
UC Berkeley
UC Berkeley Previously Published Works

Title
Scooped! Estimating Rewards for Priority in Science

Permalink
https://escholarship.org/uc/item/1z25r6tw

Authors
Hill, Ryan
Stein, Carolyn

Publication Date
2025

DOI
10.1086/733398

Copyright Information
This work is made available under the terms of a Creative Commons 
Attribution License, available at 
https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1z25r6tw
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Scooped! Estimating Rewards
for Priority in Science

Ryan Hill

Northwestern University

Carolyn Stein

University of California Berkeley
We
We ar

Electro

Journal
© 2025
ternati
use, co
https:/
The scientific community assigns credit or “priority” to individuals who
publish an important discovery first. We examine the impact of losing a
priority race (colloquially known as getting “scooped”) on publication
and career outcomes. To do so, we analyze data from structural biology
where the nature of the scientific process together with the Protein
Data Bank enables us to identify priority races and their outcomes.
We find that scooped teams are less likely to publish in top journals
and receive 21 percent fewer citations. We further study the implica-
tions of priority racing on research strategy, academic inequality, and
scientist beliefs.
I. Introduction
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In short, property rights in science become whittled down to
just this one: the recognition by others of the scientist’s distinc-
tive part in having brought the result into being. (Robert K.
Merton 1957)
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Basic science is a critical input to innovation, but it may be under-
provided in competitivemarkets because discoveries are not directly mar-
ketable and property rights are difficult to enforce. Unlike applied re-
search, basic (or “pure”) scientific research advances our fundamental
understanding of the world, but typically does not yield immediate op-
portunities for commercialization (Nelson 1959; Arrow 1962). As a result,
credit for ideas, rather than direct profits, is an important potential
motivator of innovative activity (Dasgupta and David 1994). Within acade-
mia, there is a widespread notion that the first person to publish a new
discovery receives the bulk of the credit. Scientists therefore compete
fiercely for priority (Merton 1957). Famous examples of priority disputes
include Isaac Newton versus Gottfried Leibniz over the invention of cal-
culus, Charles Darwin versus Alfred Wallace over the discovery of natural
selection and evolution, and, more recently, Grigori Perelman versus
Shing-Tung Yau, Xi-Peng Zhu, and Haui-Dong Cao over the proof of the
Poincaré conjecture. This competition for recognition shapes the culture
and professional structure of many disciplines, and scientists regularly
worry about their work being “scooped” or preempted by a competitor
(Hagstrom 1974). However, there is little empirical evidence document-
ing how credit is allocated in science or how rewards are shared between
the “winners” and “losers” of these races. The additional credit given to
the winner—what we call the priority premium—is an important parameter
because it dictates the intensity of the competition to publish first. A rel-
atively even credit split could lead to less competition than a winner-take-
all scenario, which could meaningfully affect the pace, direction, and qual-
ity of research.
Therefore, the contribution of this paper is to empirically measure this

priority premium.We analyze the impact of getting scooped on the losing
project (in terms of probability of publication, journal placement, and ci-
tations), as well as on a scooped scientist’s subsequent career. We also
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investigate whether competition for academic attention contributes to
inequality within scientific disciplines.
Conceptually, our goal is tomeasure the cost of getting scooped by con-

structing comparisons in which multiple teams of scientists are working
independently and concurrently on identical or very similar projects,
which we call races. In practice, these races are challenging to identify
for three reasons. First, many academic fields use a variety of methods
and seek to answer fairly open-ended questions, and so finding near-
identical projects is difficult. Second, even if the questions are well-defined,
it is difficult—especially without expertise in a given scientific field—to
quantify the intellectual distance between twopapers in topic space. Third,
scooped projects are often abandoned, making them impossible to track
in publication data. We tackle these challenges by analyzing project-level
data from the field of structural biology. Specifically, we examine projects
in the Protein Data Bank (PDB), a repository for structural coordinates of
biological macromolecules. The PDB is a centralized, curated, and search-
able database of biological details contributed by the worldwide research
community and contains over 150,000 macromolecule structures.1 Several
features of the PDB allow us to make headway on the key empirical chal-
lenges described above. First, structural biology papers have a well-defined
objective, which is to describe the 3-dimensional shape of a knownprotein.
Once the first paper about a protein structure is published, any follow-up
publications servemostly to confirm the result of the first. Second, projects
are grouped by the PDB according to molecular similarity, which allows
us to identify papers written by separate teams that solve identical or very
similar molecular structures. Lastly, the PDB uniquely allows us to observe
projects that are scooped shortly after completion but before publication.
Scientists are required by journals to upload structures to the PDB prior
to publication, so we can see projects that were completed but never ap-
peared in print. Moreover, the rich metadata in the PDB allows us to re-
construct the timelines of projects, and find instances where teams were—
unbeknownst to each other—working on the same molecule at the same
time. Structural biology is a secretive field: in our data,most teams that lose
priority races are scooped unexpectedly near the end of their projects.2
1 The vast majority of these macromolecules are proteins, and therefore we will often
refer to the entire collection as such.

2 Historians of the field suggest that crystallography is unusually secretive due to a com-
bination of (a) high project costs and (b) ease of imitation by competitors after those high
costs have been sunk. The field has worked actively to encourage data sharing through the
PDB, though the competitive nature of the field was an impediment. The compromise
struck by the PDB was that scientists must only share their data at the time of publication,
not before (Strasser 2019). In a survey of structural biologists we conducted, 80 percent of
the respondents say they rarely if ever circulate their findings in a working paper or pre-
print prior to journal publication. Klebel et al. (2020) find that 40 percent of journals have
unclear policies about the admissibility of preprint submissions, which may exacerbate the
reluctance to share early work.
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We construct races using two key dates that are recorded for all PDB
projects. First, the deposit date marks when the scientist first uploaded
her findings to the PDB. Scientists typically deposit their findings shortly
after a manuscript has been submitted for publication. The second is the
release date, which closely corresponds to the date of publication and is
usually 2 to 6 months after deposit. Critically for our design, the data is
hidden from the public (and from competing scientists) between deposit
and release. To construct races, we find instances where two or more
teams have independently deposited a structure discovery for identical
macromolecules prior to their competitor’s release date. The order of re-
lease then defines the outcome of the race. The first team to release is the
winner, and the second team is scooped. We identify 1,611 races in our
data. These races consist of 3,279 separate projects out of 67,297 total
projects in our sample period from 1999 to 2017, suggesting that 5 per-
cent of all structural biology projects are involved in a late-stage race to
publication. These races are composed of a diverse set of scientific teams
from different countries, institutional prestige, and experience. In the
main analysis of this paper, our definition of scooped projects focuses only
on late-stage races where both teams are on the cusp of publication.
Focusing primarily on these late-stage scoops is advantageous for the eco-
nomic interpretation of our results. Since both projects had been com-
pleted independently prior to publication, we can infer that the second-
place team would have published the priority paper in the counterfactual
where they had not been scooped. The estimated difference in observed
outcomes therefore isolates the premium for novelty awarded by editors
and readers. The downside of focusing on these narrow postdeposit
scoops is that the scientists are passive at this point. The research has been
largely completed and the timing of release is in many ways out of their
hands, so these races offer little insight into the strategic interactions be-
tween racing teams, a central topic in the economics of R&D racing.
Therefore, as an extension in section V, we study a sample of teams that
were scooped after they had begun their experiments but before they had
deposited their final project, in order to learn more about these strategic
interactions.
While getting scooped is not randomly assigned, we usemultiplemeth-

ods to assess the validity of the causal identification assumptions. We es-
timate the effect of winning a race using the naturally occurring variation
in the priority ordering of races. Therefore, omitted-variables bias is a
threat to the causal interpretation of the estimates. If the winners are pos-
itively selected on experience, research ability, or university prestige,
then our estimates of the scoop penalty will be biased upwards (in terms
of magnitudes). However, we find that the outcome of races—even if not
perfectly random—is highly unpredictable. We observe cases of high-
ranked teams scooping low-ranked teams and low-ranked teams scooping
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high-ranked teams. Throughout the analysis, we carefully document po-
tential sources of bias and assess treatment balance using the observable
team and author characteristics. To furthermitigate concerns of omitted-
variables bias, we use the post–double-selection Lasso method for control-
variable selection (PDS Lasso; Belloni, Chernozhukov, and Hansen 2014;
for Lasso, an acronym for “least absolute shrinkage and selection opera-
tor,” see Tibshirani 1996).
We find that getting scooped has a moderate impact on the success of

the scooped project. Scooped projects are 2.6 percent less likely to be
published. Scooped papers appear in journals with impact factors that
are lower by 0.19 standard deviations; they are nearly 20 percent less likely
to appear in a top-10 journal. Scooped papers receive 21 percent fewer
citations, and are 24 percent less likely to be a hit paper, defined as reach-
ing the top 10 percent in citations for their publication year. While these
effect sizes are meaningful, they are far from a winner-take-all division of
credit. Focusing on citations as an outcome, our estimates imply that the
losing paper receives 44 percent of the total citations accrued by both pa-
pers, a much higher share than the 0 percent assumed by a winner-take-
all model. Much of the citation effect is driven by journal placement, with
only a 4 percent difference in citations once we control for journal fixed
effects. We provide suggestive evidence that editors and reviewers have a
strong taste for novelty. Papers that are scooped prior to submission to a
top journal are rarely, if ever, accepted for publication. Some scooped pa-
pers do appear in top journals, but only if they were far along in the re-
view process on the date they are scooped.
Does getting scooped have a detrimental impact on the careers of in-

dividual authors? We compare the future publications, citations, and ac-
ademic longevity of scientists on the winning and losing teams. We find
that scientists who are scooped are about 6 percent less likely to be ac-
tively depositing in the PDB 5 years after this setback, and 2 percent less
likely to be publishing in life and medical sciences as a whole. We do not
find statistically significant effects on intensive margin publication rates.
However, scooped scientists receive 20 percent fewer citations to their fu-
ture work, an effect that is stronger for novice scientists (34 percent) than
their veteran counterparts (16 percent).
The main analysis focuses only on scoops where the losing team had

already deposited and was therefore limited in its opportunity to change
its research. When considering cases of predeposit scoops (i.e., scoops that
occur before the losing team has deposited their work), we find that sci-
entists are able to strategically respond to being scooped by adjusting the
scope and direction of their project and also by integrating insights from
the winning publication. We identify this subsample of races using the
“collection date” feature of the PDB, which allows us to find teams that
had done their initial experiments but hadnot yet deposited their findings
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in the PDB. Teams scooped in this intermediate stage take 1.4 years longer
from collection to deposit than teams that are scooped after depositing.
In that time, they tend to include additional structure deposits in their
paper and shift the focus of their writing away from narrowly describing
the structure itself by incorporatingmore analysis of protein function. They
are alsomore likely than ourmain sample of scoops to build on the priority
findings using a technology calledmolecular replacement. Although some
of these strategic responses to getting scooped slow the scientists down, they
also help to offset the growing scoop penalty.
We analyze and discuss how the priority-reward system relates to in-

equality in science. Our sample of races provides unique insight into
how reputation affects academic attention, because we see teams of vary-
ing reputation and affiliation competing to publish the same discovery
first.We find that when a high-reputation lab scoops a relatively unknown
lab, they receive 65 percent of the total citations, but when a low-reputation
lab scoops a high-reputation lab, they only receive 46 percent of the total
citations. We rationalize this asymmetry in priority rewards with a model
of academic attention based on the statistical discrimination literature
(Phelps 1972; Aigner and Cain 1977). This relationship between priority
credit and reputation suggests that compensation in science is not formu-
laic but may be influenced by the attention constraints and biases of edi-
tors and readers.
Finally, we benchmark the size of the scoop penalty by comparing it to

the perceptions of active structural biologists. We survey 822 correspond-
ing authors of papers linked to the PDB and pose a hypothetical scenario
about getting scooped. The respondents estimate a 27 percent probabil-
ity of getting scooped between submission and publication, much larger
than the 3 percent chance we document in the PDB data. We then ask
them to predict the probability of publication and expected citations if
they are scooped by a competitor’s paper. They predict that they only
have a 67 percent chance of publishing the paper—again, much lower
than the 85 percent of scooped projects that we observe being published
in the PDB data. Finally, they estimate a 59 percent penalty in citations
compared to the hypothetical winner, much higher than the 21 percent
penalty we estimate in the PDB data.3 These comparisons suggest that sci-
entists may be overly concerned about the probability and cost of getting
scooped and that perhaps better information about the true outcome of
races might alleviate concerns about risk and competition in academia.
We choose to focus on structural biology because the unique features

