∥∥ yi,r(t)Ni,r(T )
−
{
â′zi +

∑
m∈[M ]

Svi,m+w∗
r,m f̂ ′zi,m(t)

}∥∥∥∥∥
2

t

,(2.21)

L2,i(zi, Λ̂) ≡
∑
r∈[R]

∣∣Ni,r(T )− Λ̂zi

∣∣2.(2.22)

The parameter dimension for the problem in (2.20) is significantly reduced compared to the original

optimization problem in (2.12). Consequently, solving the problem in (2.20) is computationally

more efficient than addressing the original problem stated in (2.12).

To solve the optimization problem in (2.20), we employ the following procedure:

ṽi|k = argmin
vi

L1,i(k, â
′, f̂ ′,vi), for k ∈ [K],(2.23)

ẑi = argmin
zi∈[K]

{L1,i(zi, â
′, f̂ ′, ṽi|zi) + γ L2,i(zi, Λ̂)},(2.24)

v̂i = ṽi|ẑi .(2.25)

In the first step (2.23), we determine the optimal time shift for each potential cluster membership

k ∈ [K]. The optimization problem in this step can be solved in the frequency domain using the

Newton’s method (see Section A.5). In the second step (2.24), we evaluate the objective function for

each possible cluster membership, leveraging the optimal time shift corresponding to that particular
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cluster. Subsequently, we designate the cluster associated with the minimal objective function value

as the estimated cluster membership. In the last step (2.25), we choose the optimal time shift for

the estimated cluster membership. In summary, the solution to the clustering step is encapsulated

by (2.23), (2.24), and (2.25).

2.4.3. Overall estimation procedure. The objective function in (2.8) exhibits a non-convex

nature. This characteristic poses a crucial need for an appropriate initialization scheme and con-

vergence criterion. Our proposed initialization scheme is described in Remark 2.4.1. The overall

estimation procedure is summarized in Algorithm 2.1.

Algorithm 2.1: Iterative algorithm for ASIMM

Input: {Ni,r(t) : i ∈ [n], r ∈ [R]},K, γ, ℓ0

Initialize v̂(0), ẑ(0) via (2.26), (2.27), let s = 0, and L(0) =∞;

while not stop do

Update â′(s+1), f̂ ′(s+1), Λ̂(s+1) via (2.17) - (2.19) given (ẑ(s), v̂(s));

Update ẑ(s+1), v̂(s+1) via (2.23) - (2.25), given (â′(s+1), f̂ ′(s+1), Λ̂(s+1));

Evaluate the loss function: L(s+1) ≡ L1(ẑ
(s+1), â′(s+1), f̂ ′(s+1),v(s+1)) + γ L2(ẑ

(s+1), Λ̂(s+1));

Evaluate the stopping criterion: {L(s) − L(s+1)}/L(s+1) ≤ ϵ;

s = s+ 1;

end

Output: ẑ(s), â′(s), f̂ ′(s), v̂(s), Λ̂(s).

Remark 2.4.1. Initialization. The subject-specific time shifts are initialized based on the ear-

liest event occurrence following each stimulus. Specifically, the value of v̂(0) is defined as follows.

For i ∈ [n], m ∈ [M ],

v̂
(0)
i,m ≡ min{ti,r,j − w∗

r,m : ti,r,j > w∗
r,m, r ∈ [R], j ∈ [Ni,r(T )]}.(2.26)

The cluster memberships are initialized based on the adjusted event times that roughly aligned the

point processes using the initial subject-specific time shifts in (2.26). These adjusted event times

are calculated by shifting the event times associated with each stimulus to an anchor point for that

stimulus. To be specific, we shift the event times as t̃i,r,j ≡ ti,r,j− û(0)i,r,m+minr′∈[R]w
∗
r′,m for event j

where ti,r,j ∈ [û
(0)
i,r,m, û

(0)
i,r,m+1]. Here, û

(0)
i,r,m ≡ v̂

(0)
i,m+w∗

r,m denotes the total time shift associated with

stimulus m for m ∈ [M ], û
(0)
i,r,M+1 ≡ T , and minr′∈[R]w

∗
r′,m represents the anchor point of stimulus
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m. Subsequently, cluster memberships are initialized by applying the k-means algorithm on adjusted

event times:

ẑ(0) ≡ argmin
z

∑
k∈[K]

∑
i,j:zi=zj=k

∥∥y′i(t)− y′j(t)∥∥2 ,(2.27)

where y′i(t) denotes the empirical distribution of {t̃i,r,j : r ∈ [R], j ∈ [Ni,r(T )]}. The efficacy of the

proposed initialization approach is illustrated in Figure A.5 of Appendix A, where it is shown to

outperform the random initialization with multiple restarts.

2.5. Simulation

2.5.1. Simulation experiment design. We assess the performance of the proposed method

in three synthetic experiments. In the first experiment, we aim to explore the intensity decompo-

sition performance. To this end, we generate Poisson processes Ni,r’s whose intensities follow the

additive shape invariant model in (2.1). Specifically, we set T = 2.5, M = 2, vi,1 ∼ Unif(0, 1/64),

vi,2 ∼ Unif(0, 1/16), w∗
r,1 ∼ Unif(0, τ), w∗

r,2 ∼ Unif(0.8, 0.8 + τ). These parameter values remain

unchanged across all subsequent experiments. In addition, we set a = 20, and set f as

f1(t) = 70×
[
{2− 2 cos(4π[t− 0.4])} × 1(t ∈ [0.4, 0.9])

]
≡ 70× q1(t),

f2(t) = 70×
[
{2− 2 cos(2π|2t|1/2)} × 1(t ∈ [0, 0.5])

]
≡ 70× q2(t).

(2.28)

Notably, q1(t) and q2(t) capture the event time distribution of the two components, and both q1(t)

and q2(t) integrate to unity. We tune the signal strength in synthetic data by altering the values

of R, n and τ . Intuitively, R and n serve as the sample size, hence are positively associated with

signal strength. And τ is associated with the variance of w∗
r,m’s and thus the identifiability of the

intensity components.

In the second experiment, we compare the clustering performance of the proposed ASIMM (2.7)

and two relevant methods: kCFC, introduced in Chiou and Li [2007], and k-mean alignment,

introduced in Sangalli et al. [2010]. Here we do not apply the method by Yin et al. [2021] since

it considers a multiplicative model whereas our model assumes additive components. We generate

Poisson processes using the model in (2.7). In particular, we set the true cluster memberships by

sequentially assigning n = 40 subjects into K = 4 clusters of equal size, that is, zi = ⌈(i/n)K⌉,

where ⌈·⌉ denotes the ceiling function. In addition, we set ak = 20, and set fk,m’s as shown in
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Table 2.1. True values of {fk,m(t) : k ∈ [K],m ∈ [M ]} in Scenario 2. The parame-
ter ρ controls the distinctiveness across clusters, whose value is altered in the exper-
iment. The functions q1(t) and q2(t) are defined in (2.28), h1(x) ≡ |max(x, 0)|1/2,
and h2(x) ≡ 1 + min(x, 0).

m = 1 m = 2
k = 1 52.5× q1(t) 52.5× q2(t)

k = 2
60× [1− h1(2ρ− 1)]× q1(t)
+48× h2(2ρ− 1)× q2 (2[t− 0.8])

60× [1 + h1(2ρ− 1)]× q2(t)
−48× h2(2ρ− 1)× q2(2t)

k = 3 67.5× (1 + 0.5ρ)× q1(t) 67.5× (1− 0.5ρ)× q2(t)

k = 4 75× (1 + ρ)× q1(t) 75× (1− ρ)× q2(t)

Table 2.1. In Table 2.1, we introduce ρ ∈ (0, 1) to control the distinctiveness of clusters. Consider

the mean intensity associated with the k-th cluster. For i ∈ Ck and r ∈ [R], we can derive from (2.7)

that Eλi,r(t) = ak +
∑

m∈[M ](pm ⋆ fk,m)(t), where pm denotes the probability density function of

vi,m +w∗
r,m, and ⋆ denotes the convolution operator that (pm ⋆ fk,m)(t) =

∫ T0

0 pm(t− x)fk,m(x)dx.

When ρ = 0, the shapes of
∑

m∈[M ](pm⋆fk,m)(t)’s are identical across clusters, whereas when ρ = 1,

the shapes of
∑

m∈[M ](pm ⋆ fk,m)(t)’s exhibit substantial distinctions across clusters. In essence, as

ρ increases, the clusters become more separable.

The third experiment is a continuation of the second experiment, where our focus is directed

towards evaluating the clustering performance of the proposed method. We manipulate signal

strength by varying the values of variables R, n, and τ . Through this manipulation, we aim to

investigate the impact of R, n, and τ on the performance of clustering estimation.

2.5.2. Intensity estimation performance. In the first experiment, we investigate the effect

of varying R, n and τ on the intensity estimation performance of the proposed method. When

K = 1, the value of γ does not affect the estimation result, hence can be set to zero. We let

ℓ0 = 10, and ϵ = 0.005 in all experiments. A sensitivity analysis concerning ℓ0 demonstrates the

robustness of estimation results to changes in ℓ0, as detailed in Section A.6.3 of Appendix A.

We evaluate the intensity estimation performance via the mean integrated squared error (MISE).

The MISE is defined as:

MISE ≡ 1

M

∑
m∈[M ]

d

{
f̂ ′m(t),

f∗m(t)

Λ∗

}
.(2.29)
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Figure 2.3. Intensity estimation performance in Experiment 1 with 5000 repli-
cates. Synthetic data is generated with varying R, n, and τ . MISE is shown in
log scale for better visualization, where smaller values indicate better performances.
Panel (a) shows the performance of intensity estimation with varying values of R
and τ . Panel (b) demonstrates the performance of intensity estimation with varying
n. The curve labeled “Unknown v” shows results when the algorithm is not pro-
vided with the true value of v, while the curve labeled “Known v” depicts results
when the algorithm is provided with the true value of v.

where d{f1, f2} ≡ minv∈[−T,T ] ∥Svf1 − f2∥2. It is worth noting that the definition of MISE considers

f̂ ′ rather than f̂ . We excludes Λ̂ from the evaluation criterion since its performance, as a sample

mean, is well-studied.

The intensity estimation performance is shown in Figure 2.3. Firstly, the MISE rapidly improves

as R increases, because when R increases, each subject is associated with more samples, while

the number of unknown parameters remain constant. Secondly, a decrease in MISE is observed

as τ increases. This is because when τ is small, there is a potential non-identifiability issue due

to limited sample size. As τ increases, the variance of w∗
r,m’s increases, thereby alleviating the

non-identifiability issue. Thirdly, the MISE exhibits a decreasing trend with an increase in n, since

n serves as the sample size for the estimation of intensity components. However, it is noteworthy

that the MISE decreases slower in response to an increase in n compared to an increase in R. This

is because an increment in n leads to a proportional increase in the quantity of unknown subject-

specific time shifts (i.e., vi,m’s). Consequently, when the algorithm is provided with the true values

of vi,m’s, the MISE shows a significant reduction.

2.5.3. Comparison with relevant methods. In the second experiment, we compare the

clustering performance of the proposed ASIMM (2.7) with the kCFC [Chiou and Li, 2007] and
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the k-mean alignment [Sangalli et al., 2010]. We apply proposed method with K = 4, γ = 0.01,

where the selection of γ follows the procedure outlined in Section 2.3.3. We apply the kCFC by

employing the implementation provided in the R package fdapace [Gajardo et al., 2021], specifically

the function named “kCFC”. The parameters for this implementation are set as follows: the desired

number of clusters is specified as 4, and the maximum number of principal components is set to 2.

Additionally, we specify the type of design as ”dense”, and set the maximum number of iterations

to 30. We employ the k-mean alignment by utilizing the implementation available in the R package

fdasrvf [Tucker, 2023], specifically the function named “kmeans align”. In configuring the algorithm

parameters, we specify the desired number of clusters specified to 4, the maximum number of

iterations specified to 50, and the minimum number of curves per cluster to 2. Both the kCFC

and the k-mean alignment are applied on the empirical intensities aggregated across observations,

which can be expressed as yi(t) ≡ {Ni(t+∆t)−Ni(t)}∆t−1, where Ni(t) ≡ R−1
∑

r∈[R]Ni,r(t).

We evaluate the cluster estimation performance via the Adjusted Rand Index (ARI) [Hubert and

Arabie, 1985]. Let C∗ ≡ {C∗k : k ∈ [K]}, Ĉ ≡ {Ĉk′ : k′ ∈ [K ′]} denote the set of true clusters and the

set of estimated clusters, where K and K ′ are the true number of clusters and specified number of

clusters. The ARI is formally defined as

ARI ≡

∑
k,k′
(dk,k′

2

)
−
[∑

k

(
bk
2

)∑
k′
(ck′

2

)] (
n
2

)−1

1
2

[∑
k

(
bk
2

)
+
∑

k′
(ck′

2

)]
−
[∑

k

(
bk
2

)∑
k′
(ck′

2

)] (
n
2

)−1
,(2.30)

where bk ≡ |C∗k |, ck′ ≡ |Ĉk′ |, and dk,k′ ≡ |C∗k ∩ Ĉk′ | for k ∈ [K] and k′ ∈ [K ′]. The ARI quantifies

the similarity between C∗ and Ĉ. For instance, when C∗ and Ĉ are equivalent up to a permutation

of cluster labels, the ARI is equal to one. Conversely, when Ĉ is entirely random, the ARI has a

mean value of zero.

Figure 2.4 shows the clustering performance of the three considered methods. Across all depicted

scenarios in Figure 2.4, it is evident that the proposed method consistently outperforms both kCFC

and k-mean alignment. The superiority of proposed method becomes especially clear when the

values of R and ρ are large. This is expected since the proposed method excels in handling data

with additive intensity components and time shifts. In contrast, kCFC and k-mean alignment were

not devised to handle the setting in this experiment. In essence, the proposed method serves as a

valuable complement to existing approaches for functional clustering.
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Figure 2.4. Clustering performance in Experiment 2 with 5000 replicates of our
proposal in orange, kCFC by Chiou and Li [2007] in green, and k-mean alignment
by Sangalli et al. [2010] in blue. Synthetic data is generated with n = 40, τ = 0.1,
varying R and ρ. In panel (a), the value of ρ is fixed as ρ = 0.5. In panel (b), the
value of R is fixed as R = 2.

2.5.4. Cluster estimation performance. In the third experiment, we investigate the effect

of R, n and τ on the cluster estimation performance of the proposed method. We apply proposed

method with the same set of tuning parameters as in the second experiment.

The clustering performance is displayed in Figure 2.5. It is evident that the clustering perfor-

mance improves as R, τ , and n increases. This is because R, τ , and n help in estimating the

intensity components, as demonstrated in the first experiment, which in turn improves the cluster

estimation. Furthermore, R serves as sample size for cluster memberships, thereby contributing to

improved clustering performance. However, the impact of increasing n on clustering performance

is only marginal. This is because as n increases, the number of unknown cluster memberships also

increases, meaning that n does not serve as the sample size for cluster memberships.
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Figure 2.5. Clustering performance in Experiment 3 with 5000 replicates. Syn-
thetic data is generated under the setting with varying R, n, and τ . Panel (a) shows
the clustering performance as R and τ increases, where the value of n is fixed as
n = 40. Panel (b) shows the clustering performance as n increases, where the values
of R and τ are fixed as R = 2 and τ = 0.1. The curve labeled “Unknown v” shows
results when the algorithm is not provided with the true value of v, while the curve
labeled “Known v” depicts results when the algorithm is provided with the true
value of v.

2.6. Real Data Application

We consider the neural data during visual discrimination tasks from Steinmetz et al. [2019].

In each trial, the mouse encountered a sequential presentation of two stimuli. The first stimulus

comprised visual gratings of varying contrasts displayed on two screens, one to the left and one

to the right of the mouse. The second stimulus was an auditory tone cue which was set off after

a randomized delay between 0.4 to 0.8 seconds after the onset of the first stimulus. The mouse

could rotate a wheel which, after the auditory cue, would move the visual gratings. When one

constrast is higher than the other, the mouse succeeded and gained rewards if the visual grating of

higher contrasts was moved to the center screen. The complete criteria for success are detailed in

Table A.2 of Appendix A. Throughout the experiment, researchers simultaneously recorded firing

activities of hundreds of neurons in the left hemisphere of the mouse’s brain using Neuropixels [Jun

et al., 2017, Steinmetz et al., 2018, 2021]. We aim to identifying groups of neurons with distinct

responses to the two stimuli using our proposed method.

Following the notation in (2.7), we index trials using r ∈ {1, . . . , R} and neurons using i ∈

{1, . . . , n}. Consequently, the firing activities of neuron r in trial i is Ni,r(t), t ∈ [0, T ] where

T = 3.5. We set m = 1 for the visual grating and m = 2 for the auditory tone cue. We further
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denote the onset time of two stimuli in trial r as w∗
r,1 and w

∗
r,2. Neurons might exhibit firing latencies

in response to each stimulus denoted as vi,m for m ∈ {1, 2} and i ∈ {1, . . . , n}. To demonstrate the

usage of proposed method, we focus on R = 102 experimental trials where the left visual grating

was of higher contrast and the mouse successfully gained rewards. We study 264 neurons in the

midbrain region. We exclude 39 neurons with fewer than one spike per trial on average, resulting

in a total of n = 225 neurons for analysis. We apply the proposed algorithm with K = 3, γ = 10−4,

ℓ0 = 10 and ϵ = 0.005. Using the proposed method, we identify three clusters of neurons with

distinct responses to the two stimuli shown in Fig 2.6. The first column of Figure 2.6 contains

the refined intensity components. To better understand the roles of each clusters, we illustrate the

average firing rates from the training trials and the trials that are not used to fit the model in the

second and third columns of Figure 2.6. More details of this analysis can be found in Section A.7

in Appendix A.

Recalling that the first stimulus is the visual gratings and the second stimulus is the auditory

cue, we have the following observations.

Cluster 1 (63 neurons). There seems to be only one non-zero component in Cluster 1. It is

immediately clear from Figure 2.6(1c) that the firing rates of neurons in Cluster 1 are highly in

sync with the wheel velocity. When aligning the firing rates of neurons in Cluster 1 by movement

onset in Figure 2.6(1b), we can see that the firing rates share almost the same trajectory across

conditions, but their peaks depend on the choice the mouse made. In particular, the firing rate

has a higher peak when the mouse chose the left visual grating. This preference, also known as

laterality, is likely due to the fact that these neurons are from the left hemisphere. We hypothesize

that neurons in Cluster 1 are responsible for executing the turning of the wheel. The crucial role

of midbrain in coordinating movement has been identified in prior studies [see, e.g., Boecker et al.,

2008, Coddington and Dudman, 2019, Inagaki et al., 2022].

Cluster 2 (23 neurons). The first intensity component exhibits a decrease-then-increase pat-

tern post stimuli onset, and the second component shows a sharp increase after the auditory cue,

as shown in Figure 2.6(2a). Figure 2.6(2b) shows that the decrease-then-increase pattern seems

common in trials when the mouse chose the left visual grating. There is, however, no period of sup-

pression when the mouse chose the right visual grating. When aligning the firing rates by feedback

delivery time, it is clear that the firing rates peaked almost immediately after rewards delivery
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â2 + f̂2,2

(2a)

Time from visual stimulus onset (s)

(2b)

Time from feedback delivery (s)

(2c)

In
te
n
si
ty

(s
p
ik
es
/
s)

Time from visual stimulus onset (s)
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Figure 2.6. Estimation of intensity components and average firing intensities in
various conditions. Each row corresponds to one estimated cluster. The first column
presents the estimated intensity components. The second and third columns display
the average neural firing intensities from both the training trials and other trials that
are not used to fit the model. The shaded area represents the mean firing intensities
plus or minus two standard errors of the mean. The legend in panel (1b) represents
“scenario, choice”, for instance, “R,L” represents the trials where the right grating
was of a higher contrast, and the mouse chose to move the left grating to the center
screen resulting in a failure in that trial. Panel (1c) illustrates the average firing
intensity and wheel velocity, where both the firing intensity and the wheel velocity
are standardized to range from 0 to 1 for alignment. The condition “L,R” is omitted
in this figure since there are only three trials, but its firing intensity can be found
in Figure A.10 of Appendix A.

regardless of the choice, and, in the absence of rewards, the firing rates remain stationary. We

hypothesize that neurons in Cluster 2 might respond to perceptions of stimuli (e.g., visual gratings,

rewards), and their activities are further regulated by laterality. Similar firing patterns of neurons

in midbrain have been identified in prior studies [Coddington and Dudman, 2018, Steinmetz et al.,

2019].
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Cluster 3 (139 neurons). The estimated first component exhibits suppressed activities through-

out the trial, and the second component shows increased activities after the auditory cue in Fig-

ure 2.6(3a). Neural responses in Cluster 3 bear a resemblance to those in Cluster 2 that they both

peaked after reward delivery, and they both show preference to contralateral choices (i.e., choosing

the right visual grating), as shown in Figures 2.6(3b) and 2.6(3c). Unlike Cluster 2 where rewards

trigger immediate response, there is a one-second delay from reward delivery till the firing rates

peaked in Cluster 3 in Figure 2.6(3c). Additionally, the activity levels of neurons in Cluster 3 are

lower than those in the other two clusters, and the number of neurons in Cluster 3 exceeds that

of the other two clusters. It might be possible that neurons in Cluster 3 are not directly involved

in the completion of the task. Instead, neurons in Cluster 3 might be responsible for other aspects

of the mouse behavior, such as sensing the surrounding environment, or planning the initiation of

the next trials. Furthermore, Figure 2.6(3b) shows that the suppression of activities started after

the movement onset in trials with ipsilateral choices, but activities increased before the movement

onset in trials with contralateral choices.

2.7. Discussion

In this article, we tackle the problem of simultaneously decomposing, aligning, and clustering

recurrent event data. We note that there are a few directions that can be explored in future works.

First, the proposed method assumes that all subjects exhibit consistent intensity across observa-

tions, which may not hold true in cases where the subjects might respond randomly. For instance,

neurons may exhibit periods of reduced responsiveness during tasks known as local sleep [see, e.g.,

Krueger et al., 2008, Vyazovskiy et al., 2011, Vyazovskiy and Harris, 2013]. To address this lim-

itation, we can generalize the proposed model by incorporating a hidden Markov model for the

responsive status [Tokdar et al., 2010, Escola et al., 2011, Mews et al., 2023]. Second, the proposed

method only considers observations from the same experimental condition. A natural extension is

to allow observations from different experimental conditions. For instance, it would be beneficial

to learn neural functions based on their firing patterns in various visual conditions and feedback

types. To achieve this, we can incorporate a cluster structure of observations by employing bi-

clustering models [Madeira and Oliveira, 2004, Slimen et al., 2018, Galvani et al., 2021]. Third,

theoretical properties of the proposed estimators have not been investigated. Previous studies have
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established the consistency of the k-means clustering [Pollard, 1981, Sun et al., 2012] and clustering

based on FPCA [Yin et al., 2021]. In addition, theoretical properties of simultaneous registration

and clustering models have been established in Tang et al. [2023]. Building on previously established

framework [Pollard, 1981, Yin et al., 2021, Tang et al., 2023], it may be possible to incorporate

the theory of shape-invariant models [Bigot et al., 2013, Bigot and Gendre, 2013] to analyze the

theoretical properties of the proposed method.
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CHAPTER 3

Semiparametric Estimation for Dynamic Networks with Shifted

Connecting Intensities

3.1. Introduction

Neural circuits are fundamental components of the nervous system that play a crucial role in

instructing animal behavior. Understanding the neural circuit development is beneficial for under-

standing how the nervous system works, identifying the causes of nervous system disorders, and

developing new treatments for nervous system disorders. However, the study of neural circuit devel-

opment has been limited by difficulty in data acquisition until recently. Modern technologies have

enabled the recording of individual neural activities over extended durations, thereby facilitated

the exploration of neural circuit development.

