
Lawrence Berkeley National Laboratory
LBL Publications

Title
Gyrokinetic particle-in-cell optimization on emerging multi- and manycore platforms

Permalink
https://escholarship.org/uc/item/1z37n4hm

Journal
Parallel Computing, 37(9)

ISSN
0167-8191

Authors
Madduri, Kamesh
Im, Eun-Jin
Ibrahim, Khaled Z
et al.

Publication Date
2011-09-01

DOI
10.1016/j.parco.2011.02.001
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1z37n4hm
https://escholarship.org/uc/item/1z37n4hm#author
https://escholarship.org
http://www.cdlib.org/


Gyrokinetic Particle-in-Cell Optimization on
Emerging Multi- and Manycore Platforms

Kamesh Madduria, Eun-Jin Imb, Khaled Z. Ibrahima, Samuel Williamsa,
Stéphane Ethierc, Leonid Olikera

aComputational Research Division, Lawrence Berkeley National Laboratory, CA 94720
bSchool of Computer Science, Kookmin University, Seoul 136-702, Korea

cPrinceton Plasma Physics Laboratory, Princeton, NJ 08543

Abstract

The next decade of high-performance computing (HPC) systems will see a rapid
evolution and divergence of multi- and manycore architectures as power and
cooling constraints limit increases in microprocessor clock speeds. Understand-
ing efficient optimization methodologies on diverse multicore designs in the con-
text of demanding numerical methods is one of the greatest challenges faced
today by the HPC community. In this work, we examine the efficient mul-
ticore optimization of GTC, a petascale gyrokinetic toroidal fusion code for
studying plasma microturbulence in tokamak devices. For GTC’s key compu-
tational components (charge deposition and particle push), we explore efficient
parallelization strategies across a broad range of emerging multicore designs,
including the recently-released Intel Nehalem-EX, the AMD Opteron Istanbul,
and the highly multithreaded Sun UltraSparc T2+. We also present the first
study on tuning gyrokinetic particle-in-cell (PIC) algorithms for graphics pro-
cessors, using the NVIDIA C2050 (Fermi). Our work discusses several novel
optimization approaches for gyrokinetic PIC, including mixed-precision compu-
tation, particle binning and decomposition strategies, grid replication, SIMDized
atomic floating-point operations, and effective GPU texture memory utilization.
Overall, we achieve significant performance improvements of 1.3–4.7× on these
complex PIC kernels, despite the inherent challenges of data dependency and
locality. Our work also points to several architectural and programming fea-
tures that could significantly enhance PIC performance and productivity on
next-generation architectures.

Keywords: Particle-in-Cell, multicore, manycore, code optimization, graphic
processing units, Fermi

1. Introduction

The Particle-in-Cell (PIC) method [1, 2, 3] is a widely-used approach in
plasma physics simulations, where charged particles (ions and electrons) inter-
act with each other via a self-consistent grid-based field instead of direct binary

Preprint submitted to Parallel Computing November 30, 2010



interactions. Computationally, this has the important benefit of making the
operation count proportional to N instead of N2 (where N is the number of
charged particles). The Gyrokinetic Toroidal Code (GTC) [4, 5, 6] is a 3D PIC
application originally developed at the Princeton Plasma Physics Laboratory
to study plasma micro-turbulence in magnetic confinement fusion. Turbulence
is believed to be the main mechanism by which energy and particles are trans-
ported away from the hot plasma core in toroidal fusion devices called toka-
maks. An in-depth understanding of this process is of utmost importance for
the design of future experiments, since their performance and operation costs
are directly linked to energy losses. Unlike many other applications, GTC’s
reliance on scatter/gather operations makes it notoriously difficult to optimize
even in the sequential realm. In the shared memory environment, the resolution
of fine-grained (word-level) concurrent access to shared data places GTC at the
forefront of the programming challenges for the next decade.

Although GTC has been run at extremely high concurrencies, it has been
done so mostly via a weakly-scaling message passing approach. As the tech-
nological scaling trend that enabled such parallelism has shifted, we are now
forced to examine the challenges and solutions of GTC’s principal kernels in a
shared memory multicore environment to continue scaling performance. In this
article, we build on our prior GTC multicore study for charge deposition [7]
by significantly expanding the breadth of our research. First, we extend our
study to include GTC’s particle push phase. Push reads the electrostatic field
and accelerates particles accordingly. Second, we extend algorithms, optimiza-
tions, and analysis to NVIDIA’s Fermi GPU architecture. In order to gauge the
limitations of slow atomic operations and large cache working sets, we create
new mixed-precision (double+single or double+fixed) kernel implementations.
We also broaden our multicore optimization space to include per-socket repli-
cated grids, SIMDized floating-point atomic increment, and quantification of
the impact of particle binning. We quantify our contributions on AMD and
Intel’s latest quad-socket shared-memory multiprocessors (SMPs), including a
24-core Opteron (Istanbul) and 64-thread Xeon (Nehalem-EX), as well as a Sun
Niagara2 and a Tesla C2050 (Fermi) GPU. Moreover, we analyze the relative
advantage of this set of machines to their predecessors (Barcelona, Nehalem-EP,
and GT200).

Overall our work presents numerous node-level methodologies to significantly
improve performance of gyrokinetic simulations, while providing in-depth anal-
ysis into the trade-offs of emerging multi- and manycore designs for challenging
classes of numerical computations.

The rest of the paper is organized as follows. Section 2 provides a brief
introduction to the PIC kernels studied in this paper. Section 3 details the ma-
chines and problem configurations used throughout the paper. Sections 4 and 5
present our novel optimizations for the charge and push phases respectively. We
provide a detailed exploration and analysis of optimizations, architecture, and
problems in Section 6. Finally, we provide several key insights in Section 7.

2



2. Overview of GTC kernels

PIC methods consist of the following steps in the main time loop: charge
deposition on the grid (particle-grid interpolation or the “scatter” phase), field
solve (converting density to field), gathering of field elements to calculate the
force on each particle (“gather” phase), using that force to “push” each particle,
and (in the case of distributed memory) shifting particles to other processors
(“shift” phase). Overall, the charge deposition and gather/push phases account
for a substantial amount of the total computation time (up to 80-90%) of the
computational time. The parallel execution time depends on several factors,
including the number of particles per grid cell on each process core, the number
of parallel processors, and the architectural features of the parallel system [8,
9, 6]. Thus, understanding and optimizing these key routines on multi- and
manycore architectures is imperative in achieving high performance on today’s
petascale machines.

2.1. Grids and Particles
Before proceeding with a discussion of the computational kernels, it is im-

portant to understand the characteristics of GTC’s toroidal grid and charged
particles. We model the spatial density of charge and the spatial variation in
the resultant electric field via a 3D toroidal grid. Three coordinates (shown in
Figure 1) describe position in the torus: ζ (zeta, the position in the toroidal
direction), ψ (psi, the radial position within a poloidal plane), and θ (theta, the
position in the poloidal direction within a toroidal slice). The corresponding
grid dimensions are mzeta, mpsi, and mthetamax. The typical MPI decomposi-
tion results in each processor owning one poloidal plane and maintaining a copy
of the next processor’s plane. We maintain this approach in our experiments.

Unlike many other PIC codes, particles in GTC are not point objects. As the
ions gyrate around magnetic field lines, GTC approximates their average charge
distribution via four points on a ring with a gyroradius or the Larmor radius
(ρ) [10]; this radius varies with the local value of the externally-imposed mag-
netic field B. Figure 1 shows three example particles (green) and their charge
rings (red) in the bottom right sub-figure. The resultant memory references
(blue) are discussed below.

2.2. Charge Deposition (scatter)
In the scatter phase, particles, represented by a four-point approximation to

a charged ring, interpolate charge onto the charge grid (chargei). This process
requires streaming through a large array of particles and updating locations in
memory corresponding to the bounding boxes of the four points on the ring. As
there are four points on each ring and eight points in each 3D bounding box,
each particle update may access 32 unique grid memory locations (luckily, the
32 points are actually 8 stanzas of 4). Additionally, as seen in Table 1, for each
particle, this kernel must read 40 bytes, perform 180 floating point operations
(flops), and update 128 bytes. This works out to a low arithmetic intensity
(assuming perfect grid locality and no cache bypass) of 0.61 flops per byte.

3



mgrid = total number of points 

Figure 1: An illustration of the GTC’s 3D toroidal grid and the four-point gyrokinetic aver-
aging scheme employed in the charge deposition and push steps.

Note that the locality characteristics of this kernel are dependent on the order
in which particles are accessed and the location of particles in the local domain.
This in turn determines the locality in writes to the grid array. Enhancing
locality of grid updates is one of the key targets of our new optimizations. The
inability to maintain high grid locality will result in superfluous data brought
by cache misses due to large cache line granularity, and will drive arithmetic
intensity even lower.

In shared memory parallel programming models, the charge deposition phase
is further complicated by multiple threads concurrently accessing the same grid
points. Given the load-store nature of modern microprocessors, the correspond-
ing interpolation operation is not inherently atomic. As such, a data hazard
emerges and we must provide a synchronization mechanism to resolve it. Much
of the charge phase optimization work presented in this paper is focused on
efficiently resolving these data hazards.

2.3. Particle Push (gather)
In our experiments, we combine the nominally distinct “gather” and “push”

phases into a single phase that performs both operations. In this new “push”
phase, particles, still represented by a four-point approximation to a charged
ring, interpolate an electric force field (evector) and push themselves. Again,
this process requires streaming through a large array of particles, reading ran-
dom locations in memory corresponding to the bounding boxes of the four points
on the ring. As there are four points on each charge ring, eight points in each
bounding box, and a cartesian vector electric field, each update may access 96

4



Table 1: The computational characteristics of the charge deposition and push kernels (double
precision, mzeta = 1).

Single-iteration, Charge
per-particle counts Deposition

Push

Floating-point operations 180 450

Particle-array bytes read 40 184+24a

Particle-array bytes written 128 48+24a

Arithmetic intensity Upper Bound (flops/byte)b 0.61 1.61

Grid-array bytes read ≤256c + 64d ≤768c

Grid-array bytes written ≤256c –

aMemory references avoided with loop fusion optimization in the push phase (Section 5).
bTotal flops per total particle data accessed. The impact of cache misses on grid data and

superfluous data accesses are not considered.
cExact value is dependent on each particle’s Larmor radius.
dMemory references avoided with on-the-fly auxiliary array computation (Section 4).

unique grid memory locations. As seen in Table 1, this kernel (per point) reads
at least 184 bytes of particle data, performs 450 flops, and updates 48 bytes of
particle data. The arithmetic intensity of this kernel is higher than charge de-
position’s, but potentially irregular accesses to the electric field grid may hinder
performance.

