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ABSTRACT 

A topological framework is constructed for an s~matrix 

bootstrap theory of particles. Each component of an S-matrix 

topological expansion is associated with a pair of intersecting 

"quantum" and "classical" surfaces whose complexity exhibits an 

entropy property. The bounded classical surface embeds graphs 

that carry the direct observables--energy-momentum, spin and 

electric charge. The closed quantum surface carries a triangu-

lation whose orientations represent internal quantum numbers--

which turn out to be baryon number, lepton number and flavor. A 

form -of "color" automatically appears. All strong-interaction 

components of the expansion are generated through "Landau 

connected sums" from "zero-entropy" surface pairs--which are 

self generating. Elementary particles correspond to triangu-

lated areas on the quantum surface; consistency at zero entropy 

* This work was supported by the Director, Office of Energy 

Research, Office of High Energy and Nuclear Physics, Division 

of High Energy Physics of the U.S. Department of Energy under 

Contract No. W-7405-ENG-48. 
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determines allowed hadron disks on quantum spheres together with the 

associated quantum numbers. Elementary topological hadrons turn out 

to includ.e mesons, baryons and baryoniums, with quarks appearing as 

"peripheral triangles" (along the perimeters of hadron disks) whose 

attachments correspond to a total of 8 flavors as well as spin. 

Individual quarks do not carry momentum and cannot be hadrons; quark 

confinement is automatic. Also appearing within hadron disks are 

"core triangles" that carry baryon number and electric charge but no 

flavor or spin. Hadron disks have quantum numbers that accord with 

the lowest-mass physically-observed mesons and baryons. The relation 

of topological theory to QCD is discussed. 
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I. INTRODUCTION 

The bootstrap idea that S-matrix causality and unitarity might 

determine all hadron properties is 20 years old--preceding the quark 

idea. Bootstrap theory developed slowly because of its essential 

nonlinearity and lost favor when the capa-bilities of the seemingly-<>ppo-

site quark approach, eventually formalized within quantum chromodynamics 

(QCD), became recognized. It was, however, never established that 

conflict exis·ts between quark and boots·trap ideas. This paper de-

scribes a bootstrap theory which explains quarks and their properties 

on the basis of S-matrix consistency. 

Underlying our theory is the notion of causally-connected events 

in a Poincar~-invariant macroscopic space-time. In other words we 

accept the analytic S-matrix as described, for example, in the book 

by Iagolnitzer. 1 We do not requi~e the space-time continuum of 

local quantum field theory, and we make no a priori assumptions about 

internal quantum numbers; Our guiding motivation is to satisfy the 

nonlinear cyclical conditions implied by unitarity and causality: 

S-matrix connected parts are analytic momentum functions determined 

by their singularities, while the singularities are determined by pro­

ducts of connected parts, products associated with Landau graphs.1 

Our theory shows how this cycle implies hadron quark structure replete 

with internal quantum numbers and t:i:iality. We predict 8 flavors. 

A precondition for the form of bootstrap theory presented in 

this paper was recognition of the relevance to the S-matrix 

of combinatorial topology, applied to 2-dimensional surfaces. 

.,. • 
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An impressive understanding of mesons and meson interactions emerged 

during the seventies through the application of combinatorial topology 

to S-matrix causality and unitarity. This program--sometimes called 

"dual topological unitarization" (DTU)--grew out of Harari-Rosner 

dual diagrams, 2 and a survey of DTU developments up to 1977 

("classical" DTU) has been given in a Physics Reports review article.
3 

The general idea is to associate S-matrix connected parts 

(amplitudes) with 2-dimensional surfaces that admit a connected-sum 

operation analogous to matrix multiplication. These surfaces carry 

complexity indices with an "entropy" property such that in connected 

sums complexity cannot decrease, Topological expansion of the 

S-matrix then isolates the nonlinear bootstrap aspect of unitarity-

causality at the level of minimum complexity and maximum symmetry--

often characterized as the ''planar'·' level. Higher terms in the 

topological expans.ion are to be calculated in succession, starting 

from the planar terms. The theory proposed in the present paper 

extends DTU but maintains these general ideas. 

Our key· addition to classical DTU is the "quantum 

$phere," which houses the '·'zero-entropy" bootstrap. Quarks and 

qua.rk properties emerge. from demanding consistency of the quantum 

sphere--the residence of internal (not directly-observable) quantum 

nllll!bers--wi.th the classicalsur,face carrying energy, momentum, 

spin and electric charge. 

We find it plausible that the low-entropy content of bootstrap 

theory is complementary to QCD--which postulates colored and flavored quark 

(, ~-
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and gluon fields with a gauge-invariant interaction. We argue in 

our conclusion that it is because the validity domain of quantum 

field theory is "high entropy" that the Lagrangian approach cannot 

explain the number of colors and flavors. We anticipate that a 

high entropy limit of our theory will eventually be shown to imply 

the physical content of perturbative QCD. 

Our paper consists of two well-separated parts plus appendices. In 

the first part (Sees. II-IV) we express classical DTU in a precise form 

that admits elaborations to describe spin, parity .and the possibility 

of hadrons more complex than mesons. This part closely relates to 

parallel work by. H. P. Stapp4 ; the difference is mainly in our 

use of Landau graphs and in our emphas·is on "Landau connecte·d sums" 

of graph-carrying classi·cal surfaces, The notion of entropy> 

including zero entropy, governs both our approach a.nd that of Stapp. 

Although it is possible within a topological expansion bas.ed 

on classical surfaces to :j:dentify the concept of a zero-entropy 

bootstrap, the class:j:cal su·rface alone does not pr.ov:j:'de the means 

to explore all consistency requirements on internal quantum nUIDbers. 

The second part of our paper deals with the quantum sphere, which 

corresponds to a thickening of the boundary of the zero-entropy 

classical surface. This thickening is needed to achieve a zero-

entropy Hilbert space, so that zero-entropy components of the 

topological expansion become identiftable w~·th elements of an 

S-matrix. Causality and contracti'on rules based on particle-

bound-state correspondence are then shown to constrain the pattern 

.of internal quantum numbers. 

~ ~ 
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A preliminary summary of the main ideas in the present paper has 

been published, 
5 

but subsequent to that publication there became 

recognized' the need for an additional topological feature: singular 

junction lines connecting "feathers" of a multisheeted classical 

surface. Introduction of junction lines does not· affect the zero-

entropy Hilbert space, but there is an impact on the subsequent growth 

of entropy, which now can be expressed through a thickened Landau 

graph embellished by "colored" quark lines. 

It is natural to extend the topological approach to encompass 

electromagnetic and weak interactions. The extension to electro­

magnetism is described in separate papers6 which propose a 

topological representation of photons and charged leptons. Leptons 

and photons are not generated by the zero-entropy bootstrap in the 

sense of hadrons but there is a common topological framework; the 

topology of leptons in particular, is similar to that of quarks. A 

further extension of topological theory to weak interactions is in 

progress. 
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II.- CLASSICAL DTU 

The unitarity-causality properties of an analytic S matrix are 

expressible through Landau graphs, which stand in one-to-one correspon­

dence with isolated 'S-matrix singularities (Appendix A). In Ref. 3 

(Sec. 5) Landau graphs were given ordered vertices and housed in 

bounded two-dimensional surfaces which 'served as basis for an S-matrix 

topological expansion. We shall refer to such surfaces as "classical" 

because one of their functions is to keep track of complexity in 

momentum-energy--continuous particle attributes associated with the 

Lorentz group that play a central role in classical physics. In 

Sec. III we shall patchwise orient the classical surface and associ-

ate orientation reversal with space inversion (parity); it will then 

also be possible to describe spin complexity. We begin in the present 

section, however, with the unpatched surfaces used in Ref. 3 to 

describe mesons without attention to spin. These surfaces are 

orientable and inherit global orientation from the ordered-vertex 

Landau graphs embedded thereon (See Sec. VIII). In Sec. IV a wider 

class of hadrons, including baryons, will be accommodated by allowing 

the classical surface to be multisheeted, the sheets being joined 

together at singular junction lines. In classical DTU for mesons there 

are no junction lines; the surface is a bonafide 2-dimensional connected 

manifold with boundary. 

