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Future Translational Applications From the Contemporary 
Genomics Era:
A Scientific Statement From the American Heart Association

Caroline S. Fox, MD, MPH, FAHA [Chair], Jennifer L. Hall, PhD, FAHA [Co-Chair], Donna K. 
Arnett, PhD, MSPH, FAHA, Euan A. Ashley, MD, FAHA, Christian Delles, MD, FRCP, FAHA, 
Mary B. Engler, PhD, RN, MS, FAHA, Mason W. Freeman, MD, Julie A. Johnson, PharmD, 
FAHA, David E. Lanfear, MD, MS, Stephen B. Liggett, MD, Aldons J. Lusis, PhD, Joseph 
Loscalzo, MD, PhD, Calum A. MacRae, MD, PhD, Kiran Musunuru, MD, PhD, MPH, FAHA, L. 
Kristin Newby, MD, MHS, FAHA, Christopher J. O’Donnell, MD, MPH, FAHA, Stephen S. 
Rich, PhD, FAHA, and Andre Terzic, MD, PhD, FAHA on behalf of the American Heart 
Association Council on Functional Genomics and Translational Biology, Council on 
Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, Council on Quality of 
Care and Outcomes Research, and Council on Epidemiology and Prevention

Abstract

The field of genetics and genomics has advanced considerably with the achievement of recent 

milestones encompassing the identification of many loci for cardiovascular disease and variable 

drug responses. Despite this achievement, a gap exists in the understanding and advancement to 

meaningful translation that directly affects disease prevention and clinical care. The purpose of 

this scientific statement is to address the gap between genetic discoveries and their practical 

application to cardiovascular clinical care. In brief, this scientific statement assesses the current 

timeline for effective translation of basic discoveries to clinical advances, highlighting past 

successes. Current discoveries in the area of genetics and genomics are covered next, followed by 

future expectations, tools, and competencies for achieving the goal of improving clinical care.
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With the completion of the Human Genome Project (HGP) in 2000 and the International 

HapMap Project in 2003, genetics research focused on complex traits has exploded. The 

success of genome-wide association studies (GWASs) has identified many new single-

nucleotide polymorphisms (SNPs) for common, complex traits and diseases (http://

www.genome.gov/gwastudies). In the area of cardiovascular disease (CVD), loci have been 

identified for myocardial infarction (MI)1 and CVD risk factors, including blood pressure,2 

lipids,3 obesity,4,5 and diabetes mellitus.6,7

At the 10-year anniversary of the completion of the HGP, an article appeared in the New 
York Times. This article, “A Decade Later, Genetic Map Yields Few New Cures,” stated that 

“despite early promise, diseases’ roots prove hard to find.”8 This article highlighted the lack 

of meaningful clinical implications derived from the HGP. For MI, each successful GWAS 

and its newly discovered SNP associations have fallen short in their ability to predict 

incident MI.9 This may be attributable to the very small effect sizes of the newly discovered 

variants in their association with MI. In contrast, these new discoveries have provided novel 

insights into unsuspected mechanisms for disease that may serve as potential therapeutic 

targets. GWASs have landed on many known drug targets,10 and the probability is high that 

this will continue. Of all clinical fields, genetics in cancer diagnosis and treatment has been 

quite successful.11,12

The notion of slow translation to clinical application is not new. The concept of the “valley 

of death” broadly applies to barriers in translating discoveries and the chasm that exists 

between the discovery of new potential therapeutic agents and their ultimate clinical 

utility.13 Much has been written about this concept and the need to restructure relationships 

between academia, government, and industry, as well as the need for adequate support to 

facilitate translation.10,13,14 Scientists studying mechanisms of disease are aware of the high 

costs and the time necessary to carry out experiments to translate how newly identified 

mutations may alter phenotypes. New technologies, strategies, and programs designed to 

expedite the translation of genetics and genomics are waiting to be used. Although new 

strategies exist, many academic laboratories may not be well versed in or even aware of 

these methodologies. Moreover, these techniques require time, experience, and education 

from investigators and laboratory staff. How this learning process can best be facilitated is 

unclear. The field of CVD has much to gain from these strategies, given that CVD is 

currently the leading cause of death in the United States.15

Thus, the purpose of this scientific statement is to detail steps currently used to realize 

important clinical translation from genetic data and to provide a look into the future at steps 

that may prove more effective. This scientific statement discusses past successes, emerging 

science and applications, and future directions to ensure effective translational activities and 

applications. Included in this scientific statement are 5 tables and 2 figures. The 5 tables 
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outline examples of genomic discoveries that have translated into currently used clinical 

therapies, emerging clinical tools, steps to facilitate genomic and genetic discovery, and the 

phases of clinical trials. The figures depict the timeline of tools that were established to 

enable rapid discovery in the area of genetics and genomics and a flowchart for the steps, 

timeline, and costs from SNP identification to achieving clinical utility. Through this 

presentation, we hope to achieve transparent expectations for the public and for the medical 

and scientific communities in the steps, resources, and time that are necessary to achieve 

clinical advances from recent genetic discoveries.

The HGP and Extensions of This Project

Many advances in the field have been supported by federal investment and infrastructure 

support (HGP, HapMap, 1000 Genomes, Encyclopedia of DNA Elements [ENCODE]). The 

HGP was initiated in 1990 as an international research program to determine the DNA 

sequence of the human genome and to identify the unknown number of genes that encoded 

the genetic diversity of the human population (Figure 1 gives the timeline of major recent 

genetics milestones in population genetics). From the initial draft sequence of the human 

genome, a next-generation map was needed to uncover common (frequency of at least 5%) 

genetic variants, or SNPs, that describe the fine-structure architecture of the genome in 

multiple human populations. The National Human Genome Research Institute launched this 

project, the International HapMap Project, in 2002.

The 1000 Genomes Project (www.1000genomes.org) was launched in 2008 and represents 

an international research effort to establish an initial catalog of human genetic variation 

across ethnically diverse populations. The result is a sequence repository and a refined 

human genome map to be used to identify and characterize disease-causing genes.16,17 

ENCODE (www.genome.gov/10005107) represents a research consortium established by 

the National Human Genome Research Institute in 2003 to characterize the functional 

elements in the human genome, to determine their tissue distribution, and to assess how 

variation in the DNA sequence may affect gene function and regulation. Initial results of the 

project were released in September 2012 in a series of reports.18–20

Ongoing Promises and Public Expectations of the HGP

The HGP has provided tangible benefits for investigators who can begin to define the 

biological function and pathophysiology of the many newly discovered variants. A limitation 

of translating the promise of the HGP to molecular medicine has been not knowing which 

variants are disease causing and which are innocent bystanders. In GWASs, it is likely that 

fewer than one third of disease-associated SNP variants are within or nearby the portion of 

the genome (ie, exons) that are responsible for protein-coding changes.16 The availability 

and falling costs of whole-genome sequencing are important factors accelerating this effort.

A public perception is that the knowledge of the genome can be translated quickly into 

advances in medicine, leading to improvements in personalized prediction, prevention, and 

treatment. Although some practical results emerged quickly in genes identified as primary 

risk factors for disease, the understanding of how variation in a gene contributes to disease 

risk requires substantial research. The next section highlights a few past successes in familial 
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hypercholesterolemia, cancer treatment, and cystic fibrosis to provide insight into what 

future clinical applications may arise from newly discovered genetic findings. This section is 

not intended to be a comprehensive overview of successful translation of genomics findings. 

Table 1 provides an overview of these key areas.