of the PDB allow us to estimate an internally valid priority effect in a way
3 We also estimate these numbers in a subsample of the PDB data that is most similar to
the hypothetical posed in the survey and still find evidence of pessimism. See table 8 for
details.
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that—to the best of our knowledge—would not be possible in other fields
of science. However, a narrow focus on a single field naturally raises ques-
tions of external validity. Varying norms, institutions, and technology
across different academic fields might lead to different distributions of
priority and mechanisms for assigning credit. The scoop penalty may
be higher in structural biology than in, for example, economics, because
structure discoveries are “one right answer” solutions and therefore sim-
ilar papers are potentially more substitutable. On the other hand, be-
cause structural biology is an experimental field, there could be inherent
value in replication, which might increase the attention granted to
scooped papers as compared to more theoretical fields like pure mathe-
matics. We argue that structural biology is an important area of research
per se and is therefore worthy of our attention. However, the research
questions and methods structural biologists use are similar to other im-
portant fields in the basic life sciences, and so we suspect that our quali-
tative conclusions may apply to these fields as well.
The size of the priority premium directly relates to the level of compe-

tition in science. In a scenario where priority rewards are evenly split be-
tween the first- and second-place teams, there is no reason to compete to
publish first. At the opposite extreme, if priority rewards are winner-take-
all, the competition will be intense. This competition, in turn, has impor-
tant implications for how science functions. On one hand, sharp priority
rewards can encourage intense effort on solving frontier problems. A pri-
ority system also has the public benefit of encouraging disclosure, which
is critical for fostering follow-on innovation (Williams 2013). On the
other hand, some have theorized that R&D racing might induce overin-
vestment and duplication of effort on particular projects (Loury, 1979;
Hopenhayn and Squintani 2021). In a companion paper (Hill and Stein
2024a), we study how high levels of competition generated by unequal
priority rewards also impact the quality of scientific work. Our results sug-
gest that the competition to publish first induces scientists to rush and
ultimately results in lower-quality research. Some journals—seemingly
in response to these rushing concerns—have begun to explicitly offer a
grace period in which they will consider scooped papers for publication
(Marder 2017; PLoS Biology Staff Editors 2018). This appears to be an ef-
fort to directly reduce the priority premium by ensuring more credit for
the second-place team. Moreover, competition may affect science along
other dimensions. For example, high levels of competition may reduce
collaboration and the free sharing of information, ultimately slowing
scientific progress. Therefore, measuring the priority premium—which
maps directly to the intensity of scientific competition—is a critical first
step in this agenda.
The remainder of the paper proceeds as follows. The following para-

graphs offer a brief literature review. Section II provides some scientific
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background and a description of our data. Section III describes the em-
pirical design and identification. Section IV presents results for the
short-run impact of scoops on publication, journal placement, and cita-
tions, as well as the long-run career results. We also discuss the role of
editors and the timing of races for the distribution of priority rewards.
Section V studies the strategic response to being scooped in races where
the scooped team had not yet completed the project. Section VI de-
scribes a model of academic attention and reports results for heteroge-
neity of the scoop penalty by preexisting reputation. Section VII bench-
marks the size of our estimates against the beliefs of surveyed structural
biologists about the probability and cost of getting scooped. Section VIII
concludes.
Related literature.—This paper contributes to several distinct but con-

nected literatures, both in economics and disciplines interested in the
“science of science.” First, and most broadly, it contributes to our under-
standing of how incentives for basic research are structured. Second, it
adds to a more narrow empirical literature about the causes and conse-
quences of innovation races. Finally, it contributes to a literature about
career dynamics in scientific labor markets and the role of academic
reputation.
Priority races in science are often compared to patent races in industry.

However, incentives for basic scientific advances are inmany ways distinct
from patents. Inventors in a patent race are competing for profits, while
researchers in a priority race are competing for journal placement, cita-
tions, and recognition from their peers. However, both systems compen-
sate researchers for the production of public goods, incentivize timely
disclosure of knowledge, and hasten the pace of discovery. Both systems
are usually conceptualized as tournaments for a discrete innovation re-
ward or prize, with the first innovator getting the outsized share of rewards.
Theoretical models of patent races have considered how racing affects

the amount of R&D investment (Loury 1979; Lee andWilde 1980) as well
as the pace of research and the amount of risk-taking induced by the
structure of races (Dasgupta and Stiglitz 1980). Many of these models
presuppose a winner-take-all reward that has implications for the out-
come of innovation tournaments and the strategic behavior of the partic-
ipants. The conventional wisdom in the sciences—and the assumption
underlyingmuch of the theoretical economics work on the topic—is that
the process of scientific discovery is also a winner-take-all tournament,
even if the prize is priority recognition rather than a patent (Merton
1957; Stephan 1996). Dasgupta and David (1994) explain that a discon-
tinuous priority reward might arise in science because of a fundamental
verification problem. Because of the public goods nature of new knowl-
edge, a team that tries to publish the second paper cannot credibly prove
to the community that they would have successfully completed the project
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absent the help of the priority paper. Even if it would be socially optimal
to sharemore credit with teams who were working in parallel, these infor-
mation frictions might make credit-sharing difficult. The discontinuous
priority-reward structure has implications for the pace of research and
the strategic interaction of teams (Bobtcheff, Bolte, and Mariotti 2017).
The literature on innovation systems has yielded influential models but
as yet very little empirical evidence about the actual distribution of re-
wards in these races. Therefore we believe our estimates provide impor-
tant context for theoretical and policy discussions about the incentives
for scientific innovation.
This paper joins a small literature that aims to study innovation races

empirically (Lerner 1997). Most related to our work, Thompson and
Kuhn (2020) document that winners of patent races do more innovation
in the future, and that this innovation is more likely to be related to the
original patent. The authors identify patent races by looking for patents
that were rejected for lack of novelty. Bikard (2020) studies the phenom-
enon of simultaneous discovery in science, and documents many cases of
papers that are similar in content, are published around the same time,
and are frequently cited together. However, our method of using bio-
logical details to link competing papers allows us to find simultaneous dis-
coveries where one paper goes unpublished or is cited infrequently in the
future.
Our heterogeneity by reputation estimates contribute to work in soci-

ology and economics about path-dependent advantage in academic pres-
tige, commonly called theMatthew effect (Merton 1968). Our results build
on recent empirical work that has documented evidence of the Matthew
effect in life sciences (Azoulay, Stuart, and Wang 2013), astronomy (Hill
2019), and grant funding ( Jacob andLefgren 2011; Bol, de Vaan, and van
de Rijt 2018; Wang, Jones, and Wang 2019).
II. Background and Data Construction

A. Scientific Primer: Structural Biology and the Role
of Proteins
In this section we provide a primer on the field of structural biology, a set-
ting particularly conducive to studying scientific races. Structural biology
is the study of the 3-dimensional structure of biological macromolecules.
These macromolecules include DNA, RNA, and, most commonly, pro-
teins. Proteins contribute to almost every process inside the body: hemo-
globin transports oxygen in blood, actin and myosin trigger muscle con-
tractions, and insulin regulates blood sugar. In many ways, the form or
structure of a protein determine its function. For example, antibodies are Y-
shaped immune system proteins that bind to foreign molecules (like viruses
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or bacteria) with two of their arms, while recruiting other immune system
proteins with the remaining arm. It is exactly this Y shape that allows the
antibody to function (NIGMS 2017). Protein folding and structure has
important applications, particularly in medicine, and 15 Nobel Prizes have
been awarded for advances in structural biology (Wlodawer et al. 2008;
Martz et al. 2019).
Proteins are composed of chains of amino acids, which range in length

from a few dozen to several thousand amino acids long. These chains fold,
giving the protein its three-dimensional shape. Scientists have long known
how to determine a protein’s amino acid sequence, but it is much more
difficult to understand how they are folded. Most protein structures are
solved using a technique called x-ray crystallography, and each structure-
determination project may take many months or years. Scientists grow
proteins into crystals, subject them to x-ray beams at large synchrotron
facilities, and use the resulting diffraction data to determine a model of
the protein’s structure (Goodsell 2019). Although knowledge about pro-
tein structures is useful for applied technologies, the discovery of the
structure itself is not patentable.4 New structures are usually solved by ac-
ademic researchers at universities or research centers, although 15 per-
cent of the scientists in our sample work at nonprofit research laboratories
or private companies.
B. The PDB
We focus on structural biology because the PDB contains detailed, orga-
nized, and comprehensive project-level data that is publicly available.
The PDB is a worldwide repository of biologicalmacromolecule structures,
95 percent of which are proteins.5 The PDB was established in 1971 at
Brookhaven National Laboratories with just seven structures. Today, the
PDB contains over 150,000 macromolecule structures, and is growing
at a rate of about 10 percent annually (Berman et al. 2000; Burley et al.
2019).
The PDB spentmany decades trying to actively encourage contribution

and overcome norms of secrecy that had been pervasive in the field of
crystallography. Researchers are encouraged (and inmany cases required)
by the PDB to disclose experimental details, methodology, atomic coor-
dinates describing the structural model, and raw experimental data if
4 A 2013 Supreme Court ruling (Assoc. for Molecular Pathology v. Myriad Genetics Inc.,
569 U.S. 576 [2013]) precludes patents on naturally occurring products such as proteins,
genes, and bacteria in the United States. However, even prior to this ruling, patents on the
3-dimensional structure of proteins were rare and difficult to obtain (Seide and Russo
2002; Shimbo et al. 2004).

5 The remaining types of molecules in the PDB are DNA, RNA, or a complex of protein,
DNA, and/or RNA.
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possible. Crystallographers are particularly tight-lipped about their re-
search progress because each project represents a huge investment of time
and resources. Once results are produced, they are easy to imitate and
highly useful to competing scientists working on similar or related projects
(Strasser 2019). There was an obvious public benefit for systematic contri-
bution of discoveries in the PDB, particularly for comparative modeling
and survey research, but there were very low private incentives for partici-
pation (Hill, Stein, andWilliams 2020). In early days, the small community
of crystallographerswas able tomaintain anhonor system that discouraged
encroaching on projects known to be in progress, but this norm broke
down as the field grew in size and competitiveness (Ramakrishnan 2018).
For many years, the PDB used a variety of schemes to try to encourage
community participation and data sharing, including direct solicitation,
public cajoling, and even prize drawings (Strasser 2019). However, since
the early 1990s, the majority of scientific journals have required that any
published structures be deposited in the PDB (Barinaga 1989; Berman
et al. 2000, 2016). Furthermore, in 1998 top journals including Science,
Nature, and PNAS formalized a policy to ensure simultaneous release of
academic papers and PDB details (Campbell 1998; Sussman 1998), as en-
couraged by the PDB and the International Union of Crystallography.
Because of these strict public disclosure policies, we believe the PDB

represents a near-complete census of macromolecule structure discover-
ies. Whenever a structural biologist completes a project, she uploads the
structure, experiment, and discovery details to the PDB. This typically
happens shortly before or after she submits an academic paper describ-
ing her findings for publication. An important feature of this process is
that the uploaded data is confidential. No other user of the PDB can ac-
cess the data or see that the deposit has been created. Even the editor and
reviewers only receive a receipt of deposit from the PDB and author, and
they do not see the underlying structure data until the date of publica-
tion. Only at the point of publication is the data released to the public.
If any project goes unpublished, the data is released by default after 1 year
(wwPDB 2019).
The primary unit of analysis in the PDB is a structure deposit, which is a

unique report about the determination of a single protein by one re-
search lab. Each structure deposit is assigned a unique identification
number. For example, PDB ID 4HHB, deposited in 1984 by Giuilio Fermi
and coauthors, reports the structure of human deoxyhemoglobin, the
form of hemoglobin without oxygen that is the predominant protein
in red blood cells (Fermi et al. 1984).
The PDB provides three key pieces of information that we will use in

our analysis. The first is a measure of similarity between proteins. This is
calculated by comparing how similar a protein’s amino acid chain is to
other proteins in the PDB. For a given protein, the PDB uses an algorithm
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to construct a list of other proteins that are 100 percent similar, 90 percent
similar, and so on, all the way down to 30 percent similar. These groupings,
or “clusters,” allow us to determine whether two structure deposits from
different teams correspond to the same or a very similar protein. The
second key piece of information that the PDB provides is a list of dates
for the structure deposit, including when the data was deposited and
when it was released. This allows us to construct a timeline for the projects
and identify cases in which two or more teams were working simulta-
neously on the same protein. Finally, each PDB structure is linked to
the academic paper that the structure was published in (if any). This link
includes the PubMed ID, which we link to PubMed bibliographic data
and Web of Science citation data.
C. Identifying Priority Races: Challenges and Solutions
Identifying priority races in scientific data is difficult for three reasons.
First, to facilitate identification, research questions should be well de-
fined and share a common approach to solving the problem. To under-
score the importance of this requirement, consider economics, a field
where this is not the case. There are many papers on the same topic or
question (e.g., what is the effect of raising theminimumwage on employ-
ment?) that are often published in close succession (e.g., Cengiz et al.
2019 and Jardim et al. 2022). And yet, because there are a variety of
methods, settings, and approaches, these papers may be quite distinct.
Therefore, the first paper to be published does not necessarily scoop sub-
sequent papers that aim to answer the samequestion. For our purposes, we
need a field where the questions are tightly defined with a common ap-
proach, a feature that seems more common in the hard sciences than
the social sciences. The second challenge is identifying papers that answer
the same question. Manually comparing papers to decide whether they
address the same question is infeasible at scale. Ideally, we would have
some objective measure of scientific proximity, which can tell us whether
two teams are working on an identical problem. Finally, the third chal-
lenge is that scooped papers are often abandoned without publication.
If authors abandon their projects when they see that a similar paper has
been published,many scooped papers will never show up in bibliographic
data.
The PDB enables us to make significant progress on these three obsta-