Using novel technologies, Wan et al. [2019] recorded the development of a neural circuit in the

spine of zebrafish during embryogenesis. The neural circuit development process involves indi-

vidual neurons forming functional connections, resulting in a highly interconnected network. The

process is illustrated in Figure 3.1(a), where nodes represent neurons and edges represent functional

connections between neurons. The dataset on neural circuit development exhibits three inherent

properties. Firstly, the neural circuit development process is transient, making it impossible to

obtain repeated observations of the same system. Secondly, neural circuits from different sub-

jects possess distinct sets of neurons, despite potentially sharing similar underlying developmental

mechanisms. Thirdly, neurons have different functional maturation progress, resulting in different

activation times [Wan et al., 2019]. The neural activation times can obscure the similarity in neural

connecting behavior. Figure 3.1(b) depicts two neurons exhibiting seemingly distinct connecting

behavior. However, upon adjusting the connection times based on the estimated neural activation

times using our proposed method, Figure 3.1(c) shows that the two neurons actually share similar

connecting behaviors. Additional examples of neuron pairs with similar connecting behavior can

be found in Figure B.14 in Appendix B. In light of these inherent properties, our primary objective
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Figure 3.1. Isolated neurons form a densely connected network during embryoge-
nesis of zebrafish. All time stamps indicate the time since the experiment starts.
Panel (a) displays neural network snapshots at 30, 90 and 150 minutes, where edges
appear progressively over time. In the networks, nodes represent neurons, and
edges represent functional connections between neurons. The horizontal axis is the
anterior-posterior (AP) axis and the vertical axis is the left-right (LR) axis of ze-
brafish (see Wan et al. 2019 for details). Preprocessing steps for obtaining these
networks are available in Section B.5 in Appendix B. The colored dots are two
neurons with similar connecting behaviour. Edges associated with the two nodes
are displayed as dashed and solid line segments, respectively. The rest of edges
are shown in gray. Panel (b) displays connecting behaviour of the two highlighted
neurons. Vertical bars represent the time points when edges associated with the
two neurons are formed. The color coding and line types are consistent with Panel
(a). Panel (c) displays the adjusted connecting behaviour of the two highlighted
neurons. Each vertical bar has been shifted according to the estimated time shift of
the associated edge, as determined by the proposed method. Upon this adjustment,
it becomes evident that the connecting behavior of the two neurons exhibits a high
degree of similarity.

in this study is to cluster neurons based on their connecting behaviors after accounting for diverse

activation times. The resulting clusters are expected to comprise neurons that play similar roles

during neural circuit development.

Nonetheless, existing methods in the field of network analysis have limitations in identifying

clusters of neurons when varying activation times are present. A canonical approach for clustering
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nodes in networks is the dynamic stochastic block models [see, e.g., Xing et al., 2010, Yang et al.,

2011, Xu and Hero, 2014, Xu, 2015, Matias and Miele, 2017, Matias et al., 2018, Longepierre and

Matias, 2019, Pensky, 2019]. In essence, the dynamic stochastic block model assumes that nodes

in a network fall into distinct clusters, and the probability of an edge forming between a pair of

nodes over time, i.e., the connecting intensity, depends solely on the the cluster memberships of the

two nodes. For networks observed at a discrete time grid, the connecting intensities are typically

parameterized using Markov chains [see, e.g., Xing et al., 2010, Yang et al., 2011, Xu and Hero,

2014, Xu, 2015, Matias and Miele, 2017]. For networks observed in continuous time, Matias et al.

[2018] propose to model recurrent instantaneous edges (e.g., email exchanges) as point processes,

where connecting intensities are estimated nonparametrically. However, a crucial assumption in

these models is that nodes within the same cluster share identical connecting intensities, which

is essential for identifiability and estimation. Consequently, these models are unable to identify

neural activation times and, as a result, may overlook the similarity in connecting behavior among

neurons.

A class of problems relevant to identifying neural activation times has been studied in the context

of shape invariant models [see e.g., Vimond, 2010a, Bigot and Gadat, 2010, Bigot et al., 2013, Bigot

and Gendre, 2013, Bontemps and Gadat, 2014]. These models aim to align a set of curves that are

identical up to unknown time shifts. However, the shape invariant models are incapable of handling

multiple clusters of curves, where the curves within each cluster are identical up to unknown time

shifts.

In this paper, we propose a dynamic stochastic block model that allows for unknown node-

specific time shifts. We establish the identifiability of the time shifts, the cluster memberships, and

the connecting intensities under suitable assumptions in Section 3.2. We propose semiparametric

estimation procedures that simultaneously estimate model parameters including the time shifts

in Section 3.3, along with computationally efficient algorithms in Section 3.4. We investigate the

performance of the proposed estimation procedures through simulation experiments in Section 3.5.

Finally, we use the proposed model to study neural behaviour during embryogenesis of zebrafish in

Section 3.6.
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3.2. Dynamic Stochastic Block Model

We model the development of neural circuits as a dynamic network. Specifically, a dynamic

network is defined as {G(t) : G(t) = (V, E(t)), t ∈ [0,∞)}, where V ≡ {1, 2, . . . , p} denotes a fixed

set of nodes across time, and E(t) represents the set of edges at time t, defined as

E(t) ≡ {(i, j) : i, j ∈ V, nodes i, j are connected at time t}.

In the context of neural circuits, V corresponds to the set of neurons, and E(t) denotes the set

of functional connections between neurons at time t. The functional connections among neurons

are identified by the highly correlated activities of neurons (see Section B.5.1). These functional

connections have the following properties: (i) no self-connection, i.e., (i, i) ̸∈ E(t) for any i ∈ V and

t ≥ 0, (ii) undirected connections, i.e., (i, j) ∈ E(t) if (j, i) ∈ E(t), (iii) no connection at the onset

of observation, i.e., E(0) = ∅, and (iv) persistence, i.e., (i, j) ∈ E(t′) for any t′ ≥ t if (i, j) ∈ E(t).

Further exploration of the persistence of connections can be found in Figure B.10. For simplicity,

we assume that the network has stabilized by time T , that is, G(t) = G(T ) for t > T . Hereafter,

unless otherwise specified, we let (i, j) denote two arbitrary nodes that i ̸= j and i, j ∈ V.

For any pair of nodes (i, j), we define the connecting time as ti,j ≡ inf{t ∈ [0, T ] : (i, j) ∈ E(t)},

that is, the time when nodes i and j connect, and we denote ti,j = ∞ if {t ∈ [0, T ] : (i, j) ∈ E(t)}

is empty. We define the connecting process as Ni,j(t) ≡ I(ti,j ≤ t), t ∈ [0, T ], which is known as

a point process or a counting process in the literature [see, among others, Daley and Vere-Jones,

2003]. The persistence of edges implies that Ni,j(t) remains to be unity once an edge is formed. This

type of point process is commonly studied in survival analysis as the outcome [see, among others,

Kleinbaum and Klein, 2012]. We introduce the (marginal) intensity λi,j(t) ≡ Pr(dNi,j(t) = 1)/dt

that we refer to as connecting intensity, whose integral Λi,j(T ) ≡
∫ T
0 λi,j(t)dt is the connecting

probability between nodes i, j throughout [0, T ]. In survival analysis, the probability Λi,j(T ) can be

less than one due to censoring. In our setting, we assume that there is no censoring but Λi,j(T ) can

still be less than one since the final graph is not necessarily complete. Conditioning on that nodes

i and j are connected, the density of the connecting time, or connecting density, is λi,j(t)/Λi,j(T ).

Following the convention in Matias et al. [2018] and Pensky [2019], we assume that V = ∪Kk=1Ck,

where C1, C2, · · · , CK are disjoint clusters with distinct connecting intensities to be specified in

Assumption 3.2.1. Nodes within each cluster have identical connecting intensities up to unknown
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time shifts. To be specific, denote [K] ≡ {1, . . . ,K} and let zi ∈ [K] be the cluster membership of

node i for i ∈ V. Then we assume that the connecting intensity between nodes i and j satisfies

that

λi,j(t) = Swi,jfzi,zj (t),(3.1)

where wi,j ≡ max(vi, vj) with vi, vj ∈ [0, T/2] being the time shifts of nodes i and j, Sw is the

shift operator defined as Swx(t) ≡ x(t−w), and fzi,zj (·) is a non-negative function with support in

[0, T/2] and ∥fzi,zj∥1 ≤ 1. For q, k ∈ [K], the function fq,k(·) is called the representative connecting

intensity between any pairs of nodes in clusters q and k. Figure 3.2 shows a graphical representation

of the proposed dynamic stochastic block model with time shifts. Here the bounded supports for

the representative connecting intensities and time shifts are put in place to avoid the discussion of

censoring, which can be easily relaxed.

The model presented in (3.1) is tailored to the neural circuit development data. Specifically,

wi,j is defined as the time when both neurons i and j are mature enough to establish functional

connections. As a result, the proposed model can be applied to identify the clusters of neurons

with similar connecting behaviour (i.e., Ck’s), the representative connecting behaviour of neurons

(i.e., fq,k’s), and activation time of neurons (i.e., vi’s). Nonetheless, the model in (3.1) can be

easily adapted to other applications with minor changes. For instance, it can be used to ana-

lyze information exchanges such as tweets, emails, or text messages in social networks [see, e.g.,

Haythornthwaite, 1996, Diesner and Carley, 2005, Osatuyi, 2013], where nodes represent individu-

als and edges represent the initiation of information exchange between individuals on a particular

topic. In this context, wi,j can be redefined to represent the minimal time shifts of individuals i

and j, signifying the time when either individual i or j becomes intrigued by the topic.

The proposed model has close connections with two lines of research in the literature. First of

all, the proposed model generalizes the dynamic stochastic block model in Matias et al. [2018] by

allowing unknown time shifts in connecting intensities between pairs of nodes. In fact, if we average

out time shifts to treat Ewi,j [λi,j(·)]’s as the connecting intensities, the proposed model reduces to

the Poisson process stochastic block model (PPSBM) in Matias et al. [2018]. Secondly, when there

is only one cluster, i.e., K = 1, the proposed model reduces to a shape invariant model with point

processes [Bigot et al., 2013], where the point processes are assumed to share a common intensity
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Figure 3.2. Graphical representation of our model. Panel (a) shows a matrix of
representative connecting intensities (fq,k)K×K , where the highlighted curve repre-
sents fzi,zj . Panel (b) shows the connecting intensity between node i and j after

incorporating the time shift, where λi,j = Smax(vi,vj)fzi,zj . Panel (c) shows the ob-
served connecting process where E[dNi,j(t)] = λi,j(t)dt. Only the connecting process
is observed in the data.

function subject to time shifts. Hence, we call the proposed model as the shape invariant dynamic

stochastic block model, or SidSBM for short.

Additional conditions are required to ensure the identifiability of parameters in (3.1). In the

case without unknown time shifts, Matias et al. [2018] establish the identifiability of representative

connecting intensities and cluster memberships, under the assumption that all representative con-

necting intensities are distinct. In the case with one single cluster, Bigot et al. [2013] ensure the

identifiability of the common intensity function by assuming a known distribution of time shifts.

However, in our setting, we need to simultaneously identify representative connecting intensities,

cluster memberships, and time shifts. Therefore, additional conditions are required for identifiabil-

ity as summarized in Assumption 3.2.1 and Proposition 3.2.1.

Assumption 3.2.1. Denote true parameters in (3.1) by {v∗i : i ∈ V}, {f∗q,k : q, k ∈ [K]} and

{z∗i : i ∈ V}. Let C∗q = {i ∈ V : z∗i = q} for q ∈ [K]. We assume the true parameters satisfy the

following conditions.

(C3.1) For any two distinct clusters q, q′ ∈ [K], q ̸= q′, there exists at least one cluster k ∈ [K]

such that f∗q,k ̸= Swf∗q′,k for any w ∈ R.

(C3.2) For any q, k ∈ [K], if f∗q,k ̸≡ 0, then max{v∗i : i ∈ C∗q} > min{v∗j : j ∈ C∗k} and min{v∗i : i ∈

C∗q} < max{v∗j : j ∈ C∗k}.

(C3.3) For any q, k ∈ [K], there exists a sequence of clusters (q1, q2, · · · , qa) ∈ [K]a such that

q1 = q and qa = k and f∗qi,qi+1
̸≡ 0 for i = 1, · · · , a− 1, where a ∈ N, a ≥ 2.
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(C3.4) There exist q0, k0 ∈ [K] such that inf{t ∈ [0, T ] : f∗q0,k0(t) > 0} = 0.

Proposition 3.2.1. Suppose that we observe connecting processes {Ni,j : i, j ∈ V} and that

Assumption 3.2.1 holds. Then, we can verify the following statements.

(P3.1) The cluster memberships {z∗i : i ∈ V} and representative connecting intensities {f∗q,k :

q, k ∈ [K]} are identifiable up to a permutation of cluster labels.

(P3.2) The time shifts {v∗i : i ∈ V} are identifiable except for nodes in the set

(3.2) {i ∈ V : v∗i ≤ v∗j for any j ∈ C∗z∗i , or v∗i ≤ v∗j for any j ∈ V s.t. λ∗i,j ̸≡ 0}.

Assumption 3.2.1 lists the technical conditions that ensure the identifiability of the model. Here

we briefly explain how conditions in Assumption 3.2.1 lead to the identifiability in Proposition 3.2.1,

and we defer the detailed proof to Section B.1 in Appendix B. Firstly, Condition C3.1 assumes that

any two different clusters are distinct in at least one of their connecting intensities with other

clusters, which ensures the identifiability of {z∗i : i ∈ V}, up to a permutation of cluster labels.

Secondly, Condition C3.2 requires that the ranges of time shifts overlap for any two clusters with

a positive connecting probability. As a result, for any cluster q ∈ [K], its non-zero connecting

intensities {f∗q,k : f∗q,k ̸≡ 0, k ∈ [K]} are identifiable up to a shared time shift. Moreover, Condi-

tion C3.3 grants that for any pair of nodes, there is a positive probability that these two nodes

are directly or indirectly connected. In other words, the network is not separable. Consequently,

we can show that the representative connecting intensities of all clusters are identifiable up to a

global time shift. Thirdly, Condition C3.4 pins down the global time shift in a similar way as the

zero-sum constraint in Bigot and Gendre [2013]. Lastly, the definition of wi,j in (3.1) implies that

there is a set of nodes whose time shifts can not be identified. To see this, consider the case with

one cluster. The unidentifiable set (3.2) reduces to the node with the minimum time shift, which

is unidentifiable since the minimum time shift is always masked by other time shifts. We verify in

Section 3.6 that the conditions in Assumption 3.2.1 are feasible in real data.

3.3. Estimation Procedure

The estimation of stochastic block models can be performed based on the squared error [Gao

et al., 2015, Pensky, 2019, Lei et al., 2020] or the likelihood [Matias et al., 2018, Pavlović et al.,

2020]. We opt to extend the squared-error-based estimation approach to accommodate unknown
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time shifts, as it allows us to leverage techniques employed in shape invariant models [Kneip and

Engel, 1995, Bigot and Gendre, 2013] for fast computing.

In what follows, we represent vectors and matrices in boldface, e.g., f ≡ (fq,k)q,k∈[K], z ≡ (zi)i∈V ,

v ≡ (vi)i∈V , and let L2
+([0, T ]) denote the space of non-negative squared integrable functions on

[0, T ]. Recall that in our model, we only observe the connecting processes {Ni,j : i, j ∈ V}. The

optimization problem associated with our model takes the following form

(
f̂ , ẑ, v̂

)
= argmin

Θ1

∑
i,j∈V,i ̸=j

{∫ T

0
Swi,jf2zi,zj (t)dt− 2

∫ T

0
Swi,jfzi,zj (t)dNi,j(t)

}
,(3.3)

where wi,j = max(vi, vj), and Θ1 ≡ {(f , z,v) : f ∈ BK×K
1 , z ∈ [K]p,v ∈ [0, T ]p} with B1 ≡ {f ∈

L2
+([0, T ]) : ∥f∥1 ≤ 1}. The objective function in (3.3) is identical to the sum of squared deviations

of the observed connecting processes from their intensities up to a constant. To estimate f non-

parametrically, we employ a truncated basis expansion. In particular, we consider the functional

space with truncated Fourier bases B1,ℓ0 ≡ {f ∈ B1 :
∫ T
0 exp{−i2πℓt/T}f(t)dt = 0 for |ℓ| ≥ ℓ0}.

The selection of the tuning parameter ℓ0 is discussed later in this section.

We notice that replacing the intensities {fq,k : q, k ∈ [K]} with the cumulative intensities {Fq,k :

Fq,k(t) ≡
∫ t
0 fq,k(s)ds, t ∈ [0, T ], q, k ∈ [K]} can avoid the frequency truncation. In particular, the

optimization problem based on cumulative intensities takes the following form

(
F̂, ẑ, v̂

)
= argmin

Θ2

∑
i,j∈V,i ̸=j

∫ T

0

{
Swi,jF 2

zi,zj (t)− 2Swi,jFzi,zj (t)Ni,j(t)
}
dt,(3.4)

where wi,j = max(vi, vj), and Θ2 ≡ {(F, z,v) : F ∈ BK×K
2 , z ∈ [K]p,v ∈ [0, T ]p} with B2 ≡ {F ∈

[0, 1][0,T ] : F is non-decreasing and right-continuous, F (0) = 0}. The objective function in (3.4) is

almost identical to the one in (3.3) except for the use of Ni,j and Fzi,zj . In (3.4), a natural estimator

of F is the empirical cumulative intensity which does not require frequency truncation.

However, the objective functions based on the plain vanilla L2-distance in (3.3) and (3.4) may

tend to overlook the information in the shapes of intensities. To see this, consider a simple case

where we assign one node to one of K clusters with known intensities and no time shifts. In this

case, problem (3.4) reduces to

ẑ1 = argmin
z1∈[K]

∑
k∈[K]

|C∗k |
∫ T

0

∣∣F ∗
z1,k(t)−N1,k(t)

∣∣2 dt,(3.5)
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z∗
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(b)

Figure 3.3. Deviation of the empirical cumulative intensity from the true cumu-
lative intensity and from the minimizer-induced cumulative intensities. Panel (a)
shows that the objective function may select wrong cluster ẑ1 due to the similarity
in scales, despite the difference in shapes. Panel (b) shows that v̂1 which minimizes
the objective function in (3.4) may shift the cumulative intensity away from the
truth.

where {C∗k : k ∈ [K]} are known clusters for nodes in V\{1}, {F ∗
z1,k

: z1, k ∈ [K]} are known

cumulative intensities across clusters, and {N1,k : N1,k ≡ |C∗k |−1
∑

j∈C∗
k
N1,j , k ∈ [K]} are empir-

ical cumulative intensities. The cumulative intensity, e.g., F ∗
z1,k

(t), can be broken down into two

parts: the cumulative distribution F ∗
z1,k

(t)/F ∗
z1,k

(T ) and the connecting probability F ∗
z1,k

(T ). In

a sense, the two parts can be seen as the shape and the scale of the cumulative intensity. As

shown in Figure 3.3(a), the minimizer ẑ1 of the objective function in (3.5) might be predominantly

decided by scales. Moreover, the problem is exacerbated when time shifts are unknown as in (3.4).

Figure 3.3(b) shows that the minimum might be achieved by over estimating the time shifts.

To address this issue, we propose a new loss function that separates the shape and scale. We

modify (3.4) as

(
F̂, ẑ, v̂

)
= argmin

ΘC

MC(F, z,v; γ)

≡ argmin
ΘC

 ∑
(i,j)∈E(T )

1

T

∫ T

0

{∣∣∣∣Swi,jFzi,zj (t)

Fzi,zj (T )

∣∣∣∣2− 2Ni,j(t)
Swi,jFzi,zj (t)

Fzi,zj (T )

}
dt(3.6)

+ γ
∑

i,j∈V,i ̸=j

∣∣Ni,j(T )− Fzi,zj (T )
∣∣2  ,

where γ ≥ 0 is a user-specified parameter, E(T ) = {(i, j) : i, j ∈ V, Ni,j(T ) = 1}, wi,j = max(vi, vj),

and ΘC ≡ {(F, z,v) : F ∈ BK×K
2 , z ∈ [K]p,v ∈ [0, T ]p, Fzi,zj (T ) > 0 if (i, j) ∈ E(T )}. The objective
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function in (3.6) has two components. The first component is the sum of squared deviations related

to cumulative connecting distributions (i.e., shapes), and the second component is the sum of

squared deviations related to connecting probabilities (i.e., scales). The relative weight of shapes

and scales is governed by γ. The selection of γ is discussed later in this section. The estimator

in (3.6) is based on the cumulative connecting intensities, thus we refer to it as SidSBM-C.

In a similar manner, we introduce SidSBM-P, an intensity-based estimator that solves the fol-

lowing optimization problem(
f̂ , ẑ, v̂

)
= argmin

ΘP

MP(f , z,v; γ)

≡ argmin
ΘP

 ∑
(i,j)∈E(T )

1

T

{∫ T

0

∣∣∣∣Swi,jfzi,zj (t)

Fzi,zj (T )

∣∣∣∣2dt− 2

∫ T

0

Swi,jfzi,zj (t)

Fzi,zj (T )
dNi,j(t)

}

+ γ
∑

i,j∈V,i ̸=j

∣∣Ni,j(T )− Fzi,zj (T )
∣∣2  ,

(3.7)

where γ, E(T ), wi,j are defined the same way as in (3.6), Fzi,zj (T ) =
∫ T
0 fzi,zj (s)ds, and ΘP ≡{

(f , z,v) : f ∈ BK×K
1,ℓ0

, z ∈ [K]p,v ∈ [0, T ]p, fzi,zj ̸≡ 0 if (i, j) ∈ E(T )
}
.

We adapt the integrated classification likelihood (ICL) criterion [Biernacki et al., 2000, Daudin

et al., 2008] to select tuning parameters including the number of clusters K, the relative importance

of intensity scales γ, and the frequency truncation parameter ℓ0. Integrated classification likelihood

is based on a BIC-like approximation that has been adapted to semiparametric stochastic block

models by Matias et al. [2018]. For our model, the integrated classification likelihood criterion takes

the following form

ICL =
∑

(i,j)∈E0

log
{
1− F̂ẑi,ẑj (T )

}
+
∑

(i,j)∈E1

log
{
f̂ẑi,ẑj (ti,j)

}
+
∑
k∈[K]

∣∣Ĉk∣∣ log(p−1
∣∣Ĉk∣∣)

− 1

2
(K − 1) log p− 1

4
K(K + 1)ℓ0 log

p(p− 1)

2
,

(3.8)

where E0 ≡ {(i, j) : i, j ∈ V, i < j,Ni,j(T ) = 0} and E1 ≡ {(i, j) : i, j ∈ V, i < j,Ni,j(T ) = 1}.

The sum of the first three terms can be seen as the complete-data log-likelihood, and the last

two terms are penalties for cluster memberships and connecting intensities. In the second penalty

term, we use ℓ0 to represent the degrees of freedom in each connecting intensity. For optimization

problem (3.6), we select K and γ by maximizing ICL with ℓ0 = 2, where the two degrees of freedom
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correspond to the shape and the scale. For optimization problem (3.7), we select K, γ, and ℓ0 by

maximizing ICL. In practice, heuristic methods can be employed for computationally efficient

selection of tuning parameters. Further details are provided in Section B.4.1 in Appendix B.

Remark 3.3.1. We can generalize the proposal to networks with recurrent edges, where the edges

are events that can happen more than one time. Instances of such networks include, but are not

limited to, email exchange networks, payment transaction networks, and bike sharing networks

[see, e.g., Diesner and Carley, 2005, Loupos et al., 2019, Lin et al., 2018]. When the connecting

intensities f have bounded supports, the optimization problems (3.6) and (3.7) can be directly applied

without modification, and the identifiability results in Section 3.2 hold. When f have unbounded

supports, identifiability requires additional assumptions on the intensities f . For instance, we can

assume that intensities in f are periodic and a full period is observed for each intensity in f [see,

e.g., Bigot et al., 2013, Bigot and Gendre, 2013]. Furthermore, the optimization problem (3.7)

can be applied directly, when the intensity is periodic.