Past Successes of Genetic Findings

Familial Hypercholesterolemia and Low-Density Lipoprotein Cholesterol Lowering

The introduction of the first HMG CoA reductase inhibitor, or statin, into clinical practice in 

the United States in 1987 transformed the treatment of patients with elevated cholesterol 

levels and altered the ability of physicians to reduce the risk of future coronary artery disease 

events in patients with hyperlipidemia. Building on 2 decades of basic biochemistry that had 

established the critical role of the enzyme HMG CoA reductase as the rate-limiting step in 

cholesterol biosynthesis, Endo and colleagues26–30 published evidence describing the ability 

of 2 fungal metabolites to inhibit that enzyme in 1976. This work, in combination with the 

human genetic and cell biological studies of Nobel laureates Joseph Goldstein and Michael 

Brown21,22 that established a role for the low-density lipoprotein (LDL) receptor in 

regulating cellular HMG CoA reductase activity, provided both a means for lowering 

cellular cholesterol levels and a mechanistic understanding of the pathways by which statin 

inhibition of the reductase would then lead to improvements in serum cholesterol. Together, 

these data emboldened pharmaceutical companies to rapidly advance statin drugs into the 

clinic in the early to mid-1980s. The advent of safe and effective statins then provided 

clinical investigators the tool needed to establish that lowering serum cholesterol with the 

use of these drugs could substantially reduce coronary heart disease events and near-term 

mortality rates in hypercholesterolemic patients.23 It is important to realize that the effect 

size of any given identified genetic signal does not predict the ultimate clinical yield of 

intervening in that pathway. For example, in a GWAS of LDL cholesterol, the risk variant in 

HMG CoA reductase, the limiting enzyme of cholesterol synthesis and the drug target of 

statins, was associated with variability in LDL cholesterol of 2.3 mg/dL per copy of the 

minor allele.31 Although this effect is indeed small, intervening in LDL metabolism can 

reduce LDL levels by up to 60% and reduce the risk of CVD, underscoring how a small 

genetic effect size may not necessarily translate to limited therapeutic effectiveness.

Imatinib, a Tyrosine Kinase Inhibitor, for the Treatment of Chronic Myelogenous Leukemia

Genomic studies have advanced care for cancer patients. The revolution in target-based 

therapeutics is highlighted by successful bench-to-bedside translation across diverse 

specialties. Notably in oncology, cytotoxic chemotherapy is complemented by rational drug 

design exemplified by kinase inhibitors.32 Constitutively activated tyrosine kinases in 

disease promote tumor proliferation and survival but are effectively neutralized by small-

molecule tyrosine kinase inhibitors. Tyrosine kinase inhibitors differ in the spectrum of 

targeted kinases, pharmacokinetic properties, and toxicology yet share selectivity for 

aberrant tyrosine kinases and spare healthy cells.32 The prognosis of chronic myelogenous 

leukemia has been transformed by specific tyrosine kinase inhibitor regimens. The hallmark 

of chronic myelogenous leukemia is a Philadelphia chromosome, which is now understood 

to represent a translocation between chromosomes 9 and 21. This translocation generates a 
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BCR-ABL fusion oncogene, which translates into an active tyrosine kinase onco-protein.33 

Tyrosine kinase inhibitors improve survival up to 90% by exploiting the presence of the 

abnormally expressed oncoprotein. Tyrosine kinase inhibition fails in some patients or 

patients become resistant to therapy. This observation has led to the development of second- 

and third-generation tyrosine kinase inhibitors.34 Tyrosine kinase inhibitors are used in 

multiple cancers, notably melanoma and certain forms of lung and breast cancer.35–38

Success in Cystic Fibrosis

Structural insights into channelopathies have been translated into small-molecule approaches 

to reconstitute chloride-channel function in cystic fibrosis, an inherited disorder caused by 

mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator 

(CFTR).39 Ivacaftor, a small-molecule potentiator of CFTR, was approved for treatment of 

patients with cystic fibrosis who harbor a G551D mutation in the CFTR gene. This mutation 

impairs the ability of CFTR at the cell surface to open.24 High-throughput membrane 

potential assays were designed to identify CFTR potentiators and led to the development of 

ivacaftor. This drug improves chloride transport by potentiating the open probability of the 

G551D-CFTR mutated channel. Beyond allele-specific therapies, drugs in development 

target whole functional classes of CFTR mutations. For example, the most common CFTR 

mutation, resulting in ΔF508, opens appropriately but does not traffic normally to the cell 

surface; small molecules that increase surface expression are in development.

Taken together, established successes in these key areas highlight how discoveries from 

genetics and genomics have already been translated effectively into clinical therapeutics. 

The next section briefly outlines emerging areas of science.

Emerging Science

Emerging areas of scientific research include metabolomics, proteomics, nutrigenomics, 

microbiomics, epigenetics, cloning, induced pluripotent stem cell (iPSC) organization into 

“organoids,” genetic editing called CRISPR (clustered regularly interspaced short 

palindromic repeats), small RNAs, and splicing. This American Heart Association scientific 

statement does not focus specifically on examples from these emerging areas of science.

Another important area of emerging science revolves around race/ethnicity, genetic 

differences, and vascular phenotypes. An important example is end-stage renal disease in 

blacks, a group disproportionately affected.40 A haplotype on 22q12 was identified in 

association with end-stage renal disease in blacks but not whites. This region was associated 

with 2- to 4-fold increased risk of end-stage renal disease in blacks and explains the majority 

of increased end-stage renal disease risk between blacks and whites.41 Later identified as the 

APOL1 gene,42 the presence of this mutation is unrelated to the degree of blood pressure 

control in terms of kidney disease progression.43 These findings highlight how genetic 

discoveries can provide an underlying biological basis for disease disparities and, in 

particular, can provide a new pathway for translational efforts.
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Effectiveness of Translation to the Clinic

Four areas that have translated or are likely to translate into the clinic include CVD risk 

prediction, pharmacogenomics, proprotein convertase subtilisin/kexin type 9 (PCSK9) 

inhibitors, and clinical actionability of genetic mutations. A very important area that is not 

covered in this scientific statement is prenatal and reproductive counseling. An overview is 

presented in Table 2.

Cardiovascular Risk Prediction

Risk prediction is used for decisions about preventive strategies in clinical practice. Risk 

algorithms for coronary heart disease predict future CVD risk with modifiable CVD risk 

factors and are embedded in treatment guidelines.57 With the recent completion of large-

scale GWASs, genetic risk scores that incorporate major SNPs for CVD or its risk factors 

have been constructed and tested for use in the prediction of future CVD. Most studies 

report only a modest increased genetic risk for CVD outcomes associated with genetic 

variants, and the incremental contribution to risk discrimination with clinical risk scores 

alone is small. A consensus is needed for statistical metrics to properly assess the 

incremental value of the genetic risk score in clinical practice. One set of metrics proposed 

for the assessment of novel markers in general, but not specifically for genetic markers, 

includes discrimination and risk reclassification.58

A limited number of prospective studies of genetic risk score have evaluated the metrics for 

assessing incremental benefits of the genetic risk score for coronary heart disease/MI over 

and above currently measured risk predictors.9,59 Although these studies suggest that the 

genetic risk score is a predictor of increased risk in middle-aged to older populations, they 

do not provide evidence for implementing the genetic risk score in practice. An additional 

challenge in implementing current genetic risk algorithms is that they are focused only on 

common genetic variants and do not take into account other potential contributors, including 

lower-frequency genetic variants, gene-by-environment interactions, levels of gene 

expression, and epigenetic background. For genetic risk scores to be of clinical utility, not 

only will it be necessary to show clear contribution to risk discrimination, but it is essential 

for the information to be actionable; that is, evidence will be needed to determine how health 

care or lifestyle should be modulated to manage risk as assessed from the knowledge of 

genetic factors. Finally, whether genetic risk scores will ultimately be more useful in 

younger populations in which baseline CVD risk factor burden is lower remains to be 

determined.