cles. First, the questions in structural biology are well-defined because sci-
entists are typically trying to solve the structure of a known protein. More-
over, the methods are consistent: 91 percent of proteins are solved using
x-ray crystallography. This means that if we observe two papers that study
the structure of the same protein, these two papers are likely to be very
similar in terms of their questions, methods, and conclusions. Second,
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as mentioned in section II.B, the PDB measures how biologically similar
different proteins are to one another. This allows us to link research proj-
ects based on objective measures of their scientific proximity, rather than
relying on text similarity or citation patterns. Finally, scientists are required
todeposit their structures in the PDBprior to publication. This gives us the
ability to observe some projects that never reach publication. Given that
scientists might abandon projects that get scooped, this record of unpub-
lished projects is a key feature of our data. We will discuss the timeline in
more detail in the next section. To the best of our knowledge, we are the
first to measure scientific races in a data-driven manner.6
D. Defining Priority Races
Broadly speaking, we define a priority race as an instance where two or
more teams are working on the same protein independently and concur-
rently and are likely uncertain about the identity or progress of their com-
petitors. Following Brown and Ramaswamy (2007), we define the same
protein as meaning two proteins within the same 50 percent or higher
sequence-similarity group (called a cluster in the PDB). This is a conserva-
tive cutoff, as 30 percent has been suggested as sufficient similarity for
building homology models (Moult 2005; Dessailly et al. 2009). In other
words, the first publication within these 50 percent similarity clusters is
often highly cited because it provides a novel structure model that other
crystallographers can build on to solve very similar proteins.7 The PDB as-
signs identification numbers to clusters of similar proteins, and we say
that the first structure released in that cluster is the priority structure de-
posit. There are oftenmany subsequent deposits that report similar struc-
ture coordinates as the priority deposit, only some of which we define as
being scooped. These follow-on deposits appear for a variety of reasons.
Some are concurrent projects by authors that were racing to be first but
were scooped or are replication projects of the same protein by future
teams, while others are new projects that solve the structure for closely
6 Thompson and Kuhn (2020) are able to identify patent applications that were en-
gaged in a patent race by finding patents that were rejected for lack of novelty. Bikard
(2020) identifies paper “twins” using papers that are frequently cited together, but this ap-
proach precludes cases where one team captured the outsized share of citations by con-
struction, or cases where a project is abandoned.

7 Figures A1 and A2 (figs. A1–A4 are available online) provide evidence that, at each
level of similarity above 50 percent, paper pairs (i.e., one scooped and one winning paper)
in our sample have very similar titles and have similar rates of citation. For robustness, we
can restrict to scoops by proteins within the same 100 percent cluster and find similar re-
sults, which we report in table A5 (tables A1–A11 are available online). If a protein is
scooped by more than one other protein, we give preference to the protein that is biolog-
ically closer (i.e., in the “higher” cluster). See app. B (apps. A–E are available online) for
details on the data construction.
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related proteins that either derive from different organisms or else are
bonded with different macromolecules in a novel way.8

We use project timelines reported in the PDB to determine whether
a follow-on deposit qualifies as scooped by the priority deposit. The
PDB provides two key dates at the structure level that help us determine
whether two teams were working concurrently: the deposit date and re-
lease date.9 The deposit date corresponds to the date that the scientist
uploaded her solved structure to the PDB. Importantly, the structure is
not yet visible to the public. Nearly all scientific journals require that au-
thors upload their structures to the PDB prior to publication, so deposit
typically occurs slightly before or after the date that the scientist first sub-
mits her paper. The release date is the date that the PDB deposit is made
public. This typically corresponds to the publication date. In cases where
the structure is never published, the PDB releases the deposit by default
1 year after the deposit date. Figure 1 provides a visual timeline of these
dates, as well as some summary statistics. Throughout this analysis we will
always use the release date as the relevant marker of priority. An alterna-
tive approach would be to use paper publication dates to determine pri-
ority ordering. But these dates are often unavailable, especially for older
publications, or are ambiguous in recent data because online publication
may come before print edition publication. Further, we treat publication
as an outcome variable; we would risk potential bias if we conditioned on
publication as a requirement for treatment assignment. Lastly, PDB re-
leases are publicly salient events that the community pays attention to,
so the release dates are therefore good markers of priority order. Appen-
dix A4 discusses implications and presents evidence about the concor-
dance between release dates and publication dates in greater detail.
Figure 2 illustrates how we define a scoop event. Consider two projects,

A and B, authored by two distinct teams working on the same protein.
Suppose project A is a priority project in one of the similarity clusters.
We say that project A scoops project B if (i) A is released before B is re-
leased but (ii) after B has deposited to the PDB. Condition i guarantees
that A finishes first, while condition ii guarantees that B did not know
about A until after the structure was deposited in the PDB. Since B had
already deposited a completed structure, they likely would have been
the priority deposit had they not been scooped by A. Requiring that B
has deposited before A is released ensures that we observe abandoned
projects, since all deposited structures appear in our data even if they
8 For example, there are 30,153 clusters of proteins in the PDB that are 50 percent sim-
ilar, and each cluster has an average of six deposits, only some of which are eligible to be
considered racing according to our definition.

9 The scientists also report a collection date, which is the date the scientist took her crys-
tals to the synchrotron and collected her experimental data. Typically deposit occurs about
one to two years after collection.
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are scooped and fail to publish. We allow the priority project to scoop
more than one team, and 5.6 percent of the races we identify have three
or more competitors. Appendix B provides a more detailed description
of the data work necessary to construct these races in practice. In our
FIG. 1.—Project timeline and key dates. This figure shows the timeline of a typical PDB
project in our regression sample. Dates in bold above the line are observed in our data.
Events listed below the timeline are the approximate timing of other project events, includ-
ing the submission and review process. Deposit and structure data is hidden from public
until the structure is released.
FIG. 2.—Defining priority races. This figure shows visually the timing rule we use to define
scoops. In the first example, project A scoops project B because both projects were deposited
prior to project A’s release. These postdeposit scoops make up our main analysis sample of
races. In the second scenario, project A releases before project B, but project B had not yet
deposited at the time of project A’s release. Therefore this example would be excluded from
our main regression sample but is used in our analysis of predeposit scoops in sec. V.
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main analysis, we exclusively focus on these clean, but narrowly defined
scoops that occur after B has already deposited. However, in section V
we expand our analysis to include earlier-stage scoops, that occur before
B deposits.
1. An Example
To help understand our procedure, consider the example outlined in ta-
ble 1. The table shows two structures: 4JWS and 3W9C. Both are struc-
tures of the Cytochrome P450cam protein complexed with its redox part-
ner, putidaredoxin (Pdx-P450cam complex). This enzyme is involved in
metabolism and clearing toxins, such as in the human liver. Figure 3
shows the nearly identical biological assembly models that each team de-
posited independently and confidentially to the PDB. The scientists at
Leiden University (3W9C) collected their data a few months before the
scientists at the University of California, Irvine (4JWS) (February 3, 2012
versus September 14, 2012).However, by the timeof deposit, theUC Irvine
team had pulled ahead, depositing one week before the Leiden team
(March 27, 2013 versus April 3, 2013). Ultimately, UC Irvine won the
priority race, with their structure being released twomonths beforeLeiden
( June 19, 2013 versus August 21, 2013). Importantly, when Leiden depos-
ited their structure on April 3, 2013, UC Irvine had not yet released their
structure. This means that Leiden was likely unaware of their competitor’s
TABLE 1
Example Priority Race: Pdx-P450cam Complex

Winning project Scooped project

PDB structure ID 4JWS 3W9C
Protein name Pdx-P450cam complex Pdx-P450cam complex
Paper title “Structural Basis for Effector

Control and Redox Partner
Recognition in Cytochrome

P450”

“The Structure of the Cyto-
chrome P450cam-Putidaredoxin
Complex Determined by Para-

magnetic NMR Spectroscopy and
Crystallography.”

Key dates:
Collection September 14, 2012 February 3, 2012
Deposit March 27, 2013 April 3, 2013
Release June 19, 2013 August 21, 2013

First author
affiliation

University of California,
Irvine Leiden University

Journal Science Journal of Molecular Biology
JIF 31.5 4
5-year citations: 52 39
Note.—This table presents an example of a racing pair identified in the PDB using the
scoop rules outlined in section II.D See fig. 3 for the image of the structure models depos-
ited by each team.
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progress or results when they were preparing their publication and de-
positing the structure. Comparing the outcomes of the winner (4JWS) and
the loser (3W9C), we observe that the winning paper wasmore successful.
It was published in a better journal (Science, with an impact factor of 31.5,
vs. Journal of Molecular Biology, with an impact factor of 4.0) and received
about 30 percentmore citations over the next 5 years (Hiruma et al. 2013;
Tripathi, Li, and Poulos 2013). In this case, the Leiden authors became
aware that they were scooped during the manuscript review. In the con-
clusion of their paper, they write, “While this manuscript was under re-
view, Tripathi et al. published the crystal structure of the Pdx–P450cam
complex that was obtained via cross-linking of the two proteins. It is inter-
esting to compare our complex with those reported in that study. Tripathi
et al. found a position and orientation of Pdx relative to P450cam that is
essentially identical with ours” (Hiruma et al. 2013).10
2. Additional Sample Restrictions
Wemake three further restrictions to minimize cases of ambiguity in the
race-construction procedure. First, we drop some proteins that are
FIG. 3.—Example priority race: Pdx-P450cam Complex. This figure presents a side-by-
side comparison of the biological assembly models of the Pdx-P450cam complex protein
deposited by two independent racing teams. According to the scoop definition in sec. II.D,
structure deposit 4JWS scooped structure deposit 3W9C. See table 1 for more details.
10 Overall, 33 percent of the scooped papers in our sample directly cite the winning pa-
per. The probability that this citation occurs increases with a larger gap in time between
publication. For scooped projects that are released less than 1 month after the winner,
fewer than 14 percent cite the winning paper. That probability increases to 64 percent
for races with more than an 8-month gap between release dates. See fig. A3.
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exceedingly complex. Some very large proteins are composed of many
entities that are sometimes solved piece by piece over many years instead
of all at once. This introduces the possibility that a scientist could be
scooped on only a fraction of their project.11 Second, we drop projects
that are published in a paper that is linked to 15 ormore other structures.
Among the set of papers included in our final analysis sample, 46 percent
are linked to more than one structure, and the average number of struc-
tures per paper is 1.9. Multistructure papers are at risk of being scooped
on a fraction of the full project. This restriction allows for some fractional
scoops to enter our data, but ignores papers where each protein becomes
a very small fraction of the full contribution of the paper. Finally, we drop
races that end in a near or exact tie. Occasionally, two racing papers will
be submitted to the same journal and the editor will publish them as com-
panion pieces in the same issue, and we drop these cases. We also drop
races where the two papers were released closer than 2 weeks apart from
each other. We make this restriction to help ensure that the first project
has a clear claim of priority and that the order of release is more likely to
correspond to the order of publication.12
E. Additional Data Sources
This sectiondescribes the additional data sources that we use todefine out-
come variables, control variables, and provide further details about our set-
ting. Additional details on data sources can be found in appendix A.
Journal Citation Reports.—Journal Citation Reports is an annual report

published by Clarivate Analytics that evaluates journal influence using
a metric called journal impact factor ( JIF). Let Cites jt,t2k be the number
of citations that journal j received in year t for articles written in year
t 2 k. Let Articles jt2k be the number of articles published by journal j in
year t 2 k. Then journal j’s impact factor in year t is given by

JIFj
t 5

Cites jt,t21 1 Cites jt,t22

Articles jt21 1 Articles jt22

: (1)

In words, JIF attempts to capture a journal’s rolling average citations
per article. We standardize the impact factors within a year t to account
11 Proteins are often composed of subunits called entities. The clustering algorithm in
the PDB groups similar molecules at the entity level, not the structure level. Therefore we
define clear rules for dealing with proteins that are scooped onmore than one of their con-
stituent entities. We also drop projects with 15 or more entities because of exceeding com-
plexity. Appendix B describes in more detail how we deal with multientity structures in the
data.

