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Sébastien Forestier (sebastien.forestier@inria.fr)

Inria Bordeaux Sud-Ouest and Université de Bordeaux, France
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Abstract

Studies of child development of tool use precursors show suc-
cessive but overlapping phases of qualitatively different types
of behaviours. We hypothesize that two mechanisms in par-
ticular play a role in the structuring of these phases: the in-
trinsic motivation to explore and the representation used to
encode sensorimotor experience. Previous models showed
how curiosity-driven learning mechanisms could allow the
emergence of developmental trajectories. We build upon
those models and present the HACOB (Hierarchical Active
Curiosity-driven mOdel Babbling) architecture that actively
chooses which sensorimotor model to train in a hierarchy of
models representing the environmental structure. We study
this architecture using a simulated robotic arm interacting with
objects in a 2D environment. We show that overlapping phases
of behaviours are autonomously emerging in hierarchical mod-
els using active model babbling. To our knowledge, this is
the first model of curiosity-driven development of simple tool
use and of the self-organization of overlapping phases of be-
haviours. In particular, our model explains why and how in-
trinsically motivated exploration of non-optimal methods to
solve certain sensorimotor problems can be useful to discover
how to solve other sensorimotor problems, in accordance with
Siegler’s overlapping waves theory, by scaffolding the learning
of increasingly complex affordances in the environment.

Keywords: curiosity-driven learning; tool use; goal babbling;
overlapping waves; developmental trajectory; HACOB model

Introduction
The understanding of tool use development in young children
is one of the key question for the more general understanding
of the ontogeny of human cognition. Indeed, a series of abil-
ities are progressively developed from the simplest reaching
movements of the arms through more dexterous manipulation
of a spoon, towards advanced control of multiple interacting
objects. The latter shows an understanding of shapes, forces
and other physical properties that can be hierarchically re-
cruited for mental transformations and planning operations
which are pillars of human cognition. Child development
has first been described as staircase-like successive stages
in which all children go through (Piaget, Cook, & Norton,
1952). More recently, different views were developed and de-
scribe the structure and variability of observed children’s de-
velopmental paths. In particular, the development of tool use
precursors can be described as three consecutive and overlap-
ping stages of behaviours where sequential learning and goal-
directed behaviours play an increasing role (Guerin, Kruger,
& Kraft, 2013): body babbling, behaviours with a single
object, and behaviours with several interacting objects. A
study of free play (Zelazo & Kearsley, 1980) shows that at 9 1

2
months play is mostly composed of tactile examination, wav-
ing or mouthing of a single object but simple relational acts

of banging two objects together are already present. Later at
13 1

2 months, the study reveals that most children instead pre-
fer to explore the relationships among objects, but still show
behaviors of the previous phase. Furthermore, they show that
this overlapping phases pattern averaged across children is
also present in a longitudinal study of a single child. Another
type of behavioral structure is described by Siegler as the vari-
ability in a child’s set of current methods to solve a problem,
which leads to the overlapping waves theory (Siegler, 1996).

In this paper we focus on the study of such progressions be-
tween phases of behaviours in a robotic model, and on the use
of concurrent methods to solve a problem. We hypothesize
that several mechanisms play a role in behavioural progres-
sion’s structure and in particular 1) the intrinsic motivation to
explore through a self-regulation of the growth of complexity
of self-selected skills or tasks; 2) the structure of the repre-
sentation used to encode sensorimotor experience.