Pharmacogenomics

Warfarin is a widely used oral anticoagulant that has a narrow therapeutic index and wide 

interpatient variability, which makes dosing difficult and adverse drug events common 

(Table 2). CYP2C9 and VKORC1, which encode the major drug-metabolizing enzyme and 

protein target of warfarin, respectively, have common polymorphisms that have been shown 

in numerous studies to affect warfarin dose requirements. These polymorphisms collectively 

explain up to 35% of warfarin dose variability.45 Dosing algorithms have been developed 

that incorporate clinical, demographic, and genetic factors to estimate stable warfarin dose in 
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individual patients.60,61 The dosing algorithms incorporating clinical, demographic, and 

genetic factors have been shown to be superior to clinical algorithms, the genetic dosing 

table in the warfarin product label, and standard 5-mg initial dosing.61,62

Three recently completed randomized, controlled, clinical trials provide further insights into 

the use of pharmacogenetics to guide warfarin dosing. The Clarification of Optimal 

Anticoagulation Through Genetics (COAG) trial was designed as an efficacy trial in which 

genotype and warfarin dose in the first month was blinded, the comparator arm was dosing 

warfarin with a clinical algorithm (which incorporated everything in the pharmacogenetic 

algorithm except genetics), and there was frequent international normalized ratio (INR) 

testing (7 INRs in first month). Overall, there was no significant improvement in the primary 

end point, time in therapeutic range (TITR), in the first month.46 Blacks had significantly 

worse TITR in the pharmacogenetic arm, although it is important to note that well-described 

African ancestry alleles that are associated with warfarin dose were not included in the 

dosing algorithm. The European Pharmacogenetics of Anticoagulant Therapy (EU-PACT) 

published 2 separate trials. The first was similar to COAG in that it tested a genotype-guided 

strategy (CYP2C9 and VKORC1) against clinical factors alone and compared TITR at 12 

weeks. The results demonstrated no difference (61.6% versus 60.2%); however, the 

genotype-guided group had slightly higher TITR at 4 weeks (52.8% versus 47.5%), although 

this was not the primary end point.47 In a separate EU-PACT trial that could be described as 

an effectiveness trial, the participants in the comparator arm received a standard dose (eg, 10 

mg on day 1, 5 mg daily on days 2 and 3), and INR testing after day 5 was at the discretion 

of the treating clinician in both arms.48 EU-PACT found that genotype-guided dosing led to 

a significantly greater TITR compared with the control arm (67.4% versus 60.3%; P<0.001), 

fewer INRs >4, and quicker time to reach therapeutic INR. An accompanying editorial63 

emphasized that these trials focused on only the early initiation of anticoagulation therapy, 

not the important long-term outcomes, including bleeding and thrombosis, but overall 

underscored the limited utility of a pharmacogenomic-guided approach to warfarin 

initiation.

Clopidogrel is an antiplatelet agent important in the treatment of patients with acute 

coronary syndromes or those undergoing percutaneous coronary intervention in whom 

definite clinical benefit has been established64 and consensus guidelines clearly recommend 

its use,65,66 Clopidogrel is a pro-drug that must be converted to the active metabolite67 

primarily by CYP2C19. Functional genetics variants in CYP2C19 lead to important 

variation in clopidogrel pharmacokinetics and resulting differences in the level of platelet 

inhibition achieved.68,69 Most important and congruent with the pharmacokinetic data, 

CYP2C19 functional variants have also been associated with differences in clinical 

outcomes in patients with acute coronary syndrome treated with clopidogrel, particularly 

those undergoing percutaneous coronary intervention.70–73 Although these associations have 

garnered some controversy,74 the line of evidence was compelling enough for the US Food 

and Drug Administration (FDA) to add pharmacogenetic information to clopidogrel labeling 

in 2010, and many experts consider the data consistent enough to possibly justify genetically 

guided clopidogrel therapy.75

Fox et al. Page 8

Circulation. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Despite this regulatory decision, genetic testing to guide clopidogrel therapy has not become 

widespread. There is residual uncertainty about the effects on cost and outcomes if 

pharmacogenetic testing were put into place. Clinical trials or formal experiences to define 

this are limited to date,76,77 and adequately sized trials of a pharmacogenetic strategy are 

needed to determine both the effectiveness and cost-effectiveness of a genetically guided 

dosing or treatment selection strategy. We are just beginning to see evidence in this regard, 

with 2 studies reported in late 2013. Xie and colleagues78 published a small study in 600 

patients receiving percutaneous coronary intervention from China who were randomized to 

genotype-guided treatment versus conventional therapy. The composite end point of major 

adverse coronary events at 180 days was 2.6% in the CYP2C19 genotype–guided arm and 

9.03% in the conventional arm (P=0.001), with lower rates of death, MI, and stent 

thrombosis but not stroke. This study is the earliest to provide suggestion for outcomes 

benefits based on CYP2C19 genotype guidance of clopidogrel therapy, but it is unclear at 

present how these studies will affect the clinical uptake of CYP2C19 genetic testing for 

clopidogrel. Newer agents in this class (ie, prasugrel and ticagrelor) are more potent and do 

not appear to have similar variability in platelet inhibition.79,80 They are much more 

expensive, however, so if one could distinguish who needed the more potent agent and in 

whom clopidogrel would be satisfactory, substantial cost savings could be achieved. 

Unfortunately, only ≈5% to 12% of the overall variability in platelet response to clopidogrel 

can be explained by readily available clinical and laboratory characteristics, and only ≈5% 

to 12% of that overall variability is attributable to CYP2C19 genotype.69,81 Although 

literature on the impact of genotype-guided approaches on clinical outcomes is beginning to 

emerge, it is important to remember that the very-high-risk genotypes (eg, CYP2C19 *2*2 

and CYP2C9 *3*3) occur infrequently enough that it might be difficult in trials to show the 

benefit of a genotype-guided approach, yet that does not eliminate the potential individual 

benefit in those who carry these risk genotypes. How to strike the balance between 

population and individual benefit remains a challenge in genetics and pharmacogenetics.

Finally, although genetic tests for CYP variation are commercially available and often 

reimbursable, most cardiologists have not ordered nor acted on such testing and thus may be 

uncomfortable initiating this testing independently in the absence of additional education or 

systematic decision-support tools. Thus, although genetic testing appears reasonable to 

determine whether clopidogrel is an adequate option for some patients, more data are needed 

to conclusively demonstrate cost and clinical outcomes of a testing regimen, as well as 

educational efforts and institution-level implementation programs. When such data are 

available, logistics of testing will need to be improved and educational efforts and 

institution-level implementation programs will be needed to foster integration into clinical 

practice.

Novel Drug Targets in Development: PCSK9 Inhibitors

One of the more exciting areas of drug development that has emerged from recent genomics 

has been in cholesterol lowering. The new work focuses on the PCSK9 protein (Table 2). 

This protein was initially linked to elevated serum cholesterol in a study performed by 

French investigators looking for genetic explanations of hypercholesterolemia not caused by 

LDL receptor gene defects.50 Subsequently, investigators at the University of Texas 
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Southwestern Medical Center identified relatively common nonsense variants in the gene 

encoding the same protein in patients with low levels of LDL cholesterol.51 Subsequent cell 

biological investigations provided evidence that PCSK9 degrades the LDL receptor. Multiple 

pharmaceutical companies have now created PCSK9 antagonists that lower LDL levels.49 

PCSK9 antagonists can provide an additional ≈50% lowering of LDL cholesterol to 

maximal-dose statin therapy.52 PCSK9 antagonists also work as monotherapies and thus can 

be used in patients who are statin intolerant.53,54 The current PCSK9 therapies that are most 

advanced in clinical trials are injectable proteins that may need to be given every other week 

or monthly, which could help with the drug adherence problems that beset many oral 

preventive medicines. Whether PCSK9 therapies reduce the risk of CVD along with LDL 

levels remains unknown at this time.

Screening/Clinical Actionability

Pioneering work in the long-QT syndrome82 and in hypertrophic cardiomyopathy83 defined 

causal genes for these syndromes and uncovered novel biology that has had far-reaching 

implications.84 In the last decade, the perceived utility of genetic diagnosis has paralleled the 

availability of increasingly efficient genotyping technologies. The initial spike in enthusiasm 

has leveled off as scientists, cardiologists, geneticists, and panels work through the best 

approaches to deliver these programs in formats that improve patient care and protect 

patients.85

This balance is already being disrupted by several emerging trends. Comprehensive whole-

genome sequencing offers the potential to define genetic modifiers of the final phenotype. 