Unlike the charge phase, the push phase exhibits no data hazards. As such,
it is somewhat simpler to optimize.

2.4. Crosscutting Overview
Table 1 presents the core characteristics of the charge and push phases.

Although both phases access all particles, they read and update different sets of
particle arrays. Arithmetic intensity is a useful metric in bounding performance
for bandwidth-constrained kernels. Here we calculate arithmetic intensity as
the ratio of flops to particle data accessed assuming a write-allocate cache. This
is clearly an upper bound, as it assumes accesses to the grid do not generate a
large number of capacity misses. Such an assumption is just for small grid sizes,
but is inappropriate when the grid size is large.

Push is more compute-intensive overall, but also accesses a larger volume
of particle data. Since the arithmetic intensity of push is higher than charge
deposition, we expect push to achieve a commensurately higher performance
rate. We also expect the performance of machines with a flop:byte ratio close to
a kernel’s arithmetic intensity to saturate after a certain parallel concurrency.

2.5. Related Work
PIC is a representative method from the larger class of particle-mesh meth-

ods. In addition to plasma physics (e.g., gyrokinetic PIC), particle-mesh meth-
ods find applications in astrophysics [2, 11], computational chemistry, fluid me-
chanics, and biology. VPIC [12], OSIRIS [13], UPIC [14], VORPAL [15], and

5



QuickPIC [16] are popular frameworks from diverse areas to express PIC com-
putations.

Prior work on performance tuning of PIC computations has mostly focused
on application-specific domain (mesh) decomposition and MPI-based paral-
lelization. The ordering of particles impacts the performance of several PIC
steps, including charge deposition and particle push. Bowers [17] and Marin et
al. [18] look at efficient particle sorting, as well as the performance impact of
sorting on execution time. A closely-related macro-scale parallelization issue is
particle load-balancing [19], and OhHelp [20] is a library for dynamic rebalanc-
ing of particles in large parallel PIC simulations. Koniges et al. [21] report
performance improvements by overlapping computation with inter-processor
communication for gyrokinetic PIC codes. The performance of the GTC MPI
implementation has been previously well-studied on several large-scale parallel
systems [8, 9, 6]. Prior research also examines expressing PIC computations via
different programming models [22, 23].

There has also been recent work on new multicore algorithms and opti-
mizations for different PIC steps. Stanchev et al. [24] investigate GPU-centric
optimization of the particle-to-grid interpolation step in PIC simulations with
rectilinear meshes. Decyk et al. [25] discuss porting a 2D electrostatic code
extracted from the UPIC framework to GPUs. In our prior work on multicore
optimizations for GTC’s charge deposition kernel, we introduce various grid
decomposition and synchronization strategies [7] that lead to a significant re-
duction in the overall memory footprint in comparison to the prior MPI-based
GTC implementation.

3. Experimental Setup

This section describes the extracted benchmarks, problems sizes, and exper-
imental platforms. Additionally, we discuss the dual-socket machines used in
our previous studies that are reused here as a baseline.

3.1. GTC Standalone Benchmarks and Problem Instances
Our study analyzes multicore performance of the charge deposition and push

kernels by first extracting them from the GTC Fortran/MPI version and cre-
ating stand-alone benchmark routines. The setup, data representation, and
computation performed are identical to the reference Fortran code.

There are several input parameters in GTC to describe a simulation. The
ones most relevant to the examined kernels are the size of the discretized toroidal
grid, the total number of particles, and the Larmor radius distribution of the
particles for four-point gyrokinetic averaging. Often one replaces the number of
particles with the average particle density as measured in the ratio of particles
to grid points (labeled as micell). As our standalone benchmarks are designed
to be representative of MPI simulations using a 1D decomposition, we mandate
mzeta = 1 (i.e., each process owns one poloidal plane and replicates the next).
In order to demonstrate the viability of our optimizations across a wide variety

6



Table 2: The GTC experimental settings. mzeta = 1 implies each process operates on one
poloidal plane.

Grid Size A B C D

mzeta 1 1 1 1
mpsi 90 192 384 768

mthetamax 640 1408 2816 5632

mgrid (grid points per plane) 32449 151161 602695 2406883
chargei grid (MB) 0.50 2.31 9.20 36.72
evector grid (MB) 1.49 6.92 27.59 110.18

Total Particles (micell=5) 0.16M 0.76M 3M 12M
Total Particles (micell=100) 3M 15M 60M 241M

of potential simulations, we explore four different grid problem sizes, labeled
A, B, C, D, and vary the particle density from 5 to 100. Therefore, a “C20”
problem — often used in experiments throughout this paper — uses the class
C grid size with on average 20 particles per grid point. This simulation size
corresponds to the JET tokamak, the largest device currently in operation [26].
Table 2 lists these settings, and these are similar to ones used in our prior
experimental study [7], as well as GTC production runs [6]. All experiments
run in this paper use the more challenging strong scaling regime. For all four
GTC problem sizes used in this study, the maximum Larmor radius (a function
of several other GTC parameters) corresponds to roughly mpsi/16. The radii
are chosen from a uniform random distribution.

3.2. Architectures
In this section, we describe the seven platforms used to conduct our study;

pertinent architectural details are shown in Table 3.
AMD Opterons: In this study we utilized both a four-socket, six-core Opteron
8431 (Istanbul) and a dual-socket, quad-core Opteron 2356 (Barcelona) [27]. In
both cases, the Opteron architecture uses a semi-exclusive L3 cache resulting
in somewhat larger attainable cache working sets than would be attainable via
inclusive caches. To mitigate snoop effects and maximize the effective memory
bandwidth, Istanbul uses 1 MB of each 6 MB cache for HT Assist (a snoop
filter). The snoop filter enables higher bandwidth on large multi-socket SMPs.
In many ways, this four-socket, 6-core Istanbul systems is an excellent proxy for
the recently released dual-socket, 12-core Magny-Cours (Opteron 6100 series)
which integrates two nearly identical chips on a multi-chip module.

As shown in Table 4, we used the GNU C compiler v4.4.1 to build our bench-
marks on both the Opteron systems. Both the charge deposition and push ker-
nels were initially implemented using the POSIX threads API (Pthreads). We
further implemented the push kernel in OpenMP as well to take advantage of
OpenMP’s various loop-scheduling schemes (static, dynamic, guided, etc.). All
the results presented in this paper for the push kernel are with the OpenMP
implementation. Further, we found that the performance of the Pthreads and

7



Table 3: Architectural details by platform. Note: with respect to multithreading on a GPU, we
equate “threads” to the number of concurrent CUDA thread blocks per SM (core). Most ex-
periments in this paper were run on the systems in the top half of this table. ∗Pin Bandwidth,
†STREAM TRIAD Bandwidth, using cache bypass where possible, “MT” is multithreaded,
“SS” is superscalar.

AMD Intel Sun NVIDIA
Core Architecture Opteron Nehalem Niagara2 GF100

MT(2) MT(8) MT(48)
Type SS SS dual-issue dual-issue

out-of-order out-of-order in-order in-order
Clock (GHz) 2.4 2.27 1.16 1.15
DP GFlop/s 9.6 9.1 1.16 36.8

LS/L1D$/L2D$ (KB) –/64/512 –/32/256 –/8/– 16/48/–

Opteron Xeon UltraSparc Tesla
8431 X7560 T2+ C2050

System Architecture (Istanbul) (Nehalem-EX) (Niagara2) (Fermi)

sockets×cores×threads 4×6×1 4×8×2 2×8×8 1×14×48
Primary memory

parallelism paradigm
HW prefetch HW prefetch Multithreading Multithreading

Last-level cache 5 MB/chip 24 MB/chip 4 MB/chip 768 KB
(aggregate SMP$) (33.5 MB) (96 MB) (8 MB)
DRAM Capacity 64 GB 64 GB 32 GB 3 GB

DP GFlop/s 230.4 290.1 18.7 515
DRAM Bandwidth∗ 51.2 GB/s 136.5 GB/s 64 GB/s (2r:1w) 128 GB/s (ECC)

STREAM Bandwidth† 42 GB/s 34 GB/s 24 GB/s 79 GB/s

Flop:Byte ratio† 5.5 8.5 0.78 6.51

AMD Intel NVIDIA
Core Architecture Opteron Nehalem GT200

MT(2) MT(8)
Type SS SS dual-issue

out-of-order out-of-order in-order
Clock (GHz) 2.30 2.66 1.30
DP GFlop/s 9.2 10.7 2.6

LS/L1D$/L2D$ (KB) –/64/512 –/32/256 16/24(T$)/–

Opteron Xeon Quadro
2356 X5550 FX 5800

System Architecture (Barcelona) (Nehalem-EP) (GT200)

sockets×cores×threads 2×4×1 2×4×2 1×30×8
Primary memory

parallelism paradigm
HW prefetch HW prefetch Multithreading

Last-level cache 2 MB/chip 8 MB/chip 256 KB (T$)
(aggregate SMP$) (4.25 MB) (16 MB)
DRAM Capacity 16 GB 12 GB 4 GB

DP GFlop/s 73.6 85.3 78
DRAM Bandwidth∗ 21.3 GB/s 51.2 GB/s 102 GB/s

STREAM Bandwidth† 14.6 GB/s 32 GB/s 73 GB/s

Flop:Byte ratio† 5.0 2.66 1.07

OpenMP push kernel implementations with static loop scheduling (assigning
equal-sized partitions of the particle array to each thread) were comparable.
We chose the GNU compiler for the Opterons, since its OpenMP implemen-
tation provides the GOMP AFFINITY environment variable to control thread
pinning in OpenMP routines. To gauge the impact of alternate compilers and

8



Table 4: Programming model and software setup by platform.