Central to classical DTU and to its generalizations is the idea 

of a topological expansion of "elementary S-matrix" connected part&. 

The Hilbert space in which the elementary S matrix is defined is based 

on a notion of "elementary particles". In our theory an· elementary 

.t: • 
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particle is assumed to correspond to a definite physical particle 

but is not identical therewith. In particular, elementary particles 

are all stable; their physical counterparts need not be. Anticipating 

later results~ an example is the elementary p meson, which will turn 

out to be one of the basis states for the topological expansion. The 

physical p meson is unstable and its mass is correspondingly a complex 

number. The elementary p mass has no imaginary part, and the real 

part is only approximately equal to that of the physical p·meson. All 

conserved internal quantum numbers are the same, however, as are spin 

and intrinsic parity. We make the assumption that a unique (not 

necessarily finite) set of elementary particles can be identified 

through requirements of S-matrix consistency. Finding this set is 

the bootstrap problem. The results found in this paper imply a 

finite but moderately large set of elementary hadrons which all have 

the same mass; they differ in spin and internal quantum numbers. 

The elementary S matrix is assumed to have the same pole structure 

as the physical S matrix. Thus, even though the elementary p has an 

unphysical mass, we assume the presence in appropriate elementary 

S-matrix connected parts of a complex pole whose position corresponds 

to the physical p mass. More generally we assume the usual pole, 

physical-particle correspondence fo:r; the elementary S matrix, with the 

standard factorization property relating pole residues to products 

of connected parts (AppendiX A). All connected parts of the physical 

S matrix are thus assumed to be obtainable by pole-residue factori­

zation from the elementary S matrix, despite the unphysical basis in 

which the latter is defined. 

'" ,'f 
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Only a finite subset of the infinite collection of poles of the 

elementary S matrix can be placed in correspondence with elementary 

particles; other poles correspond to "composite" particles. Again 

anticipating later results, there will for example be no elementary 

particle corresponding to the deuteron or to any ordinary' atomic 

nucleus beyond neutron and proton. -The structure of our bootstrap 

theory does not conform to a "nuclear democracy"; there will be a 

definite and restricted set of elementary particles even though each 

of the latter is determined by S-matrix consistency and is equivalent 

to a "bound state" of other elementary particles. 

Let us denote by Hfi a connected part of the elementary S matrix, 

the indices i and f designating sets of ingoing and outgoing elementary 

particles, together with momenta and spins. In classical DTU, as well 

as in its generalization, one writes an infinite expansion in t~~o indices: 

Mfi = L 
T,K 

TMK 
fi, (2 .1) 

T K 
We shall refer to Mfi as an elementary connected part and to Mfi as a 

topological connected part. The first index T specifies some surface 

with embedded graphs, together with some division of the surface 

boundary into pieces. For example a simple circular boundary component 

might be divided into n edges--an n-gon. The topological index T 

'describes the nature of the surface (sphere, torus, etc.), the embedded 

graphs, and the boundary structure. The second index K describes an 

association of the elementary particles in chaimels f and i with pieces 

of the boundary. Each particle, for example, might attach to a 

particular polygon edge. 

!'' ~ 
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In classical DTU each T characterizes an orientable and bounded 

2-dimensional connect-ed surface. The index T specifies the surface 

genus and boundary structure--the latter corresponding to removing 

a collection of disks from a closed surface. The perimeter of each 

removed disk is divided into pfeces, and the order index K associates 

each such piece to one of the elementary particles in the collection 

i, f. Embedded on the surface is a single-vertex Landau graph 

(Appendix A) with one external arc for each particle, each graph "end" 

lying on a boundary piece. Assigning an elementary particle to a 

boundary piece is equivalent to attaching this particle's energy­

momentum to the corresponding external Landau arc. The contraction 

rules of Appendix A imply that in classical DTU the Landau graph is a 

redundant feature of the topology, but it will not be redundant in 

our extension of classical DTU in Sees. III and IV. 

Consider the elementary-particle reaction AB ~ CD described by 

the 4-arc vertex of Fig. 1. One of the terms (T,K) in the topological 

expansion of the elementary connected part for this reaction would 

correspond to the 4-edge disk of Fig. 2, together with embedded single-

vertex Landau graph.· Notice that the arcs incident on a Landauvertex 

automatically acquire a cyclic order as soon as the Landau graph is 

embedded on a 2-dimensional surface. Reference 3 adopted a convention 

of always understanding this order to be "clockwise". Hence the 

circular arrow in Fig. 2. 

An example ·of a different term in the topological expansion of 

the same reaction amplitude is shown in Fig. 3. Here the boundary 
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* consists of 2 disconnected components each of which is a 2-gon. 

The particles A and B belong to one boundary component while C 

and D belong to the other. Note the extra closed loop in the 

Landau graph--that cannot be contracted. It is'the accommodation 

of this loop that requires two disconnected boundary components. 

We have here an illustration of how complexity of graph correlates 

with complexity of surface. 

A third example is given in Fig. 4, where the surface is 

toroidal but the boundary is connected (a single boundary component)--

quadrilateral as in Fig. 2 even though we have been forced in drawing 

Fig. 4 to curve some of the edges. The genus of the surface in 

Figs. 2 and 3 is zero while that of Fig. 4 is l, The complete 

topological expansion requires classical surfaces of indefinitely 

large genus and the number of disconnected boundary components may 

be as large as the number of involved particles. All possible 

cyclic sequences of particles on boundaries must be included. 

Landau graphs, as originally introduced in S-matrix theory to 

describe connected-pqrt singularities (Appendix I), always have more 

than one vertex and do not have ordered vertices. A nonotdered 

Landau graph L, such as that of Fig. S(a) corresponds to a dis-

continuity formula schematically expressible as 

discL ·Mfi = fdpL M~m x Mnp x ••• (2..2) 

* This 2- boundary surface is a cylinder. 

• .., 
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where the integration is over the phase space of all intermediate 

elementary particles--each corresponding to an internal arc of 

the graph. Because of the difference between physical particles' 

and elementary particles, Eq. (2.2) acquires consistent meaning 

when applied _to elementary connected parts only after a topological 

expansion has been made of each connected part appearing therein. 

We have emphasized that the singularities of each Mfi (without expan­

sion) correspond to intermediate physical particles, but the inter-

mediate particles of Eq. (2.2) are elementary. This conflict we 

assume to be reconciled by mass renormalization. The singularities of 

individual topological connected parts 'M~i correspond to elementary 

particles associated with internal arcs of ordered-vertex Landau 

graphs. (See Formula (2.3) below.) But because the topological expansion 

Eq. (2.1) is infinite it is possible to assume that the expansion diverges 

at isolated points in the complex momentum Riemann surface so as to 

remove elementary unphysical singularities present in individual 

expansion components and to replace them by physical singularities. 

Although the foregoing phenomenon might sound unreasonable, it 

is in fact familiar in physical theories which achieve unitarity 

though infinite expansions. Mass renormalization is by now understood 

in a variety of S-matrix models as well as in Lagrangian field theory. 

While recognizing the importance for the future of achieving a firm 

generaL basis for this aspect of bootstrap theory, we believe it 

reasonable here to pro_ceed by accepting on faith the implicit assumption 

of classical DTJ3 that mass renormalization will occur through the 

above mechanism • 

.. ,. 
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The attribution of formal meaning via the topological expansion 

to the discontinuity formula (2.2) associates the notion of Landau con-

nected sum with an ordered multivertex Landau graph. Consider the 

2-vertex nonordered Landau graph of Fig. 5(a) and associate this with 

a product of two elementary connected parts, as on the right-hand 

side of Eq.~.2)· Topological expansion of each of the two connected 

parts leads to a sum of products 

discL Mfi ~ 

T 1 ,K' 

T",K" 

fdpL 
T t K 1 T 11 K 11 

M X M 
Jim np 

(2.3) 

each product being associable with a 2-vertex ordered Landau graph L 

such as that of Fig. 5(b). Each vertex here corresponds to a 

topological connected part, so the incident arcs lie in a definite 

cyclic sequence. This ordered graph belongs to a Landau connected sum, 

denoted by 

(-r',K') II (-r",K") 
L 

(-r ,K) 

or, more compactly, if-~'= (-r',K') and ~i'='(-r",K"), 

~· II~" 
L 

~. 