12 The PDB only releases structures once per week, which can also make very close
scoops ambiguous in terms of which truly came first. Our 2-week restriction helps elimi-
nate these cases but has a minimal impact on our results. See app. A4 for more details
on the correspondence between the PDB release date and publication date.
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for the fact that impact factors have been rising over time as the rate of
publishing within the life sciences has increased. We also use JIF to create
a list of top-10 journals. In order to focus on journals that are both high-
impact and also relevant to structural biology, we restrict to a potential list
of the 30 journals with the most PDB linkages in each half decade. That
set is then restricted to the 10 highest-impact journals in each 5-year span.
The list contains top-ranked general interest journals as well as top-
ranked life science journals.13

PubMed, Author-ity, and Web of Science.— The Web of Science is a data-
base of over 73 million scientific publications written since 1900 which
are linked to their respective citations. The data are owned and main-
tained byClarivate Analytics.We link the PDB to theWeb of Science using
PubMed identifiers, which are unique IDs assigned to research papers in
themedical and life sciences by the National Library of Medicine. We use
these data to compute citation counts for PDB-linked papers. Our pri-
mary outcome is citations in the 5 years following publication, excluding
self-citations.We also construct ameasure of whether a structure was pub-
lished in a hit paper by ranking PDB articles by 5-year citation counts and
marking the top 10 percent with the highest citation counts within years.
The version of the Web of Science that we use ends in 2018, therefore we
restrict the regression samples for these outcomes to 1999–2013 to allow
for time for publications to accrue citations we can observe.
We construct career histories of variables before and after the priority

date of each race to serve as control variables and long-run outcomes.
Reconstructing publication records for individual authors is difficult
because names are not disambiguated in the PubMed or PDB. We use
a dataset called Author-ity, which groups PubMed IDs into distinct author
identifiers using coauthor and topic patterns (Torvik et al. 2005; Torvik
and Smalheiser 2009). However, because not all PDB deposits are pub-
lished, it is hard to link unpublished deposits to the correct name identity
in Author-ity. Therefore, in the long-run results section, we restrict to
a subset of authors that have uncommon names and uniquely match to
an individual in Author-ity. We also use simple name-matching tech-
niques within the PDB to construct control variables of team productivity
prior to treatment, which we can do for all deposits including those that
are not published. We describe the name disambiguation procedures in
detail in appendix A6.
For long-run outcomes, we count PubMed publications, PDB-linked

publications, top-10 publications, citation-weighted publications, and hit
publications for the years following the treatment date. Besides analyzing
13 Top-10 journals in 2017: Nature, Science, Cell, Journal of the American Chemical Society, Na-
ture Chemical Biology, Nature Structural and Molecular Biology, Nature Communications,
Angewandte Chemie, Nucleic Acids Research, and Proceedings of the National Academy of Sciences.
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the effects of raceoutcomes on the intensivemarginof publication, we also
consider the extensivemargin of exit frompublishing PubMedpapers and
PDB-linked papers altogether.
QSWorld University Rankings.—Weuse information about the affiliation

ranking of the PDB scientists as control variables and to predict their ac-
ademic reputation. The QS World University Rankings is an annual pub-
lication that globally ranks universities both overall and within subjects.
We use the 2018 life sciences and medicine rankings, as this field is the
most relevant to our setting. The ranking methodology combines four
sources: a global survey of academics (academic reputation), a global sur-
vey of employers (employer reputation), citations per paper, and faculty
h-index values. These four sources are aggregated to create a total score
which is used to rank the 500 best universities.
Editorial Dates.—In section IV.C, we analyze how the scoop penalty is af-

fected by the timing of the scoop event relative to the journal review and
publication timeline. We supplement our data with the received, ac-
cepted, and publication dates for papers published in journals owned
by a handful of large publishers. While we were not able to obtain these
dates for all articles, we chose to focus on journals based on their preva-
lence in the PDB and the availability of the data for download. The jour-
nals included in the subsample are flagship or field journals from the fol-
lowing journal groups: Science, Nature Journals, Cell Press, and Public
Library of Science (PLoS). This subsample covers 21 percent of our pri-
mary regression sample.
Scientist Survey.— In order to benchmark the magnitudes of our find-

ings, we surveyed structural biologists about their perceptions of the
probability and costs of getting scooped. Email surveys were conducted
in September of 2019. We collected email addresses from the Web of
Science, which provides a contact email for many of the corresponding
authors on academic publications. The recruitment sample was defined
as any corresponding author on a PDB-linked publication from 2014–
2019 that had an email address available in the Web of Science files.
We sent recruitment emails to 8,984 unique email addresses, and en-
couraged respondents to participate on a volunteer basis. We received
822 responses, for a total response rate of 9.1 percent. Each potential
recruit received one initial solicitation and two follow-up reminders to
complete the survey. Relevant text of the questionnaire is provided in
appendix D.
F. Summary Statistics
By identifying priority races, we effectively split the PDB into two mutu-
ally exclusive groups: structures involved in a priority race (the racing sam-
ple) and structures not involved in a priority race (the nonracing sample).
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Table 2 shows summary statistics at the structure level for bothof these sam-
ples. Just under 5 percent of the structures in our sample are involved in a
priority race. We look at both team characteristics and deposit outcomes.
Teams involved in priority races tend to be smaller, younger, and more
likely to come from a top university. The racing scientists were also more
likely to work in Asia, and less likely in North America. The deposit out-
comes suggest that proteins involved in priority races are scientifically
more important. Proteins in the racing sample are more likely to be pub-
lished, appear in higher-ranked journals, and receive more citations.
III. Empirical Design
The analysis is designed to identify the causal effect of getting scooped on
the short-term success of the project (publication, journal placement,
TABLE 2
Summary Statistics for Structure-Level Data

Racing Nonracing
Difference

(racing2 nonracing)
Difference

(SE)
Variable (1) (2) (3) (4)

A. Team Characteristics

Authors (no.) 7.120 7.454 2.333 (.079)***
Affiliation:
North America .291 .351 2.060 (.008)***
Europe .152 .158 2.006 (.006)
Asia .191 .134 .056 (.007)***
University (rank 1-50) .250 .240 .010 (.008)
University (rank 51–200) .238 .261 2.023 (.008)***
Other .512 .499 .013 (.009)
Industry or nonprofit .152 .171 2.018 (.006)***

First author experience
(years) 5.444 5.983 2.538 (.109)***

Last author experience
(years) 7.418 7.806 2.387 (.120)***

B. Project Outcomes

Published .866 .752 .114 (.006)***
Standardized impact factor .113 2.045 .158 (.021)***
Top-10 journal .356 .283 .073 (.010)***
5-year citations (no.) 26.178 17.245 8.933 (.736)***
Hit paper .148 .083 .065 (.007)***

Observations 3,279 64,018
Note.—This table presents summary statistics for the racing and nonracing samples.
Observations are at the structure level. Column 1 shows the means of the racing sample,
and col. 2 shows the means of the nonracing sample. Column 3 shows the difference be-
tween the racing and nonracing projects, and col. 4 shows the heteroskedasticity-robust
standard error of the difference. Hit papers are those in the top 10 percent for 5-year ci-
tations among articles in their publication year.
*** p < 0.01.
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and citations), as well as on subsequent academic success of the scooped
authors. We estimate the difference in outcomes between the winners
and losers of the priority races in the PDB. In an ideal setting for causal
inference, the winners and losers would be randomly assigned. In reality,
the outcome of these late-stage races is not exactly random but is highly
unpredictable. We present evidence that although some characteristics
of the teams are correlated with winning a race, these observables can
only explain very small differences in outcomes. In this section, we pre-
sent the main estimating equations of our analysis, describe and test
for potential sources of bias, and explain the control selection strategy
we use to deal with potential selection bias.
A. Baseline Specification
Equation (2) presents the basic specification for the project-level regres-
sions. For deposit i studying protein p, we estimate

Yip 5 a 1 bScoopedip 1 X0
ipd 1 gp 1 eip , (2)

where Yip is an outcome, such as publication, JIF, or citations. Scoopedip

is an indicator for losing a priority race, Xip is a vector of covariates,14 and
gp is a protein (i.e. race) fixed effect.15 The main coefficient of interest is
b, which identifies the scoop penalty. All standard errors are clustered at
the protein level. Our identifying assumption is that Scoopedip is uncor-
related with the error term once we condition on observable covariates
and the protein involved in the priority race.
In section IV.B, we consider the long-run effect of getting scooped on

academic career outcomes. The regression specification is similar to
equation (2), but the unit of observation is a scientist, rather than a proj-
ect. For scientist s who coauthored deposit i that was in a priority race over
protein p, we estimate

Yisp 5 a 1 bScoopedisp 1 X0
ispd 1 gp 1 eisp, (3)
14 Covariates include all variables listed in table 2, excluding resolution and R-free. Var-
iables in panel A are included for both first and last author. We also control for variables in
panels B and C calculated over the full career (in addition to the counts calculated over
5 years). Lastly, we control for indicators that tag first and last authors that have common
last names as defined in app. A6.

15 The main econometric justification to include protein fixed effects is that we have a
small number of races with more than one scooped team (i.e., some races involve three
teams: one winner and two losers). To the extent that these races differ from the standard
two-team races in some unobserved way, there will be a mechanical correlation between
losing the race and that unobserved factor, because in races with more than two teams,
there are multiple losers but only a single winner. Including race fixed effects is an efficient
way to non-parametrically control for this potential omitted-variables bias.
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where Scoopedisp is a dummy equal to one if scientist s was scooped on
project i. Xisp is a vector of scientist-project covariates, such as the number
of publications accumulated by scientist s in the 5 years before the priority
date associated with project i. We also include cubic controls for career
age, which is defined as the number of years since the author’s first pub-
lication in the PDB, as well as the university rank of the first author affil-
iation and the continent where the first author is located. Again, gp is a
protein fixed effect. The long-run outcomes are calculated as the sum
of each outcome in the 5 years following the priority date. Importantly,
we exclude the publication that is linked to the structure ID of the PDB
projects that were involved in the race. These outcomes therefore repre-
sent productivity in other projects not including the winning or losing pa-
per in each race. Although each scientist may win or lose races multiple
times, we include each appearance as a separate treatment event, and
consider the subsequent outcomes for all scoop events.
B. Identification and Balance
Comparing outcomes of winners and losers of the PDB races identifies
the causal effect of getting scooped if the race ordering is as good as ran-
domly assigned. There are many reasons a team might win or lose a pri-
ority race, and it is plausible that the order of completion is somewhat
idiosyncratic. The randomness of the scientific process, day-to-day oper-
ation of scientific labs, and the vagaries of the journal review process leave
ample opportunity for randomchance to dictate the timing of these races.
Anecdotal accounts of ill-timed personnel issues, lab accidents, or un-
lucky experiment failures suggest that the timing of project completion is
oftentimes out of the hands of even themost diligent and skilled scientist
(Ramakrishnan 2018; Yong 2018). Furthermore, after the deposit date
and submission of a manuscript, the team has very little discretion over
the timing of the review process, which may be delayed by editor prefer-
ence, reviewer inattention, or publisher congestion. Moreover, scientists
typically have little information about the identities or progress of their
competitors.
On the other hand, skill, experience, or resources could provide an ad-

vantage to certain teams that would allow them to systematically start ear-
lier or work faster and therefore win priority races. This is a threat to iden-
tification because these characteristics may simultaneously increase the
probability of winning and improve project outcomes. For example, sup-
pose a technological breakthroughmarks the starting point of a race that
many diverse teams enter. If one team from Harvard has exceptional re-
sources to adopt the technology and complete the project first, we will
observe them win the race and receive many citations. But since Harvard
is a high-reputation university and has a track record of success, they
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would likely have received many citations even in the counterfactual
where their competitor won the race. Therefore, we rely on the assump-
tion that well-resourced or otherwise high-reputation teams are not able
to systematically win priority races, and we test this using observable char-
acteristics of each team.
If winning a priority race is random, then winning and losing teams

should look balanced based on observables. We assess this observed bal-
ance between winners and losers in table 3. Using the information dis-
closed by the teams in the PDB, we inspect a variety of observable charac-
teristics that might reasonably be correlated with the probability of
treatment or with outcomes. These include the number of authors, the
location of the lab, the rank of the university affiliation, and the experi-
ence in years of the first and last authors. We also calculate measures of
the authors’ productivity in PDB-related publications in the 5 years prior
to the racing deposits. These include the number of PDB deposits, pub-
lications, and publications in top-ranked journals.16