3.4. Algorithm

We now present an algorithm for solving the optimization problem (3.6). The key observation

in (3.6) is that it is straight-forward to solve one set of parameters conditioning on the others. The

resulting algorithm resembles the classic k-means algorithm that iterates between the centering and

clustering steps. In particular, we can write the two steps as follows

(centering step) F̂, v̂ = argmin
F,v

MC(F, ẑ,v; γ),(3.9)

(clustering step) ẑ = argmin
z

MC(F̂, z, v̂; γ).(3.10)

In the centering step (3.9), we update F̂ and v̂ conditioning on the current estimates of cluster

memberships ẑ. Given ẑ, the optimization problem (3.6) reduces to a well-studied problem in the

literature of shape invariant models [Bigot and Gadat, 2010, Bigot et al., 2013, Bigot and Gendre,

2013]. The reduced optimization problem can be decoupled into two parts concerning F̂ and v̂,

respectively. In the first part, we have the analytical solution of F̂q,k as

F̂q,k =
∑

i∈Ĉq ,j∈Ĉk,i ̸=j

S−max(v̂i,v̂j)Ni,j∣∣Ĉq∣∣∣∣Ĉk∣∣− I(q = k)
∣∣Ĉq∣∣ , q, k ∈ [K],(3.11)
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where Ĉk ≡ {i ∈ V : ẑi = k}. The estimator in (3.11) is the empirical cumulative intensity of edges

between clusters q and k, where self-edges are eliminated if q = k.

In the second part, we solve for v̂ via

v̂ = argmin
v

∑
i∈V

∑
k∈[K]

∣∣∣Ĵi,k∣∣∣N i,k(T )
1

T

∫ T

0

∣∣∣∣∣ N i,k(t)

N i,k(T )
−
SviF̂ẑi,k(t)

F̂ẑi,k(T )

∣∣∣∣∣
2

dt

 ,(3.12)

where Ĵi,k ≡ {j ∈ V : ẑj = k, j ̸= i, vj ≤ vi} is the collection of nodes in the k-th cluster whose time

shifts are no larger than node i, and N i,k(t) ≡ |Ĵi,k|−1
∑

j∈Ĵi,k Ni,j(t) is the empirical cumulative

intensity of edges between node i and nodes in Ĵi,k. The optimization problem in (3.12) can be

solved by utilizing the well-known Parseval’s theorem to reframe the problem in the Frequency

domain. The Frequency domain offers a suitable environment for the application of the gradient

descent algorithm, which provides a solution to the problem. Details of the gradients are available

in Section B.3 in Appendix B.

Finally, we set the global shift as ĉ ≡ min{ti,j−max(v̂i, v̂j) : i, j ∈ V}, which is an approximation

of inf{t ∈ [0, T ] : dF̂q,k(t) > 0 for some q, k ∈ [K]}. Specifically, we update F̂ and v̂ as follows

F̂q,k ← S−ĉF̂q,k, q, k ∈ [K]; v̂i ← v̂i + ĉ, i ∈ V.(3.13)

The global shift ĉ is the minimum of p2 numbers. As such, for small values of p, ĉ might be subject

to a large error, which might further compromise the accuracy of F̂ and v̂.

In the clustering step (3.10), we update each cluster membership ẑi conditioning on current F̂,

v̂ and {ẑj : j ∈ V, j ̸= i}. The optimization problem in (3.6) reduces to, for i ∈ V,

ẑi = argmin
zi∈[K]

∑
k∈[K]

 ∣∣Ĉk,−i

∣∣F i,k(T )
1

T

∫ T

0

∣∣∣∣∣ F i,k(t)

F i,k(T )
−
F̂zi,k(t)

F̂zi,k(T )

∣∣∣∣∣
2

dt

+ γ
∣∣Ĉk,−i

∣∣ ∣∣∣F i,k(T )− F̂zi,k(T )
∣∣∣2
 ,

(3.14)

where Ĉk,−i ≡ Ĉk\{i} and F i,k(·) ≡
∣∣Ĉk,−i

∣∣−1∑
j∈Ĉk,−i

S−max(v̂i,v̂j)Ni,j(·). The objective function

in (3.14) can be seen as a “distance” between node i and cluster Ĉzi that involves differences in

both shapes and scales.
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The optimization problem in (3.6) is non-convex, hence the initialization scheme and the con-

vergence criterion are crucial for the performance of the algorithm (see Remarks 3.4.1 and 3.4.2).

The estimation procedure is summarized in Algorithm 3.1.

Algorithm 3.1: Iterative algorithm for SidSBM-C

Input: N,K, ε, γ

Initialize v̂(0), ẑ(0) via (3.15) (3.16), and s = 0;

while not converge do

Update v̂(s+1) and F̂(s+1) via (3.11) - (3.13) with (z,v) = (ẑ(s), v̂(s));

Update ẑ(s+1) via (3.14) with (v,F, z) = (v̂(s+1), F̂(s+1), ẑ(s));

Evaluate the stopping criterion via (3.18);

s = s+ 1;

end

Output: F̂(s), ẑ(s), v̂(s).

The algorithm to solve the optimization problem (3.7) closely resembles Algorithm 3.1, which is

detailed in Section B.2. The objective function in (3.7) might have plateaus in v, while the one

in (3.6) does not encounter this issue due to the utilization of cumulative intensities (see Figure B.1).

Remark 3.4.1. We initialize time shifts by the time of the first edge associated with each node,

that is

v̂
(0)
i ≡ min{ti,j : j ∈ V}, i ∈ V.(3.15)

Letting Fi(t | v) ≡ (p − 1)−1
∑

j∈V\{i} S
−max(vi,vj)Ni,j(t), we initialize cluster memberships by

solving the following k-medoids problem

ẑ(0), µ̂(0) = argmin
z∈[K]p,µ∈C1×...×CK

∑
i∈V

∫ T

0

∣∣∣∣∣ Fi(t | v̂(0))

Fi(T | v̂(0))
−
Fµzi

(t | v̂(0))

Fµzi
(T | v̂(0))

∣∣∣∣∣
2

dt,(3.16)

where {µq : q ∈ [K]} are the medoids of the K clusters. Optimization problem (3.16) is a simpli-

fication of problem (3.6), where v is given as v̂(0), {Fq,k(t) : q, k ∈ [K]} take values in the known

set {Fi(t | v̂(0)) : i ∈ V}, and γ is set as zero. In practice, Fi(t | v̂(0)) is evaluated on an equispaced

time grid as an L-vector

1

p− 1

∑
j∈V\{i}

(
I

[
t̃i,j ≤

T

L

]
, I

[
t̃i,j ≤

2T

L

]
, · · · , I

[
t̃i,j ≤ T

])⊤
,(3.17)
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where t̃i,j ≡ ti,j − max(v̂
(0)
i , v̂

(0)
j ) is the adjusted connecting time. The tuning parameter L can

be chosen such that T/L is close to temporal resolution of the data. We note that the proposed

initialization scheme can not guarantee a global minimum. If feasible, we recommend to use multiple

random restarts by jittering the initial time shifts and shuffling the initial cluster memberships for

a small proportion of nodes.

Remark 3.4.2. The proposed algorithm is stopped when, for a user-specified ε,[{
1−ARI(ẑ(s), ẑ(s+1))

}
+
∥v̂(s) − v̂(s+1)∥2
∥v̂(s)∥2

+
∥F̂(s) − F̂(s+1)∥2
∥F̂(s)∥2

]
≤ ε,(3.18)

where ∥·∥2 is the L2-norm and ẑ(s), v̂(s), F̂(s) are estimates in s-th iteration. This criterion measures

the overall change of model parameters between two consecutive iterations. We use the change

of model parameters rather than the change of loss function because the stabilization of model

parameters can ensure the stabilization of loss function. The change of cluster memberships is

measured using the Adjusted Rand Index (ARI) [Hubert and Arabie, 1985]. In particular, for two

partitions C ≡ {Cq : q ∈ [K]} and C′ ≡ {C′k : k ∈ [K ′]} such that V = ∪q∈[K]Cq = ∪k∈[K′]C′k, denoting

aq ≡ |Cq|, bk ≡ |C′k|, and dqk ≡ |Cq ∩ C′k| for q ∈ [K] and k ∈ [K ′], then

ARI ≡

∑
q,k

(dqk
2

)
−
[∑

q

(
aq
2

)∑
k

(
bk
2

)]
/
(
p
2

)
1
2

[∑
q

(
aq
2

)
+
∑

k

(
bk
2

)]
−
[∑

q

(
aq
2

)∑
k

(
bk
2

)]
/
(
p
2

) .(3.19)

If the two partitions are identical up to a permutation of cluster labels, then ARI equals one. If one

partition is purely random and the other one is fixed, then the expectation of ARI is zero.

3.5. Simulation

3.5.1. Data generation and model specification. Random dynamic networks are gener-

ated from the proposed model. In particular, cluster memberships are generated by sequentially

Table 3.1. Mean (µ) and variance (σ2) of the connecting intensities for generating
synthetic data. Each column corresponds to one pair of (q, k). The value of β is
specified in Section 3.5.2.

(1, 1) (1, 2) (1, 3) (2, 2) (2, 3) (3, 3)

µq,k 20 20β 20β2 20β2 20β1/2 20β3/2

σ2q,k 100 100β−2 100β−2 100β 100β−1 100β
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allocating p nodes into K = 3 clusters of equal size, that is, Cq = {(p/K)(q−1)+1, . . . , (p/K)q} for

q ∈ [K]. For any q, k ∈ [K], the representative connecting intensity between clusters q and k takes

the form fq,k = 0.9×Γ(µ2q,k/σ
2
q,k, µq,k/σ

2
q,k), where Γ(µ

2
q,k/σ

2
q,k, µq,k/σ

2
q,k) is the density of a Gamma

distribution with mean µq,k and variance σ2q,k. Specifications of µq,k’s and σ2q,k’s are provided in

Table 3.1, where we introduce β to control the separability between representative connecting in-

tensities. Time shifts are generated from a uniform distribution that vi ∼ U(0,W ), i ∈ V. The

connecting time between any nodes i and j is generated as ti,j = Xi,j +max(vi, vj), where Xi,j is

drawn from fzi,zj for any pair (i, j).

By altering p, β, and W , we generate data with varying signal strengths. Intuitively, the signal

strength is positively associated with p and β, since increasing p increases the sample size, and

increasing β increases distinction among (µq,k, σ
2
q,k)’s; the signal strength might decrease when W

increases as W controls the variation in time shifts.

We compare the performance of three methods, SidSBM-C (3.6), SidSBM-P (3.7), and the Pois-

son process stochastic block model (PPSBM) by Matias et al. [2018]. We apply SidSBM-C with

K = 3, ϵ = 0.01, γ = 0.01 and L = 200. The same set of tuning parameters is used for SidSBM-P

except for γ = 0.0001 and ℓ0 = 4. We apply PPSBM using the implementation in R by Giorgi et al.

[2018] with the number of bins being 64.

3.5.2. Simulation results. We use two criteria to evaluate the performance of three methods

described in Section 3.5.1. To measure the clustering performance, we calculate the ARI introduced

in (3.19). To measure the estimation performance, we calculate the mean integrated squared error

(MISE) between the estimated and the true connecting intensities

MISE =
1

(K2 +K)/2

∑
q,k∈[K],q≤k

E∥f̂q,k − fq,k∥22,(3.20)

where ∥ · ∥2 is the L2-norm. Note that SidSBM-C estimates cumulative intensities rather than

intensities. In order to make a fair comparison, we estimate intensities for SidSBM-C using Gaussian

kernel density estimators with bandwidth selected as suggested in Silverman [2017].

Simulation results under various settings are provided in Figure 3.4. In all plots, a smaller y-

coordinate indicates a better performance. Across all settings, both proposed methods outperform

PPSBM, because PPSBM suffers from the presence of unknown time shifts. In addition, SidSBM-C

41



Number of nodes (i.e., p) Cluster separability (i.e., β) Variation of time shifts (i.e., W )
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Figure 3.4. Performance of SidSBM-C, SidSBM-P and PPSBM in simulation with
1500 replicates. Simulated data is generated under various p, β,W with default
setting being p = 30, β = 1.3 and W = 80. The y-axis is 1-ARI in the first row and
MISE in the second row, where smaller values indicate better performance. The
proposals outperform PPSBM in all settings due to their effectiveness in handling
time shifts. Between the two proposals, SidSBM-C and SidSBM-P have similar
performance except for when β > 1.5 due to limited intensity support ranges and
large time shifts.

and SidSBM-P exhibit comparable performance, except when β reaches high values. This discrep-

ancy may be caused by the limited ranges of supports of intensities when the value of β is high,

as well as the large values of W . Supporting this hypothesis, Figure B.5 in Appendix B demon-

strates that a reduction in W results in a corresponding decrease of the discrepancy between the

performance of SidSBM-C and SidSBM-P. Interestingly, both proposed methods still outperform

the PPSBM in settings without time shifts (see Figure B.8 in Appendix B).

Furthermore, Figure 3.4 shows that the overall performance of the three methods improves

as signal strengths increase. However, we note that there are four seemingly counterintuitive

observations. Firstly, as p increases, PPSBM has stable ARI and increasing MISE. This is because

PPSBM is not able to handle time shifts, thus will converge to erroneous estimators as p increases.

Secondly, increasing β enlarges MISE of the three methods, due to the increasing average L2-norm

of the representative connecting intensities. Thirdly, the proposed methods have stable performance

as W decreases because estimators of cluster memberships and connecting intensities in proposed

methods are invariant to time shifts. Fourthly, the MISE values appear to exhibit limited sensitivity
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Figure 3.5. Computing time of SidSBM-C, SidSBM-P and PPSBM in simulation
with 1500 replicates. Simulated data is generated under β = 1.3, W = 80 and
a range of p. The proposals are computationally more efficient than PPSBM and
might be scalable to large networks.

to improved clustering performance. This pattern can be attributed to several factors, including

the small default values of p and β in the simulation setting, as well as the wide range of the

y-axis in the figure. In general cases, the MISE value should exhibit sensitivity to improvements in

clustering performance. Further supporting evidence is provided in Section B.4.4 in Appendix B.

The computing time of the three methods under consideration is shown in Figure 3.5(a). The

proposed methods outperform PPSBM in terms of computing time as well as scalability. In par-

ticular, the computing time of both SidSBMs seems to increase sublinearly with respect to the size

of network p. To explain this phenomenon, we break down the total computing time into the num-

ber of iterations between the centering and clustering steps, and the computing time per iteration

shown in Figure 3.5(b) and (c). We find that the computing time per iteration is roughly linear in

p, whereas the number of iterations decreases as p increases for p ≥ 60. This is a promising sign

that the proposed methods can potentially handle large networks with the computing cost being

linear in the size of network.

One computational concern in non-convex optimization is the requirement of multiple initializa-

tions to achieve global minimum. During our simulation experiment, we observe that the initializa-

tion scheme in Remark 3.4.1 might lead to local minimums, e.g., empty clusters. Therefore, when

the size of any estimated cluster is less than p/10, we restart the algorithm by jittering the initial

values as discussed in Remark 3.4.1. In Figure 3.6(a), we see that the proposed initialization scheme

offers comparable performance to random initialization with three restarts, and that keep increas-

ing the number of random restarts can only result in diminishing improvement in performance.
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Figure 3.6. Performance of proposed initialization scheme and model selection
criterion (i.e., ICL) in simulation with over 1500 replicates. Simulated data is gen-
erated under the setting with p = 30, β = 1.9, and V = 80. Panel (a) displays
trajectories of 1-ARI and MISE as iterations proceed, using proposed initialization
or random initialization with restarts. When multiple restarts are applied, the best
result is selected using the objective function in (3.6). The performance of pro-
posed initialization scheme is comparable to random initialization with ten restarts.
Panel (b) displays values of the ICL criterion for various number of clusters. ICL is
able to select the correct number of clusters, i.e., K = 3.

Furthermore, the proposed initialization scheme requires only 1.07 restarts on average across the

1500 replicates, which is computationally more efficient than random initialization with three or

ten restarts.

Finally, we demonstrate the performance of integrated classification likelihood (ICL) criterion

in Figure 3.6(b). We observe that for both SidSBMs, ICL values reach maximum at the correct

number of clusters. More specifically, for SidSBM-C, ICL correctly selects K̂ = 3 in all 1500

replicates, and for SidSBM-P, ICL selects K̂ = 3 in 84.6% of the 1500 replicates.

3.6. Real Data Application

We utilize the proposed model to analyze the neural data set from Wan et al. [2019]. Wan

and colleagues recorded the development of motor circuits in the spinal cord of zebrafish. The

developmental process was observed from approximately 17.5 hours to 22 hours post fertilization.
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In the data set that we analyze, a total of 96 neurons are observed in the spinal cord. The spatial

distribution of these neurons is depicted in Figure B.11. Among the observed neurons, 40 neurons

are located in the left spine, while the remaining 56 neurons are located in the right spine. The

activities and locations of neurons were recorded with calcium imaging and processed by Wan et al.

[2019]. During the recorded period, neurons displayed increasing synchronization over time that

indicated the functional maturation of the motor circuit. At around 22 hours post fertilization, the

motor circuit was able to instruct early motor behaviors. We refer interested readers to Wan et al.

[2019] for more experiment details. In this analysis, we aim to learning the roles of neurons during

motor circuit development.

We apply SidSBM-C to the recorded development of neural networks where nodes represent

neurons and edges represent synchronization between two neurons. Roughly speaking, we define

the connecting time between neurons (i.e. ti,j ’s) to be the time point when the two neurons have

correlated activities. Details of preprocessing are available in Section B.5 in Appendix B. Neural

networks from the left and right spines are treated as two separate networks in our analysis. To be

specific, we apply SidSBM-C with ε = 10−3, γ = 0.1 and L = 336 on the two networks separately,

with estimates (f̂L, ẑL, v̂L) and (f̂R, ẑR, v̂R). Here the value of γ is selected using ICL, and it is

noteworthy that the data analysis results remain unchanged while γ ranges from 0.01 to 0.3. We

simultaneously select the number of clusters (i.e., K) for both spines using the sum of ICLs for the

two networks. Each fit of the method takes about 30 seconds (using a machine with an AMD Epyc

7351 processor, 4GB RAM, R 3.6.3). When accounting for the selection of both tuning parameters

(i.e., γ ∈ {0.01, 0.03, 0.1, 0.3} and K ∈ {2, 3, 4, 5}), the overall computational time for the obtained

real data results is approximately eight minutes. Recall that Proposition 3.2.1 shows that cluster

memberships and intensities are identifiable up to a permutation of cluster labels. Hence we match

the cluster memberships for the left spine (i.e., ẑL) and the right spine (i.e., ẑR) by maximizing the

sum of cross-correlations between f̂L and f̂R.

Figure 3.7 shows that estimated representative connecting intensities for left and right spines,

i.e., f̂L and f̂R, are highly consistent, although the estimation was done separately on the two net-

works. In particular, intensities (f̂L,1,1, f̂L,1,2, f̂L,2,2) and (f̂R,1,1, f̂R,1,2, f̂R,2,2) are almost identical.

Furthermore, intensities f̂L,3,k and f̂R,3,k have similar shapes for k = 1, 2, 3 despite having a time

lag (see Figure B.15 in Appendix B). We hypothesize that the time lag might be due to estimation
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Figure 3.7. Estimated connecting intensities on the neural data set from Wan
et al. [2019]. The rows and columns are indexed by clusters as shown in the top
left squares on diagonal. For q, k = 1, 2, 3, solid and dashed curves at position (q, k)

represent estimated representative connecting intensity f̂L,q,k and f̂R,q,k from the left
and right spines, respectively. Each subfigure contains a tabular legend, where the
first row shows “L” for “left” and “R” for “right”, the second row shows connecting
probabilities, the third row shows the sizes of pairs of clusters. Networks in the left
and right spines are fitted separately, but the estimated representative connecting
intensities are highly consistent.

errors given the large dispersion of f̂3,k’s and the small sizes of the third clusters. Since the two

networks are from the same zebrafish, it is natural to expect consistency between them. However,

it is worthwhile to emphasize that the estimation procedure does not enforce any constraints to

encourage consistency between estimated representative connecting intensities of the two networks.

The consistent representative connecting intensities from two sides of spine are likely reflecting the

true mechanism of neural circuit development.

In addition, time shifts of neurons in the same cluster can be very different. Indeed, time shifts

seem to be positively correlated with the AP-coordinates of neurons as shown in Figure 3.8(a).
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Figure 3.8. Estimated time shifts and spatial distribution of neurons in both left
and right spines. Each dot represents a neuron, whose color indicates the neuron’s
estimated cluster membership and the shape indicates the mnx label provided in
the data set (see Wan et al. [2019] for details). Panel (a) shows that the time shifts
might be positively correlated with the AP-coordinates of neurons, where the solid
line is the regression line with least absolute deviation (i.e., median regression).
Panel (b) shows that most of neurons in the dorsal side that belong to the mnx-
population have the same estimated cluster membership.

Methods that do not account for time shifts may group neurons with similar time shifts into the

same cluster, leading to less consistent estimates of the intensities between the left and right spines.

For completeness, we provide the results of applying PPSBM on this data set in Section B.6.5.

The estimated representative connecting intensities and time shifts reveal different roles of the

clusters during the development of neural circuits. Firstly, neurons in Cluster 1 might be responsible

for initiating neural circuit development, since they are the first to build edges both in the repre-

sentative connecting intensities and have the smallest time shifts. This early-active behavior aligns

with the recognized role of motoneurons [see, e.g., Wenner and O’Donovan, 2001, Blankenship and

Feller, 2010, Wan et al., 2019]. A noteworthy association exists between neurons in Cluster 1 and

motoneurons: 98% of neurons in Cluster 1 exhibit mnx1 expression, which is commonly associated

with motoneurons [Jao et al., 2012, Wan et al., 2019]. Secondly, neurons in Cluster 2 are likely to be

recruited by neurons in Cluster 1, because Cluster 2 tends to establish edges with Cluster 1 faster

than among themselves. The recruitment phenomenon of neurons aligns with findings in prior

studies [Nishimaru et al., 2005, Blankenship and Feller, 2010, Wan et al., 2019]. Lastly, neurons

in Cluster 3 have lower connecting probabilities and slower edge formation speed than neurons in
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the other two clusters. We hypothesize that neurons in Cluster 3 may not manifest their functions

during the experiment period (i.e., 17.5 hours to 22 hours post fertilization), instead, they might

play essential roles in a later stage of the development, for instance, generation and coordination

of rhythmic motor patterns [Menelaou and McLean, 2019, Song et al., 2020].

Remark 3.6.1. Interestingly, Figure 3.8(b) shows that 86.7% of the 15 mnx− neurons (see Wan

et al. [2019] for details), which are located at the dorsal side of the spine, are grouped into the same

cluster. It is worthwhile to emphasize that the proposed method does not use the spatial locations or

the mnx labels of neurons. We suspect that the estimated clusters might be biologically meaningful

that warrants further investigation.

Remark 3.6.2. The data analysis results substantiate the viability of the conditions in Assump-

tion 3.2.1. We can see from Figure 3.7 that the three clusters demonstrate unique intensity shapes,

all intensities deviate from the constant zero function, and the values of f̂L,1,1(t) and f̂R,1,1(t) be-

come non-zero as soon as t surpasses zero, which suggest the feasibility of Conditions C3.1, C3.3,

and C3.4 in this data set. Additionally, Figure B.16 in Appendix B presents the distribution of

time shifts for neurons within the three clusters, which confirms the attainability of Condition C3.2

in the real data context.

3.7. Discussion

In this article, we study the problem of estimating cluster memberships and representative con-

necting intensities from dynamic networks with unknown time shifts. We note that there are a few

directions that can be explored in future works.

First of all, the proposed method assumes that edges are persistent and the network has stabilized

by the end of the experiment. These assumptions rule out networks where edges can vanish or

constantly change, such as biological neural networks during learning. We can generalize the

proposed model by introducing two separate intensities to characterize the stochastic formation of

edges and stochastic deletion of edges as in Krivitsky and Handcock [2014], Kreiß et al. [2019].