(2.4) 

(2.4') 

a notion defined precisely in Appendix B. There is a joining of 

boundary edge segments belonging to intermediate elementary particles 

so as to achieve a unique new surface whose boundary edge segments 

correspond to external elementary particles. The two ingredient 

surface orientations inherited from the single-vertex Landau graphs 

~ 
,. 
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are to match so that the two-vertex graph on the new surface has a 

coherent orientation (say clockwise) • Contraction of this graph to 

a single-vertex graph (Appendix A) then completes the specification 

* of (-r,K) • 

In the example of Fig. 5(b) a connected sum is formed from two 

single-boundary, zero-genus classical surfaces, the boundary of each 

having 5 pieces. There is a joining of corresponding boundary 

segments on the two surfaces--belonging to intermediate elementary 

particles E, F, G--to achieve a new surface whose boundary only 

includes particles A, B, C, D. The new surface in fact is that of 

Fig 4., where the single-vertex Landau graph is a contraction 

(Appendix A) of the 2-vertex ordered graph of Fig. 5(b). 

Suppose now that we topologically expand the left-hand side of 

an equation like Eq. (2 .3) and associate with each ( T, K) those terms on 

theright-hand side for which the associated connected sum is (T,K). 

We then find 

disc
1 

'M;i = ~ jdp
1 

T',K" 

T 
1 

K 1 T 11 K 11 
M X M 

Jim np 
(2 .5) 

T~K" 

where the sum is restricted by (-r' ,K') II (-r",K") II ••. (T ,K) • 

Equation(2_.5) implies that each topological connected part 'M;i is an 

analytic function of particle momenta with isolated singularities 

corresponding to multivertex.ordered Landau graphs that co~tract to 

the single-vertex graph belonging to ( -r, K). Reference 3 presents 

* The elaboration of classical DTU discussed in later sections will 

require modification of this Landau-graph contraction rule. 
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a variety of examples showing how Formula (2.5) implies different 

singularity structure for different values of (T ,K). Each individual 

T K 
topological connected part Mfi possesses only a small sub~et of the 

singularity collection present in all the components building Mfi' 

To complete a meaning for the topological expansion it is 

necessary to assume that discontinuity formulas such as (2.5) together 

with Cauchy~Riemann formulas (dispersion relations), provide a basis 

for calculating topological connected parts. The_scheme by which the 

calculation is supposed to proceed depends on notions of entropy and 

zero entropy •. ,The Landau connected sum of classical surfaces has the 

property that if the genuses of the ingredient surfaces are g', g-", ••• , 

and the genus of the resultant is g, then 

g;;;. g' + g" + (2 .6) 

We refer to such a property that surface complexity can only increase 

through surface addition as "entropy". Its importance for the S matrix 

was first noted by Veneziano. 7 Entropy rules also apply to boundary 

structure (Appendix B). For example, if the number of boundary compo­

nents on the surface resulting from a Landau connected sum is smaller 

othan the maximum number on any ingredient surface, there must be an 

increase in resultant genus over the sum of ingredient genuses, 8 

A consequence of such entropy rules is the possibility of . 

identifying a·;minimal subset of zero-entropy topological connected 

parts, whose discontinuities are built entirely from products of 

zero-entropy ·connected p;;rts. In classical DTU the zero-entropy 

-:· ~, 
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subset consists of all T where the surface is a disk--with zero genus 

and a single boundary component--commonly characterized as "planar". 

(In our generalizations of classical DTU, the adjective "planar" will 

not be sufficient to describe zero entropy.) That is, any discontin-

uity of a planar connected part is a product of planar connected parts. 

Classical DTU makes the assumption, to which we shall adhere in our 

generalizations, that zero-entropy connected parts may be calculated 

first, without having to calculate any connected parts outside this 

subset. 

A second assumption, also to be maintained, is that all strong-

interaction components of the topological expansion(2~)correspond to 

surfaces that can be formed by successive connected sums of zero-

entropy surfaces. A feature of our theory is that any higher component 

in the topological expansion may be calcula~ed through linear equations, 

given components of lower entropy. This feature accords with the 

fact that the complexity of any ingredient surface in a Landau 

connected sum cannot-exceed that of the resultant. For example, the 

inequality (2.6) means that the only genus of a resultant surface 

which can occur more than once among ingredient surfaces is zero 

genus; discontinuity formulas for a topological connected part of 

genus g f 0 may contain at most a single factor corresponding to a 

genus-g connected part. All other factors must have smaller genus, 

so the calculation may proceed through a linear equation. 

.In contrast, the calculation of zero-entropy connected parts is 

nonlinear_ and herein lies the bootstrap potential. Arbitrary assign-

ment of elementary partic~es is presumed not to be possible: the 

flo, I'' 
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basis for the topological expansion must be chosen so as to permit 

satisfaction of the nonlinear zero-entropy equations. It is shown 

in Ref. 3 how these equations imply a zero-entropy "ordered S matrix". 

We do not at this point repeat the reasoning since we .shall later 

consider in detail the ordered S matrix after adding the "quantum 

surface", a notion absent from classical DTU. Suffice it here to 

say that unitarity and causality properties of the physical S matrix 

imply corresponding properties in a zero-entropy Hilbert space of 

elementary particle channels. 

Every elementary hadron is at the same time a composite "bound 

state" built from other elementary hadrons. This idea is made 

precise by topological contraction rules. For elementary mesons in 

classical DTU the rule means that a connected boundary interval 

belonging to several mesons cari be uniquely contracted to a smaller 

boundary piece belonging to a single meson. The notion gf multi-

particle boundary-piece contraction to a single-particle boundary 

piece is the essential element in distinguishing strong from 

electroweak interactions. 14 

The classical-DTU contraction rule is often expressed with the 

2 
aid of graphs invented by Harari and Rosner. Ev.ery meson boundary 

piece is divided into two subpieces, -and the complete set of subpieces 

building a zero-entropy boundary is grouped into adjacent mated 

subpiece pairs, where the two members of a pair belong to different 

mesons. An arc can be drawn on the classical surface connecting the 

two members of a mated pair, as shown in Fig. 6 (which corresponds to 

Fig. 2), and the collection of mate-connecting arcs is the Har~ri-

Rosner (HR) graph. Figure 6 also shows how orientations may be 

,. 
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attached to HR arcs so as to agree with the. vertex orientation 

in the Landau graph. ·Henceforth we shall refer to this globai 

orientation of the surface as HR orientation. 

To contract a multimeson boundary interval into a single-

meson interval one removes all- mated pairs and erases the corres-

ponding HR arcs. Topologically this contraction may be described 

as a degenerate connected sum, as seen in the example of Fig.7, 

where adjacent mesons C and D contract to a single meson. Notice 

how the contraction produces and erases a closed HR loop; such 

closed loop production and erasure is also a typical feature of 

zero-entropy Landau connected sums. 

* It should be remarked (see Fig. 6 ) that in classical DTU the 

Landau graph and the HR graph give the same information, although 

such will no longer be the case after the classical surface is 

generalized to accommodate elementary hadrons other than mesons. As 

discussed in Appendix B, ordering of Landau-graph vertices allows a 

unique 2-dimensional thickening of the Landau graph; the Harari-

** Rosner graph lies along the boundary of the thickened Landau graph. 

* The orientation of the Landau arcs is not significant, since 

analytic continuation in particle energy (Appendix D) changes 

ingoing particles to outgoing antiparticles. 

** Chapter 5 of Ref. 3 describes a. rule which allows the genus 

and boundary structure of the classical-DTU surface to be deduced 

entirely from the vertex-ordered Landau graph. Section VIII 

below gives further discussion of thickened Landau graphs. 

