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Abstract

Diffusion tensor magnetic resonance imaging (DT-MRI) allows a unique insight into the 

microstructure of highly-directional tissues. The selection of the most proper distance function for 

the space of diffusion tensors is crucial in enhancing the clinical application of this imaging 

modality. Both linear and nonlinear metrics have been proposed in the literature over the years. 

The debate on the most appropriate DT-MRI distance function is still ongoing. In this paper, we 

presented a framework to compare the Euclidean, affine-invariant Riemannian and log-Euclidean 

metrics using actual high-resolution DT-MRI rat heart data. We employed temporal averaging at 

the diffusion tensor level of three consecutive and identically-acquired DT-MRI datasets from each 

of five rat hearts as a means to rectify the background noise-induced loss of myocyte directional 

regularity. This procedure is applied here for the first time in the context of tensor distance 

function selection. When compared with previous studies that used a different concrete application 

to juxtapose the various DT-MRI distance functions, this work is unique in that it combined the 

following: (i) Metrics were judged by quantitative –rather than qualitative– criteria, (ii) the 

comparison tools were non-biased, (iii) a longitudinal comparison operation was used on a same-

voxel basis. The statistical analyses of the comparison showed that the three DT-MRI distance 

functions tend to provide equivalent results. Hence, we came to the conclusion that the tensor 

manifold for cardiac DT-MRI studies is a curved space of almost zero curvature. The signal to 

noise ratio dependence of the operations was investigated through simulations. Finally, the 

“swelling effect” occurrence following Euclidean averaging was found to be too unimportant to be 

worth consideration.
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1. Introduction

1.1. Subject Description

Diffusion tensor magnetic resonance imaging (DT-MRI) has emerged (Basser et al., 1994) as 

a powerful tool for inferring the microstructure of anisotropic tissues. To do so, it elegantly 

relates the self-diffusion of water molecules that undergo Brownian motion to proton spin 

relaxation magnetic resonance (MR) signals. The clinical significance of DT-MRI derives 

from the fact that it provides such information in a noninvasive, nondestructive fashion. 

Therefore, it paves the way for whole-organ longitudinal in vivo studies needed to evaluate 

disease-related tissue microstructural changes.

Ever since the advent of this imaging modality, there has been a substantial interest in the 

development of a consistent and complete framework that would allow the various 

manipulations of the whole diffusion tensors (and not only the analysis of some scalar or 

vector tensor-derived parameters). This interest has increased significantly nowadays 

following the initial success that DT-MRI has seen in elucidating the composition and 

connectivity of various anisotropic tissues including brain (Pierpaoli et al., 1996), and 

myocardium (Rohmer et al., 2007).

The selection of a tensor distance function (or metric) resides in the foundation of the tensor-

variate framework. This selection is in essence equivalent to choosing a geodesic curve (i.e. 

the shortest path joining two tensors in their space). The cruciality of this selection lies in the 

fact that it dictates many operations such as mean estimation, anisotropy estimation, 

interpolation, regularization, segmentation, registration, and principal component analysis to 

name a few. This may be easily seen by looking at the definitions of the above operations: 

The averaging procedure is a tensor distance dispersion minimization problem; anisotropy 

estimation refers to the calculation of the distance to the isotropic tensor; the interpolation 

task is a weighted computation where the weights depend on tensor distances; regularization 

is a minimization estimation problem that aims at reducing the amount of spatial variation 

by taking into account the distances between neighboring tensors; segmentation algorithms 

involve choosing a distance function which should be small between tensors belonging to 

the same structure and large between tensors belonging to different structures; registration 

techniques rely on distance metrics to match tensors between regions of different datasets; in 

principal component analysis, the computed modes of variation are represented as flows 

along paths of minimum tensor distance. In general, the use of an appropriate distance 

function for diffusion tensors provides the following twofold benefit: one may fully exploit 

the potential of DT-MRI by endowing the diffusion tensor space with a reliable manifold 

structure, while, at the same time, interpretation pitfalls are avoided.

1.2. Previous Studies & Current Situation in the Literature

With the view to satisfying the demand for a proper distance function for diffusion tensors 

and accordingly assisting in the development of a consistent tensor-variate framework, 

various metrics have been proposed in the literature over the years. To start with, the 

Euclidean distance function was introduced (Alexander et al., 1999; Jones et al., 2002; 
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Basser and Pajevic, 2003; Pajevic and Basser, 2003; Pasternak et al., 2008, 2010, 2012) as a 

generalization of the classical scalar distance to tensors or, simply, on empirical grounds 

(that is to say evidence acquired by concurrently analyzing: (i) Physical properties of the 

measured quantities, (ii) properties of the several different candidate metrics, and (iii) the 

accumulative effect of the miscellaneous sources that cause variability to the measurements). 

As per this conventional approach, the –quantification of the distance between two tensors– 

operation is applied linearly to the matrix elements. Next, the affine-invariant Riemannian 

(AIR) distance function was put forward (Moakher, 2005; Batchelor et al., 2005; Pennec et 

al., 2006; Lenglet et al., 2006; Fletcher and Joshi, 2007) for DTMRI analysis based on 

differential geometry considerations. In particular, it was identified that the data in hand are 

sample covariance matrices of normally distributed random variables and, as such, they 

represent points in the space of real symmetric positive-definite matrices. This distance 

function brings about nonlinear calculations. Finally, in light of the high computational 

burden imposed by the AIR metric, the similitude-invariant log-Euclidean metric, that deals 

with the matrix logarithms of the diffusion tensors, was also proposed (Arsigny et al., 2006). 