Table 3 shows the mean values of each covariate for the winning and
losing teams, as well as for the teams in the non-racing sample, for refer-
ence. We report test statistics for the difference in means between the
winning and losing teams, as well as an F-statistic for a test of joint signif-
icance of all covariates. We find that many of the covariates are balanced
between the winning and losing teams. But winning and losing teams are
statistically different in a few notable dimensions. North American and
European teams are more likely to win than lose, while Asian teams are
more likely to lose than win. Scientists from top-50 ranked universities
are more likely to win, as well as first and last authors with slightly less ex-
perience. The prior productivity of these labs ismore balanced, withmost
measures of productivity being statistically insignificant for both first and
last authors (though winning first authors appear to have deposited
more). We also test whether the scientific results that are being deposited
by both teams are similar. Refinement resolution and R-free are two var-
iables reported by the PDB that describe the objective quality of the ex-
perimental data and model in each deposit. Resolution describes the de-
gree of precision in the diffraction data produced during crystallography
experiments, and R-free measures the goodness-of-fit between the exper-
imental data and the proposed structure model. For both of these mea-
sures, smaller values imply better quality. These two measures are very
close to balanced between winners and losers, suggesting that the quality
of the science or the skill of the scientists is likely not driving our results.
Taking the table as a whole, we reject the null hypothesis of balance on
the full battery of covariates based on an F-statistic of 4.02.
16 We do not use citations accrued to the racing papers because many of those citations
would be assigned after the treatment date of the priority races and could therefore be en-
dogenous to the outcome of the race.
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Unbalanced covariates lead to biased estimates only if they are system-
atically correlated with the outcome variable. Therefore, to further assess
potential selection bias, we visually inspect the difference in expected
citations between winners and losers. We estimate a paper-level model
TABLE 3
Covariate Balance Between Winning and Losing Teams

Nonracing

Losing
Projects
(LP)

Winning
Projects
(WP)

Difference
(LP2WP)

Difference
(SE)

Variable (1) (2) (3) (4) (5)

A. Team Characteristics
Number of authors 7.454 7.183 7.056 .127 (.205)
Affiliation:
North America .351 .262 .320 2.057 (.022)***
Europe .158 .134 .170 2.036 (.018)**
Asia .134 .224 .156 .067 (.018)***
University (rank 1–50) .240 .223 .278 2.055 (.021)***
University (rank 51–200) .261 .248 .228 .020 (.020)
Other .499 .529 .494 .035 (.023)
Industry or nonprofit .171 .153 .152 .001 (.018)

First author experience (yrs.) 5.983 5.744 5.134 .611 (.279)**
Last author experience (yrs.) 7.806 7.521 7.311 .210 (.313)

B. First Author Productivity (prior 5 years)
Deposits 12.361 3.791 5.504 21.714 (.687)**
Publications:
Total 2.893 2.591 3.139 2.548 (.464)
In top-10 journals .656 .709 .670 .038 (.065)
In top-5 journals .222 .262 .239 .023 (.032)

C. Last Author Productivity (prior 5 years)
Deposits 44.269 30.937 28.991 1.946 (4.327)
Publications:
Total 9.905 12.513 13.398 2.884 (2.241)
In top-10 journals 4.027 4.669 4.622 .047 (.511)
In top-5 journals 1.421 1.653 1.799 2.146 (.190)

D. Project Quality Metrics (lower is better)
Resolution (Å) 2.244 2.328 2.315 .013 (.062)
R-free goodness-of-fit .236 .245 .243 .002 (.002)
Observations 64,018 1,668 1,611 F-statistic: 4.019***
Note.—This table compares characteristics of winning and losing projects in order to
check for treatment balance. Observations are at the structure level. Column 1 shows
the means of the nonracing sample, col. 2 shows the means of the losing projects in the
racing sample, and col. 3 shows the means of the winning projects in the racing sample.
Column 4 shows the difference between the losing and winning projects, and col. 5 shows
the heteroskedasticity-robust standard error of the difference. The F-statistic and associ-
ated p -value is calculated in a regression in which all of the variable values are stacked into
a single left-hand side outcome variable and the treatment indicator is interacted with var-
iable fixed effects on the right-hand side.
** p < 0.05.
*** p < 0.01.
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of citations using a Lasso regression of 3-year citation counts on the bat-
tery of team covariates. This model is estimated only in the sample of
nonracing deposits. We then take the selected variables and estimated co-
efficients to predict citations in the racing sample in a post-Lasso ordi-
nary least squares (OLS) procedure. The covariates we include are counts
of publications, citations, and journal placements in the 5 years prior to
the deposit for the first and last author, as well as the squares of these var-
iables. We also use the career age of the first and last authors, the rank of
the first author’s institution in 10-school bins, and the country and uni-
versity of the first author. The Lasso model selects many of the variables
one would expect to be important, including dummies for being in the
US and dummies for university rank. The full Lasso results are reported
in table A1.
Figure 4 plots a histogram of the difference in predicted citations be-

tween each pair of winning and losing teams (races with three or more
FIG. 4.—Histogram of team reputation difference. An observation in this figure is a rac-
ing pair. The gray shaded distribution shows the actual difference in predicted citations.
Bars to the right of zero represent instances when the winning team had higher predicted
citations than the losing team, and bars to the left of zero represent instances when the
winning team had lower predicted citations than the losing team. The distribution out-
lined in black shows the difference in predicted citations if the winning and losing teams
were randomly chosen. This random selection of winners was simulated 100 times to create
the histogram and is therefore close to symmetric and centered around zero.
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teams are omitted here). A perfectly balanced sample would be centered
around zero and symmetric. If winners were systematically better resourced,
had a better reputation, or had more experienced, then the histogram
would be skewed to the right. As a benchmark for perfect balance, we
compare this distribution to a simulated distribution where we randomly
assign one of the paired teams as the winner. We simulate this coin flip
100 times per pair. The true distribution is shifted slightly to the right of
the randomly simulated distribution, suggesting that winners are slightly
more likely to be high-reputation than would be predicted by chance.
But the differences in the distribution are small. The difference in means
between the two distributions is 0.68 predicted citations with a p -value of
0.065 (for reference, the sample average is about 12 citations, so this rep-
resents a 6 percent difference). This slight lack of balance motivates our
control strategy discussed in the next section.
C. Control Selection Using PDS Lasso
In light of potential treatment imbalance, we rely on an identification as-
sumption that treatment is exogenous conditional on observable control
variables. There are many potential control variables in our data, so we
use a method called PDS Lasso (Belloni, Chernozhukov, and Hansen
2014) to optimally select control variables. Consider a partially linear
model similar to equation (2),

Yip 5 a 1 bScoopedip 1 g(Zip) 1 gp 1 eip , (4)

where Zip is a large set of control variables. Assume that eip satisfies an
exogeneity assumption such that the treatment is mean independent
of eip conditional on controls. Then b will be consistently estimated if
we can control for a sufficiently good approximation of g(Zip). Rather
than relying on an ad hoc procedure to choose controls, PDS Lasso offers
a robust approach to estimation and inference for b.
The PDS-Lasso method uses two steps. First, it estimates a Lasso regres-

sion of Scoopedip on Zip to select a set of regressors that are predictive of
treatment. Then it uses a second Lasso regression of Yip on Zip to select
regressors that are predictive of the dependent variable. The selected
control variables are highly informative of treatment assignment and out-
comes and therefore reduce bias in estimation. The superset of selected
regressors from those two regressions are used as the control variables in
a post-OLS regression of Yip on Scoopedip. The potential set of regressors
we use are the variables listed in note 14, as well as squares of those vari-
ables and university rank binned into 10-school dummies. The protein
fixed effects gp are included as unpenalized regressors in all steps of
the method.



000 journal of political economy
IV. Results

A. Short-Run Effect on Projects
Table 4 reports the regression results for the project-level effect of getting
scooped. We focus on five primary outcomes: (1) an indicator for whether
the project was published; (2) the JIF (standardized within year); (3) an
indicator for publishing in a top-10 journal as measured by impact factor;
(4) total citations accrued in 5 years, transformed with the inverse hy-
perbolic sine function; and (5) an indicator for becoming one of the top
10 percent of publications measured by 5-year citation counts.17 Not all
projects are published, and if they are, they may not be published in a
ranked journal. We count unpublished papers as having zero citations.
If the project is not published in a ranked journal, we impute the impact
factor of their publications as being equivalent to the minimum journal
ranking in the regression sample. The sample is restricted in columns 4
and 5 to projects released before 2014 to allow a full 5 years of data cov-
erage to count citations in that window before our citation data ends in
2018. We present regression results from three different specifications.
Panel A shows the results from a simplified version of equation (2) with no
control variables. Panel B adds all controls listed in table 3, and panel C
uses controls selected from the PDS-Lasso procedure described in sec-
tion III.C. The results across all five outcomes suggest that covariates
have very little impact on the coefficients between panel A and panel C,
assuaging concerns about omitted-variables bias. We will use panel C as
the preferred specification to report our estimates throughout the paper.
To further test for selection bias on unobservables, we implement a ro-
bustness check following Oster (2019) in table A2.18

Scooped projects are 2.6 percentage points less likely to be published,
off of a baseline publication rate for winning projects of 88 percent. This
represents a 3 percent decrease in probability of publishing, or, framed
17 The inverse hyperbolic sine transform is a standard way of dealing with a right-skewed
distribution that contains zeroes and/or negative numbers (Burbidge, Magee, and Robb
1988; Bellemare and Wichman 2019). The transformation is given by

asinh(x) 5 log x 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 1 1

p� �
:

The coefficients on variables transformed by the hyperbolic sine function can be inter-
preted similarly to logs (i.e., proportionally).

18 Adding controls and protein fixed effects increases the R2 from less than 0.01 to over
0.60 in all regressions, suggesting that most of the variance in the outcome is explained by
treatment and observable controls. Implementing the suggested bias adjustment, we con-
servatively assume amaximum R 2 5 1 and d 5 1 (unobservables are equally important for
treatment selection as observables), and find that the adjusted coefficients are almost iden-
tical to our baseline findings. Further, the d needed to reduce the estimate to zero ranges
from 8 to 60 across all specifications, meaning there would need to be an unrealistic degree
of selection on unobservables to threaten the robustness of the results.
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differently, a 20 percent increase in the probability of abandoning the
project. This modest discouragement rate is likely driven by the low cost
of publishing once the project has already been deposited in the PDB (re-
call that in our sample, all scooped projects have already been deposited
in the PDB when they learn that they have been scooped). In many cases,
the scooped teamsmay be well into their submission and revision process
at the time of being scooped, and therefore will persist to publication.
Even if they are rejected from a journal, there aremany lower-ranked out-
lets that may be more willing to accept scooped papers, a mechanism we
explore in section IV.C.
In column 2, we estimate a statistically significant penalty in JIF.

Scooped papers are published in journals with impact factors 0.19 stan-
dard deviations below winning papers. In column 3, this translates to a
6 percentage point (20 percent) decrease in the probability of publishing
in a top-10 journal. Column 4 shows that scooped papers face a signifi-
cant citation penalty as well. The winning projects receive 29 citations
on average in the first 5 years. The scooped projects receive 21 percent
fewer citations in the same time span. Column 5 suggests that this means
scooped projects are 3.6 percentage points (24 percent) less likely to be
TABLE 4
Effect of Getting Scooped on Project Outcomes

Published JIF
Top-10
Journal

5-Year
Citations Hit Paper

Dependent Variable (1) (2) (3) (4) (5)

A. No Controls
Scooped 2.025 2.192*** 2.065*** 2.245*** 2.037***

(.015) (.044) (.020) (.071) (.014)

B. Base Controls
Scooped 2.026** 2.182*** 2.063*** 2.216*** 2.028**

(.013) (.045) (.021) (.063) (.014)

C. PDS-Lasso–Selected Controls
Scooped 2.026*** 2.186*** 2.062*** 2.208*** 2.036***

(.010) (.032) (.015) (.045) (.010)