----, 
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We are here encountering a characteristic feature of topological 

bootstrap theory, where a single structure may simultaneously play 

different roles. HR graphs reflect singularity structure in contin-

uous energy-momentum variables, inasmuch as they conform to Landau 

graphs, but in describing zero-entropy contraction rules they also 

control the structure of dependence on discrete "internal'·' variables. 

. Weis~ann9 was able to show for classical DTU that additively-

conserved internal quantum numbers can consistently be introduced 

into the zero-entropy· topological S matrix only as indices attached 

* to HR arcs, to be matched in connected sums. A glance at Fig. 6 

then allows the conclusion that, so far as flavor is concerned, 

mesons necessarily act like quark-antiquark combinations. Below, 

by slightly enlarging classical DTU, we shall find that zero-

entropy spin dependence conforms to this same pattern. Thus HR 

arcs, with respect both to flavor and to spin, may be described as 

"quark lines"; in this. sense the zero-entropy classical-DTU bootstrap 

has explained the quark structure of mesons. 

* The original discovery of HR graphs
2 

rested on attachment of 

flavor indices to HR arcs. 

~:" ';, 
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III. CLASSICAL PATCHES AND SPIN 

To describe spin and parity a patchwise orientation (Appendix C), 

that induces an orientation of patch boundaries, is assigned to the 

classical surface. A zero-entropy surface is a single patch; if the 

patch orientation agrees with the HR orientation we characterize the 

zero-entropy topology as 'brtho", if the two orientations disagree 

the adjective "para" will be employed. 4 
Stapp has shown how the 

ortho-para distinction'allows elementary-particle spin to be 

described through 2-valued indices belonging to (0, i) or <i, 0) 

spinor representations of. the Lorentz group, one index for each quark 

interval on the classical-surface boundary. The spin of an elementary 

meson is then carried by a pair of such indices. In Appendix D we 

give the precise form of Stapp's zero-entropy topological connected-

part dependence on spin indices, which loosely may be·characterized 

as a maintenance of spin value along an HR arc. That is, at zero 

entropy if the nature of the spinor indices is correctly chosen, one 

may think of a definite spin value (± i) as being attached to each 

HR arc. 

The Stapp zero-entropy spin structure furthermore corresponds to 

associating the parity operation with reversal of classical-surface 

patch orientation (Appendix D). Applying space inversion IDan ortho comoollent: 

of the topological expansion produces a result equal to the corres~· 

* pending para component. Since zero-entropy components always occur in 

* Separate zero-entropy components of the topological expansion 

are not parity invariant. 

"' .,. 
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symmetrical ortho-para pairs and since higher strong-interaction 

expansion components are all generated from zero entropy, it follows 

that parity is a strong-interaction symmetry. Stapp also has shown 

that charge conjugation corresponds to simultaneous reversal of 

patch and HR orientation--another symmetry operation. 4 The 
. ---

elaboration of topological theory to describe hadrons more complex 

than mesons will maintain strong-interaction C and P symmetry by 

continuing to employ both patch and HR orientations (Appendix D). 

From the foregoing it follows that the spectrum of elementary 

mesons is characterized by spin quartets, each a triplet (S = 1) 

degenerate with a singlet (S = 0). The ortho-para doubling of the 

topology means that each elementary meson appears twice in the 

spectrum of zero-entropy poles. An ortho plus para (0 + P) zero­

ent-ropy ground state pole turns out to have negative intrinsic parity 

while an ortho minus para (0 - P) has positive intrinsic parity. 

It is shown ·by Stap/ that the 'superposition in Formula (2.1) (also 

Formula()~) below) eliminates ground-state poles corresponding to 

0 - P, so elementary mesons possess odd intrinsic parity. The spin-

parity content of the elementary DTU meson spectrum is thus identical 

to that of ground states in naive quark models; at the same time ortho-

para topological doubling is essential for completeness and consistency. 

A Landau connected sum of two zero-entropy surfaces, one ortho 

and one para, leads to a 2-pat.ched surface with a transition arc 

separating an ortho patch from a para patch. Further connected sums 

may add further 'classical patches" and; correspondingly, further 

transition arcs. Patches cannot disappear; the number of patches 

•!'\ -· 
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resulting from a connected sum is never less than the maximum number 

. * in any ingredient surface. This entropy property allows the con-

sistent demand of~ transition arcs on zero-entropy surfaces. 

The rules of Landau connected sums imply that, for strong-

interaction topologies, transition arcs reaching the boundary do so 

only at points separating one hadron piece from the next".. The 

boundary direction induced by the adjacent patch can reverse only at 

** such points, being continuous thoughout any particle interval; in 

any strong-intersection topological connected part each elementary 

hadron is att~ched unambiguously either to an ortho or to a para patch. 

The Stapp spin rule4 implies that after making a Landau 

connected sum, Landau-graph contractions are to be made only_ within 

individual classical patches. There is a single Landau vertex inside 

·each patch, and the number of arcs connecting two vertices in different 

patches is a significant aspect of the topology T; the (external) spin 

dependence of a topological connected part is sensitive to· the number 

of patch-connecting internal Landau arcs. 

What is the connection between the unpatched classical DTU of 

Sec. II and the ortho-para extension? At zero entropy there is no 

difference; the unpatched problem is duplicated twice. Suppose we 

* The number nc of closed transition arcs (loops not touching the 

boundary) exhibits a stronger entropy rule: In a connected sum 

'<' '<' '<' c ;:;, c c 
~ = ~1 II ~2, n ,p" nl + n2 • 

** 14 ' This property changes when electromagnetism is introduced. 
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generally designate by 'c the content of T apart from classical 

patches and Landau graphs; in other words 'c has the content described 

in Sec. II. The full set of topologies T is divided into subsets each 

labeled by 'c Then, if a "fully patched" topological connected part 

·is defined as 

T K 
c 
Mfi- ~ 

TET c 

TMK 
fi 

/ 

(3 .1) 

T K 
Stapp's considerations show that the discontinuity formulas for cMfi 

have the same form as in unpatched classical DTU, with all poles 

corresponding to 0 + P. 

There is, however, a subtle difference between a theory that 

starts with classical patches and then sums over them and a theory 

that ignores this topological degree of freedom. The difference 

lies in the basis--in the "elementary" particles to which the indices 

i,f refer. For example, zero-entropy elementary mesons exhibit 

singlet-triplet (e.g.,p-~) degeneracy. There is no reason to expect 

such degeneracy in unpatched classical DTU. Correspondingly if one 

considers the first few terms in Formula(l.l) ••• one patch plus 2 

patches plus 3 patches, etc .••. for a planar connected part, one 

finds that with more than a single patch Stapp's spin rule breaks the 

singlet-triplet degeneracy. 9 The infinite series building a fully-

patched planar connected part shifts pole positions by the mass-

renormalization mechanism discussed inSzc. II and there is no reason 

for these shifts to 

time the basis for 

be equal for spin 0 and spin 1. At the same 
T K 

cMfi remains zero-entropy. In unpatched 

classical DTU the basis would correspond to the poles of the planar 

~-· ·~ 
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S matrix and there would be no immediate way to know the spin and 

* parity values for the basis states. Spin and parity remain outside 

the bootstrap framework in unpatched classical DTU. 

* 
Calculations in unpatched classical DTU have taken the meson spins 

and parities as given by experiment. 3 

,.: (~ 
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IV. FEATHERED CLASSICAL SURFACES, GLITCHES AND THE BELT GRAPH 

The classical surfaces described in Sees; II and III are inade-

quate for the full representation of hadrons more complex than mesons. 

Although the Landau graph can be accommodated, the topology is too 

simple to represent spin and internal quantum numbers for elementary 

particles whose structure goes beyond 2 quarks. It was suggested 

some years ago by several independent authors10 that "feathered" 

surfaces might be appropriate; in this section we attach to the topo­

* logical index T a significance belonging to such an object. A com-

plete and precise definition of a feathered T depends, as for the T of 

unfeathered classical DTU, on a notion of zero entropy and on the way 

that classical surfaces are inductively constructed from zero entropy. 