Intrinsic motivation, sometimes called ”curiosity”, have
been identified to play a fundamental role in driving sponta-
neous exploration in infant free play (Kidd & Hayden, 2015).
They have been defined as mechanisms that push infants to
explore activities for their own sake, driven by the search of
novelty, surprise, dissonances or optimal challenge (Gottlieb,
Oudeyer, Lopes, & Baranes, 2013). In the last decade, var-
ious families of computational models of intrinsic motiva-
tion were developed, often based on the formal frameworks
of active learning and reinforcement learning (Baldassarre
& Mirolli, 2013). One family of models, that has targeted
to study the developmental dimensions of intrinsic motiva-
tion, has considered a curiosity-driven learning mechanism
where the learner actively engages in sensorimotor activi-
ties that provide high learning progress, avoiding situations
that are too easy or too difficult and progressively focus-
ing on activities of increasing complexity (Gottlieb et al.,
2013). Such computational models have shown that devel-
opmental trajectories could emerge from the curiosity-driven
learning of sensorimotor mappings, in very different settings.
In the Playground Experiment (Oudeyer, Kaplan, & Hafner,
2007), a quadruped robot motivated to maximize its learn-
ing progress acquired how to use its motor primitives to in-
teract with the items of an infant play mat and a robot peer,
following a self-organized learning curriculum. In (Baranes
& Oudeyer, 2013), such mechanisms were shown to allow
for efficient learning of large repertoires of skills involving
high-dimensional continuous actions, as intrinsic motivation
guided the system to explore sensorimotor problems of in-
creasing complexity. In a model of active vocal develop-
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ment (Moulin-Frier, Nguyen, & Oudeyer, 2014), an agent had
to learn how to produce sounds with its vocal tract by self-
exploration combined with imitation of adult speech sounds.
This model reproduces accurately major phases of infant vo-
cal development until 6 months. In both studies, developmen-
tal trajectories are emerging from learning, with both regular-
ities in developmental steps and diversity. Regularities result
from the attractor dynamics of the interaction between moti-
vated learning, the body and the environment. The diversity
comes from different mechanisms: stochasticity in the algo-
rithms, variability in the environment, and the multiple attrac-
tors of the dynamic learning system. Existing models have
considered the exploration and learning of sensorimotor cor-
respondences mapping a motor space to a single task/sensory
space. However, in the perspective of an open-ended devel-
opment of reusable skills, and specifically in the development
of tool use, multiple interdependent and hierarchically orga-
nized task spaces should be available to the agent. For in-
stance, using a tool to act upon an object could make use of
previously explored interaction with the tool. Consequently,
an intrinsic motivation towards learning progress maximiza-
tion could particularly be useful in the context of tool use
where progress on some high-level task can not happen be-
fore progress on lower-level tasks have been made, by focus-
ing training on currently learnable self-generated tasks.

We study aspects of those hypothesis leveraging previous
models of curiosity-driven learning and extending them to
the active exploration of hierarchical sensorimotor and task
spaces. We define a hierarchy of sensorimotor models that
structures the sensory space to reflect the interaction of the
different items of the environment. The question of the au-
tonomous learning of such a sensorimotor hierarchy is an im-
portant one but is not essential to test the questions asked in
this paper, so here we provide the hierarchy to the agent as
a prior. In this hierarchy of models to explore, different ex-
ploration choices are available to the agent: which model to
explore, and how to explore that model. The problem of find-
ing an efficient active choice strategy is an instance of strate-
gic learning (Nguyen & Oudeyer, 2012), where different out-
comes and strategies are available and the agent has to learn
which strategies are useful for which outcomes. This can be
viewed as a generalization of active learning methods in ma-
chine learning. We define the HACOB (Hierarchical Active
Curiosity-driven mOdel Babbling) architecture and compare
several possible strategies to study the role of active learning
and hierarchical representation in the structuring of develop-
mental trajectories. We compare the different learning condi-
tions in a 2D environment where a simulated arm with three
joints plus a gripper can grab one of two available tools to
move an out-of-reach object, and we study the structure of
behavioural phases during exploration.

To our knowledge, HACOB is the first model of the
curiosity-driven development of tool use, and the first to show
the autonomous emergence of overlapping phases in the de-
velopment of simple tool use in a simulated robotic setup.

Here we define tool use as the ability to perform different
effects on an object with the help of an intermediate object,
using some sort of learned inverse mapping. Our model is
also the first to account for the intrinsically-motivated paral-
lel exploration of different tools to reach one goal, in line with
Siegler’s overlapping waves theory. Other models predefine
successive phases in object affordances learning (Ugur, Na-
gai, Sahin, & Oztop, 2015), or do not study the role of intrin-
sic motivation in tool affordances learning (Stoytchev, 2005),
or have only considered the autonomous development of sin-
gle object manipulation (Gottlieb et al., 2013).