Software Setup AMD Intel Sun NVIDIA

Threading Pthreads (charge) Pthreads (charge) Pthreads (charge) CUDA (charge &
Model OpenMP (push) OpenMP (push) OpenMP (push) push)

Compiler, GNU C Intel C Sun Studio C CUDA C SDK
SDK, Drivers v4.4.1 v10.1 v12

optimizations, we built the charge deposition kernel with the Intel C compiler
and a selected hand-picked set of optimization flags. We observed that the par-
allel performance numbers (in GFlop/s) achieved for the C20 problem size using
the GNU and Intel compilers were comparable on both the systems. In future
work, we will attempt to automate the process of picking the best-performing
compiler and appropriate optimization flags for a given problem instance.
Intel Nehalems: The recently released Nehalem-EX [28] is the latest enhance-
ment to the Intel “Core” architecture, and represents a dramatic departure from
Intel’s previous large multisocket designs. Paralleling our analysis of AMD’s
designs, we include both a quad-socket, octal-core Xeon 7560 (Nehalem-EX),
and a dual-socket, quad-core Xeon X5550 (Nehalem-EP). Unlike the dual-socket
Nehalem-EP which integrated three DDR3 memory controllers directly on-chip,
Nehalem-EX has four high-speed serial links to off-chip scalable memory buffers
(SMB) which provide the scalability benefits of FBDIMM at the cost of com-
modity DDR. In our experiments, the Beckton system was equipped with only
two SMB’s per chip. However, concurrent experiments showed that increasing
the number of SMB’s per chip to four would not improve per-socket perfor-
mance. Nehalem-EX is also unique in its last-level cache architecture. Cores
are connected to cache banks via a ring. This allows for parallel cache refer-
ences, but may also result in non-uniform cache access times. We believe the
increased cache performance can strongly affect application performance.

On paper, the Nehalem-EX machine has 6× the cache, 4× the core count,
and 2.7× the bandwidth of the Nehalem-EP system. In practice, the STREAM
bandwidth was virtually identical. Through the two AMD and two Intel ar-
chitectures, we gain insight into the relative strengths and weaknesses of the
respective designs, as well as the future scalability of multicore SMPs.

We use the Intel C compiler v10.1 to build both the kernels on the Intel
systems. The push phase uses Intel’s OpenMP and the KMP AFFINITY en-
vironment variable for controlling thread placement. We also found that, for
the C20 problem size, the Nehalem-EX Intel compiler build for a tuned charge
deposition implementation was around 1.2× faster than the executable built
with the GNU C compiler (v4.1.2). Hence we use the Intel compiler on both
the systems.
Sun UltraSparc T2+ (Niagara2): The Sun “UltraSparc T2 Plus” [29],
a dual-socket × 8-core Niagara2 SMP, presents an interesting departure from
mainstream x86 multicore processor design as it relies heavily on 8-way per core
multithreading to hide latency. Moreover, both the raw per-core performance
and available cache size per core is much lower than their x86 competitors. We

9



view this machine’s reliance on massive thread parallelism as a vanguard for
future architectural exploration as it tests the limits of our algorithms.

Niagara2 has no hardware prefetching, and software prefetching only places
data in the L2 cache. Multithreading may hide instruction and cache latency,
but may not fully hide DRAM latency. Our machine is clocked at 1.16 GHz,
does not implement SIMD, but has an aggregate 64 GB/s of DRAM bandwidth
in the usual 2:1 read:write ratio associated with FBDIMM. As such, it has
significantly more memory bandwidth than either Barcelona or Nehalem, but
has less than a quarter the peak flop rate. With 128 hardware thread contexts,
this Niagara2 system poses parallelization challenges that we do not encounter
in the Gainestown and Barcelona systems.
NVIDIA GPUs: Paralleling our x86 exploration, in this paper we optimize
code for NVIDIA’s latest GPU (a Fermi-based Tesla C2050) [30] and compare
the results to their previous generation (a GT200-based Quadro FX 5800) [31].
Both GPUs are designed primarily for high-performance 3D graphics (and sim-
ilar applications) and are available only as discrete PCIe graphics cards. While
the Quadro FX 5800 used a 240-“core” (30 streaming multiprocessors, or SMs)
design, Fermi increases the core count to 448 and reorganizes them into SM’s of
32 cores. Additionally, Fermi includes three other major improvements. First,
Fermi’s theoretical double-precision performance is half its single-precision (in-
stead of the 1:8 ratio associated with the GT200). Second, Fermi includes
non-coherent L1 and L2 caches (instead of the GT200’s texture cache). Finally,
Fermi is the first NVIDIA GPU to support ECC DRAM. All experiments in
this paper were conducted with ECC-enabled. We observe that Fermi’s ECC-
enabled streaming bandwidth is not substantially higher than the GT200’s. Like
the GT200, Fermi preserves CUDA’s shared memory concept, but augments it
by allowing the programmer to partition each SM’s 64 KB of memory among
shared and cache. This facilitates programming, as it mitigates the onus on the
programmer to find and exploit spatial and temporal locality. However, it also
increases the tuning and performance optimization space.

GPUs are also of interest in that they implement atomic operations at the
memory controllers rather than in the L1 caches. As such, they provide a
testbed for evaluating the benefits of supporting one-sided atomic operations
(e.g.increment), rather than emulating them with a compare-and-swap (CAS)
operation. One expects the one-sided approach to be more efficient, as it allows
injection of more parallelism and is not impaired by high on-chip latencies.

There is only 3 GB of fast (device) memory on the C2050. Unfortunately this
is insufficient to encapsulate every problem instance discussed in the previous
section. Although the impact of the resultant host-GPU transfer time is not
examined in this study, our previous work [32] has examined this potentially
significant source of performance overhead.

4. Charge Deposition Phase Optimization

Optimizing the charge deposition kernel for multicore involves balancing
three contending forces: improving locality (spatial and temporal) of grid ac-

10



cesses, load balancing work (i.e., charge updates) among threads, and efficiently
resolving fine-grained (word-sized) data dependencies. Additionally, we explore
mixed-precision implementations (64b computations + 32b charge grid – or –
64b computations + fixed-point charge grid) in order to examine the impacts
of a reduced cache working set and faster integer atomic operations.

Our prior work [7] began with the MPI implementation of this kernel where
the grid was fully replicated, and presented several different memory-efficient
shared-memory threaded variants for dual-socket multicore systems. These ap-
proaches were all based on radially partitioning and only partially replicating
the charge grid to ensure that the memory usage remains constant as thread-
level parallelism increases. This study also quantified the benefits of using tuned
atomics versus Pthreads locks, and the effect of low-level optimizations such as
NUMA-aware initialization and thread pinning.

This paper builds on the previous study and explores additional multicore
optimizations, as well as new approaches for the Fermi GPU. We observe that
at a high-level, there is substantial overlap between CPU and GPU optimiza-
tions; however, their optimal parameterizations may be different. Additionally,
some optimizations are prohibitively costly given Fermi’s massive parallelism
and limited memory capacity, and others (like NUMA) are unnecessary. Con-
versely, the GPU’s single instruction multiple thread model (SIMT) necessitates
vectorization. Note that although most optimizations can be implemented and
benchmarked independently, our work examines the impact of incrementally
laying optimizations techniques.

4.1. Parallelization
The charge deposition phase is parallelized across all architectures by par-

titioning the particle array (and the associated loop iterations) among threads.
The remainder of this section primarily discusses how to efficiently resolve the
resultant deluge of data hazards. Our CPU Pthreads implementation performs
a static partitioning of the particle array. Further, threads are pinned to cores
and arrays are initialized in a NUMA-aware fashion.

On the GPU, parallelization is more complex due to the explicit hierarchical
nature of CUDA programming. The number of particles per CUDA thread and
the number of CUDA threads per CUDA thread block must be selected (the
total number of thread blocks is based on the number of particles). We tune
the implementation by varying these parameters and results indicate that the
optimal parameter settings are dependent on the problem size. For example,
in case of C20 on Fermi, the best performance was achieved with the number
of particles per thread set to 99, the number of threads per thread block set to
256, and 476 thread blocks. Future work will examine modeling techniques to
determine optimal parameters for a given problem configuration.

A second challenge on the GPU is to ensure that the parallelization strategy
provides (or facilitates) memory coalescing. By choosing a linear mapping of
particles to threads (modulo 32), we guarantee memory coalescing for parti-
cle reads and writes. Unfortunately, the random gather/scatter nature of this
kernel makes coalescing for grid updates challenging. We explore a number of

11



techniques, including GPU cooperative threading (see Section 4.6), to resolve
this.

4.2. Locality-Improving Optimizations
Particle Binning. Particle locality is paramount to the performance of charge
deposition, as it ensures that each thread’s cache working set of grid points (a
thin annulus) is minimized. Furthermore, the radial grid replication strategies
discussed later in this section will be of maximum benefit when particles are pro-
cessed roughly in the order of their radial grid position (i.e., radially sorted).
Options range from ordering particles via a full sort (sorting by radial coor-
dinate, then theta, and then zeta coordinates) to simple binning in the radial
direction. It is also reasonable to assume that binning is not required for every
simulation time step, as the particle position variation in the radial direction is
considerably less than the variation in the θ and ζ directions.

In this paper, we gauge the impact of particle locality by implementing a
fast, shared-memory parallel, out-of-place binning routine. Our approach reuses
auxiliary particle arrays that are unused in the charge deposition phase, and
thus does not incur an additional memory overhead. Additionally, our work
also explores binning in the θ direction, which would further improve locality
by constraining particles to small sector of an annulus. Note, however, that
particle binning just mitigates the locality problem in charge deposition, as
the four-point gyro-averaging scheme still leads to irregular and unconstrained
memory accesses. By constraining the centers of the charge rings to an annulus
(with radial binning) or sector of an annulus (with radial and theta binning),
we hope to similarly constrain the four points on the perimeter of the circle.

Local/on-the-fly computation of auxiliary grid arrays. The charge deposition
phase utilizes about 120 flops to determine the bounding box for each particle.
In addition to memory accesses that stream through the particle arrays, this
step involves irregular lookups to two different auxiliary grid arrays used for
four-point gyro-averaging. These arrays are the size of the charge grid, and
thus entail similar cache working set sizes and random access penalties. To
mitigate this, we create a version of charge deposition that eliminates accesses
to these auxiliary arrays, but instead redundantly recomputes these values for
every particle. In effect, increased computation is traded for a reduced cache
working set (see Table 1). Such strategies are generally viable for a range of
large grid sizes, low particle densities, and machine flop:byte balances when the
savings in cache misses exceed the cost of about 20 flops (which include two
instances of transcendental functions).