Let us commence forthwith the gradual, ~omewhat circular, defining 

process. 

* An earlier version of our theory, described in an unpublished pre-, 

print (G:. F. Chew andV.Poenaru LBL-9768, Sept. 1979) and summarized 

in Ref. 5, attempted to describe complex hadrons without feathered 

surfaces. It was pointed out to us by J. Finkelstein and 

J. Uschersohn, (Berkeley, 1980) that inconsistencies develop at 

nonzero.entropy if kc is unfeathered. The form of the quantum 

surface, kQ' described here in Sec. V is unchanged from the earlier. 

version of the theory. Furthermore, because at zero entropy all the 

action is on a single sheet of kc (see below), it turns out that the 

topology of zero entropy remains unchanged for the entire surface 

pair (k k ) Q' c . 

"' -~ 

26 

A feathered classical surface kc is a 2-dimensional object 

which locally is like a bounded smooth_ surface except for a finite 

number of "junction lines". A junction line can be either a segment 

or a circle, and along such a line three pieces of smooth surface 

meet. Why three? After introduction of the quantum surface there 

will emerge reasons for the magic quality of "threeness" in the 

achievement of overall consistency. Temporarily, the reader may be 

content to anticipate that a 3-feathered classical surface will 

correspond to the 3 quarks within a baryon. We shall find, however, 

that 3-feathered surfaces can accommodate elementary particles with 

more than 3 quarks and also with less. In Fig. 8 we show a junction­

* line segment, with 3 adjoining pieces of smooth surface. 

When kC is disconnected along the junction lines it becomes 

decomposed into a number of connected smooth surfaces which we call 

~- Each sheet is orientable and patchwise oriented--the kind of 

object described in Sec. III. Each sheet furthermore carries a 

coherent HR orientation which, as in classical DTU, can be associated 

with ordered Landau vertices on the sheet (see below) or, alter-

natively, with HR arcs along the boundary (see Fig. 8). 

The boundary of the full multisheeted classical surface kc is a 

closed cubic graph (3 arcs incident on each nontrivial vertex) 

* The 3 pieces of smooth surface can interconnect in a nontrivial 

fashion. 
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* which we call the belt and denote bya~c· If S is one of the sheets 

of ~c·· the boundary of S consists of belt segments (St"\a~c) and 

junction lines. Along ~a~C there are HR arcs, as in Fig. 8, which 

provide HR orientation. Attaching the HR orientation to the sheet 

boundary orients any junction line along the boundary. We require 

that all 3 sheets meeting along a junction line J give the same HR 

** orientation to J. 

Each HR arc carries a certain conserved flavor just as in 

classical DTU. For the time being we continue to treat flavor as an 

index; later we shall find its origin and interpretation in the quantum 

surface. Also as in classical DTU, the boundary of LC (the belt) is 

carved into pieces corresponding to ingoing or outgoing elementary 

particles. Consistency considerations including the quantum surface 

eventually will lead us to admit only three kinds of elementary 

hadrons: mesons, baryons, (antibaryons) and baryoniums. Anticipating 

the results of Sec. V, the forms of the corresponding belt pieces are 

shown in Fig. 9, where the arrows are HR orientations transferred to 

to the boundary. The entire belt is made up from such pieces whose 

* 

** 

It will be shown in Sec. VI that the nontrivial belt vertices 

always occur in "mated'' pairs of opposite HR orientation. 

two vertices of Fig. 8 are mated. 

The 

After introduction of the quantum surface the representation of 

electric charge will lead to a "core charge arc", similar in many 

ways to an HR arc but parallel to a junction line rather than to 

the belt. Core-charge orientation coincides with HR orientation. 

\: <' 

28 

general structure was recognized in Ref. 11. Just as in classical 

DTU, points along the belt that separate particle pi.eces are each 

enclosed by an HR arc; the collection of HR arcs thereby delineates 

the particle structure of the belt (see Fig. 10). 

Again as in classical DTU the surface ~C houses a connected 

open Landau graph (Appendix A); the ends of the graph lie on.the 

belt and correspond to the particles, as indicated by the dotted 

arcs in Fig. 9. Note how the position of the baryon Landau ·arc 

breaks the triangular symmetry of the baryonic piece of belt. It is 

possible for a baryon Landau arc to cross a junction line, passing 

* from one sheet to another. Points of such crossing are called 

glitches and will be found to constitute a measure of entropy 

(Appendix B). 

As in classical DTU the surface LC is divided into ortho and 

para patches with intervening transition arcs which, if they 

end on the belt, in strong-interaction topologies, do so at points 

separating one elementary-particle piece from the next. Since such 

a point is always enclosed by an HR arc, there must be a crossing of 

transition arc with HR arc. Transition arcs also may end on junction 

lines. Attaching classical-patch orientation to patch boundaries 

gives an orientation to junction-line segments that lie between the 

end points of transition arcs. The three adjacent patches along such 

a junction-line segment induce the same parity orientation of the 

* The reas.on why meson and baryonium arcs do not "glitch" in strong­

interaction topologies will be explained in what follows. 

.. (), 
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segment, which means that the three patches are either all ortho or 

all para. All the foregoing rules follow'by induction from zero 

entropy, where as in classical DTU the entire ~C is or tho or para--

with no transition arcs. The relation of ortho-para orientation of 

~C to spin dependence and parity inversion is the same as described 

in Sec. III and Appendix,D. 

The notion of Landau (multiplugged) co,nnected sum is easily 

extended to feathered classical surfaces (Appendix B), and will be 

expressed by the notation 

~c ~~~~ 
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graph on the new classical surface ~c· In baryon plugs, howeve~the 

two Landau arcs to be connected may reside on sheets that are not 

united by the connected sum. This mismatch is corrected by an addi-

tiona! glitch and we shall regard as inequivalent the three situ­

* ations depicted in Fig. 11. A plug which simultaneously involves a 

glitch and an 0-l' transition generates something like Fig. llC. ~ 

What are the special characteristics of zero-entropy classical 

surfaces from which all strong-interaction ~C are to be built by 

successive connected sums? A zero-entropy classical surface obeys the 

following requirements: 

1°) Each sheet is topologically a disk and consists of a single 

patch. 

2°) There are no glitches, the Landau graph sitting on a single 

Corresponding elementary-particle pieces of belt are identified as "main sheet" which sees all the particles.' 

in classical DTU, a coherent HR orientation of the new surface being 

ensured if the HR orientations are opposite for a pair of matched 

belt segments. The connected sum of surfaces is accompanied by 

similar connected sums of HR arcs and junction lines; HR flavor 

matching is to be respected. As in classical DTU, when an ortho 

patch is glued to a para patch, the corresponding piece of belt 

becomes a transition arc. Otherwise we erase it. from the connected 

sum. Also to be erased from a connected sum is a closed HR loop with 

disk interior lying within a single classical patch, as is a closed 

junction line when it is the intersection of an unpatched sphere 

with a plane. 

Figure 9 show.s that in baryonium and meson plugs the Landau 

arcs always can be directly joined to build a new connected Landau 

3°) The Landau graph is a tree with a single vertex. 

Such demands were also present in classical DTU. The difference is· 

that, there, requirement (2°) is satisfied for all ~C--not only zero 

entropy. The zero-entropy absence of glitches ensures that no ~C' 

achieved through connected sums starting from zero entropy, will 

e~er have junction lines crossed either by meson or baryonium arcs. 

Appendix B establishes that, in any connected sum leading to a zero-

entropy ~C' no glitches can appear in constituent classical surfaces; 

once present, glitches cannot disappear. 

The foregoing properties of zero-entropy classical surfaces 

constrains the zero-entropy belt graph to be extremely simple--

a single-stand "necklace of beads", as illustrated by the 2-bead 

example of Fig. 10. Necklace graphs were introduced in Ref. 11 but 

* The trivial Landau vertices discussed in Appendix A clarify this 

inequivalence. 
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without an interpretation as the boundary of a multisheeted classical 

surface; there consequently were no attached Landau arcs. With attach-

ment of Landau and HR arcs to a single-strand necklace graph as in 

Fig. 10 (HR flavor indices not shown), the zero~entropy topology, 

is almost completely specified--all the action residing in the main 

sheet. The only loose feature is a possible ordering of the two 

inert sheets belonging to each bead--whose boundaries define the 

bead-within the belt graph. 

