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Abstract 

A milestone in cognitive development is understanding 
numerals to represent the exact number of discrete items in a 
set (i.e., the cardinal principle). This development has 
received much attention, but little is known about its relation 
to understanding numbers as measures of continuous quantity 
(e.g., “six blocks long” versus “six blocks”). To investigate 
this, 90 children were asked to complete two tasks: a give-a-
number task, to assess cardinality knowledge, and a novel 
give-a-line task, to assess measurement knowledge. As 
expected, accuracy was greater on the give-a-number task 
than the give-a-line task. More unexpectedly, the quality of 
performance on the give-a-number task was as often 
negatively associated with quality of performance on the 
give-a-line task as it was positive correlated. Specifically, 
when asked to create a line N-blocks long, children who gave 
only approximately correct answers on the give-a-number 
task often outperformed children who gave exactly correct 
answers on the same task. These findings indicate that an 
approximate—and purportedly less mature—understanding of 
number possesses the hidden strength of being more flexible 
and suitable for measuring length.  

Keywords: children; number; cardinality; continuous  

Introduction 
The use of numerals to measure discrete and continuous 
quantities (e.g., six blocks or six blocks long) can be 
regarded as one of humanity’s most fundamental cultural 
achievements. Research on the development of this ability is 
also a long-standing concern in developmental psychology, 
since at least Piaget (1960) and Gelman & Gallistel (1978). 
In this paper, we examined the relations between these two 
uses of numbers in young children.  

Conceptually, the meaning of numbers in counting and 
measuring is highly similar. In counting, numbers refer to 
discrete quantities (blocks), and the number “six” should 
indicate the many-ness of the set (i.e., the cardinality 
principle). In measures, the numbers refer to continuous 
quantities (length), and the count of “six” should indicate 
the many-ness of the units. In both situations, numbers also 
indicate similar ratio properties. The extensive properties of 
a set of six identical (non-overlapping) blocks is six-fold the 
properties of a set of one block, just as the length of six 
blocks is six-fold the length of one block. These conceptual 
considerations might lead us to expect that understanding 
the “sixness” of a set of blocks (i.e., its cardinality) would 

co-occur with understanding the “sixness” of a length of 
blocks (i.e., its measure). 

One task that has been used in the literature to assess 
children’s understanding of the cardinal meanings of 
counting words is a give-a-number task (Condry & Spelke, 
2008; Fuson, 1988; Le Corre & Carey, 2007; Le Corre et 
al., 2006; Sarnecka & Gelman, 2004; Sarnecka & Carey, 
2008; Schaeffer et al., 1974; Wynn, 1990, 1992). In a 
typical version of this task, the experimenter repeatedly asks 
the child to give a specific number of items drawn from a 
larger set of objects (Wynn, 1990, 1992). For example, the 
experimenter might ask the child to “Give two fish” from a 
basket containing 10 or more toy fish to a puppet (LeCorre 
et al., 2006). Of interest is the range of numbers to which 
the child gives only the correct number of objects. If the 
child correctly gives the requested N of objects to “N” and 
no other, then the child is called N-knower.  

Extensive studies using this task have found that it takes 
several years for children to meet this criterion for exact 
number knowledge for numbers larger than about 5 (e.g., 
Carey, 2004, 2009; Sarnecka, 2015; Sarnecka & Carey, 
2008; Sarnecka & Lee, 2009; Wynn, 1990, 1992). Children 
who can count accurately to 20, for example, would fail to 
meet the criterion of being (say) a “five-knower” because 
they provide five objects when asked for four and nine 
objects when asked for eight.  

Previous research has shown that meeting the cardinality 
criterion is associated with other mathematical knowledge. 
For instance, some researchers believe that the cardinality 
knowledge is a prerequisite for mastering the “successor 
function” — that is, any natural number n has a successor 
defined as n + 1 (Carey, 2004, 2009; Sarnecka & Carey, 
2008; but see Cheung, Ruberson, & Barner, 2017). 
Additionally, it has been shown that understanding of 
cardinality benefits children’s ability to learn the 
relationship between numbers and even broader 
mathematics before they start formal school (Geary & 
vanMarle, 2018; Geary et al., 2018).  

Children also have an ability to use number words 
correctly in measuring continuous magnitudes (Fuson, 
1988). In this situation, the entity being measured is a 
continuous, rather than discrete, quantity (e.g., length), and 
a unit appropriate for that kind of continuous magnitude 
(e.g., a block or a centimeter) is given and applied to the 
continuous quantity until it is depleted. The number word 
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indicates the many-ness of the units required to cover the 
continuous quantity.  