4.3. Synchronization Optimizations
In a shared-memory implementation of the charge deposition phase, the

particle array is partitioned but the charge grid is shared. Although this dra-
matically reduces the memory requirements compared to the MPI version, it
necessitates fine-grained (word-level) data dependency resolution, as any thread

12



Coarse-Grained Locking 
(a) 

SIMD Atomics 
(c) 

Lock all theta/zeta 
for a given psi 

Atomically increment 
two (64b) or four (32b) 

grid points 

Atomics 
(b) 

Atomically increment 
one grid point 

Figure 2: Synchronization Strategies.

can increment any location in the shared grid at any time. As a result, in our
multicore processors, up to 128 threads will contend for access, and on the GPUs
thousands of threads can contend for access. In this section, we discuss the three
strategies used in this paper to resolve data dependencies and illustrate them
in Figure 2.

Coarse-Grained Locks. The simplest approach is to use a lock variable for each
ring (all θ and ζ for a given ψ) in the charge grid. To perform an update, a
thread must acquire the lock, update the four points on the ring, and then release
the lock. Unfortunately, the Pthreads lock mechanism requires a substantial
overhead, and in this approach the attainable parallel concurrency is limited by
the number of locks (ψ, or 90-way parallelism on the smallest problem). As the
GPU threading model forbids locks, they were not implemented on Fermi.

Atomics. In our prior paper [7], we exploited the x86 cmpxchg instruction cou-
pled with custom inline assembly code to perform atomic floating-point incre-
ments. This work extends this methodology to both single-precision via a 32b
compare-and-swap (CAS), and to SIMD (via the cmpxchg16B instruction). The
SIMD operation atomically increments two (or four) contiguous addresses by two
(or four) unique floating-point numbers. As GTC always updates four contigu-
ous memory locations, these SIMD atomic increments minimize the atomic over-
head per floating-point increment. We can perform atomic SIMD floating-point
increment on 2×32b, 4×32b (8B or 16B aligned), or 2×64b (16B aligned) SIMD
vectors. Unfortunately, although the current version of GPUs implement inte-
ger and single-precision atomic increment, they do not support double-precision
floating-point atomic increment. We may however leverage intrinsics within
CUDA to implement a CAS-based emulation of double-precision floating-point
increment. Unlike CPUs, the CAS operation is performed at the memory con-
trollers rather than in the cache — incurring much higher latency and on-chip
bandwidth due to the round trip nature of CAS.

Sorting. In addition to CAS-based atomics, there is an alternate pure double-
precision GPU approach: We can implement a data-parallel solution in which
we produce a list of charge updates from particle data (embarrassingly par-
allel), sort this list (we use an optimized radix sort [33] using the routine

13



Figure 3: Grid Replication Strategies.

thrust::sort by key() provided by Thrust template library [34], and finally
update the grid after a segmented scan. Although sorting is efficiently par-
allelized and does not require locks or atomics, it makes the overall charge
deposition step work-inefficient. It also requires far more kernel invocations and
increased memory requirements (an additional 256 bytes per particle) — poten-
tially resulting in lower performance. In fact, for even the modest C20 problem,
the sheer number of updates is so large that the entire list of charge updates
cannot be generated on the GPU. We stream batches of particle data, generate
partial lists, sort the lists, and then apply the charge updates.

4.4. Partial Grid Replication Optimizations
Although a shared grid certainly reduces memory capacity requirements, it

requires costly locks or atomic updates. To mitigate these performance impedi-
ments as well as locality and inter-socket cache line thrashing, we explore three
(partial) grid replication strategies shown in Figure 3.

None (Shared Grid). The simplest approach is to perform no replication, uti-
lizing one large shared grid. Binning of particles limits each socket’s updates
to a quarter (or half for Niagara2) of the grid. Unfortunately this approach
requires every thread to potentially contend with all other threads for updates.
Moreover, if contending threads are located on different sockets it may result in
cache line thrashing.

Partitioned Grid with Ghost Surfaces (PG). To mitigate the contention chal-
lenges, we create an auxiliary grid that is partitioned in ψ (creating overlapping
annuli) among threads. The degree of overlap is dictated by the Larmor radius.
Each thread may either safely update its own partition free of synchronization
and locality challenges or update the shared grid and contend with locality,
synchronization, and thrashing. At the end of the charge phase, all partitions
are reduced to a single shared grid. This was consistently the best-performing
grid replication strategy in our prior work [7].

14



Replicated Partitioned Grid (RPG). Unfortunately, high parallelization (greater
than 16-way) reduces the size of each thread’s partition and results in many more
updates to the shared grid. We see this pushed to the extreme on Nehalem-
EX (64 threads) and Niagara2 (128 threads). Our new work thus extends the
partitioned grid approach by creating one (or more) auxiliary grids per socket.
By varying the number of replicas, we may limit the parallelism within a grid
to 16-way (or lower). In effect, each group of 16 threads shares a replica of the
full grid and each thread in the group creates a partitioned grid replica of a
subset of that grid. One can visualize this approach by viewing Figure 3(a) as
private to each socket, and Figure 3(b) as a replica of each thread within that
socket. As such, the (grid) working set per thread is larger than what might
have been possible if the pure partitioned grid approach were parallelized among
128 threads.

The reduction for this strategy is more complicated, as P/16 replicas of
the full grid must be merged with P larger private partitioned grid replicas.
As a result, this approach improves load balancing, synchronization, locality,
and thrashing at the expense of increased cache capacity and reduction time.
Importantly, we still classify this approach as memory-efficient, as the number
of replicas will not scale proportional to the thread count.

Table 5 estimates the cache working set size as a function of grid partitioning
and thread-level parallelism within a socket for a generic 4-socket SMP, assuming
radially-binned initial particle positions. Note that as we stream through the
particle arrays without reuse, the particle arrays do not necessitate significant
cache usage. As we move from a shared grid, to partitioned grid, and finally
to a replica strategy (to mitigate inter-socket cache line thrashing), the cache
working set size grows considerably. Our empirical tuning allows us to weigh
the benefits of locality and load balancing against the impact from contention
and thrashing.

Table 5: Cache working set sizes per socket (in MB) for 4-way SMPs.

Grid Size A B C D

Shared Grid (4 sockets) 0.22 1.03 4.11 16.4
Partitioned Grid (>16 threads) 0.60 2.77 11.0 43.9
Replica + Partitioned (4×6) 0.92 4.28 17.1 68.2
Replica + Partitioned (4×16) 1.75 8.14 32.4 129.6

4.5. Mixed-precision
The presence of single-precision and integer atomic increments in GPU mem-

ory controllers coupled with the desire to gauge the impact of improved locality
motivated us to take the novel approach of utilizing mixed-precision. Mixed-
precision implementations promise improved GPU performance by leveraging
GPUs support for one-sided 32b atomic increment operations instead of iter-
ative CAS-based solutions. In our mixed-precision implementation, all data

15



structures except for a temporary copy of the charge grid are 64b double preci-
sion; a temporary charge grid in a 32b (fixed or floating-point) representation is
created. The charge deposition computation proceeds normally in double pre-
cision, except that charge grid updates are first down-sampled to 32 bits and
the temporary 32b (fixed or floating-point) grid is atomically updated. After all
charge updates are complete, the 32b temporary charge grid is converted to its
full 64b double precision representation. Such a method presumes the cost of
conversion is offset by the increased performance when incrementing the grid.

In this work, we explore both a 32b floating-point and a 32b (8.24) fixed
point representation. The latter transforms floating-point increments into inte-
ger increments (in millionths of a unit charge). One should remember that the
number of particles (and thus the number of updates) per grid point is relatively
small (less than 100), there is no need for a large dynamic range as each update
may not deposit more than 1.0 units of charge.

To determine the impact of mixed precision in the charge accumulation
phase, we carried out several simulations with the full GTC application, with
and without mixed precision and for the exact same set of parameters, includ-
ing identical initial particle positions and velocities. We used grid size A and 3
different numbers of particles per cell, specifically 10, 40, and 80. We observed
that both the linear stage, during which the turbulence develops, and the fi-
nal steady-state level are nearly identical for both the mixed precision and full
double precision simulations, and for all 3 numbers of particles per cell. Only
the saturation phase and the full non-linear phase preceding the steady-state
show a small variation in the dynamics, and this variation gets smaller as the
number of particles increases. Initializing the particles with different random
positions and velocities can produce the same variation in the dynamics, and so
we conclude that it is not statistically relevant. Comparing the results closely,
we notice that using a single-precision array for the charge accumulation has
the same effect as adding a small amount of smoothing to the grid density. The
PIC method always includes some smoothing of the grid-based fields in order to
minimize the fluctuations at the scale of the grid spacing [3]. These fluctuations
are mainly due to the finite number of particles used for sampling the phase
space, which is usually referred to as discrete particle noise. The smoothing
affects only the shortest wavelengths in the system and allows for the use of a
smaller number of particles, since the level of short-scale fluctuations decrease
as the number of particles increases (∝ 1/

√
N).

The use of mixed precision is thus physically justified by the fact that it does
not affect the longer wavelengths being generated in the system by instabilities
resulting from the collective motion of a much larger number of particles. The
production GTC code used to be run entirely in single precision when only the
ions were treated explicitly and the required number of time steps was relatively
small. We thus employ this mixed-precision strategy for both GPU and CPU
platforms.

16



4.6. Low-level Optimizations
Structure of Arrays. As only a subset of each particle’s data is used in each
phase, we represent the particle arrays in a structure-of-arrays (SOA) layout.
Doing so maximizes spatial locality on streaming accesses. This optimization is
employed on both CPUs and GPUs.

CPU threaded Implementations. Our new Pthreads codes include data reorga-
nization and loop fusion optimizations discussed in our earlier work [7]. We
perform a “NUMA-aware” initialization of the particle and grid arrays by ex-
plicitly pinning threads to cores, and relying on the first-touch page allocation
policy for exploiting thread-memory affinity. Affinity is exploited in the charge
deposition computation by pinning threads to cores, and employing a static
thread scheduling scheme. Further, we use SSE2 intrinsics on the x86 systems
for charge density increments to the thread-local grids in PG approaches.

GPU cooperative threading. GPUs operate best when memory transactions can
be coalesced. Nominally, that happens when threadi accesses elementi (modulo
32). Unfortunately, particle-to-grid interpolation dramatically complicates this.
Although it is quite easy to assign successive threads to successive particles and
thereby attain memory coalescing on reads from a structure of arrays repre-
sentation of particles, the resultant updates to the grid will not be coalesced
as there is no reason to expect particlei to update a grid location adjacent to
that updated by particlei+1. To rectify this, we introduce a cooperative model
in which threads, after reading in particle data and performing interpolation
locally, exchange data through shared memory and then update grid points.
Although perfect memory coalescing is not possible on the grid accesses, we can
ensure that threads i...i + 3 access grid elements j...j + 3 and thereby attain
some measure of spatial locality. The limits on coalescing are a result of the
2× 2× 2 bounding box interpolation method used by GTC.