Giving an order to these inert sheets amounts to ordering the 

vertices of the belt graph, which in turn amounts to thickening the 

belt (Appendix B). We shall folfow a proposal of Ref. 11 by adding 

* to the structure of LC an ordering of the belt graph. In more precise 

terms we postulate that the belt comes with a 2-dimensional thickening 

which will be an orientable and oriented (also patchwise oriented) 

surface denoted by th(aLC). At zero entropy th(aLC) is planar and 

the three sheets at each bead are cyclically ordered. Thus a belt 

graph such as that of Fig. 11 is not zero entropy. 

* Combining this order with the fact that the Landau graph always 

gives a special status to one of the 3 sheets can be thought of 

as attaching one of 3 different and distinguishable topological 

colors to each sheet at zero entropy (Sec. VIII). The possibility 

of glitching in connected sums means that beyond zero entropy 

topological color is not attachable to sheets, but Sec. VIII shows 

how "color" is attached to the quark lines that embellish a 

thickened Landau graph. 

,., '} 
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In giving a precise definition of a feathered topological object 

T, we have introduced several arbitrary features: 3 feathers, 

flavored HR arcs and the special elementary-particle belt pieces 

of Fig. 9. In our introduction the expectation has been expressed 

that the interplay with zero entropy of S-matrix unitarity and 

causality will explain the need for such special features. In Refs. 

8, 11, 12 partial explanations have been proposed in terms of 

ordered (thickened) belt graphs together with the notion of an 

ordered S matrix whose connected parts are the zero-entropy components 

of a topological expansion. In this earlier work the belt graph 

was not recognized as the boundary of a classical surface where 

Landau and HR arcs reside. We may now, therefore, expect to go 

further in grasping the consistency implications of zero entropy. 

It may be that the topological object described in the present 

section is adequate for such analysis but in the following section 

we show how the thickened belt is extendable to a closed triangulated 

surface. Consistency requirements are then much easier to control, 

especially because at zero entropy the closed surface will be a sphere. 

~._. ·~ 



f~ ,ja• 

33 

V. QUANTUM.SURFACES; GENERAL REQUIREMENTS 

FOR QUANTUM SPHERES 

The previous section introduced the thickening of the belt 

graph, th (ClLC), a· 2-dimensional orientable surface with boundary. 

Capping off the boundary components with disks then yields a 

2,dimens:l:onal orientable closed surface--to be called the quantum 

surface LQ. Note that LQ and Lc meet along the belt 

Clkc = LQ n Lc (5. 1) 

At zero entropy each LQ ts a sphere, and all higher-entropy .-strong-

interaction 

Like a 

LQ will be 

Lc each 

built from these spheres by connected sums. 

LQ will carry_ additional structures, but 

before describing these in full we present in this section a 

collection of natural requirements for zero-entropy quantum spheres. 

Just as for LC the full characterization of LQ has a circular 

aspect that depends on zero entropy. 

We postulate that any LQ is covered by particle areas which 

cut the belt into the particle pieces described in the previous section. 

Anticipating bootstrap results from Sec. VI, we show in Fig. 13 the 

form of the four distinct particle areas that correspond to the four 

belt pieces of Fig. 9. Any strong-interaction LQ is completely 

covered by combinations of these four possibilities. Together with its 

(• -. 
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division into particle areas, ~Q naturally houses the belt; our 

thickened belt th(3LC) is, among the various abstractly possible 

thickenings of 3Le' that one uniquely specified as the thickening of 

3LC inside LQ (see Appendix B). 

Each index T appearing in the topological expansion corresponds 

to a surface pair L = (LQ' LC) with various attachments, any Landau 

connected sum of classical surfaces being accompanied by a connected 

sum of the corresponding quantum surfaces 

(L' L') II (L" L") 
Q' c Q' c (L' II L" L' II L") 

Q Q c . c (5.2) 

Here LQ II LQ means "connected sum of closed surfaces "(Appendix B, Sub­

section 1),_ there being identification (and erasure) of those areas on 

L' 
Q 

and LQ that correspond to the particle pieces of belt identified 

in Lt II k~ --the simultaneous classical-surface "connected sum along the 

boundary." Complete rules for Landau connected sums of surface pairs 

are described in Appendix B, attention being given to surface 

attachments. At zero entropy particle areas are disks .and-, in 

connected sums that maintain zero entropy, collections of identified 

particle areas are also disks; thus zero-entropy connected sums 

invariably are single plugs. 
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Because every zero-entropy ~Q is an oriented sphere and 

because, as explained in Appendix B, any Landau connected sum 
I 11 

~Q # ~Q of oriented surfaces· inherits an orientation from the 

constituent ~Q's, it follows that every strong~interaction 

component of the topological eJCpansion corresponds to an orientable 

and oriented ~Q' Zero-.entropy- quantum spheres are furthermore 

llatchwise oriented (Appendix C), a property· transmitted via .Landau 

connected sums to all strong-interaction ~Q. Because particle­

area boundaries lie along patch boundaries, it i.s possible to 

* characterize most particle areas as clockwise or anticlockwise, a 

distinction that we shall connect to the physical distinction 

between ingoing and outgoing particles or (by crossing, as explained 

in Appendix D) between particles and antiparticles. 

We come now to special zero-entropy quantum-sphere properties 

not generally shared by higher entropy ~Q. In Ref. 3 there was 

introduced the concept of an ordered Hilbert space. The vectors of 

this space are labelled not only by elementary-particle momentum and 

spin but by channel disks which are partic.le-disk combinations with 

an attached belt segment and with unique quantum-patch orientations. 

The belt carries an ortho or llara ori·entation as descri'bed· above in 

Sees. III and lV. A connected part of the ordered S 111.atrh. is a 

* The exceptions correspond.to self-conjugate particles like p0--

all of whose quantum numbers are zero. 
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zero-entropy arnpli tude corresponding to a surface pair where the 

quantum sphere is covered by an ingoing channel disk together 

with an outgoing channel disk. The two disks are joined along 

their perimeters. 

Ordered s~matrix elements are nonvanishing only between channel 

disks whose perimeters match in an appropriate way. Not only must 

the number of edges along the perimeters be the same but the quantum­

patch orientations must reverse. from one channel di.s·k to the next 

across each perimeter segment. further attachments· to ~ 
Q 

also must 

match, and belt segm.ents must connect smoothly to form a closed 

belt graph that is entirely ortho or entirely para, Two ordered 

channels with the property that the ingoing perimeter of one matches 

the outgoing perimeter of the other will be said to cOnllnurticate. 

The ordered Hilbert space splits into sectors, ordered channels 

within one sector communicating with each other but not with ordered 

channels in any oth.er sector. Each sector has a characteristic 

* perimeter. 

It is made plausible ·in Refs. 8, 11 and 12 that unitarity 

and analyticit:t of a cluster-decomposable physical S matrix implies 

unitarity and analyticity of a cluster-decomposable ordered S ·matrix. 

This· reasoning preceded the splitting of each ordered sector into 

ortho and para subsectors_, and it has been shown by Stapp that 

ortho-para splitting conflicts with ordered unitarity. 
4 

Nevertheless 

it continues to be true that inver-sion of Stapp's separate ortho and 

* This statement will later become recognizable as a generalized 

OZI rule. 

<If ·~ 
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para S matrices is related in the usual way to analytic continuation 

in momentum along the ''path of Hermitian analytici (y"1 

s~l s . 
HA (5.3) 

The ordered S~matrix relation 

8HA S = I (5.4) 

then leads to the usual discontinuity formulas for ordered connected 

parts, which provide the basis for.calculating masses and amplitudes. 