Attention to racial differences in genome sequences in patients will be important because 

findings have provided evidence that specific polymorphisms, including vitamin D–binding 

protein gene polymorphisms, are significantly different between blacks and whites.86 

Similarly, as the potential for genotype-driven therapeutics emerges, more rigorous 

approaches to determine whether a specific genetic variant is pathogenic or an innocent 

bystander are needed.87 Analysis of whole-genome sequencing brings up the scenario of 

identifying variants of unknown significance. A genetic evaluation process in the clinic must 

be prepared to address variants of unknown significance.88 Patient counseling both during 

the pretest informed consent and after the genetic testing is important to manage 

expectations and to help put variants of unknown significance into context for the patient.88 

The translational genomics community will have to begin to establish innovative ways to 

assess the relationship between genotype and phenotype. A focus on novel phenotypes, 

molecular pathways, and molecular disease modules and networks, rather than on single 

genes, will likely be necessary to exploit genetics for diagnostic use or therapeutic 

discovery.89,90

Steps to Move From Genetic Discovery to Translation: Future Directions

Figure 2 provides an overview of the process involved in translating a genetic discovery, 

including the time duration and estimated costs.91 Table 3 provides an overview of future 

directions for translation, discussed in more detail below.
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Funding Programs to Incentivize and Promote Translation

To ensure translational efforts and their ultimate clinical application, the National Institutes 

of Health (NIH) has established and continues to develop programs. The Clinical and 

Translational Science Award program, the first of these efforts, sought to establish 

facilitated, integrated mechanisms for early clinical proof-of-concept testing that would 

accelerate discovery relevant to human disease. Although the Clinical and Translational 

Science Award program is still relatively young in its evolution, the success of the program 

remains to be seen. It is encouraging to recognize that federal funding has been applied to 

this important initiative with ongoing plans for its continuance.

More recently, the Centers for Accelerated Innovations program was developed to accelerate 

translation through discovery. This program is designed to support the development of 

essential infrastructure, enabling technologies, and relevant educational and advisory 

programs at centers to help bridge discovery and commercialization of translatable 

technologies. This initiative requires coinvestment by the awardee institutions, partnering 

institutions, industry, and investment community and does so with the goal of selecting 

technologies with the greatest likelihood of developmental success. The Centers for 

Accelerated Innovations initiative requires processes for facilitating go-no-go decisions at 

different stages of the development process to minimize late-stage failure and to optimize 

developmental efficacy.

A central feature of these programs is the need to provide an environment in which 

translation, development, and commercialization are appreciated and valued. Doing so 

requires re-educating the typical academic community while working closely with industry 

and the investment community to facilitate this educational process. Removing barriers to 

more effective and productive partnerships between industry and academia will likely 

require reconsideration of how intellectual property is assigned, improvements in the 

rapidity with which contracts can be successfully negotiated, and reassessment of the role of 

local and national institutional review boards in reviewing study protocols, particularly those 

involving multicenter trials. The academic community will also need to carefully consider 

the structure and content of training programs in translational research that can prepare 

young investigators for careers in either academia or industry.

The NIH has also recently established the National Center for Advancing Translational 

Sciences (NCATS). The goals of NCATS include overseeing the Clinical and Translational 

Science Award program, providing required resources for the development of new therapies, 

promoting regulatory science, and providing molecular libraries for therapeutic screens. 

Establishing this umbrella organization within the NIH, as well as support for other 

complementary resources essential for translation (eg, the Electronic Medical Record and 

Genomics [eMERGE] network, a consortium of biorepositories linked to electronic medical 

records data for conducting genomic studies), sends a strong message to the community that 

the federal government is responding to the need for facilitating translation effectively.
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American Heart Association’s Science & Technology Accelerator Program

The American Heart Association launched the Science & Technology Accelerator program 

to speed up the processes for delivering lifesaving drugs, devices, and other innovations to 

patients and their families. The goal of the Science & Technology Accelerator program is to 

identify the most revolutionary, transformational innovations and to accelerate their journey 

from bench to bedside.

The Science & Technology Accelerator has assembled a multidisciplinary team of experts in 

CVD, stroke, medical device and drug development, regulatory affairs strategy, technology 

transfer, venture capital, investment strategy, and the law, including intellectual property law, 

to review proposed research ideas. The Science & Technology Accelerator is supported 

exclusively by earmarked donations and receives no funds from the American Heart 

Association general operating budget. The program funds clinical research through loans 

and investments, intended to return the original investment. The revenue generated provides 

repayment of the original investment. Additional revenue generated is invested back into the 

research accelerator program.

The first Science & Technology Accelerator investment is in CytoVas, an in vitro diagnostics 

company. The Vascular Health Panel of CytoVas has been shown to identify high-risk 

individuals among those who have normal lipid values and no other cardiovascular risk 

factors or among those at intermediate disease risk. The Vascular Health Panel has been 

shown to identify asymptomatic patients with diabetes mellitus who are at high risk for 

cardiovascular events.99 What remains to be completed are the steps to link these 

observations of the associations with vascular risk to specific actions that can be taken on the 

basis of the Vascular Health Panel to mitigate that risk. At that point, successful translation 

from the bench to utility in clinical practice will have occurred.

Improved Phenotyping to Enhance Translational Possibilities

Improved phenotyping will be particularly critical in the setting of large observational or 

naturalistic data sets such as those based on electronic medical records and claims data, 

which are expected to be increasingly used in the future. For example, medication exposure 

is relevant to pharmacogenomic interactions, but substantial misclassification likely occurs 

with concomitant loss of power when drug exposure is classified dichotomously at a single 

time point. Modern medical informatics can provide time-updated and quantified drug 

exposure metrics via pharmacy claims for more granular data,100 which should improve the 

power to detect differences in the association of drug exposure with outcomes and genetic 

factors, as well as infrequent adverse events ascertained only after drug approval and 

widespread adoption (pharmacovigilance). Taking full advantage of the great quantity of 

electronic medical record data across the spectrum of CVD will require improvements in 

this type of phenotypic characterization across all domains of data.101 Some have called for 

the establishment of an electronic “phenome,” allowing additional associations to be tested 

and discovered.102 Clinical phenotyping can be shaped by existing data sets, including the 

NIH-sponsored database of genotypes and phenotypes (dbGaP), phenome-wide association 

studies,103 the NIH-sponsored eMERGE, and existing clinical trial data sets repurposed with 

drug trials used as clinical systems perturbations.104 We must realize, however, that despite 
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how vast these data sets are, they are limited by the bias implicit in conventional disease 

phenotyping (eg, inclusivity, parsimony, end-stage phenotype based) and by the limitations 

of detailed, quantitative (intermediate) phenotyping information essential for precise disease 

characterization and personalized medicine.

At the molecular and cellular levels, the NIH supports a library of integrated network-based 

cellular signatures (LINCS), there are broad efforts at developing a comprehensive 

molecular interactome, and one can functionally phenotype patient-derived cells (including 

iPSCs and their derivatives).105 These physiological and clinical phenotypes can be 

combined with measurable cellular, biochemical, or molecular phenotypes amenable to 

routine analysis to develop a comprehensive assessment of global (patho) phenotype and 

ultimately its response to a therapeutic intervention.

Cardiovascular biomarkers have provided important new dimensions in terms of 

understanding pathophysiological processes and disease subgroups106 but also have the 

potential to advance genomic discovery. Although unbiased genomic approaches alone have 

been successful,2 there are limitations when applied to diseases of often vastly 

heterogeneous (sub) phenotypes (eg, hypertension, heart failure).107 Layering on relevant 

biomarker modeling (eg, B-type natriuretic peptide levels) can generate important new 

discoveries2 that not only improve our understanding of the disease process itself but may 

even suggest specific novel therapies. Opportunities for this type of approach abound, with a 

constant stream of new biomarkers and emerging technologies such as metabolomic 

profiling.108,109 Combination approaches can then also be taken. Imaging data sets and 

orthogonal, unbiased physiological information offer additional elements that contribute to 

the detailed phenotyping process.