An overall summary of optimizations by type and architecture is presented
in Table 6.

5. Particle Push Phase Optimization

Optimizing the push deposition kernel for multicore involves balancing two
main forces: improving locality (spatial and temporal) of grid accesses, and
load balancing work among threads. Unlike the charge deposition phase, there
are no fine-grained data dependencies. We build on our knowledge gained in
charge and explore additional multicore and GPU optimizations. At a high-level,
there remain a number of similarities between CPU and GPU optimizations.
Intriguingly, some graphics hardware features like texture caches synergize well
with this interpolation.

17



Table 6: Charge Deposition Optimizations.

x86 Niagara2 GPU’s

Particle Binning X X X
On-the-fly computation of auxiliaries X X X

Coarse Locks X X
Scalar Atomics X X X
SIMD Atomics X

Shared Grid X X X
Partitioned Grid X X

Replicated Partitioned Grid X X

Mixed Precision (+32b Single-Precision) X X X
Mixed Precision (+32b Fixed-Point) X
Mixed Precision (+64b Fixed-Point) X

5.1. Parallelization
Once again, we simply divide the loop over the particle array among threads.

On the CPUs, we report performance for implementations with OpenMP-based
threading. To ensure optimal performance, we pin threads and initialize arrays
in a NUMA-aware fashion.

Once again, the GPU implementation was far more complex. By choosing
a linear mapping (modulo 64) of particles to threads, we guarantee memory
coalescing for particle reads and writes. Unfortunately, like charge, the random
gather nature of this kernel makes explicit management of memory coalescing
for field reads a non-profitable optimization. We explored moving blocks of
the field grid to CUDA shared memory, but with only 12 memory locations to
coalesce, under-utilized threads limit performance. Finally, we explored differ-
ent configurations of particles per CUDA thread (parallelization granularity)
and CUDA threads per thread block. We found the optimal parameters to be
1 particle per thread and 64 threads per thread block.

5.2. Locality-Improving Optimizations
Eliciting good spatial and temporal locality from the underlying memory

architecture is the key push phase challenge. The push phase baseline version is
comprised of two loops. The first gathers data from the field grid, storing into
an array proportional to the number of particles. The second loops reads the
gathered data and updates the corresponding particles. As the gathered field
data is never used again, elimination these auxiliary arrays by fusing the two
loops reduces the cache working set and therefore eliminates capacity misses.
This optimization is employed on both CPUs and GPUs.

As particles are radially sorted (the gather randomness is constrained to a
small range in ψ, but encompasses all θ), the resultant data working size per
thread is relatively small (about 12% of grid size). For class A problems this is
less than 180 KB/thread, but it grows quickly reaching 13 MB/thread for the

18



class D problem. As threads are packed densely and there is no replication of
the grid in the push phase, their cache working sets are actually overlapping.
Thus, for the four-socket SMPs, the cache working set in the last level cache
is roughly 25% of grid size, regardless of the thread parallelism. As such, we
expect good locality on the CPUs up to a key problem size (depending on the
machine’s cache), beyond which performance will fall off due to cache misses.

On Fermi, reads from device memory are now cached. However, the cache
is only 768 KB and thus incapable of capturing even the class A problem. As
there is a 2D locality to interpolation, we use the texture language attribute to
force reads to pass through the multilevel texture cache. The GT200 and C2050
(Fermi) do not support double-precision data handling by the texture memory.
Luckily, unlike charge deposition where updates must be atomic, the high and
low 32 bits can be read sequentially and then combined into a 64b double-
precision number using hiloint2double. Although the entire grid cannot
fit into the texture cache, this nonetheless increases the benefits of temporal
locality.

5.3. Load-Balancing Optimizations
On profiling the CPU code, a minor load imbalance issue was observed when

using a static particle partitioning. Due to their slightly larger cache working
sets, threads that are assigned particles at the outer torus periphery take longer
to finish. We alleviate this imbalance by employing OpenMP’s guided loop
scheduling scheme, while retaining the initial NUMA-aware allocation.

Load balancing in GPUs is done implicitly by the thread block spawner.
A typical GPU program is composed of many fine-grained threads that are
grouped into blocks. In our implementation, each thread does the computation
for one particle, and a thread block is chosen to be 64 threads. The number of
blocks ranges from a few thousands (grid size A, micell =5) to millions (grid
size D). As the number of GPU multiprocessor (14 in Tesla C2050) is much
smaller than the number of blocks, load-balancing can easily be achieved by the
spawner by incrementally assigning thread blocks to free multiprocessors.

5.4. Low-level Optimizations
Structure of Arrays. Similar to the charge deposition kernel, we represent the
particle arrays in an SOA layout to maximize spatial locality.

CPU threaded Implementations. As mentioned previously, we perform a NUMA-
aware memory initialization of particle and grid arrays and also pin threads to
cores using OpenMP environment variables. In future work, we will utilize SSE
intrinsics to vectorize amenable parts of the push kernel.

GPU. There were a number of GPU features exploited to further improve per-
formance. First, we replaced conditional statements that often lead to divergent
execution with code amenable to predicated execution. Next, in addition to the
SOA data layout, the array alignment was modified and padded to facilitate co-
alesced accesses to the memory. Shared memory is now used to hold data with

19



temporal locality, especially those carried across fused loops. We also moved
certain runtime constants into the GPUs special constant memory. On GPUs,
declaring data as texture (read only) allows caching them without coherency
concerns. Experiments showed that texture declaration improved performance
for small dataset (grid size A) by up to 53%, while the benefit shrank to 6% for
grid size D.

Finally, the Fermi GPU architecture allows users to configure the fraction
of each SM’s memory dedicated for shared memory and L1 cache. Preferring
larger L1 configuration yielded better performance only for large dataset. In
general the interaction of these cache configurations and the dataset sizes is
profound on performance.

6. Experimental Results and Analysis

In this section, we present the results of our performance optimization efforts
and provide a detailed performance analysis of both GTC’s charge deposition
and particle push phases.

6.1. Charge Deposition Phase
Optimization of the charge deposition phase must resolve two fundamental

challenges: resolution of data dependencies and management of data locality.
In this section, we proceed through our set of optimizations quantifying and
analyzing their benefits.

6.1.1. Impact of Locality Optimizations
In a näıve implementation, the particles are randomly distributed through-

out the full grid. This necessitates a per-socket cache working set equal to
the full grid (almost 10 MB for Class C) and results in substantial inter-socket
cache line thrashing. To mitigate this, the particles can be periodically binned,
so that subsets of the particle array are contained in a corresponding subset
of the charge grid. Two versions of this approach are explored. In the first,
particles are sorted based on their psi (radial) coordinate. While this ensures
that all particles with the same radial coordinate are contiguous in memory,
the charge updates are distributed in a annulus around this radial coordinate
due to the variation in the particle Larmor radius. As a result, we reduce the
cache working set size from the full grid to roughly 1/8th of it. This can then
be improved upon by sorting particles based on their theta coordinate.

With particles now ordered first their radial and then their angular coordi-
nates, the working set size has been reduced to roughly 1/64th of the full grid.
Effectively, the Larmor radius defines a moving cuboid as one streams through
particles.

Figure 4 quantifies this benefit and cost on the C20 problem configuration
for each architecture by examining three cases: no binning, radially binning, ra-
dial and theta binning. Moreover, the asymptotic limit can be estimated if we
perform one bin (total) rather than bin every time step. Results show that on

20



Figure 4: SMP/GPU Charge deposition performance as a function of particle locality opti-
mization. Performance is shown for the partitioned grid with ghost flux surfaces and atomic
increments version for the C20 (grid=C, density=20) problem.

Istanbul and Nehalem-EX, the performance benefit is substantial, as the inabil-
ity to maintain a small cache working set dramatically impedes performance.
Moreover, the time required for such a bin is not negligible, as evidenced by the
amortized bin time performance. If particles move sufficiently slowly (or if the
bin operation is included in preparation for inter-node MPI communication),
this asymptotic limit can be attained.

Fermi presents a more nuanced effect. The time required to sort particles
significantly exceeds any benefits gained from sorting. When this time is amor-
tized (lighter bars), there is a moderate performance boost. One can surmise
the small GPU caches cannot capture the requisite temporal locality in either
scenario. As such, the performance benefit is negligible. All subsequent charts
leverage this insight and assume radial binning has been performed on both
CPUs and GPUs.

6.1.2. Benefit of Synchronization and Data Replication Optimization
Our grid replication strategies constrain the complexity of the data depen-

dency problem, while we improve the efficiency of data dependency resolution by
selecting the architecturally-optimal synchronization mechanism. By examining
a mixed-precision implementation, we reduce cache working sets and, in the case
of GPUs, gauge the potential benefit of hardware support for atomic double-
precision floating-point increment. To that end, Figure 5(a) shows double-
precision performance as a function of grid replication, optimization, and use of
mixed-precision on each architecture for the C20 problem. The baseline CPU
implementation utilizes a double-precision shared grid with coarse-grained radial
locks for update synchronization (indicated as DP CPU in the figure) while the
baseline GPU implementation utilizes the update sorting algorithm. Note that

21



(a) Double-Precision (64b charge grid) (b) Mixed-Precision (32b charge grid)

Figure 5: SMP/GPU Charge deposition performance as a function of optimization for the C20
problem. Notes: The CPU baseline implementation uses a shared charge grid with locks, while
the GPU baseline is pure double-precision (DP) with the cooperative threading optimization,
and uses an Atomic CAS for synchronization. The performance of the shared memory full
replication implementation (also the algorithm employed in the MPI implementation) is shown
as a white square. “PG” is partitioned grid with ghost zones. Optimizations are cumulative.
i.e., “+ SP” changes the grid precision to single while keeping the partitioned grid and SIMD
atomics optimizations.

at this scale, the performance of the sorting algorithm is virtually unnoticeable.
On CPUs, we observe the partitioned grid (+PG) replica eliminates most

of the writes to the shared grid. The use of atomics (+Atomics) results in
lower contention and reduced per-update overhead compared to Pthreads locks.
These optimizations already achieve a substantial boost in performance on Istan-
bul and Nehalem-EX. Further improvements are gained via our new SIMDized
floating-point atomic increment operations (+SIMD Atomics). These opti-
mizations achieve more than a 3× performance improvement over the baseline
Pthreads implementation on Istanbul and Nehalem-EX. Moreover, it is impor-
tant to note that the PG approach now outperforms the memory-inefficient
replica per thread version examined in our previous work [7] and used in the
MPI implementation. This was not the case on the dual-socket Nehalem-EP
and Barcelona systems of that study. We believe that the increase in paral-
lelism (3-4×) has allowed us to reach a crossover point in which the final reduc-
tion substantially impacts overall running time. Interestingly, the PG does not
yield a performance improvement on the Niagara2 primarily due to the higher
overhead for atomic increments, load imbalance, and compute-bound nature of
the machine. Thus, we utilize the new RPG (multiple replicas per socket with
partitioning) implementation (Replica/Socket+PG) to constrain the grid parti-
tioning to 8- or 16-way. This trades atomics for increased cache pressure, but is
ultimately beneficial on the Niagara2.