Because of the need to give meaning to ordered S-matrix multiplication, 

the following condition on our topological index and Landau connected 

sum is natural: 

(1) If (T ', K') and (T 11 , K") designate zero~entropy components 

of the topological expansion, then any single~plug connected sum that 

preserves zero entropy, 

(T ', K ') # (T", K 11
) 

D 

should be uniquely defined, 

(T, K), (5 .5) 

Here D denotes the disk that is plugged, In generating higher 

components of the topological expansion the presence of indistinguish~_ 

able quantum~surface subareas (such as when there are identical 
_,. 

particles) may require several different connected sums of two 

surface pairs for a given set of intermediate particles. But at 

, 
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zero entropy it is always possible to divide each quantum sphere into 

two hemispheres, one of these being the disk D to be plugged, 

Furthermore by appropriately choosing the signs of particle energies 

(Appendix D) all particles in one hemisphere can be ingoing while 

all those in the complement are outgoing. We represent this possi~ 

bility schematically as 

(T',K')++ <P{n• Dout) 

(5 .6) 

(T 11 
• K11

) ++ (D D'' ) 
' in' out 

The connected sum Eq. (5 .5) then becomes representable as 

(Din• Dou/ 0 (pin' D~ut) ( I t ) 
Din' Dout · (5.7) 

Remembering that the amplitude corresponding to (D ~ D' ) · 1n' out· is built 

from a sum over all intermediate channels·, one sees here how 

zero~entropy connected sums relate to products of matrices. Uniqueness 

of zeTo-entr-opy connected sums is evidently essential to ordered 

$~matrix multiplication. 

The reader may- w.onder how uniqueness could fail in a single~ 

plug connected sum. The danger lies in a rotational symmetry of the 

plugged disc that allows the residual (non-plugged) areas· of the two 

quantum spheres to be joined in more than one way. Channel disks 

with any such symmetry are disallowed by the demand for an ordered 

S-matrix. 11 
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Two additional prope~ties of Landau connected sums ensure 

"completeness" for the ordered H.ilbert space: 

(2) In any Landau connected sum, L = L' # L" both L' 

" and L must be zero entropy if L is zero entropy. This rule is 

a special case of the general entropy property. 

(3) Any·. single~plug comi.ected sum of zero~entropy surface pairs 

has itself zero entropy· i;f the identified cha.nnel disks correspond 

to "in'' and "out" versions of the same vector in the ordered Hilbert 

space. 

Cluster decomposition of the ordered S matrix8 relates to the 

notion of quantum-sphere ·fission. Suppose that a zero entropy 

sphere is divided into ingoing and outgoing hemispheres, as described 

above. Suppose further that some ingoing sub channel is adjacent to 

an outgoing subchannel with the perimeters completely matching. 

This means that th.e ·ent·ire perimeters of these subchannel discs match, 

not only those portions which necessarily match a.lready on LQ. 

Under such conditions it is possible to fold onto each other the 

remaining portions of the matching perimeters and thereby to split 

the zero-entropy sphere (:together with the corresponding Lc) into two 

zero~ entropy spheres (o;!ach with its L c). When fission is thus possible 

the ordered S-matrix element contains two terms--one corresponding to 

a single connected part and the other t.o a product of two connected 

parts. If further fission is possible, there will be further products. 

The fission process :j::s easily confused with the proce;;s of 

c~mtraction--to be discussed next. The difference is that, under 

contraction, portions of particle discs disappear while under 

fission entire particle disks become disconnected from the re;;t. 

~- ~ 
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Fission describes the physical indistinguishability from forward scat-

tering of_no scattering and more generally provides a sense in which an 

ingoing-outgoing channel pair can be smoothly removed from (T,K) 

without disturbing the remaining particle areas. Contraction 

instead describes the connection of the single-particle concept to 

that of the multiparticle bound state and will distinguish strong 

interactions from electromagnetic and weak interactions·. Contraction, 

a notion introduced by· Harari and Rosner, [ 2 I is the topological 

key to the bootstrap and to quark confinement. 

The single~partic.le disk belonging to a multiparticle channel 

bound state is achieved by eliminating within the channel disk certain 

internal areas that do not touch the disk boundary. We require that 

such contraction of any channel disk belonging to a given sector of 

the ordered Hilbert space should lead to the same particle disk; 

eyerr channel disk is uniguely contractible to a particle disk deter-

minE)d completely by· the sector perimeter. 

Section VI wiU give a complete and precise definition of what we 

mean by contraction, including surface attachments, but let us here 

pres·ent a preliminary picture. If on a quantum sphere we see two 

belt-intersected oppositely~oriented adjacent patches with matching 

perimeters, the portions [a, b, c) of which are already joined 

together on LQ as in Fig, 14(a), then we can remove this "mated" 

pair of patches from 4q• without disturbing the relationship 

of residual patches, in such a way that the only remnant on the new LQ 

;from these two patches is the segment [a,~=~~ c] shown in Fig. 14(b). 

This process is like a degenerate connected sum. 

'·' " 
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An example of the foregoing is shown by the. 2~meson ch:;!_nnel 

disk of Fig. 15 contracting to the single-meson disk of Fig, 16, 

four triangular patches here being reduced to two .. The HR graph 

equivalent of this example is shown in Fig. 17. It may happen, as 

in a 3-meson disk, that the order of mated-patch removal is not well 

defined. A general requirement on the patch pattern is that the 

resulting single-particle disk be nonetheless unique. 

The foregoing implies· that any zero~entropy quantum sphere is 

completely· contractible---that success-ive patclhantipatch erasures 

eventually· leave the sphere in the form of a propagator-~covered 

by a single particle disk and the corresponding anti-particle disk. 

That is, if we consider any· particle disk, th.e complement is a 

channel disk which contracts uniquely to another particle disk. Now 

a single-particle to single-pa:rticle connected part corresponds 

physically· to nothing happening and so can be nonvanishing only· if 

these two disks correspond to "in'' and "out" versions of the same 

single-particle channel in the ordered Hilbert space or, by crossing, 

to particle and antiparticle. Because each quantum patch within an 

"in" particle disc mus.t correspond to an antipatch within the "out" 

particle disc, we conclude that every patch on a zero-.entropy quantum 

sphere is mated to an antipatch, This topological rule of complete 

contractibility parallels the familiar algebraic representation of 

invariance properties through saturation of adjacent tensor or 

spinor indices_; and extends in a natural way the analogy between 

matrix multiplication and connected-sums. 
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The existence of two separate indices (,,K) attached 

to components of the topological expansion implies a further 

requirement on zero-entropy quantum spheres: The pattern 

of patches on the quantum sphere should uniquely delineate 

the location of particle areas. The topological index T then 

prescribes the location of particle areas while the order index K 

assigns momentum and spin values to each area; once the topology 

is specified, there must be .. no ambiguity about where one particle 

area ends and another begins. Section VI will show how to meet this 

as well as all previously- stated requirements. 

Some general remarks are now in order about the role of the 

quantum surface. Our theory represents hadrons as bounded quantum 

areas (9i's.ks·, at zero entropy} while reaction amplitudes are 

represented by closed ori'eritable surfaces covered by· particle areas 

whose boundaries are glued together. This i·dea, first expressed in 

Ref. [13] , offers a natural description of discrete internal (not 

directly-.-obseryable} quantum numbers through topological attachments 

along a particle-.area perimeter, attachments whose orientations 

must be matched by· those belonging to adjoining particle areas. 

Conservation of such internal quantum numbers (e._g., flavor) is 

automatic ;for closed orientable surfaces. Also natural is associating 

the '"particle-antiparticle" distinction with the two orientations 

(clockwise or anticlockwise} possible ;for any quantum patch. A 

final ·motivation for ~Q_ :i:s that the bootstrap becomes more 

tractable than _previously thought when ;formulate.d as a system of 

internally-consistent contractions on a spherical surface. 
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The quantum surface cannot stand alone as basis for the topolog-

ical expansion. The direct observable~-energy-momentum and spin (also 

electric charge, as will be seen later)--live on the classical surface. 

A good notion of entropy, furthermore, requires L ; it turns out that 
c· 

the genus of LQ can decrease in certain Landau connected sums. At 

the same time, as we have. already observed, certain features of LC 

that appear arbitrary in the absence of LQ will become determined 

:i.n a consistent stirface~.pair zero-entropy bootstrap .. 