However, here we do not study some important factors in
the development of tool use. For instance, young infants need
to adapt to the maturation of vision and to a developing body.
Also, social guidance through imitation and mimicry is of
central importance for the development of tool use but we
do not address the question of its modeling in this paper nor
of the interplay between social learning and self-exploration.

Methods
Environment
We simulate1 a 2D robotic arm that can grasp tools that can
be used to move an object into different boxes in the environ-
ment. In each trial, the agent executes a motor trajectory and
gets the associated sensory feedback. Finally the arm, tools
and objects are resetted to their initial state. The next sections
precisely describe the items of the environment and their in-
teractions. See Fig.1 for an example state of the environment.
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Figure 1: Top: a state of the environment. Middle: position of
the arm at time steps 17, 33 and 50, with some intermediate
positions, along the 50 steps movement. Bottom: trajectory
of each of the four virtual motors, generated by a DMP.

1Source code and notebooks available as a Github repository at
https://github.com/sebastien-forestier/CogSci2016
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Robotic Arm The 2D robotic arm has 3 joints plus a grip-
per located at the end-effector. Each joint can rotate from
−π rad to π rad around its resting position, mapped to a stan-
dard interval of [−1,1]. The length of the 3 segments of the
arm are 0.5, 0.3 and 0.2 so the length of the arm is 1 unit. The
resting position of the arm is vertical with joints at 0 rad and
its base is fixed at position [0,0]. The gripper g has 2 possi-
ble positions: open (g≥ 0) and closed (g < 0) and its resting
position is open (with g = 0). The robotic arm has 4 degrees
of freedom represented by a vector in [−1,1]4. A trajectory
of the arm will be represented as a sequence of such vectors.

Motor Control We use Dynamical Movement Primitives
(Ijspeert, Nakanishi, Hoffmann, Pastor, & Schaal, 2013) to
control the arm’s movement as this framework permits the
production of a diversity of arm’s trajectories with few param-
eters. Each of the 4 arm’s degrees-of-freedom (DOF) is con-
trolled by a DMP starting at the rest position of the joint. Each
DMP is parameterized by one weight on each of 2 basis func-
tions and one weight specifying the end position of the move-
ment. The weights are bounded in the interval [−1,1] and
allow each joint to fairly cover the interval [−1,1] during the
movement. Each DMP outputs a series of 50 positions that
represents a sampling of the trajectory of one joint during the
movement. The arm’s movement is thus parameterized with
12 weights, represented by the motor space M = [−1,1]12.

Objects and Tools Two sticks can be grasped by the handle
side in order to catch an out-of-reach object. A small stick of
length 0.3 is located at position (0.75,0.25) and a long stick
of length 0.6 is located at position (−0.75,0.25) as in Fig. 1.
An object (yellow ball), initially at position (0,1.2), can be
caught by the magnetic side of one of the two sticks, moved
and possibly placed into one of ten fixed squared boxes. If
the gripper is closed near the handle of a stick (closer than
0.2), it is considered grasped and follows the gripper’s posi-
tion and the angle of the arm’s last segment until the gripper
opens. Similarly, if the magnetic side of a stick reaches the
ball (within 0.1), the ball will then follow the magnet. The
ten boxes (identified from 1 to 10) are static and have size
0.2. Boxes 1 to 5 can only be reached with the long stick, and
the other five boxes can be reached with both sticks.

Sensory Feedback At the end of the movement, the robot
gets sensory feedback from the different items of the envi-
ronment (S, 25D). First, the trajectory of the gripper is repre-
sented as the x and y positions and the aperture (1 or −1) of
the gripper at 3 time points: steps 17, 33, 50 during the move-
ment of 50 steps (SHand , 9D). Similarly, the trajectories of the
end points of the sticks are 3-point sequences of x and y po-
sitions (SStick1 and SStick2 , 6D each). It also gets the position
of the single object at the end of the movement (SOb ject ,2D).
The agent receives the identifier (from 1 to 10) of the reached
box if one of them has been reached by the ball, 0 otherwise.
It also receives the distance between the ball at the end of the
movement and the closest box (SBoxes, 2D).

Arm

12D

SHand ×SStick1 ×SStick2 ×SOb ject ×SBoxes

25D

Arm

12D

1

Model1
Hand

9D

2

Stick1

6D

5

Stick2

6D
6

3

Ob ject

2D

4 Boxes

2D

Figure 2: Architectures. Top: Flat. Bottom: Hierarchical.