The first serious discussion and analyses of young 
children’s use of number words to measure continuous 
quantities were provided by Piaget et al. (1960). In Piaget’s 
task, twelve and sixteen blocks were arranged in two 
parallel rows, with the two rows in perfect alignment. One 
of the rows was then modified by the introduction of angles 
(e.g., at right angles to one another). Children were always 
asked whether the two lines were the same length or not. He 
found that when the two lines were arranged in parallel 
(where the two lines could be put in one-to-one 
correspondence), the equality was obvious to children. In 
contrast, when angles were introduced such that the two 
lines could not be placed side by side, younger children 
failed to recognize any conservation but older children 
could use numbers (i.e., counting the number of squares) to 
make the indirect comparison (Piaget, Inhelder, & 
Szeminska, 1960).  

Following Piaget et al. (1960)’s work, research focusing 
on children’s understanding of number words in measuring 
continuous quantities developed independently, without 
explicit reference to understanding of cardinality (e.g., 
Carpenter, 1975; Carpenter & Lewis, 1976; Hiebert, 1981, 
1984; Levine et al., 2009; Miller, 1989; Solomon, 
Vasilyeva, Huttenlocher, & Levine, 2015). Generally, there 
is consensus that development of using number words to 
describe continuous magnitudes (e.g., length) takes a long 
time before mastery. However, none of these studies 
describe children’s errors in continuous terms to see if their 
answers are at least approximately correct (as in the give-a-
number task).  

Although much is known about understanding of counts 
and measures, little is known about the relation between 
these two understandings of number, such as whether exact 
number knowledge aids or hinders the use of measure 
numbers. Further, the ratio characteristics of children’s use 
of numbers in these two contexts have not been compared 
systematically. 

The Current Study 
The present study aimed to investigate the relation between 
children’s cardinality knowledge and their use of numbers 
as measures of length. In particular, we classified children 
by cardinality knowledge based on their performance on the 
give-a-number task, and we provided them with a novel 
give-a-line task to assess their use of numbers in measuring 
continuous quantities. We were specifically interested in 
whether mastery of the cardinality principle aids or hinders 
children’s use of numbers in continuous quantities.  

Methods 

Participants 
Participants were 90 American children (50 girls), recruited 
from seven schools in Columbus, OH. They ranged in age 
from 3 years, 5 months to 6 years, 11 months (mean age 5– 

  
Figure 1. Examples of the give-a-number task (A) and the 
give-a-line task (B). In task A, children were shown a row 
of 20 adjacent identical squares at the top of the screen and 
a blank area at the bottom; they were instructed to put N 
squares in the blank area by depressing a key. Task B was 
similar to task A, except children were asked to draw a line 
N-squares long, again by depressing a key.  
 
 
0). Participant ethnicity was similar to that of the 
community: 74.4% White, 11.1% Black, 10% Asian, and 
4.4% Hispanic. An additional five children participated but 
were excluded from the analysis due to having a primary 
language other than English (n = 3) or experimenter error (n 
= 2). All children verbally assented to participate, and 
parents gave their written permission. 

Procedures 
Each child met an experimenter individually in a quiet room 
in the school, with the child sitting before a laptop while the 
experimenter sat next to the child. Children were given one  
give-a-number task and one give-a-line task. Children also 
completed a highest count task that is not included in the 
present paper (over 90% children could count to 10). The 
order of the tasks was counterbalanced across children. 

Tasks 
Both the give-a-number and give-a-line tasks were 
computerized tasks programed using a custom MATLAB 
program and presented on a 13-inch MacBook laptop. 

Give-a-number task. A non-titrated computerized ‘give-a-
number’ task adapted from Wynn (1992) was used to test 
whether children understood the cardinality of numbers. 
Like Wynn (1992)’s study where a heap of objects were 
presented and children were then asked to “give” a set of N 
objects from the heap, we showed children a row of 20 
adjacent identical squares at the top of the screen and a 
blank area at the bottom, and they were instructed to put N 
squares in the blank area (Figure 1A).  

Unlike Wynn’s (1992) task where children could 
physically touch the objects, in our task children were 
instructed to press buttons to move the objects. Thus, our 
task prevents children from just grabbing a random group of 
objects to finish the trial quickly. At the same time, children 
could still point to the objects (on the screen), which allows 
them perceptual access to the entire collection of objects to 
be counted. Specifically, children were instructed to press 
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the L button to put the squares in the blank area and the S 
button to take squares away. Each L press brought one 
square from the top to the blank area, and each S press 
brought one square from the blank area to the top. 

