
UC Berkeley
UC Berkeley Previously Published Works

Title

Imaging Quantum Interference in Stadium-Shaped Monolayer and Bilayer Graphene Quantum 
Dots

Permalink

https://escholarship.org/uc/item/1z36w6gr

Journal

Nano Letters, 21(21)

ISSN

1530-6984

Authors

Ge, Zhehao
Wong, Dillon
Lee, Juwon
et al.

Publication Date

2021-11-10

DOI

10.1021/acs.nanolett.1c02271

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, available at https://creativecommons.org/licenses/by-nc/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1z36w6gr
https://escholarship.org/uc/item/1z36w6gr#author
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/


1 
 

Imaging Quantum Interference in Stadium-Shaped Monolayer and 

Bilayer Graphene Quantum Dots  

 
Zhehao Ge6, †, Dillon Wong1,†, Juwon Lee1, Frederic Joucken6, Eberth A. Quezada-Lopez6, 

Salman Kahn1, Hsin-Zon Tsai1, Takashi Taniguchi4, Kenji Watanabe5, Feng Wang1,2,3, Alex 

Zettl1,2,3, Michael F. Crommie1,2,3, *, Jairo Velasco Jr.6,* 

1Department of Physics, University of California, Berkeley, California 94720, USA 
2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 
3Kavli Energy NanoSciences Institute at the University of California, Berkeley and the Lawrence Berkeley 

National Laboratory, Berkeley, California 94720, USA 
4International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 

Namiki, Tsukuba, 305-0044, Japan 
5Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 

305-0044, Japan 
6 Department of Physics, University of California, Santa Cruz, California 95064, USA 
† These authors contribute equally to this manuscript.       

* Email: jvelasc5@ucsc.edu & crommie@berkeley.edu 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2 
 

Abstract 
 
Experimental realization of graphene-based stadium-shaped quantum dots (QDs) have been few 

and incompatible with scanned probe microscopy. Yet, direct visualization of electronic states 

within these QDs is crucial for determining the existence of quantum chaos in these systems. We 

report the fabrication and characterization of electrostatically defined stadium-shaped QDs in 

heterostructure devices composed of monolayer graphene (MLG) and bilayer graphene (BLG). To 

realize a stadium-shaped QD, we utilized the tip of a scanning tunneling microscope to charge 

defects in a supporting hexagonal boron nitride flake. The stadium states visualized are consistent 

with tight-binding-based simulations, but lack clear quantum chaos signatures. The absence of 

quantum chaos features in MLG-based stadium QDs is attributed to the leaky nature of the 

confinement potential due to Klein tunneling. In contrast, for BLG-based stadium QDs (which 

have stronger confinement) quantum chaos is precluded by the smooth confinement potential 

which reduces interference and mixing between states.  
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 The advent of pristine, exposed circular p-n junctions in monolayer graphene (MLG) [1] 

and Bernal-stacked bilayer graphene (BLG) [2] has enabled realization of electrostatically defined 

quantum dots (QDs) that are accessible to atomically-resolved scanning probe microscopy. The 

charge carriers of these QDs possess chirality, and so their electronic states are exotic and unlike 

the states in conventional semiconductor QDs [3-5]. For example, recent scanning tunneling 

microscopy (STM) studies of electrostatically defined MLG and BLG QDs have revealed 

relativistic quasibound states [6, 7], correlated states manifesting a wedding-cake-like charge 

density [8], and states with broken rotational symmetry and nontrivial band topology[9]. So far, 

the QD systems studied using this technique have all been based on circular-symmetric boundaries 

[6, 8-10]. 

 Other QD symmetries, however, are possible and create new opportunities to observe novel 

behavior. For example, electron transport studies of conventional semiconductor-based QDs have 

demonstrated that circular- and square-shaped QDs host regular dynamics, while stadium-shaped 

QDs are described by chaotic quantum billiards [11-14]. This is the quantum mechanical analogue 

to the Bunimovich billiard (also known as the stadium billiard), a well-known classical chaotic 

system [15]. Chaotic behavior here is attributed to the nonintegrability of the classical dynamics 

in a stadium billiard, i.e. the existence of open orbits. Novel electronic states are expected to result 

from the quantum mechanical behavior of such classically chaotic systems. An example is scarred 

wavefunctions which are characterized by standing waves that follow semiclassical periodic orbits 

[13]. Extensive theoretical analysis has been performed on scarred wavefunctions [13, 16] and 

numerous experimental studies have imaged analogous phenomena in surface water waves [17], 

ultrasonic acoustic fields [18], microwave cavities [19, 20], and soap films [21]. A number of 

predictions for scarred wavefunctions in graphene-based systems have also been made [22, 23], 
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but no direct visualization of electronic states in electrostatically defined nonintegrable MLG or 

BLG QDs has yet been reported.  

 Here we report the fabrication and imaging of electrostatically defined MLG and BLG QDs 

that are nonintegrable. The QDs were fabricated using an STM-based technique whereby 

electrostatic charge is injected directly into the hexagonal boron nitride (hBN) insulating layer 

underlying our graphene samples. QDs with stadium-shaped boundaries were synthesized by 

performing multiple tip injections to define each QD. Our STM measurements of the electronic 

wavefunctions of stadium-shaped QDs showed significant differences between MLG and BLG 

stadia, including interior nodal patterns and the presence of diagonal streaking, but no clear 

evidence of scarring phenomena was observed. Simulations of our QDs using a tight-binding based 

formalism reveals that the lack of scarring for the MLG stadium arises due to Klein tunneling at 

the stadium boundary, whereas in BLG the main culprit is the smoothness of the QD boundary. 