Its computational efficiency lies in the fact that the high complexity calculations are 

converted into simple Euclidean ones, once tensors are transformed into their matrix 

logarithms.1

Following the admission of the various DT-MRI distance functions, a multifaceted dispute 

broke out between the researchers who support the Euclidean metric and those who are in 

favor of the nonlinear ones. On the one hand, the non-Euclidean side (Moakher, 2005; 

Batchelor et al., 2005; Pennec et al., 2006; Lenglet et al., 2006; Fletcher and Joshi, 2007; 

Arsigny et al., 2006), driven chiefly by mathematical considerations, argue: (i) Since the 

space of the symmetric positive-definite matrices constitutes a curved subset (namely, the 

interior of a convex half-cone) in the vector space of symmetric 3×3 matrices, the AIR 

metric, that akes this space topology (curvature) into account, is a more natural solution. (ii) 

By using tools for DT-MRI, that are obtained by generalizing tools for scalar-to matrix-

valued data, the natural properties of the diffusion tensors are not preserved leading to 

nonphysical complications. For instance, by relying on the Euclidean metric to perform non-

convex operations (like regularization or second-order statistics), the positive-definiteness is 

not always preserved. However, diffusion tensors with negative eigenvalues lack substance. 

By the same token, the linear averaging/interpolation may not preserve the determinant, 

resulting in a mean/interpolated tensor that has a determinant (or, equivalently, volume) that 

is larger than the determinants (volumes) of the individual tensors. This “swelling effect” 

occurrence suggests that the averaging/interpolating procedure by itself introduces 

additional diffusion which is intangible. The two limitations described above are remedied 

by employing a nonlinear metric, which diminishes the “swelling effect” and places tensors 

with null or negative eigenvalues at an infinite distance from any symmetric positive-definite 

matrix. (iii) Non-Euclidean distance functions should be preferred as they offer a better 

1Numerous other DT-MRI distance functions have been introduced such as Cholesky (Wang et al., 2004), matrix square root (Dryden 
et al., 2009), Procrustes (Dryden et al., 2009), square-root of the J-divergence (Wang and Vemuri, 2005), geodesic loxodromes-based 
(Kindlmann et al., 2007), weighted component-based (Gahm et al., 2013), and the chordal metric in the space of quaternions (Collard 
et al., 2014) to name a few. However, in this study we deal only with the three distance functions that have been most often adopted by 
the DT-MRI community.
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contrast when transitioning from a highly anisotropic region to a more isotropic one 

(Fletcher and Joshi, 2007).

On the other side of the fence, the Euclidean approach investigators (Alexander et al., 1999; 

Jones et al., 2002; Basser and Pajevic, 2003; Pajevic and Basser, 2003; Pasternak et al., 

2008, 2010, 2012) put forth the following arguments: (i) The selection of a metric should not 

be prompted by mathematical considerations alone. Practical and physical considerations 

must also be appraised. (ii) Affine-invariance is not a desirable property for a metric that 

deals with diffusion tensors because it leads to a substantial bias in the calculations 

(especially when dealing with a highly anisotropic tissue). This property would be suitable 

for a metric that measures the distance between arbitrarily scaled quantities. (iii) The 

Euclidean distance function is consistent with the expected statistical properties of the 

diffusion tensor distribution. (iv) If one wants to perform statistical inference through 

hypothesis testing for tensor-valued data, it is preferred to do so by relying on the Euclidean 

distance (Whitcher et al., 2007). Moreover, statistical tests that are based on non-Euclidean 

distances may easily lead to wrong conclusions (Pasternak et al., 2010). (v) With regard to 

the preservation of natural properties: The topic of negative eigenvalues may be remedied by 

excluding tensors with negative eigenvalues, or correcting tensors with negative eigenvalues 

through averaging, or estimating the nearest positive-definite tensor of each tensor with 

negative eigenvalues. As to preserving the determinant, there is no physical reason to do so. 

Changes in the determinant are perfectly predicted by the background noise that introduces 

variability in the orientations and lengths of the diffusion ellipsoid axes. Instead, 

preservation of the trace (which is proportional to the orientationally averaged diffusivity) 

might be more desired, and the Euclidean distance function (as well as the nonlinear 

functions) preserves the trace. (vi) The anisotropy indices based on a nonlinear distance 

function are inappropriate for DT-MRI analysis because they consistently and unrealistically 

increase the difference between highly anisotropic tensors and other more isotropic ones 

(Pasternak et al., 2010). (vii) Another drawback of Riemannian metrics is their sensitivity to 

small shape changes close to the degenerate cases. Because of this, small shape variations 

(due to noise) of two such tensors may result in an infinite distance between them (Peeters et 

al., 2009; Zhou et al., 2015).

The debate on the most appropriate DT-MRI distance function is still ongoing as suggested 

by more recent publications (Bouchon et al., 2015). To make things worse, the situation in 

the related literature is inconsistent as papers that advocated the non-Euclidean framework, 

they employed, at the same time, tools that are based on the Euclidean distance to evaluate 

their analysis results. As an illustration, Arsigny et al. (2006), and Fillard et al. (2007) used 

plots of a Euclidean distance-based tool to demonstrate the performance of the proposed 

non-Euclidean regularization. Similarly, Corouge et al. (2006) claimed that it is 

inappropriate to perform tensor calculations by relying on the Euclidean distance; 

nevertheless they employed plots of a Euclidean distance-based tool to test the feasibility of 

their fiber-tract-oriented approach. Finally, Verma et al. (2007) relied on Euclidean distance-

based maps to simulate pathology, even though they stated that differences between 

diffusion tensors need to be measured by nonlinear metrics. The observations outlined in this 

paragraph served as the main motivation for this paper.
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1.3. Our Contribution

In this work we use actual high-resolution DT-MRI rat heart data to compare the Euclidean, 

AIR and log-Euclidean distance functions. We look at temporal averaging as a means to 

rectify the background noise-induced loss of myocyte directional regularity through 

realigning post-diagonalization diffusion tensor primary eigenvectors2 with atypical 

directions. This simple and effective noise compensation method is based upon the 

following reasonable assumptions: (i) The tissue has constant true diffusion properties over 

time (Pasternak et al., 2010). (ii) The background noise processes of repetitive and 

identically-acquired scans are not directionally correlated (Sun et al., 2001). (iii) The cardiac 

wall has a well-ordered and highly coherent microstructure (Streeter and Bassett, 1966). By 

performing averaging at the diffusion tensor level of three consecutive and identically-

acquired DT-MRI datasets from each of five rat hearts and by using the Euclidean, AIR, and 

log-Euclidean distance functions, the objective of this study is to shed more light on the 

problem of choosing the most appropriate tensor distance function. To this end, we seek to 

ascertain in a quantitative manner the metric that (drives the averaging method that) achieves 

the greatest restoration of microstructural organization (when compared with the 

organization of the individual datasets before averaging) or, equivalently, the most effective 

outlier realignment. In other words, we set out to find the distance function that yields the 

most accurate representation of the reality. Then, this will be identified as the preferable 

metric upon which a consistent tensor-variate framework may be built.