As in Wynn (1992), we ensured that children were 
satisfied with their responses. After the child responded on 
each trial, the experimenter asked the child “Is that N 
squares? Can you count and make sure?” If the child was 
not satisfied, he/she could change his or her response. 

Given that this could be the first task, a practice trial was 
shown to children at the beginning. In the practice trial, 
children were asked to put ‘one’ square. If the child did not 
know how to press the buttons, the experimenter showed a 
demonstration, pressing L and S to show how to put and 
take away the squares. After the practice trial, the numbers 
‘one’ through ‘ten’ were requested in a random order within 
three different blocks, with the size and color different for 
the squares across the blocks. There were 30 trials in total. 

Give-a-line task. The give-a-line task was similar to the 
give-a-number task except that children were asked to draw 
a line N squares long (Figure 1B). In this task, children were 
shown a row of 20 adjacent identical squares at the top of 
the screen and a blank area at the bottom. They were told 
that “This is one square long, and these squares stick 
together” as the experimenter moved her finger along the 
bottom of the first square and then the remaining squares.  

Then children were told “I will ask you to draw a line 
with some squares long. You can press L to make the line 
longer and press S to make the line shorter. And if you want 
to draw a long line quickly, you can press and hold the 
button.” Thus, each press led to a very small line (the length 
of each unit step was around 1/6 of one square long), and by 
holding the button, they could continuously draw a line with 
different lengths. As with the give-a-number task, after the 
child responded, the experimenter asked, “Is that N squares 
long? Can you count and make sure?” If the child 
recognized an error, the child could change his or her 
response.  

Given that this task also could be the first computer task, 
a practice trial was given at the beginning to make sure 
children understood how L and S buttons worked. In the 
practice trial, children were asked to draw ‘one’ square long. 
If the child didn’t know how to press the buttons, the 
experimenter showed a demonstration, pressing L and S to 
show how to make the line longer and shorter, and holding 
L and S to show how to make the line longer and shorter 
quickly. As with the give-a-number task, after the practice 
trial, the numbers ‘one’ through ‘ten’ were requested in a 
random order within three different blocks. 

Results 
Results are organized in two sections. In the first section, we 
examined performance on the give-a-number task. In the 
next section, we examined performance on the give-a-line 
task and its relation to children’s performance on the give-a-
number task. 

1.  Children’s performance on the give-a-number 
task. 
This task measured children’s knowledge of the exact, 
cardinal meaning of numerals “one” through “ten”. To 
obtain an overall sense of the accuracy of children’s 
performance, we computed each child’s percent absolute 
error (PAE):  
 

!
𝐺𝑖𝑣𝑒𝑛	𝑁𝑢𝑚𝑏𝑒𝑟 − 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑	𝑁𝑢𝑚𝑏𝑒𝑟

𝑆𝑐𝑎𝑙𝑒	𝑜𝑓	𝑁𝑢𝑚𝑏𝑒𝑟𝑠 !. 

 
For example, if two squares were requested and the child 
put four squares, then the PAE would be |4-2|/20 =10%. 
Results showed an interaction between age and set size on 
PAE (β = -0.01, p < .001), indicating younger children had a 
better understanding of small numerals than large ones, 
whereas older children had an equally good understanding 
of small and large numerals. 

We next analyzed children’s performance on the give-a-
number task by assigning them to different knower level 
groups (Le Corre, Brannon, Van de Walle, Carey & 
Sarnecka, 2006; Le Corre & Carey, 2007; Sarnecka & 
Carey, 2008; Wynn, 1990, 1992). To define children’s 
‘knower-level’, the criteria developed by Wynn (1992) was 
used. According to Wynn, an N-knower must correctly give 
N objects 2/3 times in response to a request for N, and also 
it must be the case that 2/3 of cases in which the child gives 
N are in response to requests for N. For example, a child 
would be defined as a three-knower if she correctly 
provided three squares on at least two out of the three trials 
that three was requested and, of those times that the child 
provided three, two-thirds of the times she did so it was in 
response to a request for three. 