Diagonal streaking in the BLG stadium is shown to be a signature of the non-integrable nature of 

the QD boundary. 

 
Figure 1: Schematic for creating non-circular quantum dots (QDs) on monolayer graphene (MLG) or bilayer 
graphene (BLG) on hexagonal boron nitride (hBN). (a) MLG or BLG/hBN heterostructure supported by SiO2/Si 
substrate. The graphene layer is contacted by gold electrodes and a backgate voltage 𝑉" is applied to the doped Si 
substrate. (b) To fabricate multiple p-n junctions, voltage pulses are applied to the scanning tunneling microscope 
(STM) tip at two different locations on the MLG or BLG sample while holding 𝑽𝐆∗  > 0. (c) Spatial control of the 
resulting p-n junction (i.e., QD) geometry is achieved by applying voltage pulses at different locations separated by a 
distance = d. 
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Figure 1 sketches our method for creating noncircular QDs in a MLG (or BLG)/hBN 

heterostructure supported by an SiO2/Si substrate. A backgate voltage (VG) applied to the doped 

Si substrate permits global tuning of the MLG (or BLG) doping level (Fig. 1a). Local modification 

of the potential is achieved by applying a 5V pulse to the STM tip for 60 secs that causes electric-

field-induced excitation of defect states in hBN below the STM tip [2, 24]. This liberates defect 

charge that drifts towards the MLG (or BLG) under the applied VG*, thus leaving behind charged 

ions that locally gate the MLG (or BLG) above. It is possible to create multiple QDs by simply 

repeating this procedure at points separated by a distance d (Fig. 1c). Additional tuning of the QD 

behavior is possible by subsequently modulating 𝑉& , as shown in Fig. 2a. Here the potential 

landscape for two QDs is represented by two bell-shaped potentials having centers spaced apart 

by d [6, 10, 25]. Increasing VG causes a vertical shift of the potential landscape with respect to the 

MLG (or BLG) chemical potential (𝜇(), which is shown as a dashed red line in Fig. 2a. Such VG 

modulation changes the width of each bell-shaped potential at 𝜇(, thus enabling modification of 

the QD size.  

 To experimentally characterize how the properties of adjacent QDs are modified by 

changing 𝑉& , we performed spatially-resolved spectroscopic mapping of QDs fabricated using the 

local electric-field treatment described above. Figures 2b-d show spectroscopic characterization 

of two adjacent QDs fabricated in a MLG/hBN heterostructure. 𝑑*𝐼/d𝑉.* is plotted as a function 

of sample-tip bias along a line extending from the center of one circular QD to the outer edge of 

the adjacent circular QD. Each panel represents a measurement performed at a different value of 

VG. An outer envelope is observed (blue) along with internal nodal structure (red and blue). As VG 

is reduced these features all shift upwards with respect to 𝑉.=0, which corresponds to 𝜇/. Because 

these data originate from a MLG/hBN heterostructure, the observed nodal pattern corresponds to 
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relativistic quasibound states similar to those previously reported for electrostatically defined 

MLG QDs [6]. The notable bending of these states near the QD boundary reflects the influence of 

the biased STM tip as discussed in Quezada, et al. [25].   

 
Figure 2: Control and visualization of gate-tunable quantum dots in MLG. (a) Sketch shows how modulation of 
𝑉" allows the QD electrostatic potential to be shifted with respect to the MLG chemical potential, 𝜇(. (b) d*𝐼/d𝑉0* 
measured as a function of sample bias (𝑉.) and distance from the center of one QD to the outer edge of a second 
adjacent QD (V" = 30 V, V. = -0.1 V, I = 1.0 nA, 1 mV a.c. modulation). (c,d) same as (b), but with (c) 𝑉" = 26 V and 
(d) 𝑉" = 24 V. (e) d𝐼/d𝑉. map for two MLG QDs (𝑉. = 15 mV, I = 0.5 nA, 𝑉" = 20 V, 1 mV a.c. modulation). (f,g) 
d𝐼/d𝑉. maps at the same location as (e), but with (f) 𝑉" = 16V and (g) 𝑉" = 14V. The bright bands (regions of high 
d𝐼/d𝑉.) indicate the location of the QD barrier wall. As 𝑉" is decreased the circular p-doped graphene regions increase 
and merge. 
 

 A more complete picture of the QD shape modification and electronic states is attained by 

acquiring d𝐼/d𝑉. maps at constant sample-tip bias and different 𝑉"	 (Figs. 2e-g). Each d𝐼/d𝑉. map 

d 
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here displays two circular QDs with bright boundaries surrounded by outer regions having little 

d𝐼/d𝑉0 intensity change (the QDs shown in Figs. 2e-g are different from those shown in Figs. 2b-

d, but were acquired using a similar procedure). As the gate voltage is decreased from VG = 20V 

(Fig. 2e) to VG = 16V (Fig. 2f) the internal structure of the QDs is seen to include more concentric, 

circularly symmetric states. For example, in Fig. 2e only one central antinode is visible, while after 

reducing 𝑉" numerous ring-like states appear. The increase in the number of ring-like states 

indicates that higher-energy QD states are being probed. Decrease of the gate voltage is also seen 

to cause the diameter of each QD to increase, eventually causing the QDs to merge, as shown in 

Fig. 2g. 𝑉" modulation thus enables realization of new, noncircular QDs through the merging of 

circular QDs.  