Learning Architectures

The problem settings for the learning agent is to explore its
sensorimotor space and collect data so as to discover how
to produce a diversity of effects, and to learn repertoires of
skills allowing to reproduce these effects in the form of in-
verse models. Consequently, the system is not given a priori
a single target task to be solved: it rather autonomously se-
lects the sensorimotor problems it will focus on through an
intrinsically motivated selection of sensorimotor models.

Flat Architectures We define a flat architecture as directly
mapping the motor space M (12D) and the sensory space S
(25D). To do so, the agent needs a sensorimotor model that
learns the mapping and provides inverse inference of a prob-
able m to reach a given s. The sensorimotor model stores new
information of the form (m,s) with m ∈ M being the exper-
imented motor parameters and s ∈ S the associated sensory
feedback. It computes the inverse inference with the near-
est neighbour algorithm: it gets the motor part of the near-
est neighbour in S of the given s, and adds exploration noise
(Gaussian with σ = 0.01) to explore new motor parameters.

The agent also needs an interest model that chooses goals
in the sensory space. The control condition is a random motor
babbling condition (F-RmB) that always randomly chooses
new motor parameters m. In the other conditions, the agent
performs Goal Babbling, a method by which it self-generates
goals in the sensory space and tries to reach them. To generate
those goals, different strategies have been studied (Baranes &
Oudeyer, 2013). It was shown that estimating the learning
progress in different regions of the sensory space and gen-
erating the goals where the progress is high leads to a fast
learning. However, this cannot be applied in a 25D sensory
space as a learning progress signal cannot be estimated in this
volume. Thus, in the flat random goal babbling condition (F-
RGB), we use a random generation of goals in the sensory
space, which was nevertheless proven to be highly efficient in
complex sensorimotor spaces (Rolf, Steil, & Gienger, 2010).

Hierarchical Architectures The 25D sensory space can be
structured to reflect the interaction of the different items of the
environment. Indeed, the arm motor position influences the
gripper, which influences one of the tools (but not both at the
same time), which influences the position of the object and
the filling of the boxes. We thus study here learning architec-
tures that could make use of this sensorimotor structure, and
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we call them hierarchical. Those architecture learn 6 models
at the same time (see Fig. 2: gray squares are models). Each
of those models functions in the same way as the random goal
babbling flat architecture (F-RGB). Each model has a motor
space (e.g. motor space of model 2 is SHand), a sensory space
(respectively SStick1 , see arrows in Fig. 2), and can choose
goals randomly in this sensory space. At each iteration, the
architecture first has to choose the model in which to pick a
goal, a procedure that we call Model Babbling. Once a model
is chosen, it finds a goal in its sensory space, and infer motor
parameters (that can be in the sensory space of a lower-level
model) to reach that goal. Then, it passes those parameters
as a goal to a lower-level model, which similarly infers motor
parameters and passes those ones until the actual Arm mo-
tor space gets parameters to execute in the environment (with
the same exploration noise as in Flat architectures). Model
4 has also to choose which lower-level model to use in order
to reach an object end position so in SOb ject , as two models
(3 and 6) have SOb ject as sensory space. Model 4 chooses the
tool that enabled reaching so as close as possible in the past,
e.g. if model 3 has in its history a reached sensory point s
closer to so than any reached point with model 6, then model
3 is chosen. Finally, when motor parameters m are executed
in the environment and feedback s is received, the mappings
of all models are updated. However, only the tool-particular
models are updated when a tool is currently held.