Secondly, we only consider one network in this analysis. A natural extension is to consider

networks in a multiple-subject setting [Zhang et al., 2020, Paul and Chen, 2020, Pavlović et al.,

2020]. For instance, neural circuits from different zebrafish may share similar connecting intensities
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that can be estimated simultaneously. In this direction, a key issue to address is how to match

cluster labels across subjects that have different sets of nodes.

Finally, the theoretical properties of the proposed estimators have not been examined. For static

stochastic block models, the minimax convergence rate of the estimated connecting probabilities

has been well-studied (see, e.g., Gao et al., 2015). Recently, Longepierre and Matias [2019] and

Pensky [2019] establish the consistency and minimax optimality for two specific dynamic stochastic

block models. Based on the established framework [Gao et al., 2015, Pensky, 2019], we may adapt

the theory of shape invariant models [Bigot et al., 2013, Bigot and Gendre, 2013] to discuss the

theoretical properties of joint estimation of time shifts and connecting intensities.
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APPENDIX A

Appendix for Chapter 2

A.1. Proof of Proposition 2.2.1

Suppose (a, f ,v) ∈ Θ0 are such that for all t ∈ [0, T ],w∗ ∈ [0,W ]M , i ∈ [n] the following equality

holds:

a∗ +
∑

m∈[M ]

Sv∗i,m+w∗
mf∗m(t) = a+

∑
m∈[M ]

Svi,m+w∗
mfm(t).(A.1)

Noting that T0 + V +W ≤ T by Assumption C2.1, the equation in (A.1) can be formulated in the

frequency domain as follows: for ξ ̸= 0, w∗ ∈ [0,W ]M , i ∈ [n],

∑
m∈[M ]

exp
{
− j 2πξ(v∗i,m + w∗

m)
}
ϕ∗m(ξ) =

∑
m∈[M ]

exp {− j 2πξ(vi,m + w∗
m)}ϕm(ξ),(A.2)

where ϕ∗m(ξ) and ϕm(ξ) are the Fourier coefficients of f∗m(t) and fm(t) at frequency ξ.

We first show an intermediate result that exp
{
− j 2πξ(v∗i,m − vi,m)

}
ϕ∗m(ξ) = ϕm(ξ). By employ-

ing matrix notations, (A.2) can be written as, for ξ ̸= 0, w∗ ∈ [0,W ]M , i ∈ [n],

η∗(ξ)⊤ψ∗
i (ξ) = η

∗(ξ)⊤ψi(ξ),(A.3)

where

η∗(ξ) ≡ [exp {− j 2πξw∗
1} · · · exp {− j 2πξw∗

M}]
⊤,(A.4)

ψ∗
i (ξ) ≡

[
exp

{
− j 2πξv∗i,1

}
ϕ∗1(ξ) · · · exp

{
− j 2πξv∗i,M

}
ϕ∗M (ξ)

]⊤
,(A.5)

ψi(ξ) ≡ [exp {− j 2πξvi,1}ϕ1(ξ) · · · exp {− j 2πξvi,M}ϕM (ξ)]⊤.(A.6)

From Assumption C2.2, we know that E[η∗(ξ)η∗(ξ)⊤] is invertible for ξ ∈ R \ {0}. Therefore, we

know from (A.3) that, for ξ ̸= 0, i ∈ [n],

ψ∗
i (ξ) = ψi(ξ).(A.7)
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Substituting the definitions of ψ∗
i (ξ) and ψi(ξ) in (A.5) and (A.6) into (A.7), we obtain that, for

ξ ̸= 0, i ∈ [n], m ∈ [M ],

exp
{
− j 2πξ(v∗i,m − vi,m)

}
ϕ∗m(ξ) = ϕm(ξ).(A.8)

Now we show that, for m ∈ [M ] such that the set {t : f∗m(t) ̸= 0} is of positive measure, the

subject-specific time shifts are identifiable up to a constant, i.e., v∗i,m− vi,m = cm for i ∈ [n], where

cm is a constant independent of i. Based on (A.8), it can be derived that for any ξ ̸= 0, m ∈ [M ],

i, i′ ∈ [n],

exp
{
− j 2πξ(v∗i,m − vi,m)

}
ϕ∗m(ξ) = exp

{
− j 2πξ(v∗i′,m − vi′,m)

}
ϕ∗m(ξ).(A.9)

Consider function g(t) ≡ Sv∗i,m−vi,mf∗m(t)−Sv∗
i′,m−vi′,mf∗m(t). From (A.9) we know that the Fourier

coefficient of g(t) is zero at frequency ξ ̸= 0. Moreover, from the definition of the set F , we know

that the function g(t) has a bounded support. By applying Lemma A.8.0.3 to the function g(t),

we deduce that g(t) = 0 almost everywhere. Consequently, for any i, i′ ∈ [n] and m ∈ [M ],

Sv∗i,m−vi,mf∗m(t)− Sv∗
i′,m−vi′,mf∗m(t) = 0 a.e.(A.10)

or equivalently,

S
(v∗i,m−vi,m)−(v∗

i′,m−vi′,m)
f∗m(t) = f∗m(t), a.e.(A.11)

The equation in (A.11) implies that, for m ∈ [M ] such that the set {t : f∗m(t) ̸= 0} is of positive

measure, (v∗i,m − vi,m)− (v∗i′,m − vi′,m) = 0 for any i, i′ ∈ [n]. Consequently, for i ∈ [n],

v∗i,m − vi,m = cm,(A.12)

where cm is a constant independent of i. In other words, Statement P2.2 is proved.

Next we show that, for m ∈ [M ], Scmf∗m(t) = fm(t) for almost every t ∈ R. Plugging (A.12)

into (A.8), we obtain that, for m ∈ [M ] such that the set {t : f∗m(t) ̸= 0} is of positive measure and

ξ ̸= 0,

exp {− j 2πξcm}ϕ∗m(ξ) = ϕm(ξ).(A.13)
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Applying the inverse Fourier transformation to (A.13) yields

Scmf∗m(t) = fm(t) + c a.e.,(A.14)

where c ∈ R is a constant. From the definition of F , we know that

f∗m(t) = fm(t) = 0, for t ∈ R \ [0, T0].(A.15)

Combining (A.14) and (A.15), we can derive that c = 0. Inserting the value of c to (A.14) yields

that, for m ∈ [M ] such that the set {t : f∗m(t) ̸= 0} is of positive measure,

Scmf∗m(t) = fm(t) a.e.(A.16)

Notably, for m ∈ [M ] such that f∗m = 0 almost everywhere, (A.16) always holds. Thus (A.16) holds

for all m ∈ [M ], in other words, Statement P2.1 is proved.

Finally, substituting (A.16) and (A.12) into (A.1), we derive that,

a∗ = a.(A.17)

In other words, Statement P2.3 is proved. □

A.2. Proof of Proposition 2.3.1

Suppose there exist (z,a, f ,v) ∈ Θ1 such that for all t ∈ [0, T ], w∗ ∈ [0,W ]M , i ∈ [n], the

following equation holds:

a∗z∗i +
∑

m∈[M ]

Sv∗i,m+w∗
mf∗z∗i ,m(t) = azi +

∑
m∈[M ]

Svi,m+w∗
mfzi,m(t).(A.18)

Using T0 + V +W ≤ T by Assumption C2.1, (A.18) can be formulated in the frequency domain as

follows: for ξ ̸= 0, w∗ ∈ [0,W ]M , i ∈ [n],

∑
m∈[M ]

exp
{
− j 2πξ(v∗i,m + w∗

m)
}
ϕ∗z∗i ,m(ξ) =

∑
m∈[M ]

exp {− j 2πξ(vi,m + w∗
m)}ϕzi,m(ξ),(A.19)

where ϕ∗k,m(ξ) and ϕk,m(ξ) are the Fourier coefficients of f∗k,m and fk,m at frequency ξ.
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We first show an intermediate result that exp
{
− j 2πξ(v∗i,m − vi,m)

}
ϕ∗z∗i ,m

(ξ) = ϕzi,m(ξ). By

employing matrix notations, (A.19) can be written as

η∗(ξ)⊤ψ∗
i (ξ) = η

∗(ξ)⊤ψi(ξ),(A.20)

where

η∗(ξ) ≡ [exp {− j 2πξw∗
1} · · · exp {− j 2πξw∗

M}]
⊤,(A.21)

ψi
∗(ξ) ≡

[
exp

{
− j 2πξv∗i,1

}
ϕ∗z∗i ,1(ξ) · · · exp

{
− j 2πξv∗i,M

}
ϕ∗z∗i ,M (ξ)

]⊤
,(A.22)

ψi(ξ) ≡ [exp {− j 2πξvi,1}ϕzi,1(ξ) · · · exp {− j 2πξvi,M}ϕzi,M (ξ)]⊤.(A.23)

From Assumption C2.2 we know that E[η∗(ξ)η∗(ξ)⊤] is invertible for ξ ∈ R \ {0}. Therefore, we

have that, for ξ ̸= 0,

ψ∗
i (ξ) = ψi(ξ),(A.24)

Substituting the definitions of ψ∗
i (ξ) and ψi(ξ) in (A.22) and (A.23) into (A.24), we obtain that,

for ξ ̸= 0, i ∈ [n], m ∈ [M ],

exp
{
− j 2πξ(v∗i,m − vi,m)

}
ϕ∗z∗i ,m(ξ) = ϕzi,m(ξ).(A.25)

Now we show that cluster memberships are identifiable up to a permutation of cluster labels, i.e.,

zi = σ(z∗i ) where σ : [K] → [K] is a permutation of [K]. To achieve this, we prove the following

two statements: (i) zi = zi′ ⇒ z∗i = z∗i′ ; and (ii) zi ̸= zi′ ⇒ z∗i ̸= z∗i′ . First, based on (A.25), we can

derive that for i, i′ ∈ [n] such that zi = zi′ , ξ ̸= 0, and m ∈ [M ],

exp
{
− j 2πξ(v∗i,m − vi,m)

}
ϕ∗z∗i ,m(ξ) = exp

{
− j 2πξ(v∗i′,m − vi′,m)

}
ϕ∗z∗

i′ ,m
(ξ).(A.26)

Consider a function g(t) defined as g(t) ≡ Sv∗i,m−vi,mf∗z∗i ,m
(t)−Sv∗

i′,m−vi′,mf∗z∗
i′ ,m

(t). From (A.26) we

know that the Fourier transform of g(t) is zero for ξ ̸= 0. Moreover, from the definition of F we

know that the function g(t) has a bounded support. Applying Lemma A.8.0.3 to g(t), we deduce

that g(t) = 0 almost everywhere. Consequently, for any i, i′ ∈ [n] that zi = zi′ and m ∈ [M ], the
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following equation holds:

Sv∗i,m−vi,mf∗z∗i ,m(t)− Sv∗
i′,m−vi′,mf∗z∗

i′ ,m
(t) = 0, a.e.(A.27)

According to Assumption C2.3, if z∗i ̸= z∗i′ , then there exists m0 ∈ [M ] such that for any x ∈ R,

{t ∈ R : Sxf∗z∗i ,m0
(t) ̸= f∗z∗

i′ ,m0
(t)} has a positive measure. Therefore, in order for (A.27) to hold,

we must have z∗i = z∗i′ . In other words,

zi = zi′ ⇒ z∗i = z∗i′ .(A.28)

Second, suppose there exist i0, i1 such that zi0 ̸= zi1 and z∗i0 = z∗i1 . Given that there are K non-

empty clusters by definition, it is always possible to find indices i2, . . . , iK such that z∗i1 , . . . , z
∗
iK

are pairwise distinct. Based on (A.28), it follows that zi1 , . . . , ziK are also pairwise distinct. Since

zi0 ̸= zi1 by definitions of i0 and i1, there must exist k ∈ [K] \ {1} such that zi0 = zik , which,

according to (A.28), implies z∗i0 = z∗ik . Thus, by definitions of i0 and i1, we have z∗i0 = z∗i1 = z∗ik .

This contradicts with the definition of i2, . . . , iK , which asserts that z∗i1 is different from z∗i2 , . . . , z
∗
iK
.

Consequently, such i0 and i1 cannot exist. Hence we know that, for all i, i′ ∈ [n],

zi ̸= zi′ ⇒ z∗i ̸= z∗i′ .(A.29)

Combining (A.29) and (A.28), we obtain that z∗i = z∗i′ if and only if zi = zi′ . This further implies

that there exists a permutation of [K], denoted by σ : [K]→ [K], such that for i ∈ [n],

zi = σ(z∗i ).(A.30)

In other words, Statement P2.4 is proved.

Now we show that, for k ∈ [K],m ∈ [M ] such that the set {t : f∗k,m(t) ̸= 0} is of positive

measure, the subject-specific time shifts are identifiable up to a constant, i.e., v∗i,m−vi,m = ck,m for

i ∈ {i : z∗i = k}, where ck,m is a constant independent of i. Plugging (A.30) into (A.27), we have

that, for i, i′ ∈ [n] such that z∗i = z∗i′ = k and m ∈ [M ],

Sv∗i,m−vi,mf∗k,m(t) = S
v∗
i′,m−vi′,mf∗k,m(t), a.e.(A.31)
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From the definition of F we know that f∗k,m(t) has a bounded support for k ∈ [K] and m ∈ [M ].

Therefore, (A.31) implies that, for k ∈ [K] and m ∈ [M ] such that the set {t : f∗k,m(t) ̸= 0} is of

positive measure, and i, i′ ∈ [n] such that z∗i = z∗i′ ,

v∗i,m − v∗i′,m = vi,m − vi′,m.(A.32)

It follows from (A.32) that

v∗i,m − vi,m = ck,m,(A.33)

where ck,m ∈ R is a constant independent of i. In other words, Statement P2.7 is proved.

Next we show that Sck,mf∗k,m(t) = fσ(k),m(t) for almost every t ∈ R. Plugging (A.33) and (A.30)

into (A.25), we obtain that, for k ∈ [K] and m ∈ [M ] such that the set {t : f∗k,m(t) ̸= 0} is of

positive measure and ξ ̸= 0,

exp {− j 2πξck,m}ϕ∗k,m(ξ) = ϕσ(k),m(ξ),(A.34)

Applying the inverse Fourier transformation to (A.34) yields

Sck,mf∗k,m(t) = fσ(k),m(t) + c a.e.,(A.35)

where c ∈ R is a constant. From the definition of F , we know that

f∗k,m(t) = fk,m(t) = 0, for t ∈ R \ [0, T0].(A.36)

Combining (A.35) and (A.36), we can derive that c = 0. Inserting the value of c to (A.35) yields

that, for k ∈ [K] and m ∈ [M ] such that the set {t : f∗k,m(t) ̸= 0} is of positive measure,

Sck,mf∗k,m(t) = fσ(k),m(t) a.e.(A.37)

Notably, for k ∈ [K] and m ∈ [M ] such that f∗k,m = 0 almost everywhere, (A.37) always holds. In

other words, (A.37) holds for all k ∈ [K] and m ∈ [M ]. Therefore, Statement P2.6 is proved.

Finally, substituting (A.37), (A.33) and (A.30) into (A.18), we derive that, for k ∈ [K],

a∗k = aσ(k).(A.38)
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In other words, Statement P2.5 is proved. □

A.3. Connection Between the Additive Shape Invariant Model and FPCA

When the variances of vi,m’s and w∗
r,m’s are both close to zero, the proposed model in (2.1) can

be approximated using the Taylor expansion:

λi,r(t) = a+
∑

m∈[M ]

Sui,r,mfm(t)

= a+
∑

m∈[M ]

fm ({t− Eui,r,m} − {ui,r,m − Eui,r,m})

≈ a+
∑

m∈[M ]

{fm(t− Eui,r,m)− (ui,r,m − Eui,r,m)Dfm(t− Eui,r,m)}

= a+
∑

m∈[M ]

fm(t− Eui,r,m)−
∑

m∈[M ]

(ui,r,m − Eui,r,m)Dfm(t− Eui,r,m),

(A.39)

where ui,r,m ≡ vi,m + w∗
r,m, and Dfm denotes the first order derivative of fm. In (A.39), the first

equality follows from the definition of ui,r,m, the second equality follows from the definition of the

shift operator, the approximation in the third line follows from the Taylor expansion. To elucidate

the connection between the proposed additive shape invariant model and the FPCA, we define a

new set of parameters:

µ(t) ≡ a+
∑

m∈[M ]

fm(t− Eui,r,m),(A.40)

ζi,r,m ≡ −(ui,r,m − Eui,r,m) ∥Dfm(t− Eui,r,m)∥t ,(A.41)

ψm(t) ≡ Dfm(t− Eui,r,m) ∥Dfm(t− Eui,r,m)∥−1
t .(A.42)

By definitions of ζi,r,m and ψm(t) in (A.41) and (A.42), we know that Eζi,r,m = 0, and ∥ψm(t)∥t = 1.

Using the new set of parameters in (A.40), (A.41) and (A.42), the model approximation in (A.39)

can be expressed as follows:

λi,r(t) ≈ µ(t) +
∑

m∈[M ]

ζi,r,m ψm(t).(A.43)

When {fm(t − Eui,r,m) : m ∈ [M ]} have non-overlapping supports, it follows that ψm(t)’s are

mutually orthogonal. Consequently, the approximate model in (A.43) is an FPCA model, where
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ψ1(t), · · · , ψM (t) correspond to the first M eigenfunctions, and ζi,r,1, . . . , ζi,r,M correspond to the

principal components associated with the eigenfunctions.

A.4. Detailed Derivation of Solutions in (2.14) and (2.15)

The first optimization problem in the centering step (2.11) can be elaborated as follows:

â′, f̂ ′ = argmin
a′,f ′

L1(ẑ,a
′, f ′, v̂)

= argmin
a′,f ′

∑
i∈[n],r∈[R]

βi,r
1

T

∥∥∥∥∥ yi,r(t)Ni,r(T )
−
{
a′ẑi +

∑
m∈[M ]

S v̂i,m+w∗
r,mf ′ẑi,m(t)

}∥∥∥∥∥
2

t

.

(A.44)

Utilizing the renowned Parseval’s theorem, the optimization problem in (A.44) can be formulated

as follows:

â′, ϕ̂′ = argmin
a′,ϕ′

∑
i∈[n],r∈[R]

βi,r
∑
l∈Z

∣∣∣∣∣ ηi,r,l
Ni,r(T )

−
{
a′ẑi1(l = 0) +

∑
m∈[M ]

exp
{
− j 2πl(v̂i,m + w∗

r,m)T−1
}
ϕ′ẑi,m,l

}∣∣∣∣∣
2

,

(A.45)

where ϕ′ ≡ (ϕ′k,m,l)k∈[K],m∈[M ],l∈Z, {ϕ′ẑi,m,l : l ∈ Z} denotes the Fourier coefficients of f ′zi,m(t),

{ηi,r,l : l ∈ Z} denotes the Fourier coefficients of yi,r(t), and j denotes the imaginary unit.

The optimization problem in (A.45) can be solved by breaking it down to smaller independent

problems. For k ∈ [K] and l ∈ Z, let ϕ′
k,∗,l ≡ (ϕ′k,m,l)m∈[M ]. For l ̸= 0, the objective function

associated with ϕ′
k,∗,l is essentially a weighted sum of squares:

ϕ̂′
k,∗,l = argmin

ϕ′
k,∗,l

(hk,l −Ek,lϕ
′
k,∗,l)

⊤Bk (hk,l −Ek,lϕ
′
k,∗,l),(A.46)

where hk,l ≡ (ηi,r,lNi,r(T )
−1)(i,r)∈Ĉk×[R], Ĉk ≡ {i ∈ [n] : ẑi = k}, Ek,l ≡ [exp{− j 2πl(v̂i,m +

w∗
r,m)T−1}](i,r)∈Ĉk×[R],m∈[M ], Bk is a diagonal matrix of (βi,r)(i,r)∈Ĉk×[R], and z denotes the complex

conjugate of z for any z ∈ C. As a result, the solution to (A.46) is:

ϕ̂′
k,∗,l =

(
Ek,l

⊤
Bk Ek,l

)−1 (
Ek,l

⊤
Bk hk,l

)
, for l ̸= 0.(A.47)

For l = 0, the parameter ϕ′
k,∗,0 can be estimated by exploiting the definition of F . From the defini-

tion of F we know that fk,m(0) = 0 for k ∈ [K],m ∈ [M ]. Consequently, f ′k,m(0) = fk,m(0)Λ−1
k = 0.
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In addition, using the inverse Fourier transformation, we can derive that
∑

l∈Z ϕ
′
k,m,l = f ′k,m(0).

Hence we know that
∑

l∈Z ϕ
′
k,m,l = 0. This leads to the estimate of ϕ′

k,∗,0 as

ϕ̂′
k,∗,0 = −

∑
|l|≤ℓ0,l ̸=0

ϕ̂′
k,∗,l,(A.48)

where ℓ0 is the truncation frequency to facilitate the numerical feasibility of computing ϕ̂′
k,∗,0.

Based on ϕ̂′, it is straightforward to obtain estimation for a′ as follows:

â′k = argmin
a′k

∑
i∈Ĉk,r∈[R]

βi,r

∣∣∣∣∣ ηi,r,0
Ni,r(T )

−
{
a′k +

∑
m∈[M ]

ϕ̂′k,m,0

}∣∣∣∣∣
2

=

[ ∑
i∈Ĉk,r∈[R]

βi,r

{
ηi,r,0
Ni,r(T )

−
∑

m∈[M ]

ϕ̂′k,m,0

}][ ∑
i∈Ĉk,r∈[R]

βi,r

]−1

= T−1 −
∑

m∈[M ]

ϕ̂′k,m,0,

(A.49)

where in the third equality we use ηi,r,0 = T−1
∫ T
0 yi,r(t)dt = T−1Ni,r(T ). Moreover, using the

inverse Fourier transform, the estimation for f ′ can be derived as follows:

f̂ ′k,m(t) =
∑
|l|≤ℓ0

ϕ̂k,m,l exp( j 2πltT
−1).(A.50)

A.5. Implementation of Newton’s Method in the Clustering Step

We employ the Newton’s method to solve the optimization problem in (2.23) of the main text.

The objective function in (2.23) can be formulated in the frequency domain:

L1,i(k, â
′, f̂ ′,vi) =

∑
r∈[R]

βi,r
∑
l∈Z

L1,i,l(vi),(A.51)

where L1,i,l(vi) is defined as

L1,i,l(vi) ≡

∣∣∣∣∣ ηi,r,l
Ni,r(T )

−
{
â′k1(l = 0) +

∑
m∈[M ]

exp
{
− j 2πl(vi,m + w∗

r,m)T−1
}
ϕ̂′k,m,l

}∣∣∣∣∣
2

.(A.52)

The definition in (A.52) suggests that L1,i,l(vi) remains constant with respect to vi when l = 0.

Moreover, since f̂k,m is calculated using the truncated Fourier series (see (2.18) of the main text),

it follows that ϕ̂′k,m,l = 0 for |l| > ℓ0. As a result, L1,i,l(vi) remains constant with respect to vi for
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|l| > ℓ0. Therefore, the optimization problem in (2.23) can be formulated in the frequency domain

as

ṽi|k = argmin
vi

∑
r∈[R]

βi,r
∑

|l|≤ℓ0,l ̸=0

L1,i,l(vi)

= argmin
vi

∑
r∈[R]

βi,r
∑

|l|≤ℓ0,l ̸=0

∣∣∣∣∣ ηi,r,l
Ni,r(T )

−
∑

m∈[M ]

exp
{
− j 2πl(vi,m + w∗

r,m)T−1
}
ϕ̂′k,m,l

∣∣∣∣∣
2

≡ argmin
vi

Qi(vi).

(A.53)

where the first equality follows from the fact that L1,i,l(vi) remains constant with respect to vi for

l = 0 or |l| > ℓ0, and the second equality follows from the definition of L1,i,l(vi) in (A.52).