 We have exploited this technique to fabricate noncircular MLG and BLG QDs with 

boundary geometries similar to nonintegrable QDs previously studied in semiconductor 

heterojunctions [11, 14]. This was accomplished by performing multiple tip pulses with a 

separation of d~100 or d~50 nm and then modulating 𝑉" to further control the QD electronic states. 

Figures 3a,b show constant-bias d𝐼/d𝑉0 maps at different VG values for a noncircular MLG QD 

created using this procedure. The data reveal a stadium-shaped structure with internal nodal 

patterns that change as the gate voltage is decreased from VG = 16V (Fig. 3a) to VG = 10V (Fig. 

3b). Fig. 3a exhibits a vertical dark stripe in the center of the stadium QD which evolves into a 

pattern of antinodes as VG is reduced (Fig. 3b). Additional characteristic features visible in Fig. 3b 

are two structures having trigonal symmetry that lie in each half of the stadium (outlined by two 

triangles).  

We similarly created stadium-shaped BLG QDs as shown in Figs. 3c,d. These QDs also 

exhibit a vertical dark stripe at the stadium center at high gate voltage as well as trigonal patterns 
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at the stadium ends that become visible at lower gate voltage. The trigonal patterns in the BLG 

QD are different than those seen in the MLG QD because the BLG patterns “point” in the same 

direction (see triangle outlines in Fig. 3d). The BLG stadium QD also shows streaks in 𝑑𝐼/𝑑𝑉. 

intensity that emanate diagonally from the QD trigonal patterns and intersect with the top and 

bottom walls. These streaks are not seen in the MLG QD.  

 
Figure 3: Visualization of gate-tunable stadium-shaped QDs in MLG and BLG sheets. (a) d𝐼/d𝑉. map for a 
stadium-shaped MLG QD (𝑉. = -15 mV, I = 0.5 nA, 𝑉" = 16 V). (b) d𝐼/d𝑉. map at the same location as (a), but with 
𝑉" = 10V. Triangles outline trigonally symmetric nodal patterns. (c) d𝐼/d𝑉. map for a stadium-shaped BLG QD (𝑉. = 
-10 mV, I = 0.1 nA, 𝑉" = 10 V). (d) d𝐼/d𝑉. map at the same location as (c), but with 𝑉" = -20V. Triangles outline 
trigonally symmetric nodal patterns. As 𝑉" is decreased, the size of the stadium-shaped QDs increase and higher-
energy QD states are visualized.  
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 We now discuss the origin of the patterns in the MLG and BLG stadiums, as well as the 

apparent absence of scarred wavefunctions (more 𝑑𝐼/𝑑𝑉0 maps for MLG and BLG stadia showing 

the absence of scarred wavefunctions can be found in SI section 5). We first note that the dark 

vertical stripe seen in the central regions of both the MLG and BLG stadia can be attributed to a 

charge-trapping potential. This arises since the overall QD potential is created by multiple tip-

pulses spaced a distance apart, and so the top of the potential takes the form of two bell-shaped 

structures with a dip (i.e., vertical stripe) in the middle. Decreasing 𝑉" causes the bell-shaped 

potentials to merge and the QD electronic state at EF to shift from the top of the potential to a lower 

regime where the potential landscape is more homogeneous and where the center of the stadium 

exhibits a more complex nodal structure. 

  To further understand our experimental findings, we performed numerical tight-binding-

based simulations of MLG and BLG stadium-shaped QDs. A flat-bottomed potential with smooth 

boundaries was used for the simulations and we explored both ungapped MLG electronic structure 

and gapped BLG electronic structure with trigonally warped bands. These configurations are 

schematically depicted in Figs. 4a,b, and the resulting simulations of the stadium constant-energy 

d𝐼/d𝑉0 maps (i.e., the resulting local density of states (LDOS) patterns) are shown in Figs. 4d,e. 

More details on the simulations can be found in Supporting Information Section 1. Similarities 

between the simulations and the experimental stadia are evident, and the role of the QD walls is 

also revealed by the calculations. For example, in the gapless MLG calculation of Fig. 4d a three-

fold-symmetric pattern that is seen on each side of the stadium (triangles) that points outward and 

agrees with the experimental data of Fig. 3b. The simulated BLG stadium in Fig. 4e displays 

threefold symmetric patterns on each side that point in the same direction (see triangles) and are 
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similar to the data seen in Fig. 3d (see SI section 2 for close-up plots). Fig. 4e also exhibits diagonal 

streaks that are in qualitative agreement with the experimental d𝐼/d𝑉0 intensity of Fig. 3d.  

 
Figure 4: Stadium QD potential profile schematic and associated simulations. (a) Upper panel: MLG stadium QD 
potential profile schematic depicting the MLG bands and charge neutrality point (𝐸456) both inside and outside of the 
QD. Lower Panel: Schematic representation of stadium MLG QD. (b) Upper panel: BLG stadium QD potential profile 
schematic depicting the gapped and trigonally warped BLG bands and 𝐸456 inside and outside of the QD. Lower 
Panel: Schematic representation of stadium BLG QD. (c, d) Numerical tight-binding simulations of electronic local 
density of states for (c) MLG and (d) BLG stadium QDs. d𝐼/d𝑉. diagonal streaks are visible in (d) (which has gapped 
barrier walls) but not in (c) (which has ungapped walls). 𝛾8  hopping and a spatially uniform 60	meV gap is included 
in the TB model of the BLG stadium. These parameters are motivated by our previous experimental characterization 
of circular BLG QDs [9], (also see SI section 6). The LDOS contribution from only sublattice 𝐴> is considered in the 
BLG stadium 𝑑𝐼/𝑑𝑉? map simulation. 
 