Random vs Active Model Babbling In a first condition,
the agent randomly chooses the model that will find a goal,
which is called Random Model Babbling (H-RMB). The
problem of Model Babbling is an instance of strategic learn-
ing (Nguyen & Oudeyer, 2012), where different outcomes
and strategies to learn them are available and the agent learns
which strategies are useful for which outcomes. In that paper,
they show that an active choice of the outcomes and strate-
gies based on the learning progress on each of them increase
learning efficiency compared to random choice. To develop
active learning strategies, we first define a measure of learn-
ing progress for each of the 6 models. When a model has
been chosen to babble, it draws a random goal sg, and finds
motor parameters m to reach it using the lower-level models.
The actual outcome s in the sensory space of the model, asso-
ciated to m might be very different from sg as this goal might
be unreachable, or because lower-level models are not mature
enough for that goal. We define the competence associated to
a goal sg as the negative distance between the goal and the
reached point, divided by the maximal distance in this space,
to scale this measure across different spaces:

C(sg) =−
||sg− s||

maxs′ ||s′− s||
(1)

and the interest I(sg) associated to this goal as

I(sg) = |C(sg)−meankNNC(s)| (2)

where meankNNC(s) is the mean competence of the (k =
20) nearest previous goals (k-Nearest Neighbours algorithm).

100000 Iterations

In
te

re
st

0.06

0

0.12

Figure 3: Condition H-P-AMB. Left: Interest of each model.
Right: Exploration of the object space: each dot is the posi-
tion reached with the object at the end of a movement.

The interest of a model is initialized at 0 and updated to fol-
low the interest of the goals (with rate n = 200):

Imodel =
n−1

n
Imodel +

1
n

I(sg) (3)

In condition H-P-AMB, the choice of model is probabilis-
tic and has ε = 10% chance to be random, and (1− ε) to be
proportional to their interest. In condition H-GR-AMB, the
choice of model is greedy (model with maximum interest)
but also with ε = 10% of random choice. Finally, condition
H-P-AMB-CTC (Curiosity-driven Tool Choice) is the same
as H-P-AMB but the choice of the tool to use (model 3 or 6)
is made with probabilities proportional to the interest of the
two models, instead of being based on the more competent
tool for the given object goal position. We call HACOB this
Hierarchical Active Curiosity-driven mOdel Babbling algo-
rithmic architecture with the algorithms H-P-AMB and H-P-
AMB-CTC being two variants of the architecture.

Results
We perform 100 independent simulations of 100000 itera-
tions per condition, starting with 100 iterations of motor bab-
bling. Fig. 3 shows details about one trial of the condition
H-P-AMB. We can see the interest of each model during one
simulation, and the corresponding explored object space. The
interests of models 2 and 5 increase once the arm succeeded
to grab the corresponding stick. Following that, the interests
of models 3 and 6 increase once the object has been reached.

Structure of the Evolution of Behaviours We provide a
measure of three types of behaviours with objects during ex-
ploration. In the first category (hand) the arm did not grab
any stick and thus did not move the out-of-reach object. In
the second category (stick), the arm did grab one of the two
sticks but did not touch the object with it. The third cate-
gory (ob ject) contains the movements where both a stick was
grabbed and the object was moved by the stick. Fig. 4 shows
a typical evolution of the proportion of the three categories
of behaviours. We performed a more detailed analysis (see
Table 1) by counting the trials where the evolution of the be-
haviours were similar to the ones found in infant development
of the interaction with object (Guerin et al., 2013). A struc-
ture was considered similar to infant behavioral structures if
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Figure 4: Typical behavioral evolution in the conditions (a) F-RGB, (b) H-GR-AMB, (c) H-P-AMB.
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Figure 5: Exploration of sensory spaces. Box plots show medians and quartiles of the 100 trials.

it validated each of the following criteria: behaviours of cat-
egories stick and ob ject increase from 0 to more than 10%
(potentially after an initial phase with a steady low value), are
followed by a curve with small slope and no abrupt changes,
and behaviours of category ob ject start to raise at least 1000
iterations after stick started to raise (see Fig. 4(c) for a valid
instance). Also, the median number of abrupt changes across
trials are reported in Table 1 (as the sum of steady changes
of more than 10% in the three behaviours), with a significant
difference between condition H-GR-AMB and others (Mann-
Whitney U tests, p < 10−4).

Table 1: Behavioural analysis

Condition Number of Trials
validating criteria

Median number of
Abrupt changes

F-RmB 0 0
F-RGB 0 1
H-RMB 60 2

H-P-AMB 70 2
H-GR-AMB 7 6

H-P-AMB-CTC 79 1

Exploration Efficiency Also, for each condition we mea-
sured the total exploration of the sensory spaces during train-
ing. The exploration of the hand, sticks and object spaces is
defined as the number of reached cells in a 100× 100 dis-
cretization of the (X,Y) space of their position at the end of
the movement. Boxes’ exploration is the number of boxes
reached with the object during training. Fig. 5 shows the ex-
ploration of the different sensory spaces for each condition.