Winner Y mean .879 2.027 .320 28.830 .149
Observations 3,279 3,279 3,279 2,514 2,514
Note.—This table presents regression estimates of the scoop penalty, following equa-
tion (2). Each regression contains protein (i.e., race) fixed effects. Observations are at
the structure level. Each coefficient is from a separate regression. Panel A presents results
from a specification with no controls. Panel B adds the base set of controls listed in table 3.
Panel C uses controls selected by the PDS-Lasso method. Standard errors are in parenthe-
ses and are clustered at the race level. The JIF in col. 2 is standardized by year. The regres-
sion in col. 4 uses asinh(5-year citations) as the dependent variable, but winner Y mean is
reported in levels for ease of interpretation. Hit papers are those in the top 10 percent for
5-year citations among articles in their publication year.
** p < 0.05.
*** p < 0.01.
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one of the top 10 percent of papers in that publication year, ranked by
5-year citations. These results are robust to a variety of cutoffs, including
a shorter or longer citation window and different percentiles for the high-
citation mark (see table A3). Table A4 shows results are robust to the
exclusion of protein (i.e., race) fixed effects. As a further robustness
check, we reproduce the regressions using a subsample of races that have
projects with 100 percent similar sequence structure according to the al-
gorithm used by the PDB. Table A5 shows that the magnitudes are very
similar for all outcomes, even if statistical precision is lower due to the
smaller sample size.
Scooped projects may be penalized not only in terms of journal place-

ment and citations but also by less formal means of recognition, such as
reader downloads, coverage in the scientific press, and mentions on so-
cial media. Scientists value these interactions as they build standing
and reputation in both the academic community and general public. Ta-
ble A6 shows results of project-level regressions using outcomes sourced
from Altmetric. We find that getting scooped has statistically significant
negative effects on downloads, news mentions, Wikipedia citations, pat-
ent citations, and Twitter mentions.
Taken together, these results suggest that there is a significant penalty

for being scooped, both in the likelihood of publication, the journal rank
of publication, and the number of citations accrued in the early life cycle.
However, these results also indicate that the rewards for priority are not
winner-take-all. Losing teams receive a smaller, but still substantial share
of the credit as measured by publication and citations. Translating the ci-
tation penalty to shares of total citations, losing projects receive approx-
imately 44 percent of the total citations accrued to both papers, a much
larger share of credit than the zero percent typically assumed by classic
models of innovation races.19
B. Long-Run Effect on Authors
In this section we analyze the long-run consequences of being scooped
on the careers of the various authors of scooped papers following equa-
tion (3). Table 5 reports the results of the long-run outcomes regression.
Panel A contains results for regressions in the full sample of authors.
Panel B restricts to novices only, who are defined as authors for whom
7 years or less had elapsed between their first publication and the time
19 The estimated share of 44 percent is calculated by dividing the mean citations of the
losing teams, 28:8�(1 2 0:208), by the implied total citations, 28:8 1 28:8�(1 2 0:208),
based on the estimate of the citation penalty from col. 4 of table A6, panel C.

https://altmetric.com
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of the scoop event.20 Panel C restricts to veterans, who are all authors not
defined as novices.21

Getting scooped has a statistically significant negative effect on the
probability of publishing any subsequent articles in the PDB and PubMed
in the 5 years after the race (not including the paper linked to the focal
PDB deposits). Column 1 shows that novice scientists who get scooped
are 12 percent less likely to have any subsequent PubMed publications
and 11 percent less likely to publish any PDB-linked paper in the next
5 years. Although there is not an economically significant negative effect
on the extensive margin for veterans in the PubMed data broadly (the es-
timated effect is less than 1 percent), veterans are 5 percent less likely to
publish PDB-linked articles after being scooped. Although veteran ca-
reers appear more resilient to being scooped than novice careers, it is
possible that getting scooped might encourage some scientists to steer
away from the PDB in the future.
Despite a significant extensive-margin effect, we find no significant

changes to publication counts on the intensive margin for novices or
veterans. Losing teams have no statistically significant differences in
publications or PDB-linked publications in the following years as shown
in columns 3 and 4, and they are not more or less likely to publish in
top-10 journals. This difference in intensive- and extensive-margin effects
might mirror a similar dynamic documented by Wang, Jones, and Wang
(2019), where scientists that persevere through setbacks (in their case,
the denial of a grant) do not experience negative productivity effects in
the long run, perhaps due to grit or psychological persistence. However,
we do estimate significant penalties in citations for all categories of au-
thors. In the full author sample, the scooped individuals receive 20 per-
cent fewer citations (measured by inverse hyperbolic sine citation-weighted
publications) in the next 5 years, where citations are counted up to 3 years
after each paper’s publication. This effect falls particularly hard on novices,
who receive 34 percent fewer citations, while veterans receive only 16 per-
cent fewer citations. The effect on hit papers is reported in column 7 and
also suggests that getting scooped decreases attention to future work. The
full sample of scientists publish 0.59 fewer hit papers in the five years fol-
lowing a scoop event. The negative effect is lower for novices in levels
(0.18 papers versus 0.82 papers for veterans), and not statistically sig-
nificant for novices. However, if we scale the effect size by the average num-
ber of hit papers, the effect is larger for novices (a 16 percent decline
versus an 8 percent decline). We also consider outcomes in the following
20 Seven years is the 30th percentile of the distribution of years since first publication.
21 The sumof the sample sizes in panels B andC is smaller than the sample size in panel A

because the race fixed effects specification in practice restricts identification to races that
have at least one novice (or veteran) in the winning and losing team of each race.
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three years in table A7 and ten years in table A8. The results are similar in
the 3-year window, but are smaller and imprecise after 10 years, in part be-
cause we restrict to a smaller balanced sample of races that ended before
the last 10 years of our sample window. Finally, in table A9 we restrict to
first, middle, and last authors separately because first and last authors
are considered to have a larger reputational stake in life science papers,
but we find broadly similar effects for all types of authors.
C. Mechanisms: Role of Scoop Timing
in the Publication Process
Scooped projects receive about 21 percent fewer citations than their win-
ning counterparts, suggesting that academic researchers pay less atten-
tion to the projects that are scooped. In this section, we investigate how
the editorial process affects the scoop penalty, and we argue that journal
placement is a primary driver of the citation penalty. Further, the size of
the penalty is highly correlated with the timing of races. Teams that are
scooped early (very shortly after they deposit their findings) receive a
much larger penalty than teams that are scooped late (shortly before pub-
lication). We provide evidence that top journal editors are unlikely to ac-
cept scooped papers; therefore, scooped papers consistently fall to lower-
ranked journals, excepting those already deep into the review process at
the time they were scooped. These results suggest that editors and review-
ers are key policymakers in determining the distribution of academic
credit for novel research.
1. Decomposing the Citation Effect by Journal
First we show that the citation penalty is largely driven by journal place-
ment. We decompose the citation effect into an editor/reviewer effect
and a reader effect by controlling for journal placement. Column 1 of ta-
ble 6 replicates the citation penalty effect from column 4 of table 4, but
uses a subsample of races in which both papers were published in ranked
journals. When both papers are published, the citation penalty is 16 per-
cent for scooped papers. In columns 2 and 3, we add controls for JIF, first
as a linear term and then as a cubic polynomial. The citation effect falls
to 10 percent, but remains statistically significant. Finally, in column 4 we
include journal fixed effects to control completely for any direct effect of
the publication outlet on citations. The effect falls to 4 percent. These
results suggest that nearly three-fourths of the citation penalty comes
through the channel of the publishing journal. Any remaining effect
on citation attention comes through readers differentially citing winning
and losing papers in similar journals.



000 journal of political economy
2. Editors’ Role in Priority Credit
We further explore the role of editors in adjudicating priority credit by
focusing on the submission, review, and publication timelines of scooped
projects submitted to leading science journals. Academic journals com-
pete fiercely to publish the highest quality and most novel scientific arti-
cles. Many of these journals have explicit policies for accepting only
highly original and novel research. For example, Science provides the fol-
lowing guidelines to peer reviewers: “Recommend in your review whether
the paper should be published in Science and provide a more detailed
critique based on the following. . . . Novelty: Indicate in your review if
the conclusions are novel or are too similar to work already published”
(AAAS 2019). Editors and reviewers therefore likely drive much of the
scoop penalty if they choose to reject scooped papers when they come
across their desk. In this section we look at how the scoop penalty is af-
fected by the timing of journal submissions. Many of the papers in our
sample had already been submitted to a journal when they were scooped,
and a few papers had already been accepted. Even if an editor would
prefer to reject a scooped paper, they may be unable to do so if the paper
had already been accepted or was far along in the review process. We use
the supplementary data collected from journal websites to examine how
the scoop penalty is affected by the timing of the review process. Ideally,
we would compare the scoop date to rejection dates at leading journals,
but data on rejected papers is not publicly available. Therefore, we use
instead the timing of submission and acceptance to present suggestive ev-
idence that editors at top journals are reticent to publish scooped papers.
TABLE 6
Decomposing Citation and Journal Effect

5-YEAR CITATIONS

DEPENDENT VARIABLE (1) (2) (3) (4)

Scooped 2.155*** 2.111*** 2.102*** 2.044*
(.032) (.029) (.028) (.027)

Journal controls None Linear JIF Cubic JIF Journal FE
Winner Y mean 34.7 34.7 34.7 34.7
Observations 1,891 1,891 1,891 1,891
Note.—This table reports the scooped coefficients in regressions with 5-year citations as
the outcome where we control for JIF. The citation counts are transformed with the inverse
hyperbolic sine function in the regression, but the winner Y mean is reported in levels for
ease of interpretation. The regression sample is restricted to races where both papers were
published in a ranked publication. Column 1 reestimates the table 4, col. 4 regression in
this subsample. Columns 2 and 3 add linear and then cubic controls for JIF. Column 4 in-
cludes fixed effects for journal. All regressions also include PDS-Lasso–selected controls
and protein (i.e., race) fixed effects.
* p < 0.1.
*** p < 0.01.
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In our data, scooped papers occasionally appear in top journals like Sci-
ence, Nature, and Cell, but 90 percent of those papers were already under
review on the date that they were scooped. Furthermore, about 60 per-
cent of those papers were scooped after they had already been accepted.
Figure 5 further shows that this pattern varies greatly by the impact factor
of the journal that eventually publishes the scooped paper. For lower-
ranked journals, such as PLoS One, only 60 percent of scooped papers
had been received by the journal on the date they were scooped, and just
over 20 percent had been accepted. Among the 11 large journals for
which we have information about received and accepted dates, there is
a positive and statistically significant relationship between the share ac-
cepted before the scoopdate and the impact factor: a scooped paper pub-
lished in a journal whose rank is 1 standard deviation higher is 8 percent-
age points more likely to have already been accepted on the scoop date.
Although we cannot directly observe scooped papers being rejected from
these journals, we can infer from this pattern that top journals are less
willing to accept papers that were scooped before submission or early
in the review process. Many of these scooped papers fall to lower-ranked
general interest journals or highly specialized structural biology jour-
nals.22 Some of these lower-ranked journals, such as PLoS Biology, have
FIG. 5.—Journal placement and timing of scoops. The figure reports the share of
scooped papers that were received and accepted before the scoop date at different jour-
nals. Each circle represents one of the 11 largest journals for which we collected supple-
mental data on the editorial timeline. Journals are arranged along the x-axis by their stan-
dardized JIF. The size of the circles is proportional to the number of scooped papers
published in each one.
22 One possible strategy a team might consider to win a race is to submit to a lower-
ranked journal that has a faster average review time. Indeed we find that top-ranked jour-
nals take about 120 days on average from submission to acceptance while lower-ranked
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explicit policies of accepting scooped papers. PLoS Biology editors write,
“Just as summiting Everest second is still an incredible achievement, so
too, we believe, is the scientific research resulting from a group who have
(perhaps inadvertently) replicated the important findings of another
group. To recognize this, we are formalizing a policy whereby manu-
scripts that confirmor extend a recently published study (‘scooped’man-
uscripts, also referred to as complementary) are eligible for consider-
ation at PLoS Biology” (PLoS Biology Staff Editors 2018). But even some
lower-ranked journals are concerned about the fierce competition for
novel research. When we approached one publisher about sharing their
data on received and accepted dates, they only offered to provide the data
anonymously, stating their concern about presenting public evidence
that they publish scooped papers.
3. Time Lag and the Scoop Penalty
The severity of the scoop penalty is correlated with the time lag between
the release of the winning and losing projects. In figure 6, we plot the dif-
ference in outcomes separately for 3 terciles of races divided by the time
between the release dates of the winning and losing projects. The points
are placed on the x-axis at the average delay time within the subset of races.
The first panel shows the JIF penalty and the second panel shows the ci-
tation penalty. Both plots have a strong decreasing trend in the penalty—
in other words, the longer the lag between the priority paper and the
scooped paper, the less credit the scooped paper receives. The JIF penalty
is 0.1 standard deviations in the first 3–4 months, then drops to 0.3 stan-
dard deviations by 8 months. Similarly, projects released within 1 month
of each other have no difference in citations. The scoop penalty grows to
50 percent for scooped projects with an 8 month delay. In fact, much of
the negative effect that we present in table 4 is driven by the tercile of
races with the longest delays. An important caveat to these results is that
the delay to release after being scooped is potentially endogenous. While
much of release lag may be due to idiosyncrasies of the publication pro-
cess that are out of the researchers’ hands, teams may also make strategic
decisions about whether to rush to publish, revise and delay, or give up
publication altogether, so the delay times should be viewed as potentially
selected on team or project characteristics. We explore some of these
forces in more detail in the next section. These results suggest that the
delay time between projects is relevant for editors and readers, perhaps
journals take about 90 days on average. However, as the results in table 6 show, the bulk of
the scoop penalty is due to journal placement, suggesting that the citation-maximizing
strategy is to submit to the best possible journal first, despite the potential for a slightly lon-
ger review.
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because the community can more clearly attribute priority credit with
more time separating similar projects.
V. Strategic Responses to Getting Scooped
before Project Completion
Thus far, we have focused exclusively on races where two teams had com-
pleted the project before the knowledge of the scoop is revealed. We
chose this restriction because it minimizes the scope for researchers to
endogenously respond to the scoop event. In cases where scientists are
scooped after depositing, they are usually preparing amanuscript or have
submitted to a journal already. The PDB also mandates that the project is
released to the public 1 year after deposition at the latest, and this forced
disclosure likely puts pressure on the team to publish quickly if they have
already deposited. Therefore, they have less flexibility to respond to the
scoop event by repositioning their research, changing direction, using in-
sights from the winning paper, or abandoning the project altogether.
This allows us to estimate the impact of being scooped, all else equal.
However, the endogenous response itself is interesting. How do scientists
use the knowledge that they have been scooped to reoptimize? In this sec-
tion, we compare projects that were scooped before and after deposit to
showhow scientists respond when they learn that they have been scooped
before completing the project.
FIG. 6.—Journal impact factor ( JIF) and citation penalty by scooped project release de-
lay. The sample of races is divided into 3 terciles along the distribution of time between
winning and losing release date. Races are positioned along the x-axis at the average scoop
release delay within each group. Projects released in close proximity are to the left, and
those with a long delay are to the right. The y-axis shows the difference in JIF (A) and ci-
tations (B) between the winner and loser.
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The classic patent-race literature has focused on the strategic decisions
of a follower in a race for a discontinuous reward, typically the profits from
a patent (Loury 1979; Dasgupta and Stiglitz 1980; Lee and Wilde 1980;
Gilbert and Newbery 1982; Reinganum 1983). Depending on the model-
ing assumptions, these models predict a range of outcomes: for example,
the follower will persist at a steady R&D pace, the follower will increase
effort in an attempt to leapfrog the leader, or the follower will choose
to drop out of the race altogether. The optimal strategy is dependent
on theR&D technology, the information structure of the game, and other
features such as whether the race has a single or multiple stages (Fuden-
berg et al. 1983). Our setting differs from those models for important
reasons, but insights from this literature are relevant for interpreting
scientist behavior in our setting, especially for those scooped before
they had deposited.
Like these classic innovation-race models, researchers in our setting