 We are able to gain new insight into why scarred wavefunctions are absent in the QD stadia 

by examining the nature of the QD walls. For the MLG stadium, hole states inside of the QD are 

spatially adjacent to empty conduction-band electron states immediately outside of the stadium, 



11 
 

thus leading to charge-carrier escape via Klein tunneling [26]. The resulting lack of strong 

confinement in MLG structures precludes the interference of unstable classical orbits that gives 

rise to scarring. This reasoning, however, suggests that scarred wavefunctions should be visible in 

a BLG stadium QD since the nature of the walls in a BLG stadium enable stronger confinement, 

thus increasing the interference between stable classical orbits. Our experimental findings for the 

BLG stadium QD, however, do not agree with this expectation. 

 To understand the absence of scarred wavefunctions in BLG stadium QDs we examine key 

differences between the QDs realized in our experiment and previously studied systems. In our 

experimental BLG QDs the nature of the confinement potential is smooth while in the initial 

theoretical work by Heller the confinement potential was sharp [13]. Smooth potential barriers, on 

the other hand, have been found to suppress quantum chaos in semiconductor-based QDs [27]. 

Such behavior has been attributed to dispersion in the energy of confined states at the boundaries 

which reduces the interference and mixing of states [27]. Stadiums with sharp potentials do not 

exhibit dispersion at the boundaries, thus allowing better interference and mixing of states that 

have similar energies and ultimately leading to wavefunction scarring [13].  

To further support our hypothesis that the potential well sharpness precludes us from 

observing scarred wavefunctions for a BLG stadium in experiments, we simulated LDOS maps 

for a stadium-shaped BLG QD with a step potential well. Consequently, we found several possible 

scarred wavefunctions (data are shown in SI section 7). Video clips showing the evolution of 

simulated LDOS maps at different energies for a BLG stadium with a smooth potential well (in 

which scarred wavefunctions are absent) and a step potential well (in which candidate scarred 

wavefunctions are present) can also be found in the supporting information.  
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Additionally, we performed level statistical analysis for electrostatically defined MLG and 

BLG stadia with different potential well depth and sharpness (see SI section 9). Level statistical 

analysis has been widely used to investigate the chaotic behavior of either relativistic or non-

relativistic quantum systems [22, 28]. We observed a transition from Poisson level-spacing 

distribution to Gaussian orthogonal ensemble distribution when the depth and sharpness of the 

potential well is increased for both MLG and BLG stadia. This finding indicates a deeper and 

sharper potential well enhances the chaotic behavior of both MLG and BLG stadia. For MLG 

stadia, we believe the chaotic behavior is enhanced with a deep and sharp potential well because 

of the onset of strong intervalley scattering caused by the sharp potential well. Such intervalley 

scattering will suppress Klein tunneling, which is a single-valley phenomenon. 

Despite the absence of wavefunction scarring in our BLG stadium QDs, the appearance of 

diagonal streaks in both the experimental 𝑑𝐼/𝑑𝑉0 maps and the simulated BLG QD maps provides 

a connection to quantum chaotic phenomenon (additional simulated 𝑑𝐼/𝑑𝑉0 maps for a BLG 

stadium with different aspect ratios are provided in supporting information section 4). First, the 

absence of diagonal streaks in integrable systems regardless of confinement strength suggests that 

they are a special feature of nonintegrable systems [11, 13]. Second, we find that the streaks are 

absent in nonintegrable structures with poor confinement, such as MLG stadium QDs. This 

suggests that diagonal streaks require interference between states to form, similar to the 

phenomenon of wavefunction scarring. 

 In conclusion, we have fabricated and imaged electrostatically-defined stadium-shaped 

QDs in MLG and BLG sheets. Our wavefunction maps for these QDs reveal novel features (such 

as diagonal streaks) that originate from fundamental differences between the electronic structures 

of MLG and BLG. The absence of wavefunction scarring in MLG stadium QDs is attributed to 
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charge carrier escape via Klein tunneling, while for BLG stadium QDs it is attributed to the 

smoothness of the confinement potential. These issues can potentially be addressed by placing 

BLG closer to the gating source through the use of thinner hBN. Such a change in the device 

architecture would also sharpen the electrostatic potential [29, 30], thus potentially enabling the 

interference between states that is necessary for wavefunction scarring.  

 

Supporting Information:  

 
(1) Numerical tight-binding calculation for electronic states within stadium-shaped MLG and BLG 

QDs, (2) 𝐶8-symmetrical patterns at the end of stadium-shaped MLG and BLG QDs, (3) simulated 

d𝐼/d𝑉0 patterns in gapped elliptical MLG and BLG QDs, (4) simulated 𝑑𝐼/𝑑𝑉0 maps for a 

stadium-shaped BLG QD with a different aspect ratio, (5) additional experimental 𝑑𝐼/𝑑𝑉0 maps 

for MLG and BLG stadia, (6) spatially resolved band gap for the experimental BLG stadium, (7) 

candidate scarred wavefunctions in a simulated BLG stadium with a step potential well, (8) level 

statistical analysis of an experimental BLG stadium, (9) level statistical analysis of simulated MLG 

and BLG stadia. 
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S1. Numerical tight-binding calculation for electronic states within stadium-shaped MLG 

and BLG QDs 

Stadium-shaped MLG QD LDOS calculation  

 The stadium-shaped MLG QD is modeled by the following tight-binding (TB) Hamiltonian 

within the first-nearest-neighbor-hopping approximation on a circular MLG sheet with a 450	nm 

radius: 
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																								𝐻 =L[𝑉N𝑅P⃑ RST +
Δ
2]𝑎R