We solve the optimization problem in (A.53) using the Newton’s method. Specifically, the esti-

mate of vi is updated iteratively via

v̂i ← v̂i − trunc{[∇2Qi(v̂i)]
−1∇Qi(v̂i)},(A.54)

where trunc{x} is a function defined as

trunc{x} ≡


−T/10, if x < −T/10,

x, if x ∈ [−T/10, T/10],

T/10, if x > T/10,

(A.55)

∇2Qi(v̂i) ≡ (∂2Qi(vi)/∂vi,m1∂vi,m2)(m1,m2)∈[M ]2 denotes the Hessian matrix, and∇Qi(v̂i) ≡ (∂Qi(vi)/∂vi,m)m∈[M ]

denotes the gradient. The gradient can be calculated through the following partial derivatives: for

m ∈ [M ],

∂Qi(vi)

∂vi,m
= −2

∑
r∈[R]

βi,r
∑

|l|≤ℓ0,l ̸=0

ℜe

([
(− j 2πlT−1) exp

{
− j 2πl(vi,m + w∗

r,m)T−1
}
ϕ̂′k,m,l

]

×
[

ηi,r,l
Ni,r(T )

−
∑

m′∈[M ]\{m}

exp
{
− j 2πl(vi,m′ + w∗

r,m′)T−1
}
ϕ̂′k,m′,l

])
.

(A.56)
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The Hessian matrix can be calculated through the following second order partial derivatives: for

m ∈ [M ],

∂2Qi(vi)

∂v2i,m
= −2

∑
r∈[R]

βi,r
∑

|l|≤ℓ0,l ̸=0

ℜe

([
(− j 2πlT−1)2 exp

{
− j 2πl(vi,m + w∗

r,m)T−1
}
ϕ̂′k,m,l

]

×
[

ηi,r,l
Ni,r(T )

−
∑

m′∈[M ]\{m}

exp
{
− j 2πl(vi,m′ + w∗

r,m′)T−1
}
ϕ̂′k,m′,l

])
,

(A.57)

while for m1,m2 ∈ [M ] such that m1 ̸= m2,

∂2Qi(vi)

∂vi,m1∂vi,m2

= 2
∑
r∈[R]

βi,r
∑

|l|≤ℓ0,l ̸=0

ℜe

([
(− j 2πlT−1) exp

{
− j 2πl(vi,m1 + w∗

r,m1
)T−1

}
ϕ̂′k,m1,l

]

×
[
(− j 2πlT−1) exp

{
− j 2πl(vi,m2 + w∗

r,m2
)T−1

}
ϕ̂′k,m2,l

])
.

(A.58)

A.6. Additional Simulation Results

A.6.1. The fourth experiment. In the fourth experiment, we evaluate the performance of

the proposed method under conditions simulating the scale of intensity components in the neural

data. Specifically, we set n = 40, K = 4, ak = 2, and set fk,m’s as shown in Table A.1. The

remaining parameters are consistent with those used in the second and third experiments. We

apply the proposed method with K = 4 and γ = 0.01. The results are presented in Figure A.1. It

is evident that both the clustering and intensity estimation performances improve with increasing

values of R and τ . This finding is consistent with the observations from Experiments 1 and 3.

Furthermore, in comparison to Experiment 3, the magnitudes of ak’s and the scales of fk,m’s are

reduced by a factor of 10. Consequently, Figure A.1 illustrates that achieving good performance

requires R = 100 observations, which is 10 times more than what was needed in Experiment 3.

A.6.2. Heuristic selection method for γ. Figure A.2 shows the trend of L1 and L2 as γ

changes, where the candidate range of γ is discussed in Section A.9. From Figure A.2, we can see

consistent trends of L1 and L2 across the designated number of clusters K̂, indicating that the

choice of γ using the proposed heuristic method is insensitive to the change in K̂.

Figure A.3 shows the clustering performance as γ changes. We can see that the clustering per-

formance slightly improves when γ increases from 10−4 to 10−2. This is because the within-cluster
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Table A.1. True values of {fk,m(t) : k ∈ [K],m ∈ [M ]} in Experiment 4. The pa-
rameter ρ controls the distinctiveness across clusters, whose value is altered in the ex-
periment. The functions q1(t) and q2(t) are defined in (2.28), h1(x) ≡ |max(x, 0)|1/2,
and h2(x) ≡ 1 + min(x, 0).

m = 1 m = 2
k = 1 5.25× q1(t) 5.25× q2(t)

k = 2
6× [1− h1(2ρ− 1)]× q1(t)
+4.8× h2(2ρ− 1)× q2 (2[t− 0.8])

6× [1 + h1(2ρ− 1)]× q2(t)
−4.8× h2(2ρ− 1)× q2(2t)

k = 3 6.75× (1 + 0.5ρ)× q1(t) 6.75× (1− 0.5ρ)× q2(t)

k = 4 7.5× (1 + ρ)× q1(t) 7.5× (1− ρ)× q2(t)

Number of observations (i.e., R)

1-
A
R
I

(a)

Number of observations (i.e. R)

lo
g(
M
IS
E
)

τ = 0.1

τ = 0.2

τ = 0.3

(b)

Figure A.1. Performance of proposed method in Experiment 4 with 1000 repli-
cates. Synthetic data is generated with K = 4, n = 40, ρ = 0.5, and varying R
and τ . Panel (a) and panel (b) display the clustering performance and intensity
estimation performance, respectively.

heterogeneity of the distribution of event times remains unchanged (see Figure A.2(1a)), while the

within-cluster heterogeneity of event counts decreases (see Figure A.2(1b)). Moreover, we can see

from Figure A.3 that once γ exceeds 0.01, the clustering performance rapidly deteriorates. This is

because the estimated clusters have increasing within-cluster heterogeneity of the distribution of

event times when γ exceeds 0.01 (see Figure A.2(1a)). Therefore, by choosing the largest γ before

observing a significant increase in L1, we are able to achieve optimal clustering performance.

A.6.3. Sensitivity analysis with respect to ℓ0. Figure A.4 shows how the performance

of clustering and intensity estimation changes with different values of ℓ0. Both criteria decrease

when ℓ0 increases from 2 to 8, because higher values of ℓ0 allow the estimated intensities to capture

more information in the distribution of event times. As ℓ0 further increases, both 1-ARI and MISE
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log10(γ)

L
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K̂ = 3
K̂ = 4

K̂ = 5
K̂ = 6

(b)

log10(γ)

L
1

(a)

Figure A.2. Trends of L1 and L2 as γ changes averaged across 1000 replicates.
Synthetic data is generated with K = 4, n = 40, R = 3, τ = 0.3, ρ = 0.5. In the
legend, K̂ represents the designated number of clusters as input of the algorithm.
It is evident that the trend of L1 and L2 is consistent across the designated number
of clusters.

log10(γ)

1-
A
R
I

K̂ = 3
K̂ = 4

K̂ = 5

K̂ = 6

Figure A.3. Clustering performance as γ changes averaged across 1000 replicates.
Synthetic data is generated with K = 4, n = 40, R = 3, τ = 0.3, ρ = 0.5. In the
legend, K̂ represents the designated number of clusters as input of the algorithm.

stabilize, indicating that the estimation results are not significantly affected by further changes in

ℓ0 as long as ℓ0 is sufficiently large to capture the signal in the distribution of event times, for

instance, for the synthetic data in Figure A.4, ℓ0 = 8 is large enough.

A.6.4. Effectiveness of proposed initialization scheme. Figure A.5 shows the efficacy

of proposed initialization scheme compared to a random initialization scheme. In the random

initialization scheme, initial time shifts are set using Unif(0, v̂
(0)
i,m), and initial cluster memberships

randomly assigned. The results in Figure A.5 demonstrate that the proposed initialization method

yields better estimation than the random initialization with multiple restarts. Moreover, keep
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Figure A.4. Sensitivity analysis with respect to ℓ0 averaged over 1000 replicates.
Synthetic data is generated with K = 4, n = 40, R = 3, τ = 0.3, ρ = 0.5. Panel (a)
and (b) show that the performance of clustering and intensity component estimation
become stable when ℓ0 ≥ 8.

Number of observations (i.e., R)

1-
A
R
I

(a)

Number of observations (i.e. R)

M
IS
E
Our proposal

Random, no restart

Random, 3 restarts

Random, 5 restarts

(b)

Figure A.5. Performance of proposed initialization scheme averaged over 1000
replicates. Synthetic data is generated with K = 4, n = 40, τ = 0.3, ρ = 0.5,
and varying R. In the legend, “our proposal” stands for the proposed initializa-
tion scheme, “random” stands for the random initialization scheme with restarts.

For the random initialization scheme, time shifts are initialized using Unif(0, v̂
(0)
i,m),

and cluster memberships are initialized randomly. The best result among restarts
is selected according to the smallest objective function. Panel (a) and (b) show
that the proposed initialization scheme leads to better estimation than the random
initialization scheme with 5 restarts.

increasing the number of restarts only results in diminishing improvement in performance. Overall,

using proposed initialization scheme is computationally efficient and achieve promising estimation

performance.

A.7. Supplement for Real Data Analysis

A.7.1. Data preprocessing.
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Table A.2. Experimental conditions and total numbers of trials. In the “scenario”
column, “L” and “R” denote higher contrast in the left and right gratings, respec-
tively. The “choice” column shows “L” for moving the left grating towards the
center and “R” for moving the right grating The “feedback” column shows ”1” for
reward and ”-1” for penalty.

Scenario Choice Feedback # trials
L L 1 102
R R 1 81
R L -1 8
L R -1 3

Experimental trials. Table A.2 presents the feedback types under different experimental condi-

tions, along with the number of trials for each condition. The trials where the left visual grating

was of higher contrast and the feedback was reward are analyzed using our proposed method. We

refer to these trials as training trials. The rest of trials, which are not used to fit the proposed

model, are employed to explore the roles of identified clusters under different tasks.

Selection of time window. Due to the design of the experiment, the duration of time between

stimulus onset and feedback delivery across trials. In order to create comparable samples, we

analyze a 3.5-second time window whose center is positioned at the midpoint between 0.1 seconds

before the visual stimuli onset and 2 seconds after the feedback delivery. To be more specific, for

observation r ∈ {1, · · · , R}, the start and end time of observation r is set as

ObsStartTimer ≡ {(VisTimer − 0.1) + (FeedTimer + 2)}/2− 3.5/2,(A.59)

ObsEndTimer ≡ {(VisTimer − 0.1) + (FeedTimer + 2)}/2 + 3.5/2,(A.60)

where ObsStartTimer denotes the start time of the time window for trial r, VisTimer denotes the

visual stimulus onset time of trial r, FeedTimer denotes the feedback delivery time of trial r, and

ObsEndTimer denotes the end time of the time window for trial r. In cases where the time window

started within 1 second after the feedback delivery time of the previous trial, or ended after the

visual stimulus onset time of the next trial, we augment the spike trains as detailed in the next

section.

Here we analyze the firing activity within a T = 3.5 seconds time window due to the following

reasons. Figure A.6 displays the average neural firing rate post feedback delivery over all training

trials. It is evident that the average firing rate stabilizes at around 2 seconds post feedback delivery.
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Moreover, among the 102 training trials, the maximum duration between visual stimulus onset and

feedback delivery is 1.4 seconds. Therefore, by setting T = 3.5, we can ensure that each observation

includes at least 0.1 second before visual stimulus onset and 2 seconds after feedback delivery.

Figure A.6. Average neural firing intensities over neurons and trials. Each gray
curve represents an average firing intensity of the midbrain region in a single training
trial. All trials are aligned based on the feedback delivery time. The red curve
represents the average firing intensity across all training trials. It is observed that
the average firing intensity stabilizes approximately 2 seconds after feedback delivery.

Augmentation of spike trains. For trials with ObsStartTimer < ConcluTimer−1, where ConcluTimer−1

denotes the trial conclusion time (i.e., 1 second post feedback delivery time) of trial r − 1, we

augment the spike trains to impute the missing data. Figure A.7(a) shows that, for trials with

ObsStartTimer < ConcluTimer−1, the average intensity remains stable within 0.4 second post the

conclusion time of previous trial. Therefore, we augment spikes by making shifted copies of spikes

within 0.4 second post ConcluTimer−1. We append the following artificial spikes to the firing

activity of neuron i ∈ [n] in observation r ∈ {r : ObsStartTimer < ConcluTimer−1}:{
ti,r,j − 0.4× k : ti,r,j ∈ [ConcluTimer−1,ConcluTimer−1 + 0.4],

ti,r,j − 0.4× k ∈ [ObsStartTimer,ConcluTimer−1], k ∈ N
}
.

(A.61)

Additionally, we augment the spike trains for trials with ObsEndTimer > VisTimer+1. Fig-

ure A.7(b) shows that, for trials with ObsEndTimer > VisTimer+1, the average intensity remains

stable within 0.4 seconds before the visual stimulus onset of the next trials. Therefore, we append

the following spikes to the firing activity of neuron i ∈ [n] in observation r ∈ {r : ObsEndTimer >
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VisTimer+1}:{
ti,r,j + 0.4× k : ti,r,j ∈ [VisTimer+1 − 0.4,VisTimer+1],

ti,r,j + 0.4× k ∈ [VisTimer+1,ObsEndTimer], k ∈ N
}(A.62)

(a) (b)

Figure A.7. Neural firing patterns after the previous trial’s conclusion or before
the next trial’s visual stimulus onset. Each gray curve represents an average firing
intensity of the midbrain region in one trial. The red curves represent the average
of gray curves. Panel (a) shows the average neural firing intensities post conclusion
of the previous trials for the trial set {r : ObsStartTimer < ConcluTimer−1}. The
trials are aligned by the conclusion time of the previous trials. Panel (b) shows the
average neural firing intensities prior visual stimuli onset of the next trials for the
trial set {r : ObsEndTimer > VisTimer+1}. The trials are aligned by the visual
stimulus onset time of the next trials.

A.7.2. Feasibility of proposed model on the neural data. We investigate the feasibility

of the shape invariant assumption on the neural data in Steinmetz et al. [2019]. The assumption

posits that neural firing intensities exhibit identical shapes but with subject-specific and trial-

specific time shifts. Figure A.8 presents the empirical intensities of the four example neurons in

Figure 2.1. It is evident from Figure A.8 that, for neuron 1 and neuron 2, their firing intensities

exhibit similar shapes across trials when trials are aligned by stimulus onset time or feedback

delivery time. In addition, for neuron 3 and neuron 4, their empirical firing intensities have similar

shapes across trials when trials are aligned by the wheel movement onset time. Therefore, the

assumption that neural firing intensities have similar shapes across trials, subject to trial-specific

time shifts, appears to be feasible.
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Figure A.8. Empirical firing intensities of the four example neurons in Figure 2.1.
The first two rows present the empirical intensities for all training trials, with each
gray line representing one trial. The thick colored lines indicate the average empirical
intensity across all training trials. The third row displays the standardized average
intensities, with line colors matching those of the thick lines in the first two rows.
The third row displays the standardized average intensities. The colors of the lines
are consistent with the colors of the thick lines in the first two rows. In the third
row, the dashed blue line in the second column represents the manually shifted blue
line, adjusted to best align with the orange line.

Furthermore, Figure A.8 presents a comparison of the standardized average empirical intensities

between neuron 1 and neuron 2, as well as between neuron 3 and neuron 4. It is evident from the

figure that the average empirical intensities of neuron 1 and neuron 2 exhibit similar shapes up to

a scaling factor, as do the average empirical intensities of neuron 3 and neuron 4. The variation in

the scales of firing intensities can be effectively addressed during the estimation stage by adjusting

the value of γ. Consequently, it seems feasible to assume that neural firing intensities maintain

similar shapes across neurons within the same cluster.

A.7.3. Tuning parameter selection. We choose the values of γ and K using the heuristic

method proposed in Section 2.3.3. Figure A.9 presents the results of the heuristic method that

informs our choice of γ and K. Firstly, we establish a preliminary estimate of K by applying the

k-means algorithm on Ni(T )’s where Ni(T ) ≡ R−1
∑

r∈[R]Ni,r(T ), and selecting K using the elbow

method. Figure A.9(a) illustrates that the within-cluster variance has only marginal reduction

as the number of clusters exceeds 3. Therefore, we set K = 3 as a preliminary estimation of
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K. Secondly, given the preliminary estimation of K, we choose the largest γ before observing a

significant increase in L1. Figure A.9(b) shows that the value of L1 a significant upward trend once

γ exceeds 10−4. Therefore, we set γ = 10−4. Finally, with γ fixed at 10−4, we refine the value of

K by identifying the elbow point on the curve of overall objective function (i.e., L1 + γL2) against

K. Figure A.9(c) suggests that K = 3 is a feasible choice.
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Figure A.9. Results of the heuristic method for selection of γ and K. Panel (a)
shows the within cluster variance of Ni(T )’s obtained from the k-means algorithm
against the number of clusters, where Ni(T ) ≡ R−1

∑
r∈[R]Ni,r(T ). Using the elbow

method, we set K = 3 as a preliminary estimation of K. Panel (b) shows the values
of L1 as γ increases. The upward trend of L1 when γ exceeds 10−4 suggests the
choice of γ = 10−4. Panel (c) shows the overall objective function value obtained
from various numbers of clusters. The curve suggests a diminishing decrease in the
objective function value when K exceeds 3.

A.7.4. Intensity component refinement. We refine the estimated intensity components

by employing the proposed additive shape invariant model in (2.1) on each estimated cluster. For

Cluster 1, we apply Algorithm 2.1 on spike trains of neurons in Cluster 1, denoted as N1 ≡ {Ni,r(t) :

i ∈ Ĉ1, r ∈ [R]}. We set M = 1 and let the observation-specific time shifts w∗
r,1’s to be the visual

stimulus onset time. The rest of the parameters are set as follows: K = 1, γ = 0, ℓ0 = 10,

ϵ = 0.005. The algorithm is applied with 20 restarts, where each restart involves distinct initial

values for subject-specific time shifts. These initial values are obtained by jittering the proposed

initial subject-specific time shifts as follows: for i ∈ Ĉ1, m = 1 and x ∈ {1, · · · , 20},

ṽ
(0)
i,m,x ≡ v̂

(0)
i,m + εi,m,x, εi,m,x ∼ unif(−T/50, T/50),(A.63)

where ṽ
(0)
i,m,x represents the initial subject-specific time shifts associated subject i and stimulus m

in restart x, and v̂
(0)
i,m represents the proposed initial subject-specific time shifts defined in (2.26).
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The best result of intensity components among the 20 restarts is selected based on the smallest

value of the objective function.

For Cluster 2 and 3, Algorithm 2.1 is applied to Nk ≡ {Ni,r(t) : i ∈ Ĉk, r ∈ [R]}, k ∈ {2, 3}, in a

similar manner as for N1. The only difference lies in the specification of M = 2 for Clusters 2 and

3, where m = 1 corresponds to the visual stimulus and m = 2 corresponds to the auditory tone

cue.

A.7.5. Supplementary results of neural data analysis.

Neural firing intensity in condition “L,R”. Figure A.10 displays the average firing patterns of

the three clusters in four different experimental conditions. From the figure we can see that, there

is high uncertainty in condition “L,R” since there are only 3 trials. However, the firing patterns

in the “L,R” condition generally support our hypothesis regarding the roles of the clusters. For

instance, in “L,R” trials, the firing rates of neurons in Cluster 1 show an upward trend before

movement onset, which is consistent with our hypothesis that Cluster 1 neurons are responsible

for executing the turning of the wheel. Moreover, the firing rates of neurons in Cluster 2 in “L,R”

trials remain stationary after feedback delivery, aligning with our hypothesis that Cluster 2 neurons

might respond to perceptions of stimuli such as rewards.

Cluster 1

Time from movement onset (s)

In
te
n
si
ty

(s
p
ik
es
/
s)

Cluster 2

Time from visual stimulus onset (s)

Cluster 3

Time from movement onset (s)
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Figure A.10. Firing patterns of the three clusters in four different experimental
conditions. The lines represent the mean firing intensities. The shaded regions
represent the mean firing intensities plus or minus two standard errors of the mean.
The legends represent “scenario, choice”, for instance, “L,R” represents the trials
where the left grating was of a higher contrast, and the mouse chose to move the
right grating. In the “L,R” condition, there is high uncertainty due to the limited
number of trials.

A.7.6. Results obtained using kCFC. For comparison, we apply the kCFC [Chiou and Li,

2007] to the neural data. Specifically, we apply the kCFC to the aggregated spike trains across the
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Table A.3. Contingency table of the clusters from the proposed ASIMM and the
clusters from the kCFC.

ASIMM
kCFC Cluster 1 Cluster 2 Cluster 3

Cluster 1 60 2 71
Cluster 2 3 14 10
Cluster 3 0 7 58

training trials with K = 3, and set the remaining parameter values consistent with those specified

in Section 2.5.3 of the main text. Table A.3 shows the association between clusters obtained from

the kCFC and clusters obtained from the proposed ASIMM. From the table we see that the clusters

from the kCFC are mixtures of the clusters from ASIMM. Particularly, for Cluster 1 and 2 identified

by kCFC, approximately half of the neurons in these clusters are not grouped together in ASIMM’s

results.

Figure A.11 shows the firing patterns of clusters from the kCFC. We observe that firing patterns

bear some resemblance to those obtained from ASIMM. However, Cluster 1 and 2 from the kCFC

do not exhibit laterality. This lack of laterality is likely because Cluster 1 and 2 are mixtures of

clusters from the ASIMM. For instance, the firing intensity of Cluster 1 from the ASIMM has a

higher peak when the mouse chose the left visual grating (see Figure 2.6(1b)), whereas the firing

intensity of Cluster 3 from the ASIMM has a higher peak when the mouse chose the right grating

(see Figure 2.6(3b)). Consequently, when Cluster 1 and 3 from our proposed method are mixed,

their individual lateral biases are counteracted, resulting in the absence of clear laterality.
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Figure A.11. Firing patterns of clusters from kCFC. The three columns corre-
spond to the three estimated clusters. The shaded area represents the mean firing
intensities plus or minus two standard errors of the mean. The legend in panel (1a)
represents “scenario, choice”, for instance, “R,L” represents the trials where the
right grating was of a higher contrast, and the mouse chose to move the left grating.
Panel (1b) illustrates the average firing intensity and wheel velocity, where both
firing intensity and wheel velocity are standardized to range from 0 to 1. The firing
intensities of Cluster 1 and 2 do not exhibit laterality.

A.8. Auxiliary Lemmas

Lemma A.8.0.1. Let ηm ≡ exp{− j 2πξw∗
m} and η ≡ (ηm)m∈[M ], where ξ ∈ R \ {0}. If {w∗

m ∈

C : m ∈ [M ]} are independent random variables, and among them, at least M − 1 variables have

non-zero variance, i.e., |{m ∈ [M ] : var(w∗
m) > 0}| ≥M − 1, then the matrix E[ηη⊤] is invertible.

Proof. Without loss of generality, we assume that var(w∗
m) > 0 for m = 2, . . . ,M . Suppose

E[ηη⊤] is not invertible. By the definition of invertible matrix, there exists x ∈ CM \{0} such that

E[ηη⊤]x = 0. Thus we can derive that

E[x⊤ηη⊤x] = 0.(A.64)

Moreover, we have

E[x⊤ηη⊤x] = E

∣∣∣∣ ∑
m∈[M ]

ηmxm

∣∣∣∣2
 ≥ var

( ∑
m∈[M ]

ηmxm

)
=
∑

m∈[M ]

|xm|2 var(ηm) ≥ 0,(A.65)
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where the second equality follows from the assumption that {w∗
m : m ∈ [M ]} are independent. In

order for (A.64) and (A.65) to hold simultaneously, we must have |xm|2 var(ηm) = 0 for m ∈ [M ].