Examining the GPU implementation shows an order of magnitude perfor-
mance boost via the shared grid strategy with atomic (CAS-based emulation

22



of double-precision increment) updates. Moreover, results show that coopera-
tive threading can provide a further doubling of performance. Unfortunately,
performance is ultimately limited by the rather slow compare-and-swap based
emulation of floating-point atomic increments. We can gauge the impact by im-
plementing a 64b fixed-point charge grid and using a one-sided integer atomic
increment. Despite the overhead of having to subsequently convert a fixed-point
grid to floating-point, we see that performance increases by almost 50%. Clearly
CAS-based solutions provide a substantial benefit over sorting, but one-sided
atomics would dramatically boost performance.

Additionally, we examine the performance impediments of atomic operations
and finite caches by mixing 64- and 32-bit operations. Figure 5(b) presents a
mixed-precision implementation on CPUs and GPUs in which all computation
is still 64b double-precision, but the charge grid is either 32b floating-point or
32b fixed-point. Note that for clarity, the lower bars are simply reproduced from
Figure 5(a). Results show that the CPU-mixed precision implementation shows
little benefit on Istanbul, while there is a moderate benefit on Nehalem-EX. The
GPU shows improvement using the one-sided 32b fixed-point operations which
is higher than the 64b fixed-point performance in Figure 5(a). This suggests
that there is an advantage in reducing the cache working set, but ultimately,
the small GPU cache is ineffective for this class problem. Interestingly, the one-
sided 32b floating-point mixed-precision implementation outperforms the 32b
fixed-point version on GPUs. Overall, we see the coupling of larger caches and
atomics performed in their L1 caches give the CPUs an advantage.

6.1.3. Perturbations to Problem Configuration
Finally, in order to understand the resilience and broad applicability of our

optimizations, we examine and analyze performance relative to the grid size and
density. Varying grid size allows us to study the performance impacts on the
working set size; changing the density impacts temporal locality and amortizes
the overhead of capacity cache misses. Note that as some problem configurations
are extremely large, the GPU lacks sufficient DRAM to run them.

Figure 6 shows the best attained performance as a function of problem config-
uration over our entire set of implementations including PG, PG2 (Partitioned
grid at half the maximum thread concurrency), PGL (Partitioned Grid with
Local/On-the-fly auxiliary array computation), and variants of RPG (with 1, 4,
and 8 replicas per socket). In case of the GPU, the best-performing approach
uses CAS atomics with cooperative threading and on-the-fly auxiliary array
computation.

On Istanbul and Nehalem, performance drops considerably when grid size is
increased beyond classes B and C respectively. This is directly correlated with
the cache working set requirements and the available shared last-level cache
size (see Tables 3 and 5). Additionally, we observe a transition in the optimal
implementation from PG to PGL. Recall that PGL is the PG variant in which
the gyro-averaging constants are recomputed on-the-fly (i.e., locally) instead of
being gathered from memory. As these constants are proportional to grid size,
PGL reduces cache pressure dramatically at the cost of increased computation.

23



Figure 6: SMP/GPU Charge deposition performance in GFlop/s (180 flops per particle per
iteration) achieved by the best double-precision implementation on each system as a function
of grid size and particle density. Note: an execution time of 1 second corresponds to 2.12
GFlop/s for grid size C at 20 particles per cell. “PG” is partitioned grid, “RPG” is repli-
cated partitioned grids, “PGL” is partitioned grid with local computation of auxiliary arrays,
“R#PG” creates # (partitioned grid) replicas per socket.

Thus, as the grid’s cache working set size becomes critical, the PGL approach
becomes superior (C for Nehalem-EX, and D in the case of Istanbul and Ni-
agara). At high particle densities, the cache working set is less critical. On
Niagara2, the performance of 128-way grid partitioning is severely limited by
the low throughput of atomics, and hence variants of RPG optimizations dom-
inate in most cases. Four-way replication per socket sufficed for smaller grid
sizes, but Niagara2 requires up to an 8-way replication per socket at higher par-
ticle densities. For grid size D, a 64-way partitioning (utilizing only 4 threads
per core) was slightly faster than RPG. As RPG already lad to a 8-way or
16-way increase in cache working set requirements, the last-level cache size is
insignificant compared to the increased load balancing and reduced inter-socket
thrashing. Ultimately, Nagara2 is an extremely underpowered machine result-
ing in a flat performance map. On Fermi the performance trend is the opposite
that of CPUs, where larger problems yield better performance. We believe this
is an artifact of how increased parallelism results in decreased contention for
atomic operations.

Overall, we expect RPG to be faster for the smaller grid sizes, as PG may
over-parallelize at 128-, 64-, and possibly 24-way concurrency. As the grid
size increases, the impact of over-parallelization is decreased, but the cache
working set associated with RPG becomes and impediment as it no longer fits
in cache. To that end we see a transition to the PG approach as the best
solution. Ultimately, as PG begins to fall out of cache, replacing grid constants
with on-the-fly-computation of them slightly improves grid locality.

As particle density is increased, so is temporal locality (assuming particles
were radially sorted), and thus a performance improvement is expected. Re-
sults in Figure 6 confirm this trend to generally hold true. On the Nehalem-EX,
performance increases quickly from A2 to A10, where it abruptly falls. The com-
bined grid and particle arrays are likely small enough that the entire simulation
might have fit in the SMP’s extremely large 96 MB of cache.

Typically, Nehalem-EX outperforms Istanbul by more than 50% despite hav-

24



ing only a 26% higher peak performance and comparable STREAM bandwidth;
thus, the 3× larger aggregate cache is presumably the deciding factor. Both
machines significantly outperform the floating-point weak Niagara2. Interest-
ingly Istanbul and Nehalem-EX outperform the Fermi GPU by a factor of two
or more. As previously analyzed, this is likely a result of the CPUs having larger
caches and faster atomic operations.

6.2. Particle Push Phase
Unlike charge deposition, the push phase is straightforward to parallelize, as

loop iterations are independent. Although a mixed-precision version is techni-
cally possible, the primary motivation for its examination (atomic increments
being limited to 32 bits on GPUs) has been eliminated. Nevertheless, due to
the random nature of the gather operation, push phase performance can suffer
significantly from a lack of temporal and spatial locality.

6.2.1. Impact of Optimizations
We explored a number of optimizations within push to reduce memory traf-

fic, improve cache behavior, and improve load balancing. Figure 7 shows C20
push performance as a function of architecture and optimization. Clearly, base-
line performance varies dramatically, with Nehalem-EX nearly 3× faster than
Istanbul and Niagara, and about 4× faster than the Fermi. Further, we chose
the CPU baseline versions to be without NUMA-aware allocation and process
pinning, in order to quantify the impact of these optimizations. Adding proper
NUMA-aware allocation for the particle and grid arrays and process pinning
(+Pinning+NUMA) can dramatically improve CPU performance (3× on Istan-
bul and Nehalem-EX). The benefit on Niagara is less pronounced due to the
combination of a compute-intensive kernel on a architecture with superfluous
bandwidth.

Fusing the nominal gather and push loops (sub-phases) together (+Loop
fusion) significantly reduces CPU memory traffic and alters the read:write ratio
from 2.9 to 3.8. This results in up to a 2× improvement on Istanbul (write-
allocations are expensive), and a moderate improvement on Nehalem-EX. The
lack of significant Nehalem-EX improvement is likely due to two factors. First,
the FBDIMM-like interface has a natural 2:1 read:write ratio and is tolerant of
write-allocate. Second, the cache working set for the class C problem is smaller
than EX’s aggregate last-level cache. On the GPU, loop fusion is only beneficial
when used in conjunction with low-level optimizations (+Low level opt) such as
constant and shared memories for storage of intermediate variables, and detailed
code tweaking to improve memory coalescing. Clearly, the inclusion of a generic
cache has now obviated much of the value of a texture cache on the GPU.

Figure 7 also shows that there is a load imbalance in the push loop with
a static equi-sized partitioning of the particle array. Using OpenMP’s guided
scheduling (+OpenMP), we mitigated the potential 20% loss in performance by
10-15%.

25



Figure 7: SMP/GPU Particle push performance for each platform and optimization on C20.
Optimizations are cumulative. Note: On Fermi, the benefits of loop fusion (before Low-Level
Optimizations) are not visible at this scale, but are critical for Low-Level Optimizations.

Figure 8: SMP/GPU Push performance in GFlop/s (450 flop/s per particle per iteration)
achieved by the best implementation on each system for varying grid sizes and particle den-
sities. An execution time of 1 second corresponds to 5.4 GFlop/s for the C20 problem.

6.2.2. Perturbations to Problem Configuration
Like the charge deposition phase, we examine and analyze performance rel-

ative to grid size and density in order to understand the resilience and broad
applicability of our optimizations. Figure 8 shows the best attained performance
over our entire set of implementations as a function of problem configurations.
Once again, the vertical axis is a measure of cache working set size for the last
level cache, and the horizontal axis is a measure of temporal locality. Again,
some problem configurations are so large that the GPU lacks sufficient DRAM
to run them.