	Z𝑎R
R

+L[𝑉N𝑅P⃑ R[T −
Δ
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where the operators 𝑎R
	Z(𝑎R) and 𝑏R

	Z(𝑏R) create (annihilate) an electron on site 𝑅P⃑ R of sublattice 𝐴 

and 𝐵,	respectively. The stadium-shaped MLG QD is defined by varying the onsite energy 𝑉 of 

carbon atoms at the position 𝑟 = 𝑅P⃗ R. The 𝑉(𝑟) used for simulating stadium-shaped MLG p-n 

junctions are shown in Figs. S1a and S1b. The hopping parameter between the nearest carbon 

atoms is 𝛾^,where we used 𝛾^ = 3.3	𝑒𝑉 . This corresponds to a Fermi velocity 𝑣l ≈

1.07 × 10q	𝑚/𝑠 for graphene. The local density of states 𝐿𝐷𝑂𝑆(𝐸, 𝑟) was computed numerically 

from the above Hamiltonian using the Pybinding package [1], which uses the kernel polynomial 

method [2] to solve the Hamiltonian.  

Stadium-shaped BLG QD LDOS calculation  

 The stadium-shaped BLG QD is modeled by the following tight-binding (TB) Hamiltonian 

within the first-nearest-neighbor-hopping approximation on a circular BLG sheet with a 250	nm 

radius: 

																								𝐻
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where the operators 𝑎>R
				Z(𝑎>R), 𝑏>R

				Z(𝑏>R), 𝑎*R
				Z(𝑎*R) and 𝑏*R

				Z(𝑏*R) create (annihilate) an electron on 

site 𝑅P⃗ R of sublattice 𝐴>, 𝐵>, 𝐴* and 𝐵*, respectively. The stadium-shaped BLG QD is defined by 

varying the onsite energy 𝑉 of the carbon atoms as a function of their position, which is denoted 

by 𝑟 = 𝑅P⃗ R. The 𝑉(𝑟) used for simulating the stadium-shaped BLG p-n junctions are shown in Figs. 

S1c and S1d. The hopping parameters [3] used in the model are 𝛾^ = 3.16	eV, 𝛾> = 0.381	eV and 

𝛾8 = −0.38	eV. For gapped BLG QDs, the interlayer potential difference is chosen as 𝑈 =

60	𝑚𝑒𝑉. The local density of states 𝐿𝐷𝑂𝑆(𝐸, 𝑟) was computed numerically from the above 

Hamiltonian using the Pybinding package [1], which uses the kernel polynomial method [2] to 

solve the Hamiltonian. In all our BLG stadia LDOS map simulations, only the LDOS contribution 

from sublattice 𝐴> is considered because the QD states are polarized on this top layer sublattice. 

In addition, this top layer sublattice contributes most of the 𝑑𝐼/𝑑𝑉0 signal in our STM 𝑑𝐼/𝑑𝑉0 map 

measurements. 

𝐝𝑰/𝐝𝑽𝑺 simulation 

In our experiments, we use a constant current 𝐼 at a certain sample bias voltage 𝑉0	to control 

the distance between the STM tip and sample. But since a QD’s LDOS is position dependent, the 

distance between the STM tip and sample can vary at different locations of the QD. This is because 

the tunneling current 𝐼 ∝ |𝑒}~� ∫ 𝐿𝐷𝑂𝑆(𝐸, 𝑟)𝑑𝐸���
^ | is a constant [4], which causes 𝑒}~� ∝

�

| ∫ ���0(�,�)��|���
�

 to vary, hence the tip-sample distance changes. Since ��
���

∝ 𝑒}~�𝐿𝐷𝑂𝑆(𝐸, 𝑟), we 

can simulate the tip-sample distance variation effect by using the following formula to calculate 

𝑑𝐼/𝑑𝑉0 based on the calculated 𝐿𝐷𝑂𝑆(𝐸, 𝑟) for graphene p-n junctions: 

𝑑𝐼
𝑑𝑉0

(𝐸, 𝑟) ∝
𝐿𝐷𝑂𝑆(𝐸, 𝑟)

| ∫ 𝐿𝐷𝑂𝑆(𝐸, 𝑟)𝑑𝐸���
^ |
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Figure S1: Potential wells 𝑽(𝒓P⃑ ) used for simulated stadium-shaped MLG and BLG QDs. (a) 
Spatial color map depicting the onsite energy of graphene carbon atoms in the TB model. This 
defines 𝑉(𝒓P⃑ ) for the stadium-shaped MLG QD. (b) Profiles of the stadium-shaped MLG QD 
potential 𝑉(𝒓P⃑ ) from a. The profiles are along the horizontal and vertical directions and correspond 
to the green and blue dashed lines in a, respectively. (c) Spatial color map depicting the onsite 
energy of BLG carbon atoms in the TB model. This defines 𝑉(𝒓P⃑ ) for the stadium-shaped BLG 
QD. (d) Profiles of the stadium-shaped BLG QD potential 𝑉(𝒓P⃑ ) from c. The profiles are along the 
horizontal and vertical directions which are depicted by the green and blue dashed lines in c, 
respectively.  
 