From the assumption that var(w∗
m) > 0 for m = 2, . . . ,M , we obtain that var(ηm) > 0 for m =

2, . . . ,M . Thus, we know that xm = 0 for m = 2, . . . ,M . Since x ̸= 0 by definition, we deduce

that x1 ̸= 0. Hence, in order for |x1|2 var(η1) = 0 to hold we must have

var(η1) = 0.(A.66)

Additionally, in order for (A.64) and (A.65) to hold simultaneously, we must have

E

∣∣∣∣ ∑
m∈[M ]

ηmxm

∣∣∣∣2
 = var

( ∑
m∈[M ]

ηmxm

)
,

or equivalently, ∣∣∣∣E( ∑
m∈[M ]

ηmxm

)∣∣∣∣2 = 0.(A.67)

Plugging xm = 0 for m = 2, . . . ,M into (A.67), we obtain that

E
( ∑

m∈[M ]

ηmxm

)
= E(η1)x1.(A.68)

Combining (A.67), (A.68), and that x1 ̸= 0, we deduce that

E[η1] = 0.(A.69)

Combining (A.66) and (A.69), we can derive that η1 = 0. However, we know that |η1| = 1 by

definition, implying that η1 = 0 is impossible. Therefore, E[ηη⊤] must be invertible. □

Lemma A.8.0.2. Let ηm ≡ exp{− j 2πξw∗
m} and η ≡ (ηm)m∈[M ], where ξ ∈ R \ {0}. If w∗

m =

w∗
m−1 + δm−1 for m = 2, . . . ,M , where {δm ∈ C : m ∈ [M − 1]} are independent random variables

with non-zero variance, then the matrix E[ηη⊤] is invertible.

Proof. Suppose E[ηη⊤] is not invertible. By the definition of invertible matrix, there exists

x ∈ CM \ {0} such that E[ηη⊤]x = 0. Thus we can derive that

E[x⊤ηη⊤x] = 0.(A.70)
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On the other hand, we have

E[x⊤ηη⊤x] = E

∣∣∣∣∣∣
∑

m∈[M ]

ηmxm

∣∣∣∣∣∣
2

= E

∣∣∣∣∣∣
∑

m∈[M ]

exp{− j 2πξw∗
m}xm

∣∣∣∣∣∣
2

= E

∣∣∣∣∣exp{− j 2πξw∗
1}

[
x1 +

M∑
m=2

exp{− j 2πξ(δ1 + · · ·+ δm−1)}xm

]∣∣∣∣∣
2

= E

∣∣∣∣∣x1 +
M∑

m=2

exp{− j 2πξ(δ1 + · · ·+ δm−1)}xm

∣∣∣∣∣
2

(A.71)

where the second equation follows from the definition of ηm, the third equation follows from the

assumption that w∗
m = w∗

m−1+δm−1, and the last equation follows from the fact that | exp{− j θ}| =

1 for any θ ∈ R. Define Am ≡ xm +
∑M

m′=m+1 exp{− j 2πξ(δm + · · ·+ δm′−1)}xm′ for m ∈ [M − 1],

and AM ≡ xM . Combining (A.70) and (A.71) we have E|A1|2 = 0, which further implies that

A1 = 0.(A.72)

From the definition of Am’s we know that Am = xm + exp{− j 2πξδm}Am+1. Thus (A.72) implies

that x1 + exp{− j 2πξδ1}A2 = 0, or equivalently,

A2 = −x1 exp{ j 2πξδ1}.(A.73)

From the definition of A2, we know that A2 is a function of {δ2, . . . , δM}, which are independent to

δ1 by our assumption. Furthermore, δ1 has a positive variance based on our assumption. Therefore,

in order for (A.73) to hold, it must holds that x1 = 0, or equivalently,

A2 = 0.(A.74)

Similarly, we can derive that A3 = ... = AM = 0. Therefore, using the definition of Am’s, we know

that,

xm = Am − exp{− j 2πξδm}Am+1 = 0, m = 1, · · · ,M − 1,(A.75)

xM = AM = 0, m =M.(A.76)
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Equation (A.75) and (A.76) contradict the definition of x that asserts x ̸= 0. Therefore, E[ηη⊤]

must be invertible.

□

Lemma A.8.0.3. Let f ⊆ L1 (R) and f̂ be its Fourier transform, and let A ≡ {x ∈ R : f(x) ̸= 0}

and B ≡ {ξ ∈ R : f̂(ξ) ̸= 0}. Then

m(A) <∞ and m(B) <∞⇒ f = 0 a.e. ,(A.77)

where m denotes the Lebesgue measure.

The proof of Lemma A.8.0.3 can be found in Benedicks [1985].

A.9. Reasonable Range of γ

To find a reasonable range for γ, we explore the magnitude of E[L1(z
∗,a∗′, f∗′,v∗)] and E[L2(z

∗,Λ∗)],

where z∗,a∗′, f∗′,v∗,Λ∗ denote the true parameters. The magnitude of E[L1(z
∗,a∗′, f∗′,v∗)] and

E[L2(z
∗,Λ∗)] can be approximated as follows:

EL1(z
∗,a∗′, f∗′,v∗) ⪅ (nR)(T∆t)−1,(A.78)

EL2(z
∗,Λ∗) ≈

∑
i∈[n],r∈[R]

Ni,r(T ).(A.79)

The derivation of (A.78) and (A.79) is provided later in this section. Combining (A.78) and (A.79),

we obtain that

EL1(z
∗,a∗′, f∗′,v∗)

EL2(z∗,Λ∗)
⪅ (nR)(T∆t)−1

{ ∑
i∈[n],r∈[R]

Ni,r(T )

}−1

≡ γ0.(A.80)

Consequently, we suggested to explore γ in the range [10−5 × γ0, 10× γ0].

Derivation of (A.78). From the definition of L1 in (2.9) of the main text, we know that

EL1(z
∗,a∗′, f∗′,v∗) =

∑
i∈[n],r∈[R]

E

Ni,r(T )

T

∥∥∥∥∥ yi,r(t)Ni,r(T )
−

λ∗i,r(t)

Λ∗
i,r(T )

∥∥∥∥∥
2

t

(A.81)
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where λ∗i,r(t) ≡ a∗zi +
∑

m∈[M ] S
v∗i,m+w∗

r,mf∗z∗i ,m
(t), and Λ∗

i,r(T ) ≡
∫ T
0 λ∗i,r(t)dt. Therefore, it suffices

to show that

E

Ni,r(T )

T

∥∥∥∥∥ yi,r(t)Ni,r(T )
−

λ∗i,r(t)

Λ∗
i,r(T )

∥∥∥∥∥
2

t

 ⪅ (T∆t)−1.(A.82)

To this end, we consider the following conditional expectation:

E

Ni,r(T )

T

∥∥∥∥∥ yi,r(t)Ni,r(T )
−

λ∗i,r(t)

Λ∗
i,r(T )

∥∥∥∥∥
2

t

∣∣∣∣∣Ni,r(T )


= E

Ni,r(T )

T

∥∥∥∥∥Ni,r(t+∆t)−Ni,r(t)

Ni,r(T )∆t
−

λ∗i,r(t)

Λ∗
i,r(T )

∥∥∥∥∥
2

t

∣∣∣∣∣Ni,r(T )


= E

Ni,r(T )

T

∥∥∥∥∥∥
∑Ni,r(T )

j=1 1(t < ti,r,j ≤ t+∆t)

Ni,r(T )∆t
−

λ∗i,r(t)

Λ∗
i,r(T )

∥∥∥∥∥∥
2

t

∣∣∣∣∣Ni,r(T )


=
Ni,r(T )

T

∫ T

0
E

∣∣∣∣∣∣
∑Ni,r(T )

j=1 1(t < ti,r,j ≤ t+∆t)

Ni,r(T )∆t
−

λ∗i,r(t)

Λ∗
i,r(T )

∣∣∣∣∣∣
2 ∣∣∣∣∣Ni,r(T )

 dt,

≡ Ni,r(T )

T

∫ T

0
E
(∣∣X(t)− Y (t)

∣∣2∣∣Ni,r(T )
)
dt,

(A.83)

where the first equality follows from the definition of yi,r(t), the second equality follows from the

definition of Ni,r(t), and the third equality follows from the definition of L2-norm. By definitions

of X(t) and Y (t), we know that

E [X(t)|Ni,r(T )] = E

∑Ni,r(T )
j=1 1(t < ti,r,j ≤ t+∆t)

Ni,r(T )∆t

∣∣∣∣∣Ni,r(T )


= E

(
1(t < ti,r,1 ≤ t+∆t)

∆t

∣∣∣∣∣Ni,r(T )

)

=
P
(
t < ti,r,1 ≤ t+∆t | Ni,r(T )

)
∆t

≈
λ∗i,r(t)

Λ∗
i,r(T )

= Y (t)

(A.84)

where the first equality follows from the definition of X(t). The second equality holds because, for

Poisson processes, the event times {ti,r,j : j = 1, · · · , Ni,r(T )} can be treated as i.i.d. samples given

the total event count Ni,r(T ). The approximation in the fourth line follows from the definition of
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λ∗i,r(t) and Λ∗
i,r(T ). Therefore we have

E
(∣∣X(t)− Y (t)

∣∣2∣∣Ni,r(T )
)

= var
(
X(t)

∣∣Ni,r(T )
)

=
1

|∆t|2

(
var{1(t < ti,r,j ≤ t+∆t) | Ni,r(T )}

Ni,r(T )

)
=

1

|∆t|2

(
P{t < ti,r,j ≤ t+∆t | Ni,r(T )}[1− P{t < ti,r,j ≤ t+∆t | Ni,r(T )}]

Ni,r(T )

)

≈ 1

|∆t|2
1

Ni,r(T )

(
λ∗i,r(t)

Λ∗
i,r(T )

∆t

)(
1−

λ∗i,r(t)

Λ∗
i,r(T )

∆t

)
,

(A.85)

where the second equality follows from the definition of X(t), the approximation in the fourth line

follows from the definition of λ∗i,r(t) and Λ∗
i,r(T ).

Plugging (A.85) into (A.83), we can derive that

E

Ni,r(T )

T

∥∥∥∥∥ yi,r(t)Ni,r(T )
−

λ∗i,r(t)

Λ∗
i,r(T )

∥∥∥∥∥
2 ∣∣∣∣∣Ni,r(T )


≈ Ni,r(T )

T

∫ T

0

1

|∆t|2
1

Ni,r(T )

(
λ∗i,r(t)

Λ∗
i,r(T )

∆t

)(
1−

λ∗i,r(t)

Λ∗
i,r(T )

∆t

)
dt

=
1

T

 1

∆t
−

∥∥∥∥∥ λ∗i,r(t)Λ∗
i,r(T )

∥∥∥∥∥
2


⪅ (T∆t)−1.

(A.86)

Finally, by taking the expectation of (A.86), we obtain

E

Ni,r(T )

T

∥∥∥∥∥ yi,r(t)Ni,r(T )
−

λ∗i,r(t)

Λ∗
i,r(T )

∥∥∥∥∥
2

t


= E

E
Ni,r(T )

T

∥∥∥∥∥ yi,r(t)Ni,r(T )
−

λ∗i,r(t)

Λ∗
i,r(T )

∥∥∥∥∥
2

t

∣∣∣∣∣Ni,r(T )


⪅ (T∆t)−1.

(A.87)

76



Derivation of (A.79). Employing the definition of L2 in (2.10) of the main text, along with the

variance expression for the Poisson distribution, we can derive that

E[L2(z
∗,Λ∗)] = E

 ∑
i∈[n],r∈[R]

∣∣Ni,r(T )− Λ∗
i,r(T )

∣∣2 =
∑

i∈[n],r∈[R]

Λ∗
i,r(T ) ≈

∑
i∈[n],r∈[R]

Ni,r(T ).(A.88)
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APPENDIX B

Appendix for Chapter 3

B.1. Proof of Proposition 3.2.1

Proof: Without loss of generality, we set T = 1 and assume that {fq,k : q, k ∈ [K]} have supports

on [0, 1/2] and the time shifts {vi : i ∈ V} take values in [0, 1/2]. When there is only one cluster,

i.e., K = 1, identifiability follows from the classic argument in shape invariant model [Bigot and

Gendre, 2013]. Therefore, we consider the case when K ≥ 2 in this proof.

For each q, k ∈ [K], we define the equivalence class of fq,k by the time shift as

(B.1) {fq,k}S ≡
{
Swfq,k : w ∈ R

}
,

where Swfq,k(t) = fq,k(t−w) as defined in the main text. Denote the the set of permutations of [K]

by SK that any σ ∈ SK maps {1, · · · ,K} onto itself. With a slight abuse of notation, we define

σ−1 ◦ f ≡
(
fσ−1(q),σ−1(k)

)
K×K

for σ ∈ SK and f = (fq,k)K×K . We can then define the equivalence

class of (f , z) by the permutation of cluster labels as

{(f , z)}SK
≡
{
(σ−1 ◦ f , σ ◦ z) : σ ∈ SK

}
,

where σ ◦ z ≡
(
σ(zi)

)
i∈V . Recalling the equivalent class introduced in (B.1), we can define

{f}S ≡ {(Swq,kfq,k)K×K : wq,k ∈ R, q, k ∈ [K]}

to be the equivalence class of f by time shifts, and define

{({f}S, z)}SK
≡ {(σ−1 ◦ f ′, σ ◦ z) : σ ∈ SK , f

′ ∈ {f}S}

to be the equivalence class of (f , z) by the permutation of cluster labels and time shifts.
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Let (f∗, z∗,v∗) be the true parameters, and (f , z,v) be arbitrary solutions to {λi,j = Smax(vi,vj)fzi,zj :

i, j ∈ V}. We first show that (f , z) ∈ {({f∗}S, z∗)}SK
. Since

Smax(vi,vj)fzi,zj = λi,j = Smax(v∗i ,v
∗
j )f∗z∗i ,z∗j , i, j ∈ V,(B.2)

we know that, for any i, j ∈ V,

{fzi,zj}S = {f∗z∗i ,z∗j }S,(B.3)

and hence

({fzi,z1}S, · · · , {fzi,zp}S) = ({f∗z∗i ,z∗1}S, · · · , {f
∗
z∗i ,z

∗
p
}S).(B.4)

For i, i′ such that z∗i ̸= z∗i′ , according to Condition C3.1, there exists k ∈ [K] such that {f∗z∗i ,k}S ̸=

{f∗z∗
i′ ,k
}S. Without loss of generality, let node i belongs to cluster k, i.e., z∗1 = k. Then, we know

that {f∗z∗i ,z∗1}S ̸= {f
∗
z∗
i′ ,z

∗
1
}S. This implies that

({fzi,z1}S, · · · , {fzi,zp}S) = ({f∗z∗i ,z∗1}S, · · · , {f
∗
z∗i ,z

∗
p
}S)

̸= ({f∗z∗
i′ ,z

∗
1
}S, · · · , {f∗z∗

i′ ,z
∗
p
}S) = ({fzi′ ,z1}S, · · · , {fzi′ ,zp}S),

where the first and last equalities are due to (B.4). Hence we know that if z∗i ̸= z∗i′ , then zi ̸= zi′ .

Since clusters are non-empty by definition, we can always find K nodes with pairwise distinct

true cluster memberships given by z∗. Based on the previous argument, we know that those K

nodes must have distinct cluster memberships given by z. Thus both z and z∗ include exactly

K clusters, and we have z = σ ◦ z∗ for some σ ∈ SK . Plugging z = σ ◦ z∗ into (B.3), we

have {fσ(z∗i ),σ(z∗j )}S = {f∗z∗i ,z∗j }S for any i, j ∈ V, or equivalently {fq,k}S = {f∗σ−1(q),σ−1(k)}S for

any q, k ∈ [K]. To summarize, we have shown that (f , z) = (σ−1 ◦ f ′, σ ◦ z∗) for some σ ∈ SK

and f ′ ∈ {f∗}S, that is (f , z) ∈ {({f∗}S, z∗)}SK
. In the following proof, we use σ to denote the

permutation such that z = σ ◦ z∗.

Next, we will show that (f , z) ∈ {(f∗, z∗)}SK
, that is, fq,k = f∗σ−1(q),σ−1(k) for q, k ∈ [K]. The

proof involves two steps: we first show that there exists one global shift w0 such that Sw0fq,k =

f∗σ−1(q),σ−1(k) for all q, k ∈ [K]; then, we can verify that the global shift w0 = 0 under Condition C3.4.
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For any pair q, k ∈ [K], recall that combining (B.3) and z = σ ◦ z∗ gives {f∗q,k}S = {fσ(q),σ(k)}S,

thus f∗q,k = Swq,kfσ(q),σ(k) for some wq,k ∈ R. Combining this equality with (B.2), we know that,

for i, j ∈ V,

Smax(vi,vj)fzi,zj = Smax(v∗i ,v
∗
j )f∗z∗i ,z∗j

= Smax(v∗i ,v
∗
j )S

wz∗i ,z∗j fσ(z∗i ),σ(z∗j )

= S
max(v∗i ,v

∗
j )+wz∗i ,z∗j fzi,zj .

Hence, for any q, k ∈ [K], if f∗q,k ̸≡ 0, then fσ(q),σ(k) ̸≡ 0 and

max(vi, vj) = max(v∗i , v
∗
j ) + wq,k, i ∈ C∗q , j ∈ C∗k .(B.5)

Furthermore, if f∗q,k ̸≡ 0, we know that max{v∗j : j ∈ C∗k} > min{v∗i : i ∈ C∗q} according to

Condition C3.2. Let j0 ≡ argmaxj∈C∗
k
{v∗j } be the node in the cluster k with largest true time shift,

then there exists a node i0 ∈ C∗q such that v∗j0 > v∗i0 . Thus by (B.5) we know that

vj0 ≤ max(vi0 , vj0) = max(v∗i0 , v
∗
j0) + wq,k = v∗j0 + wq,k.(B.6)

Suppose vj0 < v∗j0 +wq,k. In order for (B.5) to hold, we must have max(vi0 , vj0) = vi0 , hence (B.6)

gives vi0 = v∗j0 + wq,k. Then, from (B.5), we know that for any j′ ∈ C∗k ,

max(v∗i0 , v
∗
j′) + wq,k = max(vi0 , vj′) ≥ vi0 = v∗j0 + wq,k.(B.7)

By definitions of j0 and i0, we know that v∗j0 > v∗i0 , thus max(v∗i0 , v
∗
j′) = v∗j′ . Then by (B.7) we have

v∗j′ ≥ v∗j0 , which contradicts with the definition of j0. Therefore, it must hold that

vj0 = v∗j0 + wq,k.(B.8)

Applying the above argument to any triplet of clusters q, k, l ∈ [K] with q ̸= l, f∗q,k ̸≡ 0 and

f∗k,l ̸≡ 0, we have

vj0 = v∗j0 + wq,k; vj0 = v∗j0 + wk,l,
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which indicates wq,k = wk,l. Therefore, for any q, k, l ∈ [K] such that f∗q,k ̸≡ 0 and f∗k,l ̸≡ 0,

(f∗q,k, f
∗
k,l) = (Swkfσ(q),σ(k), S

wkfσ(k),σ(l))(B.9)

where wk ≡ wq,k = wk,l.

Now we fix q, k and consider two arbitrary clusters l,m ∈ [K] such that {q, k} ∩ {l,m} = ∅,

f∗q,k ̸≡ 0 and f∗l,m ̸≡ 0 (q = k and/or l = m is allowed). According to Condition C3.3, there exists

a sequence of clusters q1, · · · , qa ∈ {1, · · · ,K} with a ≥ 2, q1 = k and qa = l, such that f∗qi,qi+1
̸≡ 0

for i = 1, · · · , a − 1. Further denote q0 = q, qa+1 = m. Then applying the result for triplets for

each three consecutive clusters in the sequence yields

(f∗q,k, f
∗
l,m) = (Swkfσ(q),σ(k), S

wkfσ(l),σ(m)).

Since l,m ∈ [K] are arbitrary, we obtain that, for any l,m ∈ [K] such that f∗l,m ̸≡ 0,

f∗l,m = Sw0fσ(l),σ(m),(B.10)

where w0 ∈ R is a global time shift.

According to Condition C3.4, we have inf{t : f∗q,k(t) > 0 for some q, k ∈ [K]} = 0. Plugging

in (B.10), we know that inf{t : fσ(q),σ(k)(t − w0) > 0 for some q, k ∈ [K]} = 0. Given Condi-

tion C3.4, we know that w0 = 0. Thus for q, k ∈ [K] that f∗q,k ̸= 0, we have

f∗q,k = fσ(q),σ(k).(B.11)

For fq,k ≡ 0, the equality (B.11) naturally holds. Therefore we conclude that f∗q,k = fσ(q),σ(k) for

any q, k ∈ [K], which suggests (f , z) ∈ {(f∗, z∗)}SK
.

Finally we will show the identifiability of {v∗i }i∈V except for nodes in the set A ≡ {i ∈ V : v∗i ≤

v∗j for any j ∈ C∗z∗i , or v
∗
i ≤ v∗j for any j ∈ V s.t. λ∗i,j ̸≡ 0}. The proof is similar to the steps for

proving (B.8). From f∗q,k = fσ(q),σ(k) for any q, k ∈ [K], we know that, for any i, j ∈ V such that

λ∗i,j ̸≡ 0,

max(vi, vj) = max(v∗i , v
∗
j ).(B.12)
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For any node i ∈ Ac, we need to show that v∗i = vi. We know that there exists a j such that v∗i > v∗j

and λi,j ̸≡ 0, which implies that f∗z∗i ,z∗j
̸= 0. Suppose that vi > v∗i , then we have from (B.12) that

v∗i = max(v∗i , v
∗
j ) = max(vi, vj) ≥ vi,

which contradicts vi > v∗i . Thus, we know that vi ≤ v∗i .

Now suppose that vi < v∗i . In order for (B.12) to hold, we must have that max(vi, vj) = vj .

Applying (B.12) again gives vj = v∗i . Then, from (B.12), we know that for i′ ∈ V s.t. λi′,j ̸≡ 0,

max(v∗i′ , v
∗
j ) = max(vi′ , vj) ≥ vj = v∗i .(B.13)

We know by definition that v∗j < v∗i , and thus max(v∗i′ , v
∗
j ) = v∗i′ . Therefore, it must hold that

v∗i′ ≥ v∗i . This means that v∗i = min{v∗i′ : i′ ∈ Cz∗i }. This contradicts the requirement that

v∗i ̸= min{v∗i′ : i′ ∈ Cz∗i } since i ∈ A
c. Thus, we know that vi ≥ v∗i . Combining this with vi ≤ v∗i

gives vi = v∗i for any i ∈ Ac. □

B.2. Algorithm for Intensities-based Optimization Problem

In this section, we present an algorithm for solving SidSBM-P in main text. The algorithm is

almost identical to the one for SidSBM-C except for the use of f and dN .