Consistent with previous literature (Le Corr & Carey, 
2007; Sarnecka & Gelman, 2004; Wynn, 1990, 1992), 
knower-level (0-, 1-, 2-, etc knower) was significantly 
correlated with age, r = .57, p < .001. Of the 90 children 
tested, 53 (58.9%) were 10-knowers. These children ranged 
in age from 4–0 to 6–11 (mean 5–4). As there were not 
many individuals in each of the 0-, 1-, 2-, etc. -knower 
levels in our sample, we grouped them as non-10-knowers. 
The remaining 37 (41.1%) non-10-knowers ranged in age 
from 3–5 to 6–0 (mean age 4–6). An independent t-test 
confirmed that age increased the probability of being a 10-
knower compared to being a non-10-knower, t(2404.9) = 
31, p < .001. These results indicated that with age and 
experience, children’s knowledge of cardinality improved.  

2. Children’s performance on the give-a-line task 
and its relation to their performance on the give-a-
number task. 
The give-a-line task measured children’s ability of linking 
number words to continuous magnitudes. As with the give-
a-number task, the percent absolute error (PAE) was 
computed to obtain an overall sense of the accuracy of 
children’s estimates: 
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𝐺𝑖𝑣𝑒𝑛	𝑁𝑢𝑚𝑏𝑒𝑟 − 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑	𝑁𝑢𝑚𝑏𝑒𝑟

𝑆𝑐𝑎𝑙𝑒	𝑜𝑓	𝑁𝑢𝑚𝑏𝑒𝑟𝑠 !. 

 
For example, if a line of two squares long was requested and 
the child draw a line four squares long, then the PAE would 
be |4-2|/20 =10%. Results showed an interaction between 
age and set size on PAE (β = -0.76, p < .001), indicating that 
both younger and older children had a better understanding 
of small numerals than large ones, but the differences of 
understanding small vs. large numerals were larger for 
younger children than older children. 

A key question was whether there was a relationship 
between children’s cardinality knowledge and their use of 
number in measuring continuous quantities, and if Yes, 
what the relation was. To answer these questions, we first 
compared children’s PAE on the give-a-number and give-a-
line tasks. Results showed that children gave less accurate 
responses in the give-a-line task (M = 15.50%, SD = 0.09) 
than in the give-a-number task (M = 3.95%, SD = 0.08), 
t(89) = -11.01, p < .001, indicating children’s use of number 
words to represent measures is more erroneous than using 
them to represent cardinality. Moreover, the individual 
differences between two tasks were weakly related, r = .18 
(p = .07). After controlling for age, the correlation of the 
PAE between the two tasks was .04 (p = .69).  

To further examine the relationship between children’s 
knowledge of discrete quantities and that of continuous 
quantities, we plotted the distribution of PAE in the give-a-
line task by grouping children into 10-knowers vs. non-10-
knowers (see Figure 2). As this figure shows, although the 
average PAE of non-10-knowers was greater than the 
average PAE of 10-knowers (mean PAE = 18.54% vs. 
13.38%, t(84.32) = 3.09, p <. 01), 10-knowers’ accuracy 
was distributed bimodally, whereas non-10-knowers’ PAE 
was distributed normally.  The two distinct groups of 10-
knowers were either better or worse than non-10 knowers. 
The below-average 10-knowers made more errors than non-
10-knowers (mean PAE = 22.36% vs. 18.54%, t(49.10) = 
3.79, p <. 001), indicating 10-knowers do not always have a 
better understanding of quantities than non-10-knowers. The 
above-average 10-knowers made less errors than non-10 
knowers (mean PAE = 2.52% vs. 18.54%, t(38.62) = -17.03, 
p < .001).  Thus, cardinality knowledge appears to be a 
double-edged sword in understanding numbers as 
measurement tools. 

To better understand the relation between children’s 
understanding of numbers in discrete and continuous 
quantities, we regressed each non-10-knower’s vs. 10-
knower’s estimates against their target number in the give-a-
line and give-a-number tasks (Figure 3). In this figure, the 
arbitrary subject number was set to be linearly correlated 
with children’s age, with a higher subject number indicating 
an older child.  This allows us to visually depict the 
developmental trend (if any).  

Figure 3 shows that, first, almost all children showed an 
approximate understanding of numerical quantities in both 
continuous and the discrete situations. That is, in 93% of  

 
Figure 2. The distribution of PAE for 10-knowers vs. non-
10-knowers in the give-a-line task. 
 