S2. 𝑪𝟑-symmetric patterns at the end of stadium-shaped MLG and BLG QDs 

 Additional 𝑑𝐼/𝑑𝑉0 map simulations from the same stadium-shaped MLG and BLG QDs 

as presented in Fig. 4 are shown in Fig. S2. These additional results correspond to QD states with 

lower energies compared to the QD states shown in Fig. 4 and more clearly reveal the C3- 

symmetric patterns near the end of stadium-shaped MLG and BLG QDs. As can be seen in Fig. 

S2c the orientation of the triangular 𝑑𝐼/𝑑𝑉0 patterns in MLG stadiums are reversed at the two ends 
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and point outward. In contrast, as shown in Fig. S2d, the orientation of the triangular 𝑑𝐼/𝑑𝑉0 

patterns in BLG stadiums are aligned at the two ends, with one pointing outward and the other 

pointing inward. 

 
Figure S2: Triangular 𝒅𝑰/𝒅𝑽𝑺 patterns at the end of stadium-shaped MLG and BLG QDs. 
(a) Upper panel: Stadium MLG QD potential profile schematic depicting the MLG bands and 
charge neutrality (𝐸456) within and outside of the QD. Lower Panel: Schematic representation of 
stadium-shaped MLG QD. (b) Upper panel: Stadium BLG QD potential profile schematic 
depicting the gapped and trigonally warped BLG bands and 𝐸456  within and outside of the QD. 
Lower Panel: Schematic representation of stadium-shaped BLG QD. (c-d) Numerical tight-
binding (TB) simulations of d𝐼/d𝑉. maps for ungapped MLG and gapped BLG stadium-shaped 
QDs, respectively. The energies of the QD states in c-d are lower than that of the QD states shown 
in Fig. 4. The yellow triangles in c-d depict the orientations of the triangular patterns at the end of 
the stadium-shaped QDs. The LDOS contribution from only sublattice 𝐴> is considered in the BLG 
stadium 𝑑𝐼/𝑑𝑉0 map simulation.   
 

S3. Simulated 𝒅𝑰/𝒅𝑽𝑺 patterns in gapped elliptical BLG QD  

 Simulated 𝑑𝐼/𝑑𝑉0 maps for elliptical gapped BLG QDs are shown in Fig. S3b. The faint 

diagonal d𝐼/d𝑉0 streaks that appeared in the stadium-shaped BLG QDs are absent in Figs. S3b. 
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This result indicates that the faint diagonal d𝐼/d𝑉0 streaks in stadium-shaped BLG QDs are related 

to the non-integrability of the stadium-shaped QD. 

 
Figure S3: Simulated 𝒅𝑰/𝒅𝑽𝑺 patterns for elliptical BLG QDs. (a) Upper panel: Elliptical BLG 
QD potential profile schematic depicting the gapped and trigonally warped BLG bands and 𝐸456  
within and outside of the QD. Lower Panel: Schematic representation of elliptical BLG QD. (b) 
Numerical tight-binding (TB) simulation of d𝐼/d𝑉. map for gapped elliptical BLG QD. The 
diagonal 𝑑𝐼/𝑑𝑉0 streaks present in stadium-shaped BLG QD in Figs. 4d is absent in the elliptical 
BLG QD. The LDOS contribution from only sublattice 𝐴> is considered in the BLG stadium 
𝑑𝐼/𝑑𝑉0 map simulation. 
 

S4. Simulated 𝒅𝑰/𝒅𝑽𝑺 maps for a stadium-shaped BLG QD with a different aspect ratio 

 Simulated 𝑑𝐼/𝑑𝑉0 maps for a stadium-shaped BLG QD with a different aspect ratio are 

shown in Fig. S4. The diagonal streaks reported in the main text of the manuscript also appear 

here. This indicates that the observed diagonal streaks are not due an elongated confinement 

structure.   



25 
 

 
Figure S4: Simulated 𝒅𝑰/𝒅𝑽𝑺 maps for a less elongated BLG stadium. a-b, Simulated 𝑑𝐼/𝑑𝑉0 
maps for an electrostatically defined BLG QD at 𝐸 = −78.5	meV and 𝐸 = −82.1	meV, 
respectively. 𝛾8 hopping and a spatially uniform 60	meV gap is included in the TB model, and 
𝑉0 = −15	meV is used for 𝑑𝐼/𝑑𝑉0 simulation. The LDOS contribution from only sublattice 𝐴> is 
considered in the BLG stadium 𝑑𝐼/𝑑𝑉0 map simulation. 
 

S5. Additional experimental 𝒅𝑰/𝒅𝑽𝑺 maps for MLG and BLG stadia 

Figure S5 shows additional experimental 𝑑𝐼/𝑑𝑉0 maps taken at various 𝑉&  but with the 

same 𝑉0 for the same stadium-shaped BLG QD shown in the main text. Modulating 𝑉&  while 𝑉0 is 

maintained constant is nearly equivalent to changing 𝑉0 at a constant 𝑉&  to probe QD states with 

different energies. There is no clear scarred wavefunctions observed in these data. Figure S6 shows 

additional experimental 𝑑𝐼/𝑑𝑉0 maps taken at various 𝑉&  but with the same 𝑉0 for the same 

stadium-shaped MLG QD shown in the main text. Here there is also no clear evidence for scarred 

wavefunctions. 
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Figure S5: The absence of scarred wavefunctions in an experimental BLG stadium. a-f, 
Experimental 𝑑𝐼/𝑑𝑉0 maps measured at various 𝑉&  for a stadium-shaped BLG QD. No scarred 
wavefunctions are observed for the BLG stadium with the gate and bias values shown here. The 
scanning parameters used to acquire these images were 𝐼 = 0.1	nA, V. = −10	mV and with a 
2	mV ac excitation.   
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Figure S6: The absence of scarred wavefunctions in an experimental MLG stadium. a-f, 
Experimental 𝑑𝐼/𝑑𝑉0 maps measured at various 𝑉&  for a stadium-shaped MLG QD. No scarred 
wavefunctions are observed for the MLG stadium with the gate and bias values shown here. The 
scanning parameters used to acquire these images were 𝐼 = 0.5	nA, V. = −15	mV and with a 
2	mV ac excitation.  