Istanbul and Nehalem-EX can see sizable variations in performance if the
grid falls out of cache (B to C on Istanbul, and C to D on EX). Unlike the
previous generation of GPUs, we now see the cache-based GPU performance
trends are now in line with CPU behavior. Increased cache working set sizes

26



result in more cache misses leading to decreased performance. Moreover, the
relatively small caches (14×48KB L1 + 768KB L2) can capture some tempo-
ral and spatial locality, but performance only improves slightly with increased
problem temporal locality. This indicates that the GPUs cannot fully exploit
the particle grid’s temporal locality, as the L2 cache is likely polluted by the
large data volume incurred due to streaming particle data. Loads that bypass
the cache may show promise on all architectures in the future. It is important
to note that on GPUs, the performance trends for push are opposite of what
we saw on charge. We believe this is attributable to the throughput of atomic
operations and their total elimination in the charge phase.

Observe that all CPU architectures (with their large caches) are relatively
insensitive to changes in temporal locality. Recall that a particle density of two
can result in each grid point being referenced 64 times. As expected, there is
some benefit from increased locality, but ultimately, the streaming characteris-
tics of this problem dominate. Niagara is likely compute-bound (push performs
450 flops per particle) for all problem configurations and thus shows little per-
formance variation whatsoever.

Results demonstrate that the Nehalem-EX is often 50% faster than Istanbul
on small problems and up to twice as fast on the large problems, due to its
larger caches and higher compute rate. Typically, GPU performance is on par
with Istanbul, but Nehalem-EX is easily 50% faster than Fermi. All machines
deliver at least twice the performance of Niagara2.

6.3. Cross-Cutting Study: A Comparison to the Previous Generation
In this paper, we examine GTC performance on two of the newest x86 pro-

cessors: AMD’s quad-socket, hexa-core Istanbul (a proxy for Magny-Cours)
and Intel’s quad-socket, octal-core Nehalem-EX. Additionally, we explore per-
formance optimization on NVIDIA’s latest GPU (Fermi). A key question is
the performance advantage achieved with these systems compared to the re-
spective previous generations, as this allows extrapolation of these architectural
paradigms into the future. To that end, Figure 9 shows the speedup of the
newer system by kernel (top row is charge, bottom row is push) and by re-
spective vendor (AMD on the left, Intel in the middle, NVIDIA on the right).
Note that the “insufficient memory” cases arise from limited memory capacity
on the Barcelona, Nehalem-EP, GT200, and/or Fermi. When those machines
lacked sufficient memory capacity to run the particular problem configuration,
a quantitative comparison was not possible.

The Istanbul SMP has three times the cores, roughly 2.5× the DRAM band-
width, but nearly eight times the aggregate cache as its predecessor Barcelona.
Observe that for charge deposition, despite its complex data-locality and data-
dependency challenges, Istanbul lived up to its expectations and delivered ap-
proximately 3× the performance for virtually every problem configuration. We
note a boost in performance for the larger problem sizes, but less than ideal
scaling for the smaller problems (low density × small grids). The former is
attributed to the vastly larger caches (working set fits in Istanbul’s cache but
not Barcelona’s), but the latter is likely a more complex phenomenon resulting

27



Figure 9: Performance ratio of Istanbul vs. Barcelona SMPs (left column), Nehalem-EX vs.
Nehalem-EP SMPs (middle column), and Fermi vs GT200 GPUs (right column) for the best
implementations of charge deposition (top row) and push (bottom row).

from limited parallelism and cache line thrashing across a larger (four NUMA
node) SMP. As the particle push phase does not perform writes to the grid, the
cache coherency protocol allows shared lines to reside in multiple caches without
thrashing. Moreover, the higher arithmetic intensity tends to make the push
phase more compute-bound. Thus, Istanbul’s performance advantage on push
is extremely smooth across all problem sizes.

Nehalem-EX machine has four times the cores (2× per chip, 2× the chips),
2.66× the raw DRAM pin bandwidth, and 6× the cache as the previous quad-
core Nehalem-EP server. Nevertheless, on the charge deposition phase, we ob-
serve only a 2× typical speedup. Moreover, we see no discernible performance
boost from the larger cache on larger problems. We believe the two outlier cases
(A5, A10) arise from the entire simulation fitting in cache. For push, observe
a pronounced performance spike for the class C grids; this is likely an artifact
that smaller problems fit in both EP and EX’s caches, larger grids fit in neither,
but at this size, the working set fits in EX’s cache, but not EP’s. Aside from
these cases, EX performance is less than 3× EP’s. We believe that EX’s paltry
6% improvement over EP in observed STREAM bandwidth (see Table 3), and
possible performance inefficiencies due to a 64-way radial grid replication, likely
inhibit any higher expected performance gains.

As advertised, Fermi has 6.6× the peak flops, and 40% higher pin band-

28



width than the previous GT200 based GPUs. Nominally, this would suggest
a huge speedup for the computationally intense push, and a moderate (40%)
speedup on the charge deposition phase. Paradoxically, we see the opposite.
Charge performance increases by about 1.5× while push performance increases
by less than 20%. This can be attributed to a number of factors. First, un-
like the GT200, Fermi may now cache the values gathered and scattered in
charge. This can dramatically reduce the memory traffic and boost perfor-
mance. Moreover, Fermi’s atomic operations, although slow, are still faster
than the GT200’s. In the gather-heavy push phase, Fermi’s use of a generic
cache provides little value over GT200’s use of a texture cache (although its in-
creased size likely provides a boost similar to what we saw on the x86 machines).
Additionally, measurements show that the ECC-enabled streaming bandwidth
on Fermi is only approximately 8% higher than the GT200. Although push is
more computationally-intense than charge, it is still bandwidth-bound. Thus
Fermi’s performance gains are simply due to its bandwidth advantage.

6.4. Cross-Cutting Study: Combined Charge/Push Performance
GTC simulations often spend over 80% of their total execution time in the

charge and push phases. However, the relative time spent in each kernel will
vary from one architecture to the next. Figure 10 shows the time spent in
the baseline implementations of push and charge deposition as a function of
architecture (lower is better). Note that in many cases, the time spent in push
is greater than the time spent in charge. Before optimization, on Nehalem-EX,
charge consumes the majority of the time, where on Fermi, the push dominates.

As described in detail, the benefits of optimization clearly vary between
kernels and architecture — the overall speedup (charge+push) is shown for
each platform in Figure 10. On Niagara, observe a moderate benefits to charge,
but negligible improvements to push. Clearly, efficient exploitation of 128-way
parallelism comes easily in push, but requires substantial optimization in charge.
Observe that all architectures see a substantial benefits of optimization of charge
(efficient management of data dependencies is not something that comes easily
in a reference implementation). Conversely, we see that the embarrassingly
parallel push phase saw varied speedups among architectures. Nehalem-EX and
Niagara achieves little benefit, while Istanbul attains a moderate speedup and
the GPUs see dramatic improvements. On the GPUs, much of the benefit came
from low-level optimizations, and tuning for the appropriate balance between
shared memory and L1 cache. Overall results show that optimization led to
more than a 2× combined performance improvement on the x86 systems, while
almost quadrupling GPU combined performance.

Before optimization, Nehalem-EX was clearly the fastest machine, followed
closely behind by Nehalem-EP and Istanbul, and then the slower GPU sys-
tems. After optimization, Nehalem-EX maintains its expected performance lead
(more flops, more bandwidth, more cache), with Istanbul now a distant second,
while the Fermi GPU delivers optimized performance no better than the older
Nehalem-EP. Although GPUs promise superior bandwidth and floating-point

29



Figure 10: Execution times (for one time-step) of the baseline and best-performing double
precision parallel versions of charge deposition and push kernels for C20 (numbers indicate
overall optimization speedup) on a variety of multicore SMPs and GPUs. The CPU charge
deposition baseline implementation uses a shared grid with locks, while the GPU baseline
uses a shared grid with AtomicCAS for synchronization. The CPU baseline implementations
include NUMA-aware memory allocation.

potential, their small caches and slow atomics limit performance on challenging
scientific applications like GTC.

7. Conclusions

In this work, we examined the optimization of GTC’s two principal phases,
charge deposition (a scatter-increment operation devoid of locality with inherent
data hazards), and push (a numerically intensive gather operation challenged by
data locality), across emerging multicore SMPs and the newest manycore GPUs.
Result show that fine-grained synchronization via atomic operations can greatly
enhance performance without wasting increasingly precious memory capacity.
The commonly-proposed CUDA strategy built on geometric decomposition and
parallel primitives like sorting and scanning are unfortunately inadequate for a
codes of this nature. Moreover, the relatively small caches found on GPUs are
ill-equiped to full capture the extremely large cache working sets. As such, the
GPU’s memory bandwidth is wasted satisfying capacity misses. On the large
SMPs we see that some replication is necessary to ensure that synchroniza-
tion is limited to fast intra-socket operations. In terms of data locality, results
show that caches are an essential ingredient. User management of random and
unpredictable data locality in the presence of writes makes charge deposition
optimization extremely challenging.

30



Overall, we observe the Nehalem-EX delivered the best performance; how-
ever, in relation to the Nehalem-EP (and considering its raw floating-point and
DRAM capabilites), Nehalem-EX underperformed. Istanbul (our proxy for a
dual-socket Magny-Cours), despite having only half of EX’s computational peak,
delivered much better performance relative to its raw potential and its Barcelona
predecessor. Even after extensive optimization (including using fixed-point), the
GPU typically underperformed Istanbul, Nehalem-EX, and Nehalem-EP — a
testament to the complexities of this kernel on an architecture optimized for
algorithms with minimal data dependencies and trivially expressed temporal
locality.

As we moved to larger multicore architectures, load balancing becomes an
increasingly large impediment to performance. In this respect, CUDA’s task
model coupled with a massive expression of parallelism has a significant advan-
tage over the CPU SPMD model. In the future, we plan to investigate replacing
the CPU SPMD model with a task model in order to better load balance these
extremely parallel machines. Moreover, we believe that even within one multi-
core socket, GTC must migrate towards a 2D decomposition of particles and grid
to mitigate the complexities of locality, data dependencies, and load-balancing.

Interestingly, results show that continually recomputing some of the con-
stants on the fly could actually improve performance. Although this may run
contrary to conventional wisdom, for bandwidth-bound applications with im-
mense cache pressure and superfluous flop/s wasted as idle cycles, comput-
ing temporaries on the fly reduces cache pressure by exploiting the untapped
floating-point capability of these machines.

We also observe that despite the growing popularity of accelerators and
heterogeneity, results show that — even when all the data is kept local on
a GPU — the overall performance (and even each phase) is slower than an
Istanbul SMP. Thus, scientists must carefully weigh the potential advantages
and costs before embarking on a heterogenous solution.