Even though the compensation of directional coherence loss through the time averaging 

procedure is applied here for the first time in the context of tensor distance function 

selection, a number of previous studies also presented an application-oriented comparison of 

the several different DT-MRI distance functions. For example, in Fletcher and Joshi (2007), 

and Dryden et al. (2009) the comparison of metrics was carried out with respect to the 

anisotropy estimation performance, in Pennec et al. (2006), Arsigny et al. (2006), and 

Frindel et al. (2009) the various distance functions were rated according to their 

regularization efficiency, while in Arsigny et al. (2006), Gahm et al. (2011) and Yang et al. 

(2012) the metric that best characterizes the distance between diffusion tensors was decided 

by the interpolation performance.

Our work is unique in that it combines the following: (i) The majority of the previous tensor 

distance function comparison studies, that were based on actual DT-MRI data, were 

qualitative. In order to validate their results, the authors of these papers relied on optical 

inspection of the volume size and color uniformity of neighboring elllipsoids3 (or other 

visually appealing structural renderings) combined with micro-anatomical knowledge. For 

instance, they labelled as the most proper DT-MRI distance function the one that appeared to 

suppress the outliers to the greatest extent (Pennec et al., 2006; Frindel et al., 2009), or the 

one that seemed to yield the best contrast (Fletcher and Joshi, 2007; Dryden et al., 2009), or 

the one that manifested the lowest degree of blurring (Arsigny et al., 2006), or the one that 

2The primary eigenvectors of the diffusion tensors are generally taken (Hsu et al., 1998) to coincide with the local primary 
cardiomyocyte orientation.
3It is common to use ellispoids to describe diffusion tensors, where the three principal axes of the ellipsoid point at the diffusion 
tensor eigenvectors’ directions and each axis length is proportional to the corresponding eigenvalue.
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presented the highest color (orientation) and size uniformity among neighboring ellipsoid 

volumes (Yang et al., 2012). In contrast to these comparison studies that were judged by 

unquantifiable criteria, our work provides quantification of the relative performance of each 

distance function. To this end, we relied on the intervoxel diffusion coherence (IVDC) index 

(Wang et al., 2008). The validity of the specific eigenvector homogeneity criterion for 

assessing the perturbation of cardiac tissue directional regularity due to disease has been 

tested elsewhere (Giannakidis et al., 2012). (ii) There exist few studies (Frindel et al., 2009; 

Yang et al., 2012; Collard et al., 2014; Zhou et al., 2015) that used fractional anisotropy (FA) 

to compare the various diffusion tensor distance functions. However, such a criterion is 

unfairly prejudiced, as it represents the Euclidean distance of each tensor from the fully 

isotropic tensor. Unlike these studies, our comparison tool is not biased. (iii) In contrast to 

all previous studies, where the operation (that yielded the comparison results) was 

performed in the neighborhood of the examined voxel, our study involves a longitudinal 

comparison operation that is carried out on the individual voxel. In the final analysis, this 

difference in the comparison circumstances might play a role in the conclusive choice 

according to the idea proposed in Pasternak et al. (2008) about context-dependent DT-MRI 

metrics.

2. Methods

2.1. Research Animal Model & Heart Preparation

We performed ex vivo4 studies of five Wistar Kyoto (WKY) rats bought from the Charles 

River Laboratories International, Inc, Wilmington, MA, USA. WKY rat is a well-established 

animal model of normal nonpathologic cardiac behavior. Under deep isoflurane-inhalation 

anaesthesia, each intact heart was rapidly removed from the chest and flushed with warmed 

isotonic saline. Once the heart was rinsed, it was weighed and instantaneously placed in 

60cc of 10% buffered formalin for fixation. The age of the rats during the heart excision was 

one month old. The time period between excision and imaging was approximately one week. 

All animal procedures conformed to the guidelines set forth by the Animal Welfare and 

Research Committee of Lawrence Berkeley National Laboratory.

2.2. Imaging & DT-MRI Post-processing

Three back-to-back DT-MRI acquisitions of each of the five rat hearts were carried out at the 

UCSF Imaging Center at China Basin using a 7 T (310 mm bore size) superconducting 

magnet equipped with actively shielded imaging gradients (400 mT/m maximum gradient 

strength, 120 mm inner bore size) (Agilent Technologies, Palo Alto, CA, USA). A 20 mm 

inner diameter linear 1H birdcage resonator was used for radio frequency pulse transmission 

and signal reception. For the imaging, the excised rat hearts were suspended in a 15 mm 

diameter cylinder filled with Fomblin (Sigma Aldrich Corp., St. Louis, MO, USA). Fomblin 

does not have a visible proton MR signal and reduces susceptibility artifacts near the 

boundary of the heart. Hearts were secured inside the containers using gauze to prevent the 

specimen from floating in the container. We did not observe any effects from movement or 

4The large (compared to the diffusion-induced displacement length) movement of a pumping heart poses a significant challenge to in 
vivo cardiac DT-MRI (Hsu et al., 2010). As a result, at present, cardiac DT-MRI is mainly conducted ex vivo using excised fixed 
hearts, especially when three-dimensional (3D) high spatial resolution images are required.
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vibrations. The long axis of the heart was aligned with the direction of the main magnetic 

field (z-axis). The field of view (FOV) for the DT-MRI sequence was placed to cover the full 

short axis and the central part (mid-ventricular region) of the long axis of the heart. The DT-

MRI imaging protocol parameters (that were common for all acquisitions) are summarized 

in Table 1.