 

S6. Spatially resolved band gap for the experimental BLG stadium 

Figure S7a shows one experimentally measured 𝑑𝐼/𝑑𝑉0(𝑉0, 𝑑) across the center of a 

stadium-shaped BLG QD, Fig. S7b shows the 𝑑𝐼/𝑑𝑉0	spectra at 𝑑 = −100	nm. A gap value 

around 60	meV that has small spatial variation is observed. Additionally, this value is close to the 

gap value we observe for circular BLG QDs that are created by the same hBN defect ionization 

method[5] (related circular BLG QD data can be found in the supplementary section 1 of  reference 

[5]).  
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Figure S7: Spatially resolved 𝒅𝑰/𝒅𝑽𝑺 spectra for a BLG stadium. a, Experimentally measured 
𝑑𝐼/𝑑𝑉0(𝑉0, 𝑑) at 𝑉& = 30	V for a stadium-shaped BLG QD along a line that crosses the stadium 
center and along the long direction of the stadium. This BLG stadium is not the same one as shown 
in the main text, though a similar fabrication procedure was used for both stadia. The yellow arrow 
indicates the gap size of the BLG stadium. The set point used to acquire the tunneling spectra was 
𝐼 = 1	nA, 𝑉0 = −60	mV, with a 2 mV ac modulation. b, 𝑑𝐼/𝑑𝑉0 spectrum at 𝑑 = −100	nm from 
(a).    
 

S7. Candidate scarred wavefunctions in a simulated BLG stadium with a step potential well 

Figure S8 shows the simulated LDOS maps of some candidate scarred wavefunctions for 

a BLG stadium with a step potential well. Video clips showing the evolution of simulated LDOS 

maps at different energies can also be found in the supporting information.  
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Figure S8: Candidate scarred wavefunctions in a BLG stadium with a step potential well. 
Simulated LDOS maps at some selected energies that resemble scarred wavefunctions for an 
electrostatically defined BLG stadium with a step potential well. The depth of the step potential 
well is 200	meV. The BLG stadium is composed of a 50 × 50	nm* square at the center and two 
semicircles that are connected at the ends. The 𝛾8 hopping is ignored and a spatially uniform 
200	meV interlayer energy difference is included in the TB model. The LDOS contribution from 
only sublattice 𝐴> is considered in the BLG stadium LDOS map simulation. 
 

S8. Level statistical analysis of an experimental BLG stadium 

In our experiments the number of observed LDOS peaks are too small, thus preventing a 

reliable energy-level statistical analysis. Figure S9a shows an example 𝑑𝐼/𝑑𝑉0 spectra measured 

at the center of a stadium-shaped BLG QD. By tracking the local maximum of the 𝑑𝐼/𝑑𝑉0 

spectrum, we extract the energies of different QD states. The corresponding level-spacing 
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distribution of the extracted states is plotted in Fig. S9b. This result does not agree with a Poisson 

or a Gaussian orthogonal ensemble (GOE) distribution.  

 
Figure S9: 𝒅𝑰/𝒅𝑽𝑺 spectrum and level statistics of a BLG stadium a, 𝑑𝐼/𝑑𝑉0 spectrum taken 
at the center of a stadium-shaped BLG QD at 𝑉& = 30	V. The set point used to acquire the 
tunneling spectra was 𝐼 = 1	nA, 𝑉0 = −60	mV, with a 2 mV ac modulation. b, 𝑑𝐼/𝑑𝑉0 peak 
spacing distribution for the peaks extracted from (a), the peak spacing are normalized as 𝑠 =
���

a���c
. 

 

S9. Level statistical analysis of simulated MLG and BLG stadia 

Method 

The TB Hamiltonians of MLG and BLG nano sheets with different physical shapes and 

electrostatic potential wells are first defined similar to as described in supporting information 

section1. Next, the eigenvalues of the Hamiltonian are solved by the LAPACK eigenvalue solver 

implemented in the Pybinding package [1]. Then, the eigenvalues are ordered and indexed in 

sequence from low energy to high energy. Finally, we select a portion of the sequenced eigenvalues 

to perform level statistical analysis with a standard procedure as described in ref [6]. We noticed 

the level statistical results are weakly dependent on the index range used to perform the level 
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statistical analysis. We chose an index range of 50%-70% for the level statistics analysis because 

it clearly yields results that are consistent with prior works [6, 7]. 