Recall the optimization problem takes the following form(
f̂ , ẑ, v̂

)
= argmin

ΘP

MP(f , z,v; γ)

≡ argmin
ΘP

[ ∑
(i,j)∈E(T )

1

T

{∫ T

0

∣∣∣∣Swi,jfzi,zj (t)

Fzi,zj (T )

∣∣∣∣2dt−2∫ T

0

Swi,jfzi,zj (t)

Fzi,zj (T )
dNi,j(t)

}

+ γ
∑

i,j∈V,i ̸=j

{
Ni,j(T )− Fzi,zj (T )

}2]
,

(B.14)

where wi,j = max(vi, vj), Fzi,zj (T ) ≡
∫ T
0 fzi,zj (s)ds, and ΘP ≡

{
(f , z,v) : f ∈ BK×K

1,ℓ0
, z ∈

[K]p, Fzi,zj (T ) ̸= 0 for (i, j) ∈ E(T ),v ∈ [0, T/2]p
}
. The algorithm alternates between two steps:

(centering step) f̂ , v̂ = argmin
f ,v

MP(f , ẑ,v; γ),(B.15)

(clustering step) ẑ = argmin
z

MP(f̂ , z, v̂; γ).(B.16)
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In the centering step (B.15), we update the connecting intensities f̂ and the time shifts v̂ con-

ditioning on the current estimates of cluster memberships ẑ. Given cluster memberships ẑ, the

optimization problem (B.15) can be decoupled into two parts. In the first part, we have the ana-

lytical form of f̂q,k as a function of v̂

f̂q,k(t) =
∑

i∈Ĉq ,j∈Ĉk,i ̸=j

S−max(v̂i,v̂j)f̂ℓ0,i,j(t)

|Ĉq||Ĉk| − I(q = k)|Ĉq|
, 1 ≤ q, k ≤ K,(B.17)

where f̂ℓ0,i,j(t) ≡
∑

|ℓ|≤ℓ0
ψℓ(t) T

−1
∫ T
0 ψℓ(t)dNi,j(t) with ψℓ(t) ≡ exp(−i2πℓt/T ) is the projection

of point process dNi,j on B1,ℓ0 , and Ĉk = {i ∈ V : ẑi = k} is the estimated k-th cluster. In the

second part, we solve for v̂ from

v̂ = argmin
v

∑
i∈V

∑
k∈[K]

(
|Ĵi,k|N i,k(T )

1

T

{∫ T

0

∣∣∣∣Svi f̂zi,k(t)

F̂zi,k(T )

∣∣∣∣2dt− 2

∫ T

0

Svi f̂zi,k(t)

F̂zi,k(T )

dN i,k(t)

N i,k(T )

})
,

(B.18)

where f̂zi,k(t)’s are treated as functions of v̂ as shown in (B.17), Ĵi,k ≡ {j ∈ V : ẑj = k, j ̸= i, vj ≤

vi} is a collection of nodes in k-th cluster whose time shifts are no larger than node i, dN i,k(t) ≡

|Ĵi,k|−1
∑

j∈Ĵi,k dN i,j(t) is the empirical intensity over Ĵi,k, and N i,k(T ) ≡ |Ĵi,k|−1
∑

j∈Ĵi,k Ni,j(T ) is

the proportion of connections between node i and nodes in Ĵi,k. Problem (B.18) can be solved using

a gradient descent algorithm. Detailed forms of the gradients are given in Section B.3. Finally,

we pin down the global shift ĉ = min{ti,j − max(v̂i, v̂j) : i, j ∈ V}, which is an approximation of

inf{t ∈ [0, T ] : f̂q,k(t) > 0 for some q, k ∈ [K]}. Specifically, we update f̂ and v̂ as follows

f̂q,k ← S−ĉf̂q,k, q, k ∈ [K]; v̂i ← v̂i + ĉ, i ∈ V.(B.19)

In the clustering step (B.16), we update each cluster membership ẑi conditioning on the current

f̂ , v̂ and {ẑj}j∈V\{i}. The optimization problem (B.14) reduces to, for i ∈ V,

ẑi = argmin
zi∈[K]

∑
k∈[K]

[∣∣Ĉk,−i

∣∣F i,k(T )
1

T

{∫ T

0

∣∣∣ f̂zi,k(t)
F̂zi,k(T )

∣∣∣2dt− 2

∫ T

0

f̂zi,k(t)

F̂zi,k(T )

dF i,k(t)

F i,k(T )

}

+ γ
∣∣Ĉk,−i

∣∣{F i,k(T )− F̂zi,k(T )
}2]

,

(B.20)
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Squared distance between intensities

∥Svg1 − g2∥22

Squared distance between cumulative intensities

∥SvG1 −G2∥22

Figure B.1. Squared distances between two intensities or cumulative intensities
as a function of time shift. The thick solid curves in the figure depict the values
of squared distances, with the horizontal axes representing the time shift. The
shadow regions below the time shift axes indicate the differentiation between the
two intensities or cumulative intensities that contributes to the squared distances.
In the left panel, a constant squared distance is observed when the time shift is large
enough such that the intensities do not overlap. In contrast, the squared distance
in the right panel shows no plateaus.

where Ĉk,−i ≡ Ĉk\{i}, dF i,k(t) ≡
∣∣Ĉk,−i

∣∣−1∑
j∈Ĉk,−i

S−max(v̂i,v̂j)dNi,j(t) for t ∈ [0, T ] and F i,k(T ) ≡∣∣Ĉk,−i

∣∣−1∑
j∈Ĉk,−i

S−max(v̂i,v̂j)Ni,j(T ).

We can employ the same initialization scheme and a similar convergence criterion as those for

SidSBM-C.

Remark B.2.1. It is worthwhile to mention that the objective function in (B.18) might suffer

from plateaus. This can be illustrated by considering a simple scenario where we estimate the

time shift between two intensities using the squared error. In this case, we aim to solve the problem

v̂ = argminv |Svg1−g2|22, where g1 and g2 are the two given intensities. The left panel of Figure B.1

shows that the value of |Svg1− g2|22 remains constant when the value of v becomes sufficiently large

such that there is no overlap between Svg1 and g2. In practice, this plateau pattern can prevent

the algorithm for SidSBM-P from finding the global minimum. As shown in the right panel of

Figure B.1, the squared distance between cumulative intensities does not have any plateaus, which

makes it easier for the algorithm for SidSBM-C to find the global minimum.
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B.3. Details of the Centering Step

In the centering step for SidSBM-C, we fix ẑ and update the cumulative intensities F̂ and time

shifts v̂. The key observation is that when v̂ and ẑ are given, F̂ has a closed-form solution; and

when F̂ and ẑ are given, v̂ can be estimated using gradient descent algorithm.

Given time shifts v̂, we update F̂ using Equation 3.11 in the main text, that is

F̂q,k(·) =
∑

i∈Ĉq ,j∈Ĉk,i ̸=j

S−max(v̂i,v̂j)Ni,j(·)
|Ĉq| · |Ĉk| − I(q = k) · |Ĉq|

, 1 ≤ q, k ≤ K.(B.21)

Given intensities F̂, we update v̂ by solving the optimization problem in (3.12), that is

v̂i = argmin
vi

Ri(vi)

≡ argmin
vi

∑
k∈[K]

(∣∣Ĵi,k∣∣ ·N i,k(T ) ·
1

T

∫ T

0

∣∣∣∣∣ N i,k(t)

N i,k(T )
−
SviF̂ẑi,k(t)

F̂ẑi,k(T )

∣∣∣∣∣
2

dt

)
, i ∈ V.

(B.22)

Let {βℓ,q,k : βℓ,q,k = T−1
∫ T
0 exp{−i2πℓ(s/T )}F̂q,k(s)/F̂q,k(T )ds, ℓ ∈ Z} be the Fourier coefficients

of F̂q,k(·)/F̂q,k(T ). We can verify that Fourier coefficients of SviF̂q,k(·)/F̂q,k(T ) are, for ℓ ∈ Z,

β′ℓ,q,k = exp(−i2πℓvi/T )
(
βℓ,q,k +

I(ℓ ̸= 0)

i2πℓ

)
− 1

i2πℓ
I(ℓ ̸= 0)− vi

T
I(ℓ = 0).(B.23)

Further let {αℓ,i,k : αℓ,i,k = T−1
∫ T
0 exp{−i2πℓ(s/T )}N i,k(s)/N i,k(T )ds, ℓ ∈ Z} be the Fourier

coefficients of N i,k(·)/N i,k(T ). From Parseval’s theorem, we know that

Ri(vi) =
∑
k∈[K]

(∣∣Ĵi,k∣∣ ·N i,k(T ) ·
∞∑

l=−∞

∣∣αℓ,i,k − β′ℓ,ẑi,k
∣∣2).

Plugging in (B.23), we can see that

Ri(vi) =
∑
k∈[K]

∣∣Ĵi,k∣∣N i,k(T )
∑
l ̸=0

∣∣∣∣αℓ,i,k − exp(−i2πℓvi/T )
(
βℓ,ẑi,k +

1

i2πℓ

)
+

1

i2πℓ

∣∣∣∣2

+
∑
k∈[K]

∣∣Ĵi,k∣∣N i,k(T )

∣∣∣∣α0,i,k − β0,ẑi,k +
vi
T

∣∣∣∣2,
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where we separate the inner summation by whether ℓ is zero or not. For ℓ ̸= 0, we have the following

gradient

d

dvi

∣∣∣∣αℓ,i,k − exp(−i2πℓvi/T )
(
βℓ,ẑi,k +

1

i2πℓ

)
+

1

i2πℓ

∣∣∣∣2
=

d

dvi

{∣∣∣∣αℓ,i,k +
1

i2πℓ

∣∣∣∣2 + ∣∣∣∣exp(−i2πℓvi/T )(βℓ,ẑi,k + 1

i2πℓ

)∣∣∣∣2

− 2Re

[(
αℓ,i,k +

1

i2πℓ

)
exp(−i2πℓvi/T )

(
βℓ,ẑi,k +

1

i2πℓ

)]}

= − 2
d

dvi
Re

[(
αℓ,i,k +

1

i2πℓ

)
exp(−i2πℓvi/T )

(
βℓ,ẑi,k +

1

i2πℓ

)]

= 2Re

[
i2πℓ

T
exp(−i2πℓvi/T )

(
αℓ,i,k +

1

i2πℓ

)(
βℓ,ẑi,k +

1

i2πℓ

)]
.

Thus, we arrive at

d

dvi
Ri(vi) =

∑
k∈[K]

∑
ℓ∈Z,ℓ ̸=0

2|Ĵi,k|N i,k(T )Re

[
i2πℓ

T
· exp(−i2πℓvi/T )

(
βℓ,ẑi,k +

1

i2πℓ

)(
αℓ,i,k +

1

i2πℓ

)]

−
∑
k∈[K]

2|Ĵi,k|N i,k(T )
(
β0,ẑi,k − α0,i,k −

vi
T

) 1
T
.(B.24)

The gradient given in (B.24) is used in the gradient descent algorithm for solving (B.22). Note

that the gradient includes a sum of infinite terms ℓ ∈ Z. In practice, we approximate the infinite

summation with the sum over {ℓ : |ℓ| ≤ L/2}, where L is the length of the equispaced time grid on

which N i,k’s and F̂q,k’s are evaluated. Furthermore, the gradient is divided by
∑

k |Ĵi,k| · N i,k(T )

in order to make the magnitude of gradient, hence the learning rate, invariant to the number of

nodes.

When applying the gradient descent algorithm for (B.22), we set the initialize time shifts as the

current estimation of time shifts. The algorithm is stopped when the decrease of loss function value

between two consecutive iterations is less than a given threshold

|Ri(v̂
(s+1)
i )−Ri(v̂

(s)
i )|

Ri(v̂
(s)
i )

< ε = 10−4,(B.25)

or when the maximal number of iterations is reached. Here (s) and (s + 1) are the iteration

index. The maximal number of iterations is set as 1000 in our experiments. We remark that the
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convergence criterion (B.25) is only for solving (B.22), and is different from the criterion for the

entire algorithm (i.e., Equation (3.18) in the main text).

To summarize, in the centering step, the algorithm iterates between (B.21) and (B.22) until the

change of estimation of cumulative intensities is less than a given threshold

∥F̂(s+1) − F̂(s)∥2
∥F̂(s)∥2

< ε = 10−3,(B.26)

or when the maximal number of iterations is reached. Here (s) and (s+ 1) are the iteration index.

The maximal number of iterations is set as 10 in our experiments.

In a similar manner, we can show that the centering step for SidSBM-P is almost identical to

the one for SidSBM-C except for the gradients. Let cℓ,i,j denote the Fourier coefficient of Ni,j , i.e.,

cℓ,i,j ≡ T−1
∫ T
0 exp{−i2πℓs/T}dNi,j(s), ℓ ∈ Z. The optimization problem (B.18) in the centering

step reduces to

v̂ = argmin
v

R(v)(B.27)

≡ argmin
v

∑
i∈V

∑
k∈[K]

(
|Ĵi,k| ·N i,k(T ) ·

∑
|ℓ|≤ℓ0

∣∣∣∣cℓ,i,k exp(i2πℓvi/T )− ϕℓ,ẑi,k∣∣∣∣2
2

)
,

where

cℓ,i,k =

∑
j∈Ĵi,k:Ni,j(T )=1 cℓ,i,j

#{j ∈ Ĵi,k : Ni,j(T ) = 1}
and

ϕℓ,q,k =

∑
i∈Ĉq ,j∈Ĉk,Ni,j(T )=1,i ̸=j cℓ,i,j exp{i2πℓmax(vi, vj)/T}

#{(i, j) : i ∈ Ĉq, j ∈ Ĉk, Ni,j(T ) = 1, i ̸= j}
.

We can show that, for j ∈ V,

∂

∂vj
R(v) =

∑
k∈[K]

∑
|ℓ|≤ℓ0

2Re

[
i2πℓ

T
|Ĵj,k|N j,k(T )cℓ,j,k exp(i2πℓvj/T )ϕℓ,ẑj ,k

]
,(B.28)

where the detailed derivation is deferred to Section B.7.

B.4. Additional Simulation Results

B.4.1. Heuristic criterion for γ. In practice, the following heuristic criterion can be em-

ployed to obtain a preliminary estimation of γ. Initially, a small value of γ can be utilized to obtain
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Table B.1. Connecting probabilities for synthetic data in Scenario B and Scenario
C. Each column corresponds to one pair of (q, k).

(1, 1) (1, 2) (1, 3) (2, 2) (2, 3) (3, 3)
αq,k 0.10 0.10 0.50 0.50 0.90 0.90

a rough assessment of the shapes and scales. Subsequently, we can explore larger values of γ if

the estimated scales exhibit significant variations among clusters, and otherwise try smaller γs to

achieve better clustering performance.

We explore the performance of the proposed heuristic selection criterion of γ through three dis-

tinct simulated data scenarios. The connecting intensities are defined as fq,k = αq,k×Γ(µ2q,k/σ2q,k, µq,k/σ2q,k),

where µq,k and σq,k are controlled by β, as explained in Table 3.1 in the main text. The specific

values of αq,k and β will be provided later. For all scenarios, we set K = 3, p = 30, and W = 80.

In Scenario A, all αq,k values are set to αq,k = 0.9 for q, k ∈ [K], while β is assigned as β = 1.9.

This means that the intensities have different shapes but share identical scales across clusters.

Figure B.2 depicts the performance of SidSBM-C under varying values of γ in this scenario. The

results indicate that small values of γ lead to the best performance. In Scenario B, we vary αq,k

across clusters as presented in Table B.1, while fixing β = 1.9. Consequently, the intensities exhibit

different shapes and scales across clusters. Figure B.2 reveals that the performance of SidSBM-C

improves with increasing values of γ up to an optimal point, after which the performance deterio-

rates. In Scenario C, we set αq,k as the same as in Scenario B. However, for this scenario, β is set

to β = 1, leading to intensities with identical shapes but different scales across clusters. Figure B.2

demonstrates that the best performance of SidSBM-C is achieved with the large values of γ in this

case. Overall, the observations from Figure B.2 suggest that choosing larger values of γ is preferable

when the variation in scales across clusters increases. This finding justifies the heuristic selection

criteria of γ.

The heuristic criterion presented here can be used to select tuning parameters more computa-

tionally efficiently than the ICL criterion. We can use the heuristic criterion to obtain a preliminary

estimate of γ. Then, by conditioning on the preliminary estimate of γ, we can estimate the number

of clusters K using the ICL criterion. This step is valid because the K that maximizes the ICL
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Scenario A Scenario B Scenario C

Figure B.2. Influence of the intensity configurations on the selection of γ across
1500 replicates. In Scenario A, where all intensities have identical scales, the ICL
value is maximized by the smallest values of γ. In Scenario B, where intensities have
varying shapes and scales across clusters, the value of ICL initially increases with
increasing γ values, but eventually deteriorates. In Scenario C, where all intensities
have identical shapes and varying scales, the ICL is maximized by the largest γ
values. Overall, choosing larger values of γ is preferable when the variation in scales
across clusters increases.

Scenario A Scenario B Scenario C

Number of clusters Number of clusters Number of clusters

Figure B.3. Influence of the value of γ on the estimation of the number of clusters
across 1500 replicates. In Scenario A, all intensities have identical scales and varying
shapes. In Scenario B, intensities have varying shapes and scales across clusters. In
Scenario C, all intensities have identical shapes and varying scales. The optimal
number of clusters is consistent across different values of γ in all scenarios.

remains consistent as γ varies in a reasonable range, as shown in Figure B.3. Once K is deter-

mined, we can refine γ using the ICL criterion. This procedure avoids the joint selection of K and

γ, resulting in improved computational efficiency for tuning parameter selection.

B.4.2. Sensitivity analysis with respect to γ. We conduct a sensitivity analysis with

respect to γ. The results of this analysis are presented in Figure B.4. The figure illustrates that

the values of ARI and MISE remain unchanged throughout the γ values that maximize the ICL

value. This finding suggests that the estimation results are not sensitive to small variations in γ.
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Figure B.4. Sensitivity of estimation results to the change of γ across 1500 repli-
cates. Panel (a) and panel (b) display the performance of SidSBM-C and SidSBM-P,
respectively. Simulated data is generated under the setting with p = 30, β = 1.9,
and W = 80. For both proposed methods, the values of ARI and MISE remain
unchanged throughout the values of γ that maximize the ICL.

B.4.3. Supporting evidence for explanation of performance discrepancy between

SidSBM-C and SidSBM-P. The discrepancy in performance between SidSBM-C and SidSBM-

P at high values of β in Figure 3.4 can be attributed to the plateaus in the objective function of

SidSBM-P due to the limited ranges of intensity supports and the large values of W . To verify this

hypothesis, we examine the performance of both SidSBM-C and SidSBM-P as W is progressively

decreased. Figure B.5 illustrates that the performance discrepancy diminishes with decreasing W ,

which is aligned with our hypothesis.

B.4.4. Association between MISE and ARI. We examine the sensitivity of the MISE to

changes in (1-ARI) by applying the SidSBM-C with different values of γ. By altering the value of

γ, multiple estimates are generated, each with a distinct cluster estimation error and an intensity

estimation error. The results, presented in Figure B.6, demonstrate a positive correlation between

the MISE and (1-ARI) values. Moreover, we observe that MISE exhibits greater sensitivity to

changes in (1-ARI) as the number of nodes increases.

90



Figure B.5. Clustering performance of SidSBM-C and SidSBM-P in simulation
with 1500 replicates. Simulated data is generated under various W with default
setting being p = 30 and β = 1.9. The discrepancy between the performance of
SidSBM-C and SidSBM-P decreases as W decreases.

Figure B.6. Association between MISE and (1-ARI). Simulated data is generated
under the setting p = 30 or 90, β = 1.9, and W = 80. The values of MISE and
(1-ARI) are positively associated. Additionally, the sensitivity of MISE to changes
in (1-ARI) becomes more pronounced as p increases.

We compare the proposed methods to the shape invariant model (SIM) in terms of intensity

estimation error. The results, shown in Figure B.7, indicate that both proposed methods outperform

the shape invariant model. This superiority can be attributed to the proposed methods’ capability

to estimate cluster memberships, whereas the shape invariant model assigns all nodes to a single
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Figure B.7. Performance of SidSBM-C, SidSBM-P, PPSBM and SIM in simulation
with 1500 replicates. Simulated data is generated under various p and β with default
setting being p = 30, β = 1.3 and W = 80. Both proposed methods outperform the
SIM in terms of MISE due to their capability in estimating cluster memberships.

cluster. Essentially, the enhancement in cluster estimation corresponds to the improvement in the

intensity estimation.

B.4.5. Comparison of proposed methods and PPSBM in cases with no time shifts.

We conduct additional simulation experiments to compare the proposed methods with the Poisson

process stochastic block model (PPSBM) proposed by Matias et al. [2018]. in cases with no time

shifts, that is, W = 0. The connecting intensities are set as fq,k = 0.9 × Γ(µ2q,k/σ
2
q,k, µq,k/σ

2
q,k),

where µq,k and σq,k are the same as described in the main text. We apply SidSBM-C to simulated

data with K = 3, ϵ = 0.01, γ = 0.1 and L = 200. We apply SidSBM-P to simulated data with

ℓ0 = 7, γ = 0.001, and rest parameters are the same as SidSBM-C. We apply PPSBM using the

implementation in R by Giorgi et al. [2018] with the number of bins being 64.

We find that SidSBM-C still outperforms the other methods in the absence of time shifts as

shown in Figure B.8. For completeness, we also provide the computing time of the three algorithms
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Figure B.8. Performance of SidSBM-C, SidSBM-P and PPSBM in simulation
without time shifts across 1500 replicates. Simulated data is generated under various
p and β with default setting being p = 30, β = 1.3. The y-axis is 1-ARI in the first
row and MISE in the second row, where smaller values indicate better performance.
SidSBMs exhibit better performance compared to PPSBM. Additionally, SidSBM-C
and SidSBM-P demonstrate similar performance.

in Figure B.9. The proposed algorithms are much faster than PPSBM when there are no time

shifts.
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Figure B.9. Computing time of SidSBM-C, SidSBM-P and PPSBM in simulation
without time shifts across 1500 replicates. Simulated data is generated under β = 1.3
and a range of p. The proposed methods are much more efficient than PPSBM when
there is no need to fit the time shifts.

B.5. Real Data Preprocessing

B.5.1. Preprocessing steps. Neural activities are calculated following the protocal in Wan

et al. [2019]. With a slight abuse of notation, we denote the fluorescence intensity of a particular

neuron as Fcell. This notation is only used in this section and should not be confused with the

representative cumulative intensities elsewhere. We calculate dF/F at time t as

dF (t)

F (t)
=
Fcell(t)− Fbsl(t)

Fbsl(t)
,

where Fbsl(t) is the baseline intensity at time t, defined as the 20th percentile of Fcell in a sliding

time window of 15 seconds (61 time points) centered at time t, that is {Fcell(s) : s ∈ [t− r0, t+ r0]}

where r0 = 7.5 seconds.

Figure B.10 presents three snapshots of the dF/F traces for two example pairs of neurons,

showcasing the emergence and persistence of neural functional connectivity. At the 30th minute

mark, the neurons do not exhibit synchronous activity. However, at 120th minute, neuron 1 and

neuron 2, as well as neuron 3 and neuron 4, demonstrate synchronous activity, indicating functional

connectivity between them. The synchronization persists in the third snapshot recorded at 240th

minute, suggesting that the established functional connectivity between neurons endures over time.
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Figure B.10. Emergence and persistence of neural activity synchronization in two
example pairs of neurons. The curves represent the dF/F traces of neurons, with
time stamps indicating the time since the experiment starts. At the 30th minute,
the neurons do not display synchronous activity. However, at the 120th minute,
neuron 1 and neuron 2 display synchronous activity, and neuron 3 and neuron 4
also demonstrate synchronization. The synchronization between these neuron pairs
persists until the 240th minute.

We estimate the functional connectivity between neurons as follows. For each pair of neurons, we

compute the Pearson correlation of their dF/F traces for every 1-minute interval, or 240 time points

at 4 Hz. Then the correlation trace is smoothed by taking average of the previous 5 correlations

at each time stamp. The connecting time of two neurons is defined as the earliest time that their

activity’s smoothed correlation exceeds a threshold ρ = 0.4. Upon closer investigation into the

connecting times, we exclude five neurons due to their abnormal behavior in connection patterns,

e.g. way fewer (less than 5) edges than average (around 40).

The neuronal networks are estimated separately for the left and right spines. Figure B.11 illus-

trates the spatial distribution of recorded neurons in the zebrafish. Neurons are differentiated into

the left and right spines based on their LR-coordinate. Specifically, neurons with an LR-coordinate

smaller than 0 are presumed to be situated in the left spine, while those with an LR-coordinate

equal to or greater than 0 are presumed to be located in the right spine.

B.5.2. Selection of ρ. In this section, we explain why the threshold ρ is set to be 0.4 in the

edge detection. For a pair of neurons (i, j) ∈ V, we denote the correlation trajectory by X(t) and

denote its expectation by µ(t) ≡ EX(t), where t ∈ [0, T ].