Systems Genetics and Network Medicine

Once individual genetic discoveries have been made, the field of systems genetics allows us 

to understand the architecture of complex genetic traits, including common complex 

diseases and disease traits such as atherosclerosis and heart failure. Systems genetics is a 

form of genetics in which one examines the effects of genetic variation not only on the 

complex traits of interest but also on intermediate molecular phenotypes such as transcript or 

protein or metabolite levels. The goal is to create a genotype-to-phenotype map across 

multiple biological scales in the context of the naturally occurring variations that contribute 

to the trait.110–114

A major application of systems genetics in the area of CVD will be to follow up GWASs. 

Such studies have identified dozens of loci contributing to CVD traits, including 

atherosclerosis, blood pressure, lipoprotein levels, obesity, diabetes mellitus, and heart 

failure.92,93 However, this information will have relatively little impact until the loci are 

translated into the gene networks and pathways that drive the (patho)phenotype. 

Subsequently, it will be important to know how the alleles interact with each other and with 

environmental factors. This can be done on a gene-by-gene basis, as was elegantly done for 

a locus contributing to lipid levels and atherosclerosis.115 Systems genetics provides an 

alternative, or complementary, approach for this goal, using global analyses of biological 

molecules in populations that vary for the clinical traits. Recent technological advances have 
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made it possible to quantitatively survey hundreds or thousands of biological molecules, 

from DNA sequence variation to epigenetic marks to levels of transcripts, proteins, and 

metabolites. For example, metabolite levels can be surveyed by mass spectrometry in the 

plasma of individuals in a population varying for a CVD trait. The relationship of the 

metabolite levels to the disease can then be investigated through genetic mapping, 

correlation, and mathematical modeling. If the levels of a metabolite map to one of the 

GWAS loci, it suggests the possibility that the metabolite of interest is involved in the 

pathway leading from genetic variation to disease. Similarly, if a metabolite correlates with 

the disease trait, it raises the possibility of a causal relationship. The same logic applies to 

other intermediate phenotypes such as transcript levels and protein levels, although these are 

more difficult to examine in human populations because of the inaccessibility of relevant 

tissues.116–118

Systems genetics data can also be used to model biological networks and to test for 

enrichment of known biological pathways in intermediate phenotypes differing between 

cases and controls.114,119,120 To date, the pathways used to filter the genetic data are derived 

largely from the conventional (reductionist) experimental curated literature, which freely 

admits to a distinct bias. Future success in the identification of disease determinants will 

require the application of the holistic, unbiased molecular interactome, representing all 

potential (ascertainable) molecular interactions in a cell, organ, or tissue, as an essential 

filter through which to derive disease modules from genetic variants. This process, which 

serves as the conceptual basis for the new field of network medicine, has been applied to 

pulmonary arterial hypertension recently by Parikh and colleagues,121 who were able to 

identify novel associations comprising a novel molecular pathway that is essential for the 

pathophenotype. In our opinion, simple genetic associations (GWAS based), covariance 

analyses, and contemporary system genetics will yield to these more integrative network 

approaches as an effective strategy for linking genotype to phenotype, accounting readily 

(functionally and statistically) for the true functional consequences of variants with small 

effect sizes in the process.

Scientific Tools to Facilitate Cell-Based Models

After genetic discoveries have been made and systems genetics have been used to place 

novel findings in their relevant biological context, several techniques are necessary to begin 

to understand the mechanism of the association between the gene or specific altered variant 

and disease. This section outlines the various tools that can be used to understand gene 

function in this context; these tools are highlighted in Table 4.

Induced Pluripotent Stem Cells

iPSCs from somatic cells were a major discovery in that they enable pluripotent adult stem 

cells to be isolated from adult somatic cells and, with the introduction of “reprogramming 

factors,” differentiate into multiple lineages.122 iPSC studies are potentially limited by 

heterogeneity in the genetic backgrounds of the individuals recruited for iPSC generation, 

along with a variety of other potential confounders (differences between patients and control 

individuals with respect to sex, ethnicity, epigenetic status, methodology used to generate the 

iPSCs, in vitro artifact, etc). An alternative strategy is to start with a single pluripotent stem 
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cell line, whether a wild-type cell line or an iPSC line obtained from a patient with a 

particular disease variant, and to alter the cell line genetically: either introduce the variant 

into the wild-type cell line or “cure” the variant in the patient-derived iPSC line. In this 

study design, with the use of isogenic cell lines that differ only with respect to the disease 

variant, virtually all of the potential confounders mentioned above would be eliminated. 

Techniques used for genome editing are listed in Table 4.

Several recent studies have highlighted the ability to use genome editing to create human 

cellular models of disease.125,135,136 Such human cellular models can be generated de novo 

in as little as 1 month, offering a significant time advantage over traditional animal models 

of disease and potentially lending themselves to high-throughput interrogation of DNA 

variants.

Genome-Edited Somatic Cells

The same genome-editing technologies that are being used in human iPSCs can be applied 

in cultured somatic cell lines. Although traditional cultured cell lines carry a number of 

disadvantages, the use of these cell lines can serve a purpose in acting as an initial rapid test 

of the hypothesis using genome editing.

Somatic Manipulation of Genes in Rodents

Rodent models of disease, whether mice or rats, remain the mainstay of biological 

investigation of gene function. Although rodent models are costly and time-consuming and 

have the potential disadvantage of having physiology that differs significantly from that of 

humans, new advances in technology have made it possible to use rodents as a robust and 

reasonably fast system with which to functionally interrogate novel disease-associated 

genes.

Knockout Mice

Genetically modified mice have represented the gold standard of disease models since the 

1990s. Traditionally, they have been generated by homologous recombination in mouse 

embryonic stem cells, insertion of those cells into mouse blastocysts to generate chimeric 

mice, and breeding of the chimeric mice to yield heterozygous and then homozygous 

knockout mice. A similar approach is used to make “knock-in” mice in which specific 

alterations are inserted into the mouse genome. The primary disadvantage of knockout mice 

is that they routinely take more than a year and $100 000 to generate de novo. Accordingly, 

the International Knockout Mouse Consortium (http://www.knockoutmouse.org/), 

comprising several organizations in Europe and North America, has been working to create a 

complete library of gene knockouts in mouse embryonic stem cells that would be available 

to the scientific community.127 This consortium has established many types of target 

modification, including time- and tissue-specific directed deletion of genes.

Knockout Rats

Unlike mice, rats have not seen widespread use as models of genetic diseases because rat 

embryonic stem cells were only recently isolated and successfully used to generate a 

genetically altered rat.137 However, the genome-editing technologies that have made feasible 
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the manipulation of human cells are now being used to create knockout rats. The genetically 

modified rat strains are being made available to the scientific community through the Knock 

Out Rat Consortium.

Other Animal Models

Although rodent and larger animal models have played a central role in defining our 

understanding of the biology of the cardiovascular system, the sheer scale of genomic 

technologies is rapidly overwhelming our ability to model all of the novel insights that we 

have gleaned.138 For example, community efforts to generate null alleles in every gene in the 

mouse have not been completed as a result of limited resources.139 In addition, it has 

become apparent that even if embryonic stem cell lines can be generated for each gene, the 

ability of individual laboratories with phenotypic expertise to characterize at the genomic 

scale is rate limiting.140 More tractable species will be required to prioritize experiments for 

empirical testing in more representative models. Among the relevant species are 

Caenorhabditis elegans, Drosophila, and zebrafish.25,141

Many genomic features can readily be modeled in C elegans, and efficient gene transfer and 

RNAi technologies enable genome-wide analyses on a time scale that approaches that of cell 

culture.129 This is all feasible in an organism in which the origin of each and every cell has 

been specifically mapped.130 The nematode (C elegans) has been a powerful tool for the 

exploration of molecular pathways and will continue to be as the tools for genetic 

manipulation expand.129 The fruit fly has many of the advantages of the worm but a more 

advanced circulatory system with a segmented dorsal vessel that represents the heart and the 

aorta.131 Despite an open circulation, there is high conservation of the genetic regulatory 

circuits between fly and humans.