Level statistical results for physically defined MLG and BLG stadia 

Figures S10a-c show the structure and size of MLG QDs used in the TB calculation with 

stadium, rectangular, and circular shapes, respectively. Figures S10d-f show the energy of the 

calculated states that fall in the 50% to 70% index range of the full sequence of ordered eigenvalues 

calculated from the corresponding structures. Figures S10g-i shows the level-spacing distribution 

of the states shown in Figures S10d-f, the level spacings are normalized as ��
a��c

. For stadium-

shaped MLG QDs the level spacing agrees very well with the GOE distribution (Fig. S10g), which 

is expected for non-integrable systems [6, 7]. For rectangular MLG QDs, the level-spacing 

distribution displayed good agreement with the Poisson distribution (Fig. S10h), which is expected 

for integrable systems [6, 7]. Similar results are observed for gapped BLG QDs, the level-spacing 

distribution for rectangular- and stadium-shaped BLG QD shows a Poisson distribution and a GOE 

distribution, respectively. These results are plotted in Fig. S12. 

For the circular MLG QD, which is considered an integrable system, the expectation is that 

its level-spacing distribution should agree with the Poisson distribution. However, we found that 

the level-spacing distribution for the MLG QD does not agree with either the Poisson or the GOE 

distribution (Fig. S10i). We attribute this behavior to the deviations from a circular confinement 

structure for the circular MLG nano sheet defined in the TB model. As can be seen more clearly 

in Fig. S11, the MLG QD boundary is not exactly circular, hence this could possibly lead to a 

mixture of Poisson and GOE distributions.  

Level statistical results for electrostatically defined MLG and BLG stadia 
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 Besides physically defined stadium-shaped QDs, we also investigated electrostatically 

defined stadium-shaped QDs in rectangular MLG and BLG sheets. These simulations are more 

relevant to our experiment. As shown in Fig. S13, we observed the level-spacing distribution for 

a stadium-shaped MLG QD transitioned from a Poisson distribution to a GOE distribution as the 

depth and sharpness of the QD potential well increased. A similar result is achieved for the 

stadium-shaped BLG QD (Fig. S14). These results suggest a deeper and shaper potential well 

enhances the chaotic behavior of both stadium-shaped MLG and BLG QDs that are 

electrostatically defined. 

 
Figure S10: Physically defined MLG QDs with different shapes and their level statistics a-c, 
The shape, and size of the MLG QD defined in our TB model. For (a) a stadium consisting of a 
square at the center connected by two semicircles at the two ends, for (b) a rectangle with a 1:2 
ratio between the width and length, and for (c) a circle. d-f, Some low-energy eigenvalues 
calculated from the MLG QDs shown in (a)-(c), respectively. The x axis represents the sequence 
of the eigenvalues that are ordered from low energy to high energy. g-i, The level-spacing 
distribution of the eigenvalues shown in (d)-(f), respectively. The level spacings are normalized as 
𝑠 = ��

a��c
. 

 

20 nm 20 nm 20 nm

(a) (b) (c)
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Figure S11: Atomic-scale irregularities at the boundary of a circular MLG QDs. The left 
panel shows the shape of the same MLG QD as shown in Fig. R2c. The right panel is the zoom in 
of a boundary for this circular MLG QD, irregular edges can be seen.  
 

 
 
Figure S12: Physically defined BLG QD with different shapes and their level statistics. a-b, 
The shape, and size of the BLG QD defined in the TB model. For (a) a rectangle with a 1:2 ratio 
between the width and length, for (b) a stadium consisting of a square at the center connected by 
two semicircles at the two ends. 𝛾8 hopping is ignored and a 200	meV interlayer potential 
difference is used in the TB model for both (a) and (b). c-d, Some low-energy eigenvalues 

(a) (b)

(c)

(e)

(d)

(f)
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calculated from the BLG QDs shown in (a)-(b), respectively. The x axis represents the sequence 
of the eigenvalues that are ordered from low energy to high energy. e-f, The level-spacing 
distribution of the eigenvalues shown in (c)-(d), respectively. The level spacings are normalized 
as 𝑠 = ��

a��c
. 
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Figure S13: Level statistics of electrostatically defined MLG stadia with different potential 
well depth and sharpness. a, Potential profiles of electrostatically defined MLG stadium in a 
rectangular 20 × 40	nm* MLG sheet along the shorter direction of the rectangle. Between 𝑟 =
0	nm and 𝑟 = 5	nm, the potential profiles are defined by quadratic functions with different depth 
and sharpness. Between 𝑟 = 5	nm and 𝑟 = 10	nm, the potential profiles are flat. b-h, The level-
spacing distribution of the eigenvalues for MLG stadia with different potential depth and sharpness 
as defined in (a). The eigenvalues in the 50% to 70% index range of the full sequence of ordered 
eigenvalues are used for statistical analysis. The level spacings are normalized as 𝑠 = ��

a��c
. 

 

 



36 
 

Figure S14: Level statistics of electrostatically defined BLG stadia with different potential 
well depth and sharpness. a, Potential profiles of electrostatically defined BLG stadium in a 
rectangular 12 × 24	nm* BLG sheet along the shorter direction of the rectangle. Between 𝑟 =
0nm and 𝑟 = 3nm, the potential profiles are defined by quadratic functions with different depth 
and sharpness. Between 𝑟 = 3nm and 𝑟 = 6nm, the potential profiles are flat. 𝛾8 hopping is 
ignored and a 200	meV interlayer potential difference is used in the model. b-h, The level-spacing 
distribution of the eigenvalues for MLG stadia with different potential depth and sharpness as 
defined in (a). The eigenvalues in the 50% to 70% index range of the full sequence of ordered 
eigenvalues are used for statistical analysis. The level spacings are normalized as 𝑠 = ��

a��c
. 
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