We provide Mann-Whitney U test results of comparisons of
total exploration for some pairs of conditions. One star means
p < 0.05, two: p < 10−2, three: p < 10−3, four: p < 10−4.

Structure of Tool Choice Finally, we compare the struc-
ture of tool choice made to reach object goal positions in two
conditions for which only this choice differs. Fig. 6 shows
the choice of tool to reach a given object goal position in the
conditions H-P-AMB and H-P-AMB-CTC. When model 4 is
babbling, it infers the best object position so to reach a ran-
dom goal sb ∈ SBoxes. We plot all the choices that model 4
made during exploration, at position so on a 2D space, with
color blue if Stick1 was chosen and red if Stick2 was cho-
sen. In condition H-P-AMB, we can see strong boundaries
between tool choice regions. By contrast, in condition H-P-
AMB-CTC, both tools are chosen in all regions.

Figure 6: Chosen tool depending on object goal position.
Blue: long stick choice. Red: small stick. Left: H-P-AMB,
strong boundaries between tool choice regions. Right: H-P-
AMB-CTC, parallel exploration of both tools in all regions.
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Discussion
Structure of the Evolution of Behaviours Results show
different structures of behaviour evolution in the different
conditions. Flat architectures cannot efficiently learn in this
environment with a high-dimensional sensory space. There-
fore, they do not show structure in the behavioural evolu-
tion but rather steady proportions of the three behaviours.
By contrast, hierarchical condition H-GR-AMB shows suc-
cessive behavioural steps with abrupt changes, which reflects
the greedy choice of model to babble. When one model be-
comes more interesting than another, it is chosen for a large
number of iterations until another model exceeds its interest.
Random model babbling shows overlapping phases structures
more compatible with infants’ studies in the evolution of the
three behaviours, but less than active model babbling (60%
instead of 70% or 79%). This is because random model bab-
bling does not adapt its choice of models to their interests
along development. Indeed, it often explores model 1 even
if it is sufficiently explored to make progress on higher-level
models, and so explores less the object position space than
active model babbling (H-P-AMB). Also, all models are still
useful to explore after the number of iterations simulated here
so the first behavioural phases (hand and stick) do not lessen
towards the end of the simulations in condition H-P-AMB.

A notable difference between active and random model
babbling is on the cognitive or intentional level, as active
model babbling monitors the current progress of each model
whereas random model babbling does not. Furthermore, in
other setups where some tasks are learned much faster than
others and where at some point it becomes useless to explore
a mastered task, active model babbling should also show an
important difference both on a quantitative exploration point
of view and on the structure of the evolution of behaviours.

Variability of Strategies to Reach Goals The compari-
son of conditions H-P-AMB and H-P-AMB-CTC shows that
when the agent chooses the tool to reach a given object goal
position based on the interest of the corresponding models,
both tools are trained to reach all goals instead of train-
ing only the best performing tool. Indeed, with the active
curiosity-driven choice of tool, the small stick has produced
more diverse effects on the object than in the optimal tool’s
condition (Fig. 5c), even if those effects could also have
been generated with the long tool. Curiosity-driven active
tool choice shows more child-like results in accordance with
Siegler’s overlapping waves theory, which describes the use
of strategies in infants and explains that non-optimal strate-
gies are also explored as they might turn out to be finally good
ones for this problem or for different but related ones.

Finally, we first demonstrated that hierarchical structure
is a determining factor for the emergence of structured be-
havioural phases in our simple tool use setup. Then we
showed that the active exploration of this hierarchical struc-
ture with curiosity-driven mechanisms combined with goal
babbling reinforces this emergence and is essential to effi-

ciently learn in this hierarchy. Although mechanisms such
as action observation, sequential learning or causal inference
are known to be highly important mechanisms in human de-
velopment, we thus suggest that curiosity-driven exploration
and goal babbling should also be considered as ones of them,
but they have comparatively little been studied so far.
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