Every organism offers a balance between representative physiology and pharmacology and 

tractability.132 Transgenesis is highly efficient; gene knockdown is trivial; and genome-wide 

null allelic series are under construction. Gene editing is increasingly feasible, and reports of 

homologous recombination, however inefficient, raise the possibility of truly comprehensive 

modeling at scale.133 Screening is feasible in the 96-well plate format in an automated or a 

semiautomated configuration.134 At present, phenotyping technologies are the rate-limiting 

step.

Moving to Clinical Application: How Gene Targets Can Ultimately Be 

Translated Into Therapeutics

This section details how gene targets move through the process to drug development. The 

current steps are outlined, as well as insights into methods of identifying drug targets that 

might ultimately be more efficacious than traditional methods. An overview can be found in 

Table 3.

Rational Polypharmacy and Drug Target Selection

The decreasing productivity of the pharmaceutical industry, despite an increasingly refined 

approach to identify and structurally characterize potential drug targets, can be interpreted to 

Fox et al. Page 16

Circulation. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



suggest that the drug discovery process is inadequate. Drugs do not operate in a vacuum and 

alter 1 identified target in isolation. Targets exist within networks of interconnected 

molecules. Small-molecule therapeutics are likely to interact with more than single targets, a 

property that likely accounts for unexpected (off-target) effects. Analyzing the consequences 

of drug exposure in a global phenotype(s) seems a more prudent course of drug development 

than analyzing target-based screening. Recent data show that this is correct. Phenotype 

screening is more successful than target-based screening in achieving FDA-approved 

therapeutic entities, even in this current era of exquisitely detailed drug target structural and 

functional information.94

The underlying basis for the success of phenotype screening is that it provides the 

integrative effect of a drug on the entire system (cell, organ, organism) in which it operates. 

This system is a network of interacting molecules, some of which serve as drug targets. 

Understanding the consequences of a drug on the system requires an integrated approach 

that first recognizes or constructs the topology of the network and then analyzes the 

dynamics of the network; either property of the network can be affected by the perturbation 

of the drug. This paradigm defines the field of systems pharmacology, which offers a new 

approach for drug development. For this approach to be most effective, the phenotypes of 

the preclinical models need to reflect human disease accurately. An excellent overview of 

the current limitations of the preclinical models in CVD is provided elsewhere.142

In addition to understanding the effect of a drug on a meaningful phenotype and ascertaining 

the effect of a drug on a potential unwanted action, systems pharmacology provides the basis 

for “rational polypharmacy,” or the development of drugs used in combination to affect a 

pathway or a phenotype. Rational polypharmacy offers the opportunity to minimize the 

development of drug resistance (in antimicrobials or antineoplastic therapies), to minimize 

side effects of any single agent by optimizing synergies, and to rewire a network of 

molecules that drive a pathophenotype, restoring its function homeostatically toward healthy 

activity.

Preclinical Toxicology

To test a new drug in humans in either healthy volunteers or patients with the medical 

condition that is targeted for treatment, the FDA requires that the drug must first undergo 

toxicological testing in animals. Typically, testing must be done in 2 different species, 

commonly a rodent and a nonrodent, and the duration of the toxicology study must 

encompass at a minimum the length of time that the initial human study will be conducted. 

The goal is to identify a dose that produces no observable adverse event in the animals so 

that a significantly lower dose can be used as the starting point for testing in humans. These 

dose calculations are adjusted for body weight and potential metabolic differences between 

species to yield a human-equivalent dose, and then a decrease of 10-fold typically is used to 

provide an additional safety margin for the human trial. Another goal of the toxicology work 

is to identify the target organs of toxicity so that safety monitoring can be engineered into 

the clinical development plan. The cost of toxicology studies ranges from $250 000 up to 

$1.5 million, depending on the number of doses tested, the duration of the treatment, and the 

choice of species. The species choice is affected by many variables. Small-molecule 
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therapeutics typically have a broad choice, whereas protein therapeutics such as antibodies 

must find a primate species with a target protein that is also bound by the therapeutic 

protein. In some cases, these necessitate the creation of a toxicology test protein that 

specifically recognizes the animal drug target but will not be the therapeutic molecule that is 

tested in humans. Regardless of what is required, finding the financial resources needed to 

conduct the toxicology studies required by the FDA is frequently a major barrier to drug 

development in the academic arena. Recognizing this limitation, the NIH has established a 

number of programs to overcome this obstacle.

Replacing an older program called Rapid Access to Intervention Development, the Bridging 

Interventional Development Gaps program was launched in October 2011. The program is 

run under the auspices of NCATS, and investigators are provided access to NIH 

subcontractors who are qualified to conduct Investigational New Drug, enabling pre-clinical 

studies. (The process for investigators is competitive.) The NIH pays for these services on 

behalf of the investigator. In addition to toxicology services, these contractors can support 

the synthesis and formulation of new drugs and pharmacokinetic studies in appropriate 

animal species. Contract costs are supported by the NIH Common Fund and by 

collaborating NIH institutes and centers. More details about the Bridging Interventional 

Development Gaps program can be found at the NCATS Web site (http://www.ncats.nih.gov/

research/rare-diseases/bridgs/bridgs.html). Individual NIH institutes may also have programs 

similar to Bridging Interventional Development Gaps. For National Heart, Lung, and Blood 

Institute–funded investigators, a program called The Science Moving Towards Research 

Translation and Therapy is providing access and funding to facilities that can assist 

investigators with small-molecule and biologics synthesis, pharmacology, toxicology, and 

clinical trial coordination (www.nhlbi.nih.gov/news/spotlight/fact-sheet/smartt-speeding-the-

translation-of-discoveries-to-the-clinic.html).

Rescuing and Repurposing Drugs

The NIH has created an initiative to make available drugs previously generated by the 

biopharmaceutical industry that academic investigators can now use to test their utility 

against new targets or in new disease indications. Sponsored by NCATS, the pilot program is 

titled Discovering New Therapeutic Uses for Existing Molecules (http://www.ncats.nih.gov/

research/reengineering/rescue-repurpose/therapeutic-uses/therapeutic-uses.html).

Some of the world’s largest pharmaceutical firms have collectively provided dozens of 

molecules that have already been tested in humans for ≥1 indications. Because these 

compounds have previously entered the clinic, they should be deployable in novel human 

clinical trials with very little additional preclinical work needed to secure FDA approval for 

those new studies. Because a substantial investment in toxicology, pharmacokinetics, and 

pharmacology has already been made in these compounds, investigators who successfully 

apply for grant funding for the use of these compounds are able to leverage this multimillion 

dollar investment in a new disease area. The pilot program was initiated in fiscal year 2013 

with funding of $20 million to support the new studies, provided in the form of 2- to 3-year 

grants using a staged, cooperative agreement structure. The program has some important 

restrictions such as requiring that proposals must use the drugs in their current formulation 
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state (eg, if the drug was created as an oral medicine, an application calling for 

reformulation to enable intravenous delivery would be considered a nonresponsive 

proposal). Repurposing has many attractions, but investigators should also be aware of some 

potential limitations of the use of drugs that have never attained marketing approval by the 

FDA. These drugs will still require substantial development in phase 2 and 3 studies to 

secure approval for broad use. A list of the currently available compounds, their molecular 

targets, and the indications for which they were originally developed is provided by NCATS 

(http://www.ncats.nih.gov/research/reengineering/rescue-repurpose/therapeutic-uses/

directory.html).

Clinical Trials and Postmarketing Research

Once drug targets are identified and medicines are developed, they are classically approved 

by the FDA through a process involving clinical studies that consist of 4 phases (Table 5 

provides a description of the 4 phases). For some disease conditions such as diabetes 

mellitus, the FDA has recently issued guidelines that require that drugs that lower blood 

glucose must also establish that they have no cardiovascular safety signals before attaining 

approval. This can be accomplished in multiple ways, but one route is for the sponsor to 

show that there is no large adverse impact on cardiovascular health in the initial approval 

package and then commit to performing a substantial postapproval study that confirms the 

cardiovascular safety of the drug. These studies require a cardiovascular team that can 

adjudicate morbidity and mortality events in large-scale, multicenter clinical trials.