can choose to accelerate a research project or abandon it altogether.
However, there are other important choice margins in our setting. First,
unlike the models described above, the game does not automatically end
when the first team releases their structure. Instead, the second-place
team still has an opportunity to adjust the pace, direction, and scope of
their project. This is more akin to recent patent-race models where races
are multistaged or endless ( Judd 1985; Aoki 1991; Doraszelski 2003;
Horner 2004). Second, early models rarely grappled with the public
goods nature of innovation, where a loser can benefit from the winner’s
discovery through imitation or improvement of the winner’s disclosed
discovery (Arrow 1962; Dasgupta and David 1994).
In the remainder of this section, we study the strategic decisions of a

scientist who is scooped early enough in the project’s life that she still
has an opportunity to reoptimize the path of the project. The key idea
is that once a scientist learns that she has been scooped, she faces a trade-
off. She knows that on one hand, she will get more credit if she publishes
quickly because the scoop penalty grows with time (as shown in fig. 6).
On the other hand, she can expand the project in new directions (e.g.,
by adding additional structures or experiments). This will take time—
leading to a larger penalty—but will also make the project more valuable
overall. Moreover, because she can now take advantage of informational
spillovers from the first paper, it might be easier to expand the project
than before that paper was released.We formalize this trade-off in appen-
dix C. Broadly speaking, there are three possible cases. In one case, the
scientist speeds up when she learns that she has been scooped to mini-
mize the penalty. In a second case, she slows down and improves or broad-
ens her project to maximize its value. Finally, it is possible that the cost of
completing a project is no longer offset by the reward, leading to a third
case where she abandons the project upon learning it has been scooped.
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In our data, we can observe the behavior of some scientists that were
scooped before they had a chance to complete their projects, and thus
have the flexibility to reoptimize. Although not required by the PDB,
many deposits (81 percent) report a collection date, which is the date that
the scientist collected the x-ray diffraction data at a synchrotron. Using
these dates, we can identify races where scientists had successfully crystal-
lized their protein and collected diffraction data but then learned they
were scooped by another team prior to depositing their completed struc-
ture model (see fig. 2).
Overall, the empirical evidence is consistent with the second case: re-

searchers spend longer to expand the scope of their projects when they
know they have been scooped. Figure 7 compares the timeframe of pro-
jects between postdeposit scoops (our original sample) and predeposit
scoops. On the left, we show the number of years that pass between the
original collection of the data and the time of being scooped. Not surpris-
ingly, predeposit scoops tend to be slightly earlier in the life of the project
(mean of 1.6 years for predeposit scoops and 1.7 for postdeposit scoops).
There are very few projects that have a short (less than 4-month) lag be-
tween collection and scoop in the postdeposit sample of races because
the scientists would not have had time to analyze the experimental data
and deposit their structure. However, there is considerable overlap of the
distributions, suggesting that these two types of scoops occur in similar
timeframes on average.
FIG. 7.—Gaps between collection, scoop, and release for pre- and postdeposit scoops.
The figure shows the amount of time that passes between the collection date and the scoop
(A) and between the scoop date and release date (B) for predeposit and postdeposit
scoops. Histogram is top-coded at 5 years.
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However, the right panel shows the number of years between the scoop
and final release of the scooped paper. This release gap is much longer
on average for predeposit scoops (mean of 0.36 years for postdeposit
scoops, 2.13 for predeposit scoops), suggesting that, for scientists who
know they have been scooped but decide to continue, the preferred strat-
egy is to invest more time into the project rather than abandon it. One
important point of context is that postdeposit scooped projects are man-
dated to release the findings after 1 year, so even if postdeposit scooped
teams wanted to change their research, add experiments, or rewrite their
paper, they have much less flexibility after they have already deposited.
This delay in release appears to be consistent with scientists electing

to add additional experiments and differentiate their project from the
race winner. Table 7 presents regression results using the full sample of
races associated with 1,778 predeposit scoops and 979 postdeposit scoops
combined for which we have available data.23 We regress a series of proj-
ect characteristics that relate to the margins of adjustment discussed above
on a scooped indicator and an interaction between a predeposit indicator
and the scooped indicator.24 In column 1, we can see that there is a very
TABLE 7
Strategic Responses to Pre- and Postdeposit Scoops

Proteins in Paper Paper Title Keywords

MATURATION Count Multiple “Structure”

“Function,”
“Mechanism,”
or “Analysis”

MOLECULAR

REPLACEMENT

DEPENDENT

VARIABLE (1) (2) (3) (4) (5) (6)

Constant 1.173*** 1.395*** .437*** .876*** .156*** .614***
(.068) (.088) (.013) (.016) (.010) (.010)

Scooped .025 2.041 2.005 2.017 .001 .022
(.062) (.072) (.021) (.016) (.017) (.017)

Predeposit �
Scooped 1.362*** .201** .061** 2.062*** .042** .080***

(.095) (.090) (.027) (.021) (.021) (.021)

Observations 5,398 5,398 5,398 5,398 5,398 5,398
23 There are
in the same clu
specifications,

24 The pred
some cases w
ster, i.e., sco
we drop the
eposit main
here there is one pre
oped by the same pri
predeposit scoops fr
effect is absorbed by
deposit scoop and one postd
ority deposit. For clarity in th
om these clusters.
the protein fixed effect.
Note.—This table presents regression estimates of strategic response outcomes on a
scooped indicator and an interaction between a predeposit indicator and the scooped indica-
tor. Predeposit scoops are those where the scooped team had collected data but not yet depos-
ited at the time of the first paper release. Each regression contains protein (i.e., race) fixed ef-
fects. Observations are at the structure level. All regressions include controls selected by the
PDS-Lasso method. Standard errors are in parentheses and are clustered at the race level.
** p < 0.05.
*** p < 0.01.
eposit scoop
e regression
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large increase in maturation time (time between collection and release)
for the predeposit scooped teams relative to the postdeposit scooped
teams, with the predeposit teams spending 1.4 more years on average.
Next, we consider how trailing scientists may adjust the scale or scope of
their research to offset the scoop penalty. We find in columns 2 and 3 that
predeposit scooped teams aremuchmore likely to includemultiple protein
structures in their paper relative to the postdeposit scooped teams, suggest-
ing that predeposit scooped teams expand the scope of their papers. Next,
we look at how scooped teamsmay have adjusted the content of their paper
by analyzing keywords from the paper titles. Column 4 suggests that
predeposit scooped teams are much less likely to use the word “structure”
or “structural” thanpostdeposit scooped teams.However, as seen incolumn5,
they are more likely to use words like “function,” “mechanism,” or “anal-
ysis” in the title. It appears that if teams have the flexibility to adjust the
direction of their research after being scooped, they choose to shift the
focus away from the structure determination itself and toward describing
the function or biological mechanisms that the structure implies.
Finally, we use another unique feature of the data to test whether trail-

ing teams benefited from seeing the priority deposit if they were scooped
before completing their own work. The PDB contains a flag for a technol-
ogy called molecular replacement, which is a crystallography technique
that improves model prediction. Importantly, it relies on using another
similar structuremodel as a pattern to refine the newmodel from diffrac-
tion data (see Kim 2023 for a detailed explanation of the technology). In
other words, trailing teams can use molecular replacement—which
makes completing their projects easier—if they can observe the winning
structure before they finish their own structure. Column 6 suggests that
scooped teams are more likely to use this technology, but only if they were
scooped before they deposited. If the winning structure is released after the
trailing team deposits, as is the case in our postdeposit sample, the trail-
ing team is unable to take advantage of insights from the winning struc-
ture model in their own process. However, if the winning structure is re-
leased before the trailing team deposits, as is the case in our predeposit
sample, they are able to benefit from this information. This suggests
there are meaningful knowledge spillovers that benefit the losing team.
In addition to being consistent with our model, we think this provides
strong empirical evidence that the release of the project represents a
meaningful information shock. Overall, it appears that scientists who
are scooped before they have a chance to deposit their findings are more
likely to delay the release of their structure, increase the scope or change
the direction of their research, and integrate the knowledge from the
first discovery into their project.
Finally, we compare the cost of being scooped before and after de-

posit. We interpret the results of this exercise cautiously because of the
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endogenous selection into the predeposit sample and the additional flex-
ibility that predeposit scooped teams have to strategically respond to the
scoop. Table A10 reproduces table 4 in the predeposit sample. We find that
the difference in most outcomes between the winners and losers is about
15 to 40 percent larger in predeposit scoops compared to our primary
postdeposit sample. The citation gap is 28 percent in the predeposit
scoops compared to 21 percent in the postdeposit (main sample) scoops.
The relative reduction in the probability of publication is comparable be-
tween the two groups. Scientists who persist despite being (knowingly)
scooped are likely a selected set who are determined to publish.
VI. Reputation and the Scoop Penalty
Scientific races provide a unique setting to study how academic recogni-
tion is affected not only by priority, but also by the preexisting reputations
of winners and losers. We find that when a high-reputation team scoops
a low-reputation team, they receive 65 percent of the total citations, but
when a low-reputation team scoops a high-reputation team in a compa-
rable race, they only receive 46 percent of the total citations. This asym-
metry in attention suggests that the distribution of priority rewards is
not formulaic and may be affected by the institutions, norms, or biases of
the academic community. In appendix C, we present a model of aca-
demic attention based on a standard statistical discrimination model
(Aigner and Cain 1977). Here we present empirical results that support
the predictions of the model.
Priority rewards are allocated by a decentralized set of actors, including

journal editors and readers, in a market for academic attention. Because
scientists have limited time for reading and reviewing new papers, it may
be difficult to determine the quality of new research. Therefore, editors
and readers may rely on signals of ability based on the reputation of the
researchers or their institution to supplement their judgement of a pa-
per’s quality. The model considers cases where two types of teams, high-
and low-reputation, publish identical papers. Readers decide who to cite
based on priority and reputation. In cases where teams are of the same
type, the priority effect is isolated, and the first team to publish receives
more than 50 percent of the total citations. However, in cases where
teams are of different types, the priority and reputation effects will either
work in the same or opposite direction, depending on which team fin-
ishes first. If the high-reputation team wins the race, the two effects re-
inforce each other, meaning the high-ranked team will have an equal
or greater share of citations compared to the low-ranked team than they
would competing against another high-reputation team. If the low-
reputation team scoops the high-reputation team, the net effect is am-
biguous. If the reputation effect is stronger than the priority effect,
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the low-reputation team may receive less than 50 percent of the total ci-
tations, despite publishing first.
To test our model, we measure the share of total citations received by

winning and losing labs, and compare these shares in races where the
reputation varies between the two racing teams. More specifically, if
lab A and lab B race to write a paper about the same protein, we compute
CitationShareA 5 CitationsA=(CitationsA 1 CitationsB).Thiscitationshare
maps to the probability of citation outlined in the model above.25