The correlation trajectories among all pairs of neurons are shown in Figure B.12. Prior to

synchronization, neurons show no or irregular spontaneous activities, where the correlations mostly

fall below 0.2. Hence, we hypothesize that truly connected neurons should have a correlation

curve that exceeds and stays above 0.2. Formally, we characterize the detection of edges using the

95



A P

V

D
R

L

(a) Zebrafish embryo (b) Dorsal-view neuron distribution (c) Lateral-view neuron distribution

A ↔ P (segment)

L
↔

R
(µ

m
)

A ↔ P (segment)

V
↔

D
(µ

m
)

Figure B.11. The spatial location of recorded neurons in zebrafish. Panel (a)
shows a schematic zebrafish embryo, with the black rectangle highlighting the spinal
cord where neural activities are recorded. Additionally, a coordinate system is dis-
played, with ”A” representing anterior, ”P” representing posterior, ”L” representing
left, ”R” representing right, ”D” representing dorsal, and ”V” representing ventral.
Panel (b) shows the spatial distribution of neurons from a dorsal-view perspective.
The AP-coordinate is measured in segment, which is defined by motor nerve roots
according to Wan et al. [2019]. Panel (c) shows the lateral-view spatial distribution
of neurons.
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Figure B.12. Correlation trajectories (i.e., gray curves) between all pairs of neu-
rons in the left spine. Black curves are (randomly selected) examples of correlation
trajectories that exceed 0.2 at some time point. The red curve is an example of
correlation trajectories that stays less than 0.2 during the experiment.

following null and alternative hypotheses:

H0 : µ(t) = 0, t ∈ [0, T ] v.s. Ha : µ(t) > 0.2, t ∈ [t0, T ] for some t0 ∈ [0, T ).

To conduct hypothesis test, we use the test statistic Xmax ≡ maxt∈[0,T ]X(t) with rejection region

{X : Xmax > ρ}, where ρ is the threshold.
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Table B.2. Empirical type I error rate under various values of the threshold ρ.

Threshold (ρ)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Type I error rate (%) 94 0 0 0 0 0 0 0 0 0

We choose the value of ρ by examining the empirical type I error rate and the empirical power

by simulating data based on the observed correlation curves in Figure B.12.

(1) To evaluate the type I error rate, we simulate data based on the red curve in Figure B.12,

where the null hypothesis seems to hold. To be specific, we fit an ARIMA model to the

red correlation trajectory, and use the fitted model to simulate 5000 stochastic processes.

With simulated processes, we test the hypothesis with ρ ∈ {0.1, 0.2, · · · , 1.0} and compute

the empirical type I error rates, as shown in Table B.2. From the simulation results, we

can choose ρ ≥ 0.2 to achieve a near zero type I error rate.

(2) To evaluate the power, we need to simulate data under different alternative hypotheses

from the real data. To this end, we apply k-means with 5 clusters to all correlation

trajectories and obtain 5 mean correlation trajectories as shown in Figure B.13(a). We

can see that the gray curve might correspond to the non-edges (i.e., the null), hence

we remove this curve in this power analysis. Setting each mean correlation trajectory

as µ(·), we simulate 5000 stochastic processes by introducing noise generated from the

fitted ARIMA model. We then evaluate the empirical power of hypothesis test with

ρ ∈ {0.1, 0.2, · · · , 1.0} as shown in Figure B.13(b). For ρ ≤ 0.5, the power is close to 1

under all alternatives.

In conclusion, the simulation shows that a threshold ρ between 0.2 to 0.5 yields close-to-zero type

I error rate and close-to-one power. Therefore, we set ρ to be 0.4 in our analysis.
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(a) Mean correlation trajectories (b) Empirical power against ρ

Figure B.13. Mean correlation trajectories and empirical power under various ρ.
Panel (a) shows mean correlation trajectories in different colors estimated using
k-means with 5 clusters on all correlation trajectories. Panel (b) shows empirical
powers for the alternatives using the four mean trajectories in panel (a). Panels (a)
and (b) use the same color coding system.

Example A

Example B

Adjusted time (min)

Figure B.14. Examples of neuron pairs exhibiting similar connecting behaviour.
Example A showcases two neurons from estimated Cluster 2, whereas Example B
involves two neurons from estimated Cluster 3. Vertical bars represent the adjusted
connecting times, and the smooth curves represent the densities of connecting times.
Different colors and linetypes correspond to different neurons.

B.6. Additional Data Analysis Results

B.6.1. Examples of neuron pairs with similar connecting behavior. Figure B.14 show-

cases examples of neuron pairs that display similar connecting behavior. The figure displays con-

necting times that have been adjusted based on estimated time shifts. The overlapping density

curves indicate the similarity in connecting behavior between the neurons.
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Figure B.15. Aligned estimated representative connecting intensities of the third
clusters in the left and right spines. Colors and line types are the same as in
Figure 3.7 in main text. The estimated connecting intensities are manually shifted
to match each other to demonstrate the similarity of their shapes. The estimated
intensities f̂L,3,k and f̂R,3,k have almost identical shapes for k = 1, 2, 3.

B.6.2. Aligned estimated representative connecting intensities. We match the esti-

mated representative connecting intensities of the third clusters in the left and right spines in

Figure B.15. Here the connecting intensities {f̂R,3,k, k = 1, 2, 3} are shifted individually to align

with {f̂L,3,k, k = 1, 2, 3}. After the additional alignment, we observe that the estimated intensities

f̂L,3,k and f̂R,3,k for k = 1, 2, 3 are highly consistent. We suspect that the errors in the estimated

shifts might be a result of estimation error given the small sizes of the third clusters.

B.6.3. Fulfillment of Condition C3.2 in the real data. In order to assess the fulfillment

of Condition C3.2 in the data set, we examine the distributions of estimated time shifts, which are

depicted in Figure B.16. From the figure, it becomes evident that there are overlaps in the ranges

of time shifts among various clusters. This observation suggests that Condition C3.2 is met in the

real data.

B.6.4. Sensitivity of the analysis results to the value of ρ. To assess the sensitivity of

the analysis results to the value of ρ, we conduct analyses using two different values: ρ = 0.3 and

ρ = 0.5. We then compare these results to those obtained from ρ = 0.4. In both comparisons,

80% of neurons exhibit consistent memberships. In addition, Figure B.17 presents the estimated

connecting intensities from ρ = 0.3 and ρ = 0.5. The representative connecting intensities display

a high level of consistency across different values of ρ.

B.6.5. Real data analysis results using the PPSBM. For comparison, we apply PPSBM [Ma-

tias et al., 2018] to the neural data. Recall that PPSBM estimates the cluster structure without
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Figure B.16. Distributions of estimated time shifts of neurons in the three esti-
mated clusters. Each curve represents the density of estimated time shifts within a
particular cluster, with different colors denoting distinct clusters. There exist over-
laps in the ranges of time shifts across the three clusters.

(a) Estimated connecting intensities when ρ = 0.3 (b) Estimated connecting intensities when ρ = 0.5

0.04

40 min

1

2

3

1

2

3

Figure B.17. Estimated connecting intensities of networks obtained from ρ =
0.3 or ρ = 0.5. The solid and dashed curves represent estimated representative
connecting intensities for the left and right spines, respectively. Each subfigure
contains a tabular legend, where the first row shows “L” for “left” and “R” for
“right”, the second row shows connecting probabilities, the third row shows the
sizes of pairs of clusters. As the value of ρ varies, the representative connecting
intensities remain highly consistent.

accounting for the unknown time shifts. Estimated connecting intensities are shown in Figure B.18.

We observe that estimated intensities between the left and right spines are less consistent than the
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Figure B.18. Estimated connecting intensities by PPSBM [Matias et al., 2018]
on the neural data set from Wan et al. [2019]. The rows and columns are indexed
by clusters as shown in the top left squares on diagonal. For q, k = 1, 2, 3, solid
and dashed curves at position (q, k) represent estimated representative connecting

intensity f̂L,q,k and f̂R,q,k from the left and right spines, respectively. Each subfigure
contains a tabular legend, where the first row shows “L” for “left” and “R” for
“right”, the second row shows connecting probabilities, the third row shows the sizes
of pairs of clusters. The estimates from the left and right spines are not consistent.

estimates in Figure 3.7 in main text, although the estimated intensities of Cluster 1 and 2 still bear

some resemblance between the two sides of the spine. From Figure B.19, we can see that estimated

cluster memberships are highly correlated with connecting time of first edges of neurons. In other

words, the cluster structure from PPSBM is determined by the activation time of neurons rather

than the actual connecting patterns.
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Figure B.19. Clusters estimated by PPSBM are highly correlated with the con-
necting time of the first edge of each neuron. The x-coordinate is the memberships
of neurons (jittered for visualization), and the y-coordinate is the time of the first
edge of each neuron.

B.7. Derivation of Gradients in Section B.3

Recall that the loss function in (B.27) is

R(v) =
∑
i∈V

∑
k∈[K]

(
|Ĵi,k| ·N i,k(T ) ·

∑
|ℓ|≤ℓ0

∣∣∣∣cℓ,i,kei2πℓ(vi/T ) − ϕℓ,ẑi,k
∣∣∣∣2
2

)
,(B.29)

where

cl,i,k =

∑
j∈Ĵi,k:Ni,j(T )=1 cℓ,i,j

#{j ∈ Ĵi,k : Ni,j(T ) = 1}
(B.30)

and

ϕℓ,q,k =

∑
i∈Ĉq ,j∈Ĉk,Ni,j(T )=1,i ̸=j cℓ,i,j · exp(i2πℓmax(vi, vj)/T )

#{(i, j) : i ∈ Ĉq, j ∈ Ĉk, Ni,j(T ) = 1, i ̸= j}

=

∑
i∈Ĉq #{j ∈ Ĵi,k : Ni,j(T ) = 1}cℓ,i,k · ei2πℓvi/T

#{(i, j) : i ∈ Ĉq, j ∈ Ĉk, Ni,j(T ) = 1, i ̸= j}

+

∑
j∈Ĉk

#{j′ ∈ Ĵj,q : Nj,j′(T ) = 1}cℓ,j,q · ei2πℓvj/T

#{(i, j) : i ∈ Ĉq, j ∈ Ĉk, Ni,j(T ) = 1, i ̸= j}
.

(B.31)
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Let Ĵ1,i,k = {j ∈ Ĵi,k : Ni,j(T ) = 1} and D̂q,k = {(i, j) : i ∈ Ĉq, j ∈ Ĉk, Ni,j(T ) = 1, i ̸= j}. By

definition, D̂q,k is the collection of pairs of connected nodes in clusters Ĉq and Ĉk, and Ĵ1,i,k is the

collection of nodes in cluster Ĉk that are connected with node i and has a smaller time shift than

node i. Thus we know that |D̂q,k| =
∑

i∈Ĉq |Ĵ1,i,k|+
∑

j′∈Ĉk
|Ĵ1,j′,q|. For any j ∈ V, we separate the

terms including exp(i2πℓvj/T ) from ϕℓ,q,k by writing

ϕℓ,q,k = Qℓ,q,k,je
i2πℓvj/T + (ϕℓ,q,k −Qℓ,q,k,je

i2πℓvj/T ),(B.32)

where we introduce Qℓ,q,k,j for ease of bookkeeping

Qℓ,q,k,j =



|Ĵ1,j,k| · cℓ,j,k · |D̂q,k|−1, if j ∈ Ĉq, q ̸= k,

|Ĵ1,j,q| · cℓ,j,q · |D̂q,k|−1, if j ∈ Ĉk, q ̸= k,

2|Ĵ1,j,q| · cℓ,j,q · |D̂q,q|−1, if j ∈ Ĉk, q = k,

0, if j ̸∈ Ĉq ∪ Ĉk.

(B.33)

Then for i ̸= j, we have the following gradient

∂

∂vj

∣∣∣∣cℓ,i,kei2πℓvi/T − ϕℓ,ẑi,k∣∣∣∣2
2

=
∂

∂vj

∣∣∣∣cℓ,i,kei2πℓvi/T −Qℓ,ẑi,k,je
i2πℓvj/T − (ϕℓ,ẑi,k −Qℓ,ẑi,k,je

i2πℓvj/T )

∣∣∣∣2
2

= 2
∂

∂vj
Re

[(
−Qℓ,ẑi,k,je

i2πℓvj/T
)(
cℓ,i,ke

i2πℓvi/T − (ϕℓ,ẑi,k −Qℓ,ẑi,k,je
i2πℓvj/T )

)]
= 2Re

[(
(i2πℓ/T )Qℓ,ẑi,k,je

i2πℓvj/T
)(
cℓ,i,ke

i2πℓvi/T − (ϕℓ,ẑi,k −Qℓ,ẑi,k,je
i2πℓvj/T )

)]
= 2Re

[(
(i2πℓ/T )Qℓ,ẑi,k,je

i2πℓvj/T
)(
cℓ,i,ke

i2πℓvi/T − ϕℓ,ẑi,k
)]
.

(B.34)
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For i = j, we have the following gradient

∂

∂vj

∣∣∣∣cℓ,j,kei2πℓvj/T − ϕℓ,ẑj ,k∣∣∣∣2
2

=
∂

∂vj

∣∣∣∣(cℓ,j,k −Qℓ,ẑj ,k,j)e
i2πℓvj/T − (ϕℓ,ẑj ,k −Qℓ,ẑj ,k,je

i2πℓvj/T )

∣∣∣∣2
2

= 2
∂

∂vj
Re

[
(cℓ,j,k −Qℓ,ẑj ,k,j)e

i2πℓvj/T (−ϕℓ,ẑj ,k +Qℓ,ẑj ,k,je
i2πℓvj/T )

]
= 2Re

[
(i2πℓ/T )(cℓ,j,k −Qℓ,ẑj ,k,j)e

i2πℓvj/T (ϕℓ,ẑj ,k −Qℓ,ẑj ,k,je
i2πℓvj/T )

]

=


2Re

[
(i2πℓ/T )

(
|D̂ẑj ,k| · |Ĵ1,j,k|−1 − 1

)
Qℓ,ẑj ,k,je

i2πℓvj/Tϕℓ,ẑj ,k

]
, if ẑj ̸= k,

2Re

[
(i2πℓ/T )

(
|D̂k,k| · (2|Ĵ1,j,k|)−1 − 1

)
Qℓ,ẑj ,k,je

i2πℓvj/Tϕℓ,ẑj ,k

]
, if ẑj = k.

(B.35)

Therefore, the gradient of R(v) with respect to vj is as follows

∂

∂vj
R(v)

=
∂

∂vj

∑
i∈V

∑
k∈[K]

(
|Ĵi,k| ·N i,k(T ) ·

∑
|ℓ|≤ℓ0

∣∣∣∣cℓ,i,kei2πℓ(vi/T ) − ϕℓ,ẑi,k
∣∣∣∣2
2

)

=
∂

∂vj

∑
i∈V

∑
k∈[K]

(
|Ĵ1,i,k| ·

∑
|ℓ|≤ℓ0

∣∣∣∣cℓ,i,kei2πℓ(vi/T ) − ϕℓ,ẑi,k
∣∣∣∣2
2

)

=
∑

i∈V,i ̸=j

∑
k∈[K]

(
|Ĵ1,i,k| ·

∑
|ℓ|≤ℓ0

∂

∂vj

∣∣∣∣cℓ,i,kei2πℓ(vi/T ) − ϕℓ,ẑi,k
∣∣∣∣2
2

)

+
∑
k∈[K]

(
|Ĵ1,i,k| ·

∑
|ℓ|≤ℓ0

∂

∂vj

∣∣∣∣cℓ,j,kei2πℓ(vj/T ) − ϕℓ,ẑj ,k
∣∣∣∣2
2

)
.

(B.36)
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Plugging in the form of the derivatives yields

∂

∂vj
R(v)

=
∑

i∈V,i ̸=j

∑
k∈[K]

(
|Ĵ1,i,k|

∑
|ℓ|≤ℓ0

2Re

[(
(i2πℓ/T )Qℓ,ẑi,k,je

i2πℓvj/T
)(
cℓ,i,ke

i2πℓvi/T − ϕℓ,ẑi,k
)])

+
∑

k∈[K],k ̸=ẑj

(
|Ĵ1,j,k|

∑
|ℓ|≤ℓ0

2Re

[
(i2πℓ/T )

(
|D̂ẑj ,k||Ĵ1,j,k|

−1 − 1
)
Qℓ,ẑj ,k,je

i2πℓvj/Tϕℓ,ẑj ,k

])

+
∑
k=ẑj

(
|Ĵ1,j,k|

∑
|ℓ|≤ℓ0

2Re

[
(i2πℓ/T )

(
|D̂k,k|(2|Ĵ1,j,k|)−1 − 1

)
Qℓ,ẑj ,k,je

i2πℓvj/Tϕℓ,ẑj ,k

])

≡A1 +A2 +A3.

(B.37)

We can further simplify the three terms A1, A2 and A3. The first term follows that

A1 =
∑

i∈V,i ̸=j

∑
k∈[K]

(
|Ĵ1,i,k| ·

∑
|ℓ|≤ℓ0

2Re

[(
(i2πℓ/T )Qℓ,ẑi,k,je

i2πℓvj/T
)(
cℓ,i,ke

i2πℓvi/T − ϕℓ,ẑi,k
)])

=
∑

q∈[K],q ̸=ẑj

∑
k=ẑj

∑
|ℓ|≤ℓ0

(
2Re

[(
(i2πℓ/T )Qℓ,q,k,jei2πℓvj/T

){∑
i∈Ĉq

|Ĵ1,i,k| ·
(
cℓ,i,ke

i2πℓvi/T − ϕℓ,q,k
)

+
∑

j′∈Ĉk,j′ ̸=j

|Ĵ1,j′,q| ·
(
cℓ,j′,qe

i2πℓvj′/T − ϕℓ,k,q
)}])

+
∑

q=k=ẑj

∑
|ℓ|≤ℓ0

(
2Re

[(
(i2πℓ/T )Qℓ,q,q,jei2πℓvj/T

) ∑
i∈Ĉq ,i ̸=j

|Ĵ1,i,q| ·
(
cℓ,i,qe

i2πℓvi/T − ϕℓ,q,q
)])

,

(B.38)

where we have used the property that Qℓ,ẑi,k,j = 0 if j ̸∈ Ĉẑi ∪ Ĉk, and break down the summation

according to {(i, k) : i ∈ V, i ̸= j, k ∈ [K]} = {(i, k) : i ∈ Ĉẑj , i ̸= j, k = ẑj} ∪ {(i, k) : i ∈ Ĉẑj , i ̸=

j, k ̸= ẑj} ∪ {(i, k) : i ̸∈ Ĉẑj , k = ẑj}.

Note that ∑
i∈Ĉq

|Ĵ1,i,k| ·
(
cℓ,i,ke

i2πℓvi/T − ϕℓ,q,k
)
+
∑
j′∈Ĉk

|Ĵ1,j′,q| ·
(
cℓ,j′,qe

i2πℓvj′/T − ϕℓ,k,q
)

=|D̂q,k| · ϕℓ,q,k −
(∑

i∈Ĉq

|Ĵ1,i,k|+
∑
j′∈Ĉk

|Ĵ1,j′,q|
)
· ϕℓ,q,k

=0,

(B.39)
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and ∑
i∈Ĉq

|Ĵ1,i,q| ·
(
cℓ,i,qe

i2πℓvi/T − ϕℓ,q,q
)
=

1

2
|D̂q,q| · ϕℓ,q,q −

∑
i∈Ĉq

|Ĵ1,i,q| · ϕℓ,q,q = 0.(B.40)

Therefore, we have

A1 =−
∑

q∈[K],q ̸=ẑj

∑
k=ẑj

∑
|ℓ|≤ℓ0

(
2Re

[(
(i2πℓ/T )Qℓ,q,k,jei2πℓvj/T

)∑
j′=j

|Ĵ1,j′,q| ·
(
cℓ,j′,qe

i2πℓvj′/T − ϕℓ,k,q
)])

−
∑

q=k=ẑj

∑
|ℓ|≤ℓ0

(
2Re

[(
(i2πℓ/T )Qℓ,q,q,jei2πℓvj/T

)∑
i=j

|Ĵ1,i,q| ·
(
cℓ,i,qe

i2πℓvi/T − ϕℓ,q,q
)])

=
∑

q∈[K],q ̸=ẑj

∑
|ℓ|≤ℓ0

(
2Re

[(
(i2πℓ/T ) |Ĵ1,j,q|2 |D̂q,ẑj |

−1 cℓ,j,qei2πℓvj/T
)
ϕℓ,ẑj ,q

])

+
∑
|ℓ|≤ℓ0

2Re

[
(i2πℓ/T ) · 2|Ĵ1,j,ẑj |

2 |D̂ẑj ,ẑj |
−1cℓ,j,zje

i2πℓvj/Tϕℓ,zj ,zj

]

≡ I1 + I2,

(B.41)

where in the second equality we use the definition of Qℓ,q,q,j and the fact that

cℓ,j,qei2πℓvj/T cℓ,j,qe
i2πℓvj/T = Const.

Plugging in the definition of Qℓ,ẑj ,k,j into A2 and A3 yields

A2 =
∑

k∈[K],k ̸=ẑj

(
|Ĵ1,j,k| ·

∑
|ℓ|≤ℓ0

2Re

[
(i2πℓ/T )

(
|D̂ẑj ,k| · |Ĵ1,j,k|

−1 − 1
)
Qℓ,ẑj ,k,je

i2πℓvj/Tϕℓ,ẑj ,k

])

=
∑

k∈[K],k ̸=ẑj

∑
|ℓ|≤ℓ0

2Re

[
(i2πℓ/T )

(
|Ĵ1,j,k| − |Ĵ1,j,k|2 · |D̂ẑj ,k|

−1
)
cℓ,j,kei2πℓvj/Tϕℓ,ẑj ,k

]
,

(B.42)

and

A3 =
∑
k=ẑj

(
|Ĵ1,j,k| ·

∑
|ℓ|≤ℓ0

2Re

[
(i2πℓ/T )

(
|D̂k,k| · (2|Ĵ1,j,k|)−1 − 1

)
Qℓ,ẑj ,k,je

i2πℓvj/Tϕℓ,ẑj ,k

])

=
∑
|ℓ|≤ℓ0

2Re

[
(i2πℓ/T )

(
|Ĵ1,j,ẑj | − (2|Ĵ1,j,ẑj |

2) · |D̂ẑj ,ẑj |
−1
)
cℓ,j,ẑje

i2πℓvj/Tϕℓ,ẑj ,ẑj

]
.

(B.43)
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We can see that

I1 +A2 =
∑

k∈[K],k ̸=ẑj

∑
|ℓ|≤ℓ0

2Re

[
(i2πℓ/T )|Ĵ1,j,k|cℓ,j,kei2πℓvj/Tϕℓ,ẑj ,k

]
,

I2 +A3 =
∑
|ℓ|≤ℓ0

2Re

[
(i2πℓ/T )|Ĵ1,j,ẑj |cℓ,j,ẑjei2πℓvj/Tϕℓ,ẑj ,ẑj

]
.

(B.44)

Finally, we can derive that

∂

∂vj
R(v) = I1 + I2 +A2 +A3

=
∑

k∈[K],k ̸=ẑj

∑
|ℓ|≤ℓ0

2Re

[
(i2πℓ/T )|Ĵ1,j,k|cℓ,j,kei2πℓvj/Tϕℓ,ẑj ,k

]

+
∑
|ℓ|≤ℓ0

2Re

[
(i2πℓ/T )|Ĵ1,j,ẑj |cℓ,j,ẑjei2πℓvj/Tϕℓ,ẑj ,ẑj

]

=
∑
k∈[K]

∑
|ℓ|≤ℓ0

2Re

[
(i2πℓ/T )|Ĵ1,j,k|cℓ,j,kei2πℓvj/Tϕℓ,ẑj ,k

]

=
∑
k∈[K]

∑
|ℓ|≤ℓ0

2Re

[
(i2πℓ/T )|Ĵj,k| ·N j,k(T ) · cℓ,j,kei2πℓ(vj/T )ϕℓ,ẑj ,k

]
,

(B.45)

where in the first equality we merge the two summations into one, and in the second equality we

plug in the definition of Ĵ1,j,k.
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