Finally our work points to the limitations of the manycore philosophy of
simply instantiating as many cores as technology allows. Unlike many other do-
mains, hardware/software co-design efforts for PIC codes must carefully balance
bandwidth, compute, synchronization, and cache capacity. Failure to do so may
result in implementations stalled for inter-thread synchronization operations or
squandering their increasingly limited memory bandwidth with capacity misses.

Acknowledgments

All authors from Lawrence Berkeley National Laboratory were supported
by the DOE Office of Advanced Scientific Computing Research under contract
number DE-AC02-05CH11231. Dr. Im was supported by Mid-career Researcher
Program and by Basic Science Research Program through National Research
Foundation of Korea (NRF) grant funded by the Ministry of Education, Sci-
ence and Technology under contract numbers 2009-0083600 and 2010-0003044,
and by research program 2010 of Kookmin University. Dr. Ethier was supported

31



by the DOE Office of Fusion Energy Sciences under contract number DE-AC02-
09CH11466. Additional support comes from Microsoft (Award #024263) and
Intel (Award #024894) funding, and by matching funding by U.C. Discovery
(Award #DIG07-10227). Further support comes from Par Lab affiliates Na-
tional Instruments, NEC, Nokia, NVIDIA, Samsung, and Sun Microsystems.
We would like to express our gratitude to Intel and Sun for their hardware do-
nations. Access to the Istanbul and GPU resources were made possible through
the DOE/ASCR Computer Science Research Testbeds program and NERSC.

References

[1] C. Birdsall, A. Langdon, Plasma Physics Via Computer Simulation, Mc-
Graw Hill Higher Education, 1984.

[2] R. Hockney, J. Eastwood, Computer simulation using particles, Taylor &
Francis, Inc., Bristol, PA, USA, 1988.

[3] C. Birdsall, Particle-in-cell charged-particle simulations, plus Monte Carlo
collisions with neutral atoms, PIC-MCC, IEEE Transactions on Plasma
Science 19 (2) (1991) 65–85.

[4] Z. Lin, T. Hahm, W. Lee, W. Tang, R. White, Turbulent transport re-
duction by zonal flows: Massively parallel simulations, Science 281 (5384)
(1998) 1835–1837.

[5] S. Ethier, W. Tang, Z. Lin, Gyrokinetic particle-in-cell simulations of
plasma microturbulence on advanced computing platforms, Journal of
Physics: Conference Series 16 (2005) 1–15.

[6] S. Ethier, W. Tang, R. Walkup, L. Oliker, Large-scale gyrokinetic parti-
cle simulation of microturbulence in magnetically confined fusion plasmas,
IBM Journal of Research and Development 52 (1-2) (2008) 105–115.

[7] K. Madduri, S. Williams, S. Ethier, L. Oliker, J. Shalf, E. Strohmaier,
K. Yelick, Memory-efficient optimization of gyrokinetic particle-to-grid in-
terpolation for multicore processors, in: Proc. ACM/IEEE Conf. on Super-
computing (SC 2009), 2009, pp. 48:1–48:12.

[8] L. Oliker, A. Canning, J. Carter, J. Shalf, S. Ethier, Scientific computations
on modern parallel vector systems, in: Proc. 2004 ACM/IEEE Conf. on
Supercomputing, IEEE Computer Society, Pittsburgh, PA, 2004, p. 10.

[9] M. Adams, S. Ethier, N. Wichmann, Performance of particle in cell meth-
ods on highly concurrent computational architectures, Journal of Physics:
Conference Series 78 (2007) 012001 (10pp).

[10] W. Lee, Gyrokinetic particle simulation model, Journal of Computational
Physics 72 (1) (1987) 243–269.

32



[11] E. Bertschinger, J. Gelb, Cosmological N-body simulations, Computers in
Physics 5 (1991) 164 – 175.

[12] K. Bowers, B. Albright, B. Bergen, L. Yin, K. Barker, D. Kerbyson, 0.374
Pflop/s trillion-particle kinetic modeling of laser plasma interaction on
Roadrunner, in: Proc. 2008 ACM/IEEE Conf. on Supercomputing, IEEE
Press, Austin, TX, 2008, pp. 1–11.

[13] R. Fonseca et al., OSIRIS: A three-dimensional, fully relativistic particle in
cell code for modeling plasma based accelerators, in: Proc. Int’l. Conference
on Computational Science (ICCS ’02), 2002, pp. 342–351.

[14] V. K. Decyk, UPIC: A framework for massively parallel particle-in-cell
codes, Computer Physics Communications 177 (1-2) (2007) 95–97.

[15] C. Nieter, J. Cary, VORPAL: a versatile plasma simulation code, Journal
of Computational Physics 196 (2) (2004) 448–473.

[16] C. Huang et al., QUICKPIC: A highly efficient particle-in-cell code for mod-
eling wakefield acceleration in plasmas, Journal of Computational Physics
217 (2) (2006) 658–679.

[17] K. Bowers, Accelerating a particle-in-cell simulation using a hybrid count-
ing sort, Journal of Computational Physics 173 (2) (2001) 393–411.

[18] G. Marin, G. Jin, J. Mellor-Crummey, Managing locality in grand chal-
lenge applications: a case study of the gyrokinetic toroidal code, Journal
of Physics: Conference Series 125 (2008) 012087 (6pp).

[19] E. Carmona, L. Chandler, On parallel PIC versatility and the structure
of parallel PIC approaches, Concurrency: Practice and Experience 9 (12)
(1998) 1377–1405.

[20] H. Nakashima, Y. Miyake, H. Usui, Y. Omura, OhHelp: a scalable domain-
decomposing dynamic load balancing for particle-in-cell simulations, in:
Proc. 23rd International Conference on Supercomputing (ICS ’09), 2009,
pp. 90–99.

[21] A. Koniges et al., Application acceleration on current and future Cray
platforms, in: Proc. Cray User Group Meeting, 2009.

[22] E. Akarsu, K. Dincer, T. Haupt, G. Fox, Particle-in-cell simulation codes
in High Performance Fortran, in: Proc. ACM/IEEE Conference on Super-
computing (SC’96), 1996, p. 38.

[23] S. Briguglio, B. M. G. Fogaccia, G. Vlad, Hierarchical MPI+OpenMP im-
plementation of parallel PIC applications on clusters of Symmetric Mul-
tiProcessors, in: Proc. Recent Advances in Parallel Virtual Machine and
Message Passing Interface (Euro PVM/MPI), 1996, pp. 180–187.

33



[24] G. Stantchev, W. Dorland, N. Gumerov, Fast parallel particle-to-grid in-
terpolation for plasma PIC simulations on the GPU, Journal of Parallel
and Distributed Computing 68 (10) (2008) 1339–1349.

[25] V. Decyk, T. Singh, S. Friedman, Graphical processing unit-based particle-
in-cell simulations, in: Proc. 10th International Computational Accelerator
Physics Conference, 2009.

[26] JET, the Joint European Torus, http://www.jet.efda.org/jet/, last ac-
cessed Nov 2010.

[27] AMD server platforms, http://www.amd.com/us/products/server/
processors/Pages/server-processors.aspx, last accessed Nov 2010.

[28] Intel microarchitecture, http://www.intel.com/technology/
architecture-silicon/microarchitecture.htm, last accessed Nov
2010.

[29] Sun SPARC Enterprise T-Series, http://www.oracle.com/us/products/
servers-storage/servers/sparc-enterprise/t-series/index.html,
last accessed Nov 2010.

[30] NVIDIA Fermi Architecture, http://www.nvidia.com/object/fermi_
architecture.html, last accessed Nov 2010.

[31] NVIDIA Quadro FX 5800, http://www.nvidia.com/object/product_
quadro_fx_5800_us.html, last accessed Nov 2010.

[32] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker,
D. Patterson, J. Shalf, K. Yelick, Stencil computation optimization and
auto-tuning on state-of-the-art multicore architectures, in: Proc. 2008
ACM/IEEE Conf. on Supercomputing (SC 2008), 2008, pp. 1–12.

[33] D. Merrill, A. Grimshaw, Revisiting sorting for GPGPU stream architec-
tures, Tech. Rep. CS2010-03, University of Virginia (2010).

[34] Thrust: A template library for CUDA applications, http://code.google.
com/p/thrust/, last accessed Nov 2010.

34

http://www.jet.efda.org/jet/
http://www.amd.com/us/products/server/processors/Pages/server-processors.aspx
http://www.amd.com/us/products/server/processors/Pages/server-processors.aspx
http://www.intel.com/technology/architecture-silicon/microarchitecture.htm
http://www.intel.com/technology/architecture-silicon/microarchitecture.htm
http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/t-series/index.html
http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/t-series/index.html
http://www.nvidia.com/object/fermi_architecture.html
http://www.nvidia.com/object/fermi_architecture.html
http://www.nvidia.com/object/product_quadro_fx_5800_us.html
http://www.nvidia.com/object/product_quadro_fx_5800_us.html
http://code.google.com/p/thrust/
http://code.google.com/p/thrust/

	1 Introduction
	2 Overview of GTC kernels
	2.1 Grids and Particles
	2.2 Charge Deposition (scatter)
	2.3 Particle Push (gather)
	2.4 Crosscutting Overview
	2.5 Related Work

	3 Experimental Setup
	3.1 GTC Standalone Benchmarks and Problem Instances
	3.2 Architectures

	4 Charge Deposition Phase Optimization
	4.1 Parallelization
	4.2 Locality-Improving Optimizations
	4.3 Synchronization Optimizations
	4.4 Partial Grid Replication Optimizations
	4.5 Mixed-precision
	4.6 Low-level Optimizations

	5 Particle Push Phase Optimization
	5.1 Parallelization
	5.2 Locality-Improving Optimizations
	5.3 Load-Balancing Optimizations
	5.4 Low-level Optimizations

	6 Experimental Results and Analysis
	6.1 Charge Deposition Phase
	6.1.1 Impact of Locality Optimizations
	6.1.2 Benefit of Synchronization and Data Replication Optimization
	6.1.3 Perturbations to Problem Configuration

	6.2 Particle Push Phase
	6.2.1 Impact of Optimizations
	6.2.2 Perturbations to Problem Configuration

	6.3 Cross-Cutting Study: A Comparison to the Previous Generation
	6.4 Cross-Cutting Study: Combined Charge/Push Performance

	7 Conclusions