We proxy for the preexisting reputation of each lab using the Lasso-
estimated predicted citations from the nonracing data sample as de-
scribed in section III.B. Labs with above-median predicted citations are
categorized as high-reputation labs, while teams below median are called
low-reputation labs. In figure 8 we plot the predicted citations of the losers
on the x-axis and the predicted citations of the corresponding winners on
the y-axis. Each point on this scatter plot represents the observed match
between two racing labs. If all labs were equally matched in preexisting
reputation, all points would lie on the dashed 45-degree line. Of course,
labs are rarely perfectly matched in the data, providing variation in the
difference of reputation between the winners and losers.
The median lines in figure 8 conveniently partition the sample into

four subsamples that line up with the four types of “matchups” we discuss
in ourmodel. The top right and bottom left corners represent subsamples
of closely matched races where both labs were either high-reputation or
both low-reputation. The top-left and bottom-right subsamples represent
mismatched races where an above-median team scooped a below-median
team and vice versa.
In mismatched races, we interpret the difference between citations as

being caused by an additive effect of priority and reputation. One poten-
tial confounder in that interpretation is that high- and low-reputation
teams might produce different quality of scientific outputs for the same
structure discovery. If high-reputation teams produce higher-quality or
more convincing results, then the additional citations they receive may
not be caused by their high-profile reputation alone. Although it is diffi-
cult to quantify all aspects of paper quality, we examine two important
measures of quality reported by the PDB: resolution and R-free (goodness-
of-fit), described in more detail in section III.C. Table A11 compares
the average resolution and R-free of the winning and losing structures
in each of the four subsets of races. We find very little evidence of statis-
tical difference in qualitymetrics betweenhigh- and low-reputation teams
25 The model does not include the possibility of cocitations, where both papers are cited
together, but the empirical results are proportional to an analysis where cocitations are
excluded.
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engaged in a race. This suggests that any difference in citations is not
driven by the quality of science that each team is producing.
Figure 9 shows the average citation counts by matchup type, as well as

the citation shares. Panel A shows the evenly matched races, which iso-
lates the priority effect. As predicted by the model, the winning labs re-
ceive more citations. Moreover, if we look at the share received by the
winning team, we see that it is identical in the high-versus-high–reputation
matchups and the low-versus-low–reputation matchups (in each case, the
winning team receives about 55 percent of the total citations), which is
consistent with the model.26
FIG. 8.—Scatter plot of team-reputation difference. Each observation in this figure is a
racing pair. The y-axis shows the predicted citations for the winning team, and the x-axis
shows the predicted citations for the losing team. If the winning team has higher predicted
citations than the losing team, the dot will lie above the 45-degree line. If the winning team
has lower predicted citations than the losing team, the dot will lie below the 45-degree line.
Perfectly matched teams would lie on the 45-degree line.
26 The restriction to evenly matched teams in panel A is also a convenient check on the
identification assumptions for a causal interpretation of the estimated scoop effect. Even
when competitors are well-matched on observables, there exists a statistically significant
priority premium that is unlikely to be driven by positive selection of winners.
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Panel B shows the unevenly matched races. When a high-reputation
lab scoops a low-reputation lab, the priority effect and the reputation
effect work in the same direction. Here we see that, consistent with
proposition 2, the winning team receives an even larger share of the total
citations (65 percent). Conversely, when a low-reputation lab scoops a
high-reputation lab, the priority effect and the reputation effect move in
opposing directions. In this case, it appears that the reputation effect is
the stronger of the two, with the winning team receiving less than half
(46 percent) of the total citations. Again, this matches the prediction out-
lined by proposition 2 of the model.
Collectively, we interpret this as evidence that statistical discrimination

based on prior lab reputation can rationalize our heterogeneity results.
The lack of symmetry exhibited in panel B suggests that being first is
not the sole determinant of credit in science. In science, there is no cen-
tral arbiter that gives legally binding credit or property rights to the first-
place team. Here the teams vie for attention, and although the low-
reputation teams may benefit by winning a race, there appears to be
FIG. 9.—Priority effect by reputation matchup. We divide the sample of races from fig. 8
into four quadrants, depending on whether the winning and losing teams are above me-
dian (high reputation) or below median (low reputation) in expected 3-year citations de-
fined by the Lasso estimation. Dark gray bars represent the actual citations of the winning
team and light gray bars of the losing team. A, The comparison between evenly matched
races, in which a high-reputation team scoops a high-reputation team or a low-reputation
team scoops a low-reputation team. B, Comparison between mismatched races, in which a
high-reputation team scoops a low-reputation team or a low-reputation team scoops a high-
reputation team. The winner’s share of total citations are reported above each set of bars.
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built-in inequality in attention that prevents them from capturing as
much of the credit as their high-reputation competitors.
VII. Benchmarking Magnitudes: Survey Results
We estimate that getting scooped causes a decrease in the probability of
publication, leads to publication in lower-impact journals, and reduces
citations. However, priority races are not winner-take-all. Our citation es-
timate suggests that winners get 56 percent of the total citations, a far cry
from the 100 percent often assumed in the theoretical literature. But how
does this estimated share of credit compare to scientists’ beliefs? In an
email survey of structural biologists, we pose a hypothetical situation about
a late-stage race to publication. The full text of the questions can be found
in appendixD. First we ask, “Suppose youhave just completed a very prom-
ising research project . . . what do you think is the probability that your
project will be scooped between now and when it is published?”We next
state that their hypothetical project has indeed been scooped by a paper
in the journal Science. In this scenario, we ask them the following ques-
tions: “Would you choose to abandon your manuscript? Assuming you
submit, what is the probability the article will eventually be published?
What is the best journal that would accept your paper? If your competitor
receives 100 citations, howmany citations do you expect your publication
to receive?”
Table 8 reports the average responses of the biologists in columns 3–6

and compares them to the magnitudes estimated in the PDB data in col-
umns 1 and 2. The hypothetical scenario in the survey was designed to
match the instances of racing that we have in our data. However, because
we tried to pose the survey questions as concretely as possible for clarity,
the racing situation does not exactly match the average situation in the
PDB. In particular, in the survey the losing team is scooped early in the
submission process, and the project is very high quality, with an expected
journal placement in Science. Therefore we report estimates in column 2
from a subset of the PDB data where (1) the losing team is scooped soon
after they deposit their data,27 and (2) one of the teams published in one
of the three highest-impact journals (Science,Nature, or Cell). These restric-
tions make some of the PDB estimates smaller or larger, but we still con-
sistently find evidence of pessimism among respondents. Surveyed scien-
tists report a 27 percent chance of being scooped between submission
and publication, more than three times the 8 percent scoop probability
27 Specifically, we sort races by the time elapsed between the loser deposit date and the
winner release date and keep the one-quarter of race losers that were scooped earliest in
the process.
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in the comparable PDB sample.28 Six percent of respondents report that
they would abandon the project, but only 68 percent think they would
succeed at publishing conditional on submitting, implying a 67 percent
unconditional probability of publishing as shown in column 3. This is
much lower than the 85 percent of scooped papers that are actually pub-
lished in the PDB data, and the 98 percent that are published in the com-
parable subsample. Scientists are very pessimistic about the potential
journal placement of scooped papers, expecting that the best journal
they could publish in would be almost 3 standard deviations below Science,
which has a standardized impact factor of about three in most years. Fi-
nally, we ask about expected citation effects. When asked to guess the
number of citations they would receive compared to the hypothetical win-
ner’s 100 citations, the average guess was only 41 citations, which trans-
lates to a 59 percent penalty or a share of 29 percent of the total citations.
The corresponding estimate in the PDB is nomore than a 21 percent pen-
alty or a 44 percent share. Ultimately, PDB scientists expect much worse
consequences from being scooped than can be found in the data.
Table 8 also reports survey responses separately for high- and low-

reputation scientists. We split the survey sample using the same Lasso-
predicted citation measures used in section VI. Column 4 reports the
average responses for below-median–reputation scientists, column 5 re-
ports the average responses for above-median–reputation scientists, and
the difference with standard errors is reported in column 6. High- and
low-reputation respondents predict equal probabilities of being scooped.
Low-reputation respondents are more pessimistic however about the
probability of publishing conditional on being scooped, with 7 percent-
age points lower probability that they will be able to publish their scooped
paper. Perhaps surprisingly, both types of respondents had similar expec-
tations for the types of journals that they would publish in, all expecting
that the scooped papers would fall to field journals or middling general
interest journals with average impact factor. But they again depart on
their expected citations, with high-reputation scientists expecting a cita-
tion penalty that is about 4 percentage points smaller than low-reputation
scientists (57.5 percent penalty vs. 61.4 percent penalty). This difference
in expectations is consistent with our results about the role of reputation
in determining priority rewards. Since both types of authors suggest they
would submit to similar journals, it may be that the difference in citations
28 One caveat to this comparison is that we identify scooping papers in the PDB that have
a very specific and perhaps narrow type of overlap, a structure determination for a protein
that is similar enough in amino acid sequence to register in our cluster definitions. It may
be that a scientist could see other types of papers related to their protein that have concep-
tual overlap that is different than the dimension we are measuring, which might explain
why they report a higher probability of being scooped in expectation than we observe in
the PDB.



estimating rewards for priority in science 000
is driven by statistical discrimination of editors, reviewers, and readers as
explained in the model in section VI. It appears that although all scien-
tists are pessimistic about the cost of getting scooped, less-prominent au-
thors are particularly concerned. Our estimates of significant inequality
in citation patterns suggest that these beliefs may be justified.
VIII. Conclusion
Priority races are a common feature of academic science, and credit for
priority is considered an important motivator for the generation of new
knowledge. Yet, we have little empirical evidence on how these priority
rewards are structured. Racing is hard to analyze empirically because prox-
imate research projects are difficult to link in data andmany scooped pro-
jects are abandoned before entering the scientific record. This paper
makes progress on these empirical challenges by focusing on project-level
data in a setting that captures the near universe of completed projects
in structural biology. By taking advantage of the unique data collected
by the PDB, we are able to construct credible estimates of the priority pre-
mium in the field of structural biology. We find that rewards are far from
winner-take-all; rather, our preferred estimates suggest a 56-44 split in ci-
tations between the winning and losing paper.
This paper contributes to our understanding of the role of priority and

the structure of incentives in basic research. Academic science is an atyp-
ical marketplace of productive activity. New ideas are valuable for the
world but are not immediately marketable, and are therefore unlikely
to be produced by private firms or individuals seeking profits. A patent
system is therefore a less-effective instrument for encouraging invest-
ment, risk-taking, effort, or disclosure of scientific studies. Instead, a sys-
tem of priority rewards has developed to encourage research investment,
which is reinforced through norms in the scientific community. Individ-
uals who produce new knowledge are given credit by the community that
can accumulate into a reputation that likely has both intrinsic and mon-
etary value to the scientist. AlthoughR&Draces havebeenposed aswinner-
take-all tournaments in past literature, we find that priority rewards are
not winner-take-all, but are potentially still an important motivator of both
effort and novelty in science. Even if the result of one race has a small im-
pact on careers, the accumulation of credit may still be important.
In this paper, we establish that priority is a relevant incentive in science,

but we do not analyze the overall welfare implications of the priority sys-
tem and size of the priority premium, nor do we consider alternative sys-
tems or policies. How would a larger or smaller priority premium affect
the efficiency of science? There are many margins to consider, including
how changes would affect effort, project selection, collaboration, and
even participation in science. A particularly interesting concern raised
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in popular and academic writing is that priority may be pursued at the ex-
pense of quality. Racing to complete projects may stimulate effort and
hasten the pace of discovery, but it may lead scientists to cut corners on
the quality of the results that they disclose. If the incentives for replica-
tion are low and the costs of replication are high, science as a whole
may suffer as quick and sloppy research becomes the norm. In Hill and
Stein (2024a), we analyze objective measures of the quality of crystal dif-
fraction data and corresponding structure models to study how racing in
science affects quality outcomes. We find that proteins with high ex ante
potential havemore competitors racing to complete the structure, are de-
posited faster, and are completed with lower quality. This evidence sug-
gests that racing in science does indeed hasten disclosure but has nega-
tive effects on quality. Concerns about the cutthroat nature of racing
have led to suggestions of policies that might dampen the strong incen-
tives for novelty. These include allowing a grace period for journal accep-
tance a few months after being scooped, providing opportunities to es-
tablish priority for early-stage work through preprints, or directly
incentivizing replication efforts through directed grant funding.
Finally, the results of our survey suggest that scientists are very pessimis-

tic about the cost and probability of being scooped. If the perceived
threat of being scooped has a negative influence on the pace, direction,
quality, and openness of science, we believe that this paper should help
assuage concerns about competition for priority and foster a more pro-
ductive research environment.
Data Availability
Data and code for replicating the tables and figures in this article can be
found in Hill and Stein (2024b) in the Harvard Dataverse, https://doi
.org/10.7910/DVN/TJ5VCW.
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