These studies can focus on new uses for a drug that may have little commercial appeal to the 

original drug manufacturer but fulfill an important unmet medical need. The use of an 

approved drug for a new indication is often best accomplished by filing a new 

Investigational New Drug with the FDA. Typically, the investigator is able to cite all the 

regulatory filings of the original manufacturer in this Investigational New Drug filing; 

however, this requires cooperation from the original manufacturer. An investigator who 

identifies a new use for an already approved drug may file a method-of-use patent that 

claims this new utility. This patent would preclude the original manufacturer from marketing 

the drug for the new utility without first obtaining a license from the academic investigator’s 

institution. The academic investigator does not have patent rights on the drug itself and 

cannot sell the drug for the new use without violating the original manufacturer’s patent 

until that patent expires. Leveraging a working relationship between academics and drug 

manufacturers enables the broadest possible use of drugs for which new indications have 

been discovered.

Systems Pharmacology and Clinical Trial Design

New techniques may help speed up the process of drug target design and testing. The 

principles of systems pharmacology can be applied across the continuum of drug discovery, 

drug development, and drug use, including next-generation clinical trial design.96–98 To test 

increasingly personalized therapies derived from robust analysis of the system within which 

a drug or drugs are believed to operate, unique trial design strategies will be necessary.143 

Because of rapid advances in the ascertainment of the systems responses and their genomic, 

proteomic, or metabolic determinants,144,145 as well as the need to optimize drug dosing 
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with the use of a rational polypharmaceutical strategy, clinical trials must undergo targeted 

modification during their course. These changes in trial design imply that the key elements 

of the trial (population size, dosing, combinations of agents, timing of agent administration) 

will be modified, often post hoc in response to the acquisition of new knowledge. 

Adaptations to clinical trial design can occur for 1 of 3 reasons: new information from a 

source external to the trial, a prospectively planned interim analysis of the trial data, and 

unplanned findings that arise from an interim analysis. The first 2 reasons are referred to as 

reactive revisions; the third is referred to as an adaptive design. Adaptive designs have been 

used in clinical oncology for many years and have met with some success. The parameters 

used to devise these trial adaptations progressively limit the sample size in each treatment 

cell; however, with continued refinement of the trial design informed by new information, 

there is also likely to be an increase in the expected effect size. This latter improvement 

would be expected to offset the loss of, if not enhance, the statistical power of the evolving 

study. The trial design principles governing adaptive changes are becoming increasingly 

refined. Clinical trialists and the community of practitioners involved in systems-based, 

rational polypharmacy will need to work closely with regulatory authorities (in this country, 

the FDA)145 to ensure that these in-trial changes in trial structure meet the standards needed 

to adequately assess the efficacy and safety of a therapeutic strategy.

Summary

Slow Progress and Unmet Expectations for Direct Clinical Application

A promise of the emerging discoveries in the area of genetics and genomics is that analysis 

of each person’s genome will lead to personalized genomic and preventive medicine. As we 

have detailed in this scientific statement, even the most strongly implicated DNA sequence 

variation with human disease often accounts for merely a small component of risk when 

examined in isolation (as is typically done in GWASs), limiting the use of genetic risk 

prediction as a meaningful clinical implication of this work. More important, however, the 

identification of novel genetic signals will elucidate new pathways and mechanisms of 

disease, thus providing novel drug targets.

We have outlined and provided insight into the various steps involved once a genetic 

discovery has been made to its ultimate clinical applicability, with most of our attention 

focused on therapeutics development. As evidenced in Figure 2, the duration of this process 

can take on average 15 to 20 years, with a cost of nearly $1.7 billion per successful new 

therapeutic.91 It is our hope that in the next decade, the results of the emerging discoveries in 

the area of genetics and genomics will permit better drug design and genetically targeted 

therapies that will serve to speed up this process. Ultimately, the path from gene discovery to 

implementation in the clinic remains a multistep process that requires years of research and 

testing.

To make this process as efficient as possible, we need to accelerate translation and 

implementation. It is also critical that the public expectations and perception of the process 

of translation be based on realistic goals and timelines for the translational process to occur. 

In addition, the costs of moving new genetic discoveries along the translational pipeline are 

high, highlighting the importance of adequate funding at each level of development.
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Conclusions

The field of genetics and genomics has exploded in the last few years, with thousands of 

newly discovered genetic loci in association with human health and disease. These loci have 

the potential to shed new light on the mechanisms and pathways of human disease and offer 

several new avenues for clinical discoveries. However, this process takes time, underscoring 

the need for a recalibration of the expectations of both the scientific and lay community as 

we await the realization of clinical utility from the explosion of new findings in the area of 

genetics and genomics.
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Figure 1. 
Timeline of the emergence of key tools to enable rapid discovery in the area of genetics and 

genomics. ENCODE indicates Encyclopedia of DNA Elements; and NHGRI, National 

Human Genome Research Institute.

Fox et al. Page 36

Circulation. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Steps, timeline, and approximate costs for the key steps from single-nucleotide 

polymorphism (SNP) identification to achieving clinical utility. Timeline and costs based on 

Paul et al.91 The figure should be read from left to right, starting at the top. Please note that 

the timeline reflects the current pace of drug development. We acknowledge the National 

Human Genome Research Institute Digital Media Database for the elements in this 

schematic (http://www.genome.gov/dmd/). FDA indicates US Food and Drug 

Administration.
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Table 1

Examples of Genomic Discoveries That Have Translated Into Currently Used Clinical Therapies

Therapy What Does It Do? Studies

Statin Reduces LDL cholesterol and CAD risk Pioneering studies identified a defect in the LDL receptor, preventing the mutant 
LDL receptor from normally clearing LDL cholesterol from the blood.21,22

Mechanistic work identified HMG CoA reductase, which led to the development 
of the first HMG CoA reductase inhibitor, or statin, in clinical practice in 1987, 
which substantially reduced the rate of coronary heart disease events.23

Imatinib Tyrosine kinase inhibitor used to treat 
patients with chronic myeloid leukemia

Imatinib was the first tyrosine kinase inhibitor to receive approval from the FDA.
Select patients fail or become intolerant to therapy, leading to second-generation 
therapeutics.

Ivacaftor Small-molecule potentiator of CFTR. 
Ivacaftor was approved for the treatment of 
patients with cystic fibrosis who harbor a 
G551D mutation in the CFTR gene, which 
impairs the ability of CFTR at the cell 
surface to open.24

High-throughput membrane potential assays were designed to identify CFTR 
potentiators and led to the development of ivacaftor. This drug improves chloride 
transport by potentiating the open probability of the G551D-CFTR mutated 
channel.

CAD indicates coronary artery disease; CFTR, cystic fibrosis transmembrane conductance regulator; FDA, US Food and Drug Administration; and 
LDL, low-density lipoprotein.
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Table 2

Emerging Clinical Tools From Recent Discoveries in the Area of Genetics and Genomics

Emerging Science Role Pioneering Studies

CVD risk prediction Genetic risk prediction uses 
genetic information to 
predict who is at risk for an 
MI; it has not demonstrated 
improvement in risk 
discrimination.

A genetic risk score using SNPs associated with clinically apparent coronary 
heart disease or MI predicts the risk of future CVD events independently of 
other risk factors44 but provides only small to modest evidence for 
reclassification and no improvement in discrimination for future CVD events.

Pharmacogenomics Uses genetic information to 
guide dosing or medication 
selection, most prominently 
warfarin and clopidogrel

CYP2C9 and VKORC1, which encode the major drug-metabolizing enzyme 
and protein target of warfarin, respectively, have common polymorphisms that 
have been shown in numerous studies to affect warfarin dose requirements, 
collectively explaining up to 35% of warfarin dose variability.45 Despite this, 
large, randomized, controlled trials have been mostly disappointing,46–48 and 
genetic-guided pharmacological warfarin and clopidogrel dosing has not 
found its way into clinical practice.