 
Figure 3. Individual child’s estimate by knower groups 
(non-10-knowers vs. 10-knowers) in the give-a-line and 
give-a-number task. Subject numbers are linearly related to 
their ages, with a higher subject number indicating an older 
child. 
 
 
children, the quantity given was not independent of the 
quantity requested at p = .05. Second, the slope of 10-
knowers’ regression line in the give-a-line task showed two 
distinct patterns. For one group (n = 24), estimates were 
perfectly fit by a linear function, with both the slope and R2 

equaling to one. In contrast, the remaining 10-knowers’ (n = 
21) estimates were moderately well-fit by a linear function 
(mean R2 = .69), but their slopes were much smaller (mean 
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= 0.13). An in-depth analysis of their button presses showed 
that it was caused by their linking the number of button 
presses to the number requested rather than linking the 
length of the line to the number requested. For example, 
they pressed the L button 3 times when asked to draw a line 
3 squares long and pressed the L button 8 times when asked 
to draw a line 8 squares long. Thus, although these children 
understood the larger number represented the larger 
magnitude, they tried to use their knowledge of discrete 
quantities to solve problems of continuous magnitudes, 
leading to almost comically large errors. This error appears 
to be an immature sort of number knowledge. Consistent 
with this idea, 10-knowers who linked the number of button 
presses to the number requested were indeed younger than 
10-knowers who linked line length to the number requested 
(mean 5–0 vs. mean 5–7, t(42.11) = -3.08, p < .01).   

Discussion 
The goal of this study was to assess the relation between 
young children’s cardinality knowledge and their use of 
numbers in measuring continuous quantities. To assess 
children’s cardinality knowledge, we used a give-a-number 
task. To assess children’s knowledge of using numbers in 
continuous quantities, we used a give-a-line task. Our core 
findings are that children’s understanding of numbers in 
these two situations are not equally accurate, and—
surprisingly—their knowledge of cardinality is not always 
beneficial. Specifically, before children successfully 
understand how to construct a continuous magnitude using 
numbers, their understanding of cardinality interferes with 
their ability to approximately link numeric value to 
continuous extent.  

In some respects, our results on children’s use of number 
words in measuring continuous magnitudes are consistent 
with previous studies (Carpenter, 1975; Carpenter & Lewis, 
1976; Hiebert, 1981, 1984; Levine et al., 2009). In previous 
studies, young children have difficulty understanding the 
unit of measurement. In our own study, this was evident in 
their linking numbers to button presses instead of length.  
Additionally, although children’s use of numbers in 
measuring continuous magnitudes improved with age and 
development, accurate use of numbers for providing N 
objects occurred earlier than accurate use of numbers for 
providing N length (Fuson, 1988).   

The findings of children’s understanding of cardinality 
interfering with their generating continuous magnitudes are 
somewhat surprising given the conceptual similarities 
between using numbers to measure discrete and continuous 
quantities. First, similar to the give-a-number task where 
children need understand the last counted word refer to the 
manyness of a whole set of discrete entities, the give-a-line 
task requires children to understand that last word refer to 
the manyness of the units filling the continuous quantity. 
Second, both tasks require children to understand the 
meaning of “unit” —a discrete quantity in the give-a-
number task and a continuous quantity in the give-a-line 
task. In both tasks, children need to understand the meaning 

of units and then iterate the single unit to generate a 
quantity.  

Overall, our results suggest a new developmental 
sequence in children’s understanding of numbers. Initially, 
children start by approximately mapping numbers to spatial 
extent, regardless of whether it is the spatial extent of 
objects or the linear length. This state is not ideal because it 
yields less than perfect accuracy in both situations. Next, 
children begin to exactly map numbers to discrete 
quantities, such as objects and button presses. This yields 
excellent performance on a give-a-number task, but worse 
performance on the give-a-line task. Finally, children 
accurately map numbers to both discrete and continuous 
quantities. This developmental sequence is consistent with 
the pattern of individual differences in age and performance 
in our cross-sectional study. However, to test for this 
developmental sequence more directly, we would need 
longitudinal or microgenetic data. 

Aside from its implications about the development of 
number understanding, the fact that about half of 10-
knowers made comically enormous errors on the give-a-line 
task shows that cardinality knowledge certainly does not 
guarantee a very good sense of number. A child who thinks 
that a line that does not even cover the breadth of one square 
is actually “six squares long” seems to indicate a profound 
misunderstanding of what one and six mean. Depicting such 
a child as a “10-knower” may be a gross exaggeration of 
what they know about the meaning of numbers 1 - 10. 

Clearly cardinality knowledge is important. Previous 
studies (Geary & vanMarle, 2018; Geary et al., 2018) have 
found that children’s cardinality knowledge could predict 
their math achievement at school entry. Our study suggests 
that many of these children also misunderstand numbers, 
and assessing their understanding of numbers in a 
measurement context may improve our ability to project 
their future achievement.  
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