The signal to noise ratio (SNR) of each dataset was measured as the mean signal of the 

myocardium in the central slice of the dataset divided by the standard deviation of the noise 

(measured outside the myocardium), multiplied by the factor 0.655

(1)

where the factor 0.655 comes from the fact that the SNR was estimated on the magnitude 

data and the mean of the noise is not 0 (Rician Noise) (Henkelman, 1985).

For DT-MRI analysis, the raw diffusion weighted datasets were loaded into the FSL 

software package. The diffusion tensor fitting and the calculations of eigenvectors, 

eigenvalues and FA were performed using the FSL diffusion toolbox (FDT) (Behrens et al., 

2003).

2.3. Regions of Interest - Segmentation

We analyzed the lateral wall (Fig. 1) from the short-axis slice with the largest area (in the 

mid left ventricular region) for each heart of this study. The region of interest (ROI) was 

segmented semi-automatically in the B0 image using cubic splines (de Boor, 1978). The 

papillary muscles of the heart were excluded from our analysis. In addition, any voxel, at 

which the diffusion tensor was estimated to have at least one negative eigenvalue, was 

excluded on thermodynamic grounds.

2.4. From Geodesic Curves to Averaging

Consider that we have a set of N (N ≥ 2) symmetric positive-definite 3 × 3 matrices D1,…, 

DN each of them representing a diffusion tensor. Below we briefly outline the definitions and 

properties of the metrics for the three studied frameworks. We also provide the mean 

estimators.

2.4.1. The Euclidean Tensor-Variate Framework—By placing the set of N tensors in 

a Euclidean space, the geodesic (i.e. curve of minimum length) γE(t) going from D1 (at t = 

0) to D2 (at t = 1) is a straight line given by:

(2)

The distance between tensors D1 and D2 is
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(3)

where ∥ · ∥F denotes the Frobenius norm, and  where “tr” is the matrix 

trace. The metric of Eq. (3) is reflection and rotation invariant5, and is defined over the 

entire space of symmetric matrices. The average of the set of N tensors that is associated 

with the Euclidean distance function is unique (Dryden et al., 2009) given by:

(4)

2.4.2. The Affine-Invariant Riemannian (AIR) Tensor-Variate Framework—By 

placing the set of N tensors in an AIR manifold, the geodesic γAIR(t) going from D1 (at t = 

0) to D2 at (t = 1) is given (Arsigny et al., 2006) by

(5)

where  belongs to the space of real symmetric positive-definite matrices 

(Lenglet et al., 2006), and the square root, the exponential and the logarithm of a matrix are 

defined in Appendix B. The distance between these two tensors is represented by

(6)

where ηi {i = 1, 2, 3} are the three real positive eigenvalues of matrix  (Moakher, 

2005). The metric of Eq. (6) is affine (i.e. reflection, rotation, scale, shear, and inversion) 

invariant and pertains only to symmetric positive-definite matrices. The mean estimator in 

the AIR sense of the N tensors is obtained by solving the following nonlinear minimization 

problem:

(7)

Even though this problem always has a unique solution (given the negative curvature of the 

space of symmetric positive-definite matrices (Dryden et al., 2009)), there is a closed-form 

5The invariance properties of the DT-MRI distance functions are explained in Appendix A.
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solution only for the case of N = 2. In this case, the average estimator is given explicitly 

(Moakher, 2005) by:

(8)

For the general case of N ≥ 3 tensors, there is no closed-form solution and one may obtain 

the mean via an unconstrained optimization algorithm. In our study (where N = 3), μAIR was 

estimated using the well-known quasi-Newton method (in particular the BFGS algorithm) 

(Nocedal and Wright, 2006). Some of the advantages of the particular quasi-Newton method 

are: (i) It achieves rapid superlinear convergence. (ii) Unlike other Newton methods, it is 

designed to prevent the analytical calculation of the Hessian matrix or its inverse at each 

iteration. (iii) Due to the efficiency of the quasi-Newton methods, it facilitates the realistic 

development and solution of large-scale optimization problems.

2.4.3. The Log-Euclidean Tensor-Variate Framework—In the log-Euclidean case, 

the geodesic γLE(t) going from D1 (at t = 0) to D2 (at t = 1) is a straight line in the domain of 

matrix logarithms described by the following equation:

(9)

In an analogous manner to the Euclidean space, the distance between D1 and D2 is given by:

(10)

The metric of Eq. (10) is reflection, rotation, scale, and inversion invariant. The mean 

estimator of the set of N tensors that is associated with the log-Euclidean distance function is 

given (Dryden et al., 2009) by:

(11)

2.5. Metric Comparison Tool Based on Microstructural Orientation Coherence
—After performing averaging at the diffusion tensor level by relying on the Euclidean, AIR 

and log-Euclidean distance functions (as detailed in Section 2.4), the goal was to juxtapose 

the primary cardiomyocyte orientation coherence restoration performance of the three 

metrics. To gauge the performance of each distance function, it was necessary to quantify 

the primary cardiomyocyte orientation coherence before and after each type of averaging. To 

quantitatively map the orientation integrity of the principal water diffusion eigenvectors 

within a given voxel neighborhood, we relied on the intervoxel diffusion coherence (IVDC) 

index (Wang et al., 2008). IVDC offers a quantitative assessment and allows a more 

objective directional analyses than the visually appealing red-green-blue (RGB) color maps 
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(Pajevic and Pierpaoli, 1999) and cardiac tractography methods (Rohmer et al., 2007). In 

addition and unlike other measures of primary eigenvector dispersion applied in the DT-MRI 

literature such as the coherence index (CI) (Klingberg et al., 1999), IVDC has the 

supplementary favorable quality that it is insensitive to the inherent eigenvector sign 

ambiguity (Beg et al., 2007). Below the definition of the IVDC index is briefly provided.