PCSK9 inhibitors PCSK9 antagonists lower 
LDL levels by inhibiting 
LDL receptor degradation, 
allowing more LDL to be 
cleared from the blood.49

PCSK9 was initially linked to elevated serum cholesterol in a study performed 
by French investigators looking for genetic explanations of 
hypercholesterolemia not attributable to LDL receptor gene defects.50 

Investigators at the University of Texas Southwestern Medical Center 
identified single-allele mutations in the gene encoding the same protein in 
patients with low levels of LDL cholesterol.51 Subsequent cell biological 
investigations have provided evidence that PCSK9 works by regulating the 
degradation of the LDL receptor. PCSK9 antagonists can additionally lower 
LDL cholesterol by ≈50% in patients on maximal-dose statin therapy.52 They 
also work as monotherapies and can be used in patients who are statin 
intolerant.53,54

Screening/clinical actionability Identifying individuals at 
risk through the use of 
genetic testing

The emergence of next-generation sequencing as a clinical tool has made it 
apparent that the interpretation of genomic data will face several hurdles on 
the road to meaningful actionability.17,55 The predictive utility of a single 
genetic variant is largely a function of the strength of the correlation with a 
specific phenotype, so genotype often adds little to the clinical situation 
because the clinician can rely on it only in the setting of high penetrance.

CVD indicates cardiovascular disease; LDL, low-density lipoprotein; MI, myocardial infarction; PCSK9, proprotein convertase subtilisin/kexin 
type 9; and SNP, single-nucleotide polymorphism.
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Table 3

Steps to Facilitate Genetic Discovery to Translation

Tools Specific Programs/Tools What It Does

Scientific programs Clinical and Translational Science Award 
program

Integrated mechanisms for early clinical proof-of-concept testing 
to accelerate discovery relevant to human disease

Centers for Accelerated Innovations Supports the development of an essential infrastructure, enabling 
technologies, and relevant educational and advisory programs at 
centers to bridge the chasm between discovery and development 
in commercialization of translatable technologies

NCATS Oversees the CTSA program, making available critical resources 
required for the development of new therapies, promoting the 
notion of regulatory science to facilitate effective and efficient 
evaluation of novel diagnostics and therapeutics, and providing 
molecular libraries for therapeutic screens

AHA Science & Technology Accelerator 
Program

AHA program designed to speed up the processes for delivering 
lifesaving drugs, devices, and other innovations to patients and 
their families

Phenotyping Physiology and clinical detail of human 
health and disease

Enhanced phenotyping can improve power to detect meaningful 
associations and advance our ability to apply them clinically.

Systems genetics Integration. The goal is to understand the 
architecture of complex genetic traits and to 
create a genotype-to-phenotype map.

Major application will be to follow up GWASs. Such studies have 
identified dozens of loci contributing to cardiovascular disease 
traits, including atherosclerosis, blood pressure, lipoprotein levels, 
obesity, diabetes mellitus, and heart failure92,93 which will have 
little impact until the loci are translated into genes pathways, 
networks, and (unbiased, network-integrated) disease modules.

Rational polypharmacy 
and drug target selection

Analyzing the consequences of drug 
exposure for measurable, global 
phenotype(s) as a future course of drug 
development may be more successful than 
traditional target-based screening.

Phenotype screening is more successful than target-based 
screening in achieving FDA-approved therapeutic entities, even in 
this current era of exquisitely detailed drug target structural and 
functional information.94

Preclinical toxicology FDA requirement that a novel medicine must 
first undergo toxicology tests in animals

Identifies a dose of a new medicine that produces no observable 
adverse event in the animal so that a lower dose can be used as a 
starting point for testing in humans

Efficacy testing Tests the effectiveness of a therapeutic 
intervention

Will require developing a new disease taxonomy that would 
define diseases on the basis of their intrinsic pathobiology and 
their conventional clinical phenotype95

Rescuing and repurposing 
drugs

Initiative to make available drugs previously 
generated by the biopharmaceutical industry 
that academic investigators can now use to 
test their utility against new targets or in new 
disease indications

Sponsored by the NCATS, the pilot program is titled Discovering 
New Therapeutic Uses for Existing Molecules (http://
www.ncats.nih.gov/research/reengineering/rescue-repurpose/
therapeutic-uses/therapeutic-uses.html).

Postmarketing research Studies of drug safety that occur after the 
medicine is available

For some disease conditions such as diabetes mellitus, the FDA 
has recently issued guidelines requiring that drugs that lower 
blood glucose must also establish that they have no cardiovascular 
safety signals before attaining approval.

Systems pharmacology Network of interacting molecules, some of 
which serve as drug targets

Application of the principles of systems pharmacology across the 
continuum of drug discovery, drug development, and drug use, 
including in next-generation clinical trial design96–98

AHA indicates American Heart Association; CTSA, Clinical and Translational Science Award; FDA, US Food and Drug Administration; GWAS, 
genome-wide association study; and NCATS, National Center for Advancing Translational Sciences.
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Table 4

Scientific Tools to Enable Translation of Findings From the Area of Genetics and Genomics

Scientific Tool Description What It Does

iPSCs Induced pluripotent stem cells pioneered by Takahashi and 
colleagues122

Introduction of “reprogramming factors” 
into fibroblasts or other differentiated cell 
types

Genome-edited pluripotent stem 
cells

Genome-editing approaches include zinc finger nucleases,123 

transcription activator-like effector nucleases,124 and 
CRISPR,125,126 among others.

Genetically alter a cell line to remove 
confounders that may occur in the study 
of iPSCs

Genome-edited somatic cell lines Genome editing is performed as above. Application of genome-editing 
technology to cultured somatic cell lines

Somatic manipulation of genes in 
mice

Genetically modified mice have represented the gold 
standard of disease models since the 1990s. Methodology for 
somatic manipulation includes overexpression of target gene 
via adeno-associated gene delivery to mouse liver, 
knockdown of target genes via siRNA delivery, transcription 
activator-like effector nucleases, and zinc finger 
endonucleases.

New advances in technology have made it 
possible to use rodents as a robust and 
reasonably fast system with which to 
functionally interrogate novel disease-
associated genes.

Knockout Mouse Consortium International Knockout Mouse Consortium (http://
www.knockoutmouse.org/)

Working to complete a library of gene 
knockouts in mouse embryonic stem 
cells127

Knockout Rat Consortium Rats did not previously have widespread use of genetic 
models of disease until recently, when genome-editing 
technologies have made feasible the manipulation of human 
cells and now are being used to create knockout rats.

Genetically modified rat strains are being 
made available to the scientific 
community through the Knock Out Rat 
Consortium.128

Caenorhabditis elegans Nematode that has served as a powerful tool to explore 
molecular pathways (http://www.wormbase.org)

Genomic features can be readily modeled; 
efficient gene transfer techniques 
exist.129,130

Fruit fly Fruit fly has many advantages of C elegans and has a more 
advanced circulatory system and segmented dorsal vessel 
that represents the heart and aorta131

Model organization for mechanism 
elucidation that has high conservation 
with humans

Zebrafish Fish model that offers a unique balance between physiology, 
pharmacology, and tractability

Highly efficient gene knockdown132–134

CRISPR indicates clustered regularly interspaced short palindromic repeats; and iPSC, induced pluripotent stem cell.
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Table 5

Phases of Clinical Trials

Phase What Is the Goal?

1 Test the safety and tolerability of a new medicine in healthy volunteers

2 Test efficacy in small numbers of patients with a medical condition of interest and identify a range of doses for subsequent testing

3 More substantial test of efficacy and safety in patients (called the pivotal or registration trials)

4 Follows FDA approval. Additional studies are conducted by the sponsor to further refine the disease population or to extend the use of 
the drug into populations not studied in the original New Drug Application or to define additional outcomes that increase the value of 
the drug.

FDA indicates US Food and Drug Administration.
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