IVDC is a scatter matrix-based tool (Wang et al., 2008), so let us first recall what is a scatter 

matrix. Consider an arbitrary voxel (i, j, k), of the cardiac wall, and a local ROI that consists 

of that voxel and its 26 nearest neighbors that span in the same short-axis slice and the 

adjacent slices above and below. Then, the scatter matrix T(i, j, k) (with respect to the 

primary diffusion eigenvectors) at this voxel and for this ROI is a symmetric positive 

semidefinite second-order dyadic tensor of size 3×3 given by

(12)

where ϵ1(l, m, n) is the major eigenvector at the (l, m, n) voxel. Finally, the IVDC index is 

given by

(13)

where t1 ≡ t1(i, j, k), t2 ≡ t2(i, j, k), t3 ≡ t3(i, j, k) are the eigenvalues of T(i, j, k) and 

 is the mean of these eigenvalues. IVDC is normalized between 0 and 1. A large 

value of this index at a specific voxel indicates that there is uniform primary cardiomyocyte 

orientation distribution in this voxel’s neighborhood (that is the case in tissues with highly 

coherent cardiomyocyte organization such as the myocardium). On the other hand, smaller 

values of IVDC reflect the regional loss of primary cardiomyocyte orientation integrity [that 

could be due to the presence of noise-induced outliers or disease (disarray)]. The foundation 

work for the IVDC definition as a measure of vector angular uniformity may be found in 

Bingham (1974).

To assess the extent of the directional regularity restoration achieved by each distance 

function, we estimated the relative IVDC changes before and after each of the three types of 

averaging.

2.6. Signal to Noise Ratio Dependence of the Operations

We performed simulations to investigate the SNR dependence of the operations. We 

synthesized noisy replicates of the original datasets through adding noise of Rician 

distribution in the magnitude images (Henkelman, 1985). Four simulated realizations of 

various levels of noise were used. We performed the comparison of the three tensor distance 

functions for each noisy realization.
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2.7. Preservation of Diffusion Tensor Natural Properties by Euclidean Averaging

Linear algebra-based tensor averaging might not preserve the determinant giving rise to a 

mean diffusion tensor that: (i) Has a determinant larger than the determinants of the 

individual tensors (Corouge et al., 2006), and (ii) is substantially more isotropic than the 

nonlinear average tensors (Arsigny et al., 2006). This “swelling-effect” occurs because 

(contrary to the vector-case, where the linear averaging of a set of vectors gives the mean 

event) the linear averaging of a set of tensors provides both the mean event and the range of 

present events (Westin et al., 2002). Even though the determinant preservation requirement 

is in question (Pasternak et al., 2010), the extensive discussions about this topic provided us 

with a reason to calculate the “swelling-effect” occurrence as it was observed in the 

averaging procedure of our real cardiac DT-MRI data.

In addition, it has been argued that by relying on the Euclidean metric to perform operations, 

the positive-definiteness is not always preserved. Motivated by this statement, we also 

calculated the number of voxels for which the Euclidean averaging operation generated 

negative eigenvalues.

2.8. Statistical Analysis

To test the statistical significance of the differences in the primary cardiomyocyte orientation 

coherence recovery performance (as well as determinant and degree of isotropy) among the 

three studied distance functions, we employed the nonparametric Kruskal-Wallis test 

(Breslow, 1970). A value of p < 0.05 was considered to be statistically significant.

All computations described in Section 2 were performed using in-house code written in 

Matlab (Mathworks, Natick, MA, USA).

3. Results

The measured SNR values for the datasets of this study are provided in Table 2. To visualize 

the extent of the directional regularity restoration achieved by each distance function, we 

plotted the logarithmic relative change in IVDC before and after each of the three types of 

averaging (Fig. 2 - top). This plot shows that the three different DT-MRI distance functions 

tend to provide equivalent results.

To determine whether the primary cardiomyocyte orientation coherence recovery 

performance is indeed the same for the three metrics, we performed the Kruskal-Wallis test 

for the IVDC-based comparison results. The outcomes of this nonparametric test are 

summarized in the table shown at the bottom of Fig. 2. This table has columns for the sum of 

squares (SS), degrees of freedom (df), mean squares (MS=SS/df), chi-square statistic, and p-

value. It is this chi-square statistic that was actually used to test the null hypothesis that all 

three metrics perform the same. The extremely high p-value that was obtained consists a 

strong indication that we cannot reject the null hypothesis. Hence, there is no important 

statistical difference in the three studied metrics.

To assess whether the results are sensitive to the cardiac wall region, we compared the 

performance of the Euclidean, AIR, and log-Euclidean tensor distance functions on 20 short-
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axis slices of one rat heart of this study. The 20 slices spanned the whole 3D acquisition 

volume. The comparison results, shown in Fig. 3, indicate that the three distance functions 

tend to provide equivalent results, irrespective of cardiac region.

Regarding the SNR dpendence investigation, and taking into account that the SNR of the 

acquired datasets was found to be approximately 80, the synthesized noisy replicates 

corresponded to SNR values of 28, 41, 54, and 67. The results (p-values) of the tensor 

distance function comparison for each noisy realization are given in Table 3. It is obvious 

from these results that the three distance functions tend to provide equivalent results, 

irrespective of the noise level.

The results of our investigation about the preservation of diffusion tensor natural properties 

by Euclidean averaging are described in Table 4, and Figs. 4, 5. It may be seen there that: (i) 

Euclidean averaging did not generate any negative eigenvalues (Table 4). (ii) The percentage 

of ROI voxels that did not preserve the determinant of the Euclidean mean ranged between 

7.47% and 33.33% for the five hearts (Table 4). (iii) The determinant of the Euclidean mean 

at a voxel was almost always (>99.9%) larger than the determinant of the other two 

nonlinear means at the same voxel (Table 4). (iv) The differences in the average determinant 

among the three resultant tensor average datasets was insignificant (p=0.7788) (Fig. 4). (v) 

The differences in the degree of isotropy among the three resultant tensor average datasets 

was insignificant (p=0.5117) (Fig. 5). (vi) The increased determinant of the Euclidean mean 

tensor (when compared with the determinants of the two nonlinear mean tensors) at a voxel 

did not always translate to a more isotropic tensor, though it happened more often than not 

(>72%) (Table 4).

4. Discussion

4.1. The Comparison Results

We presented a framework to compare the Euclidean, AIR and log-Euclidean distance 

functions using actual high-resolution DT-MRI rat heart data. By performing averaging 

(which is an operation that is dictated by the distance function) at the diffusion tensor level 

of three DT-MRI datasets (that were back-to-back and identically acquired) from each of 

five excised and fixed rat hearts, and by applying the three distance functions, this study 

sought to shed some more light on the selection of the most appropriate tensor distance 

function. To this end, we sought to ascertain in a quantitative manner the metric that 

achieved the greatest rectification of background noise-induced misaligned principal 

diffusion eigenvectors. Primary orientation is a piece of central information carried by the 

diffusion tensor data, as well as a main measure affected by disease (Giannakidis et al., 

2012). The comparison performed in this paper showed that the linear and non-linear DT-

MRI functions tend to provide equivalent results (Fig. 2). Hence, we conclude that the 

diffusion tensor manifold for cardiac studies is a curved space of almost zero curvature (Kay, 

1988). The results of our study are different from the findings of several works in the related 

literature that suggest the superiority of one of the three metrics. Moreover, it is worth noting 

that despite the solid mathematics that underlie the Riemannian framework, its superiority 

over the uncomplicated Euclidean and log-Euclidean frameworks could not be demonstrated 

Giannakidis et al. Page 12

Phys Med Biol. Author manuscript; available in PMC 2017 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



here. For equivalent performances, the Euclidean and log-Euclidean frameworks offer the 

advantage of being much more (~ 13 times here) computationally inexpensive.

When compared with previous DT-MRI metric comparison studies that used a different 

concrete application to assess suitability, this work is unique in that it combines the 

following: (i) We provide quantification (by using IVDC) of the relative performance of 

each distance function. Thus, our strict formalism allows the objective comparison of 

metrics instead of subjective assessment of displays. (ii) Our comparison tool (IVDC) is not 

biased. (iii) Our study involved a longitudinal comparison operation that was carried out on 

a same-voxel-basis.

There has been a lot of discussion in the literature about the “swelling effect” occurrence 

when performing linear averaging. In this paper, we investigated the relevance of the 

Euclidean metric in terms of stability. We found that maybe this topic is more an academic 

rather than a practical one (Table 4, Fig. 4, Fig. 5). Also it is worth noting that the increased 

determinants of the Euclidean mean tensor dataset (when compared with the determinants of 

the log-Euclidean and AIR mean tensor datasets) did not always translate to a more isotropic 

tensor distribution, though it happened more often than not (>72%) (Table 4). It would be 

reasonable to accept that the “swelling effect” occurrence will be more substantial when 

averaging: (i) Tensors that are different realizations of a tensor in the same voxel and the 

individual datasets were obtained at experiments of great variability (for example, in the 

imaging parameters). (ii) Tensors that belong to areas of significantly different degree of 

anisotropy. However, great caution should be exerted relative to both cases described above: 

(i) One should be very careful when interrelating tensors obtained at various experiments 

with different imaging parameters. (ii) One should avoid performing operations between 

regions of very different anisotropy degree. For example, Arsigny et al. (2006) should have 

refrained from the interpolation between tensors that belong to the corpus callosum and the 

adjacent ventricles. It would be more prudent to apply some pre-segmentation.

This paper did not investigate the effect of experimental parameters such as the number of 

diffusion gradients. Instead, we used the gradient scheme proposed by Papadakis et al. 

(1999). Papadakis et al. (1999) performed a comparison of gradient schemes, and the 

scheme used in our work was that selected as optimal in the comparison. While there is still 

some debate (Lebel et al., 2012) as to whether it is more beneficial to use imaging time to 

acquire more diffusion directions or signal averages, we do not believe that the parameter 

selection would have a large effect on the relative performance of the tensor distance 

metrics. In fact, the error caused by the limited number of gradients is not pertinent to this 

study, as it is systematic error (Hsu et al., 2010); the implemented temporal averaging has an 

impact only on non-systematic errors, such as the one caused by the background noise.

In this paper, averaging was performed at the level of diffusion tensors. The mean estimation 

procedure may be also applied at the level of diffusion weighted images, in k-space data, or 

at the level of diffusion eigenvector fields. However, the subject of this paper is to compare 

metrics/distance functions for the 6-dimensional space of diffusion tensors; the scalar/vector 

averaging topic and the error propagation study (Koay et al., 2007) are beyond the scope of 

this work.
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4.2. The Comparison Method

To ensure the proper quantitative comparison of the performances of the three DT-MRI 

distance functions, through the results obtained by a primary cardiomyocyte orientation 

coherence restoration study, a noise-free “gold standard” was needed. As a rule, it is difficult 

for one to have the objective reality of the situation when dealing with real tissue samples. 

Traditionally, non-destructive DTMRI has been validated against histologically 

reconstructed cardiomyocyte orientations (Hsu et al., 1998), and high resolution non-

destructive 3D fast low angle shot (FLASH) MRI (Bernus et al., 2015). However, the 

histological validation is difficult and imperfect. It requires cutting and mounting the 

histological sections which can easily distort the tissue. Subsequent registration of the DT-

MRI and histological data is also difficult. FLASH MRI is also a surrogate measure of 

cardiomyocyte orientation. In fact, it can only infer the cardiomyocyte orientation based on 

the direction of minimal change in image gradient. Therefore, the ground truth for this study 

was accommodated by the related literature. In particular, invasive morphological studies at 

the cellular level showed (Streeter and Bassett, 1966) that myocardium is a well-ordered and 

highly coherent medium. As a matter of fact, by examining locally the myocardium 

composition, it was found by Streeter and Bassett (1966) that the long axes of the myocytes 

are parallel, thus providing a systematic and relatively homogeneous primary structure for 

the aggregates. In addition, it was revealed by Streeter and Bassett (1966) that the rate, with 

which the cardiomyocyte inclination angles change as a function of transmural location, is 

continuous and smooth. The conformation of the heart wall cells described above is a key 

determinant of the cardiac electromechanics (Roberts et al., 1979).

In this paper, we analyzed the mid-lateral cardiac wall of five rats which were at an early 

stage of their life when the heart excision took place. By staying clear of the posterior and 

anterior junction areas of the left ventricle wall and the right ventricle free wall (where 

cardiomyocyte disarray has been reported (Kuribayashi, 1987)) and also by avoiding 

noncollinearities in the cardiomyocyte distribution due to aging (Kuribayashi, 1987), this 

further enhances the truthfulness of our expectation that the noise-free “gold-standard” of 

the studied tissue orientation distribution is a collinear one.

DT-MRI is highly susceptible to noise with the background signal of the diffusion weighted 

volumes being the main interference component (Chen and Hsu, 2005; Bao et al., 2009; Hsu 

et al., 2010).6 The manifestation of this background signal has its roots in the signal 

attenuation nature of the diffusion encoding and the prolonged data acquisition requirement 

(i.e. a minimum of seven MRI readings is needed) (Chen and Hsu, 2005; Hsu et al., 2010). If 

one attempts to improve the spatial resolution (which is equivalent to obtaining larger 

datasets), this gives a further boost to the background noise effects due to the unfortunate 

trade-off (that DT-MRI is subject to) between spatial resolution and signal to noise ratio 

(SNR). The diffusion tensor at each voxel (which is derived by the noisy diffusion weighted 

volumes) is typically diagonalized to yield eigenvectors (that indicate the principal 

directions of diffusion) and eigenvalues (that are measures of the amount of diffusion along 

6Other stochasticity sources in DT-MRI entail: (i) The eddy currents following the high demands placed on the gradient system, and 
(ii) other sources of systematic error such as deficiencies in the diffusion encoding scheme and poor diffusion modeling.
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the directions pointed by the respective eigenvectors). Therefore, it is quite justifiable that 

the presence of the background noise discussed above has been accounted (Bao et al., 2009; 

Basser and Pajevic, 2000; Martin et al., 1999) for the miscalculation of the eigenvector 

directions and the magnitude (or, even worse, the sorting) of the eigenvalues. With respect to 

the primary eigenvectors (that are of particular interest in this study), the background noise 

in the diffusion weighted volumes causes some of them to have atypical directions. In the 

case of cardiac DT-MRI, the background signal results in the microstructure of a few 

myocardium regions erroneously appearing as discontinuous (Yang et al., 2011; Frindel et 

al., 2009). In fact, there have been proposed few DT-MRI regularization methods (Frindel et 

al., 2009; Zhou et al., 2015) that used priors to favor smoothness of local diffusion in highly 

homogeneous tissues.

In our study, averaging of repetitive DT-MRI acquisitions was employed with a view to 

correcting misaligned principal diffusion eigenvectors. In fact, it has been a common 

practice (Haacke et al., 1999) (due to simplicity and effectiveness) in diffusion imaging to 

increase the accuracy of the estimation of various parameters by performing multiple 

measurements and then averaging. As an illustration, averaging of consecutive (and 

identically acquired) scans was carried out in Sun et al. (2001), and Skare et al. (2000) with 

a view to reducing the background noise influence in the estimation of anisotropy indices.

4.3. Quantitation of Averaging Impact on Tissue Orientation Integrity

We would like to emphasize that the rectification of misaligned (due to noise) primary 

eigenvectors in DT-MRI is a topic that has been researched at a fair extent in the past. A 

number of sophisticated (and much more time efficient than averaging) techniques based, for 

example, on partial differential equation anisotropic filtering (Chen and Hsu, 2005), sparse 

representation (Bao et al., 2009), and the variational method (Coulon et al., 2004) have been 

proposed. In this work, we do not propose averaging as a means to carry out denoising. We 

only bring this topic in the context of DT-MRI distance function selection. However, it has 

caught the authors’ attention the fact that while, on one hand, the time averaging for DT-

MRI background noise removal is a task that is carried out heavily by researchers and 

scanners (Haacke et al., 1999), on the other hand, the quantitative impact of this task in 

specific characteristics (such as tissue orientation integrity) remains largely uncharacterized. 

Motivated by this observation, a supplementary contribution of this paper is the 

quantification (see Table 5) of the improvement in cardiomyocyte direction coherence 

(amongst adjacent voxels) that is achieved by averaging three (and/or two) back-to-back DT-

MRI scans of a rat heart over the individual scans. From this table it is clear that the IVDC 

value increases with the number of averages. A main reason why the averaging impact on 

primary cardiomyocyte orientation coherence is not larger is that averaging cannot correct 

systematic errors (Haacke et al., 1999). One such source of systematic error is the fact that, 

in some voxels, the single tensor model provides a poor modeling for the diffusion process. 

To get a better insight into the averaging impact on primary cardiomyocyte orientation 

coherence discussed above, we also provide images (see Fig. 6) of the primary eigenvector 

field. These pinpoint in great detail the realignment of post-diagonalization diffusion tensor 

primary eigenvectors with atypical directions following tensor averaging.
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Finally, IVDC could prove a useful quantitative tool for other DT-MRI applications, where 

structure-sensitive functions (derived from local orientation similarity) are needed. Such 

applications are, for example, segmentation (Lenglet et al., 2006), and interpolation 

comparison (Yang et al., 2011).

5. Conclusion

The comparison performed in this paper showed that the Euclidean, AIR and log-Euclidean 

tensor distance functions tend to provide equivalent results in terms of primary 

cardiomyocyte orientation coherence restoration performance. The tensor manifold for 

cardiac DT-MRI studies is a curved space of almost zero curvature. The results of our study 

are different from the findings of several works in the related literature that suggest the 

superiority of one of the three metrics. Moreover, it is worth noting that despite the solid 

mathematics that underlie the Riemannian framework, its superiority over the uncomplicated 

Euclidean and log-Euclidean frameworks could not be demonstrated here. For equivalent 

performances, the Euclidean and log-Euclidean frameworks offer the advantage of being 

much more (~ 13 times here) computationally inexpensive.

Finally, the “swelling effect” occurrence following Euclidean averaging was found to be too 

unimportant to be worth consideration. Hence, this topic is maybe more an academic rather 

than a practical one.
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Appendix A: Invariance Properties of the Various Distance Functions

Assume d is a function used to measure distance between two diffusion tensors, P and Q. 

Then:

• d is invariant under reflection (or, else, re-ordering) if d(P, Q) = d(Q, P).

• d is invariant under rotation if d(P, Q) = d(ST PS, ST QS), where S any 

orthogonal matrix.

• d is scale invariant if d(P, Q) = d(βP, βQ), for all β > 0.

• d is invariant under inversion if d(P, Q) = d(P−1, Q−1).

• d is affine invariant, if d(P, Q) = d(GT PG, GT QG), where G a general full 

rank matrix.
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Appendix B: Definition of Matrix Logarithm, Exponential of a Matrix, and 

Square Root of a Matrix

Assume W = UDUT is the spectral decomposition of a symmetric positive-definite matrix 

W, where U is the orthonormal matrix the columns of which are the eigenvectors of W, and 

D = diag(di) is the diagonal matrix of the strictly positive eigenvalues di of W. Then:

•
The exponential of W is .

• The matrix logarithm is represented by: 

 where I denotes the 

identity matrix.

•
The formula for the square root of W is: .
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Figure 1. 
The region of interest (in yellow color) for the current comparison study.
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Figure 2. 
Top: The directional regularity restoration performance of the Euclidean, log-Euclidean and 

AIR distance functions as assessed by the logarithmic relative change in the IVDC index 

before and after averaging for the five hearts. Bottom: The results of the Kruskal-Wallis test 

for the null hypothesis that the primary cardiomyocyte orientation coherence recovery 

performance, as assessed by relying on the IVDC index, is the same for the three distance 

functions.
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Figure 3. 
The directional regularity restoration performance of the Euclidean (Eucl), log-Euclidean 

(logEucl) and affine-incvariant Riemannian (AIR) distance functions as assessed by the 

logarithmic relative change in the IVDC index before and after averaging for the five hearts. 

Results are presented over 20 short-axis slices of one rat heart of this study. The 20 slices 

spanned the whole 3D acquisition volume.
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Figure 4. 
Top: The determinant of the Euclidean (left), log-Euclidean (middle) and AIR (right) 

resultant tensor average datasets for the five hearts. ROI averages for each heart appear as 

symmetric error bars that are centered in the mean value and two standard deviations long. 

Bottom: The results of the Kruskal-Wallis test for the null hypothesis that the average 

determinant is the same for the three ways of tensor averaging.
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Figure 5. 
Top: The fractional anisotropy (FA) of the Euclidean (left), log-Euclidean (middle) and AIR 

(right) resultant tensor average datasets for the five hearts. ROI averages for each heart 

appear as symmetric error bars that are centered in the mean value and two standard 

deviations long. Bottom: The results of the Kruskal-Wallis test for the null hypothesis that 

FA is the same for the three ways of tensor averaging.
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Figure 6. 
(a) Helix angle map, where helix angle is defined (Streeter et al., 1969) as the angle between 

the cardiac short-axis plane and the projection of the primary eigenvector onto the epicardial 

tangent plane. (b)-(i) Images of the primary eigenvector field, color encoded to the absolute 

local helix angle. (b) The whole equatorial short-axis slice. The red sector indicates the 

zoom-in area (lateral wall). Remaining images are close-ups that refer to the 1st acquisition 

(c), 2nd acquisition (d), 3rd acquisition (e), mean of the 1st and 2nd acquisitions (f), mean of 

the 1st and 3nd acquisitions (g), mean of the 2nd and 3rd acquisitions (h), mean of all three 

acquisitions (i). The tensor averaging impact is the realignment of some primary eignvectors 

that had atypical directions due to noise. Results are shown when the Log-Euclidean 

distance function was used for tensor averaging. Similar results were obtained for the other 

two studied distance functions.
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Table 1

The imaging parameters used for each scan.

Sequence type 3D spin echo

Repetition time (TR) 500ms

Echo time (TE) 20ms

Field of view 20.5 × 20.5 × 5.1mm3

Matrix 128 × 128× 32

Resolution 0.160mm (isotropic)

Diffusion gradient duration (δ) 4ms

Diffusion gradient separation (Δ) 10ms

Receiver bandwidth 30.5 Hz

Number of gradient directions and b-value 12 at b = 1000 s
mm2 , 1 at b = 0 s

mm2  (Papadakis et al., 1999)

Number of averages 1

Total scan time 7.4h
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Table 2

The measured signal to noise ratio (SNR) values for the datasets of our study.

SNR value

Rat heart 1 80

Rat heart 2 75

Rat heart 3 78

Rat heart 4 85

Rat heart 5 84
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Table 3

The results (p-values) of the tensor distance function comparison for each noisy realization.

SNR value p-value

28 0.8781

41 0.8106

54 0.8781

67 0.8781
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Table 4

The results of our investigation about the preservation of diffusion tensor natural properties by Euclidean 

averaging.

Heart 1 Heart 2 Heart 3 Heart 4 Heart 5

Number of voxels
where the Euclidean
averaging operation
generated negative

eigenvalues

0 0 0 0 0

Percentage (%) of
voxels at which
detEucl_mean was
not preserved

8.83 7.47 2.20 18.97 33.33

Percentage (%) of
voxels at which
detEucl_mean >
detAIR_mean

99.90 100 100 100 100

Percentage (%) of
voxels at which
detEucl_mean >
detLogEucl_mean

99.90 100 100 100 100

Percentage (%) of
voxels at which
FAEucl_mean <
FAAIR_mean

91.78 72.51 97.09 97.38 81.19

Percentage (%) of
voxels at which
FAEucl_mean >
FALogEucl_mean

92.89 75.97 97.60 98.15 84.05
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Table 5

Quantification of the averaging impact on the primary cardiomyocyte orientation coherence as assessed by the 

IVDC index for one heart of this study. Results are shown when the Log-Euclidean distance function was used 

for tensor averaging. Similar results were obtained for the other two studied distance functions.

IVDC

1st acquisition 0.9585

2nd acquisition 0.9196

3rd acquisition 0.9288

Mean of 1st and 2nd acquisitions 0.9602

Mean of 1st and 3rd acquisitions 0.9617

Mean of 2nd and 3rd acquisitions 0.9463

Mean of all three acquisitions 0.9649
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