We close these general remarks with an observa.tion whose signi£~ 

icance is obscure but which nevertheless may· help the reader to follow 

the developments of Sees. ·vr and VII. At zero entropy it turns 

out that the complete topology o£ · LC may be inferred from 

LQ and the attachments thereto while the converse is almost but 

not quite true. (The except:i.on relates to flavor,) Such redundancy, 

which does not persist in higher orders of the topological expansion, 

·means that the bootstrap problem can be focusse.d on the quantum surface. 

~. ::) 
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VI. SPHERICAL BOOTSTRAP: LUNAR INSERTION, QUARK CONFINEMENT, 

BARYON NUMBER AND TRIALITY 

This section describes a patch pattern for zero-entropy 

quantum spheres that is consistent with the requirements of Sec. 

V as well as with the zero-entropy classical surface of Sec. IV. 

We shall not establish uniqueness of the pattern but are aware 

* of no satisfactory alternative; many other forms have been considered, 

but all have proved deficient. Fulfillment of the bootstrap program 

requires a uniqueness demonstration, but at the same time there 

must also be established the existence of an analytic ordered 

S matrix acting in a Hilbert space of channel disks. The latter 

question, which involves the Riemann complex-momentum surface 

corresponding to planar Landau discontinuity formulas, will not 

be addressed in the present paper. 

The pattern to·be described--the sole survive~ of an extended 

search--makes successful contact with a variety of established 

experimental facts and is not known to conflict with any. It will 

take further work to confirm that this pattern in fact constitutes 

a complete and correct basis for strong interactions, but optimism 

is warranted. 

Forgetting for the time being about the classical surface, let 

us consider a triangulation pattern for quantum spheres. That is, 

our decomposition of LQ into patches is to be the kind of 

triangulation familiar in the topology of surfaces (or manifolds). 

* An example of an earlier proposal may be found in Ref. 13. 

5· " 
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This fact will be connected below with triality (3 "colors"). Our 

triangulation, to be called the lunar insertion pattern, was 

introduced in a dual form in Ref. 11. 

Let the quantum sphere be divided into two triangular patches 

of opposite orientation as in Fig. 18(a). Next split any of the 

three edges into a "lune" as in Fig. 18(b) and then divide this lune 

itself into two oppositely-oriented patches as in Fig. 18(c). Such 

a process can be continued indefinitely and the following features 

are notable: 

1) Triangles occur in "mated" pairs of opposite orientation. 

A pair of mates is uniquely identifiable by the fact that the 

corresponding triangles have all th~ee vertices in common (though 

the two might have no edges in common). 

2) Each creation process of a mated triangle pair is the 

inverse of a contraction, as described in Sec. V. Complete 

contractibility of the quantum sphere is thus assured. 

3) There occur trivial vertices-~with only two incident 

edges--each trivial vertex being shared by an immediately-

adjacent pair of mated patches in position_ to be contracted. 

4) Each patch is adjacent to patches of opposite orientation, 

so our process naturally creates a patchwise-oriented sphere 

(Appendix C). 

5) All trivial vertices lie on the perimeters of particle 

disks because any particle disk, being maximally contracted, 

cannot include both members of a mated pair that share a trivial 

vertex. 

.. 
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The list can be continued; for example it is easy to show that 

both members of a mated patch pair, whether or not they share a 

trivial vertex, never occur within the same particle disk. But the 

above features suffice for the immediate needs. 

We proceed next to specify the defining characteristics of a zero-

entropy topological index T = (~Q' ~c) and to show how these 

characteristics accommodate the general requirements of Sec. V. The 

reader should realize that our prescription for zero entropy is not 

achieved by freezing entropy indices to zero but rather is a directpost-

ulate. Any nonzero-entropy strong-interaction T is to be achieved from 

zeroentropybyrepeatedconnected sums. It must of course turn out that 

consistent entropy indices all vanish at our directly-defined entropy 

zero (and only at entropy zero), but the bootstrap's nonlinearity 

obliges us to start by guessing the structure of the ordered Hilbert 

space and only later to verify the consistency of this structure.· 

We have in Sec. V specified the characteristics of a zero-entropy 

classical surface -~ 
c 

A zero-entropy ~Q will be a topological 

sphere; triangulated according to a lunar insertion pattern (hence 

patchwise oriented), housing the belt a~ c' and further such that 

A) ~Q houses the planar thickened belt, as defined in Sec. V. 

B) There are two kinds of triangles: core triangles with no 

trivial vertex that meet the belt as in Fig. 19(a) at the end of a 

junction line, and peripheral triangles with (exactly) one trivial 

vertex that meet the belt as in Fig. 19(b). A peripheral triangle 

thus intersects a single sheet of ~ while a core triangle intersects c . 
3 sheets. 
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C) The belt's particle pieces are delineated by the trivial 

vertices of peripheral triangles, as in the example of Fig. 20 

which corresponds to Fig. 10. The belt crosses particle boundaries 

always at a trivial vertex. At the same time the trivial vertices 

provide unique delineation of the particle discs on LQ. Figure 21 

provides an example corresponding to Figs. 10 and 20. The heavy 

lines are particle boundaries and the dotted lines are the belt. 

Notice how the heavy boundary lines always separate mated pairs of 

peripheral triangles and how all vertices (trivial and nontrivial) 

appear on these boundaries. As required in Sec. V the delineated 

single-particle disks in Fig. 21 admit no internal contractions·. 

Note also that all multiparticle channel disks in Fig. 21 do admit 

contraction--to one of the forms exhibited in Fig. 13. Recall the 

requirement of Sec. V that all·sectors of the ordered Hilbert space 

contain single-particle channels; any multiparticle channel disk 

must contract to a single-particle disk, and the contractions must 

not remove any of the peripheral triangles building the channel­

disk perimeter. 

We are now in position to enumerate the possible elementary 

hadron disks on LQ. A single triangle is excluded because a 

2-particle channel disk with such a constituent would not admit a 

perimeter-preserving contraction. Anticipating the association 

(immediately below) of "quark'' with peripheral triangle, we have here 

an explanation of quark confinement. Loosely speaking our explanation 

amounts to saying that a quark-particle would be incapable of sub­

merging its identity within a bound state; such identity loss, as 

represented by contraction, constitutes the distinguishing feature 

) 
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of strong interactions. 

In a separate paper on electromagnetism14 it is shown that single­

triangle disks can be associated with charged leptons and introduced 

together with photons at a comple~ity level above that of .zero entropy. 

Leptons and photons, once introduced, never lose topological identity-­

in contrast to hadrons which do so readily in zero-entropy contractions. 

The hadron disks of Fig. 13, built from a total of 2, 4 or 6 

triangles and containing, respectively, 2, 3 or 4 peripheral triangles, 

are individually uncontractible and, if combined into multihadron 

channel disks, the larger areas are uniquely contractible back to 

one of these four basic forms. A reason for not including elementary­

hadron disks with more than 2 core triangles will emerge in Sec. VIII in 

connection with thickened Landau graphs and topological color. Inclusion 

of the disk form labeled "baryonium" in Fig. 13 reflects the original 

Rosner consideration: 2 Once core triangles are admitted, there is no 

way to exclude from the ordered Hilbert space channel dis~s with 

two unmated core triangles. This fact will become clearer in 

Sec. VIII when we consider thickened Landau graphs. 

For each particle disk there is an additively-conserved quantity: 

the number of anticlockwise core triangles minus the clockwise number. 

For "out" disks (positive energy, see Appendix D) we identify this 

quantity with baryon number B; for "in" disks (negative energy) the 

identification is with -B. Baryon number is· conserved for all terms 

of. the topological expansion-- B summing to zero over any LQ. 

Also conserved is the number of clockwise minus anticlockwise 

" .>,. 
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peripheral triangles, but this latter number invariably is equal 

* to 3B, so there is a single conservation law. Figure 22 exhibits 

the foregoing considerations for baryon and antibaryon disks. 

Comparison of Fig. 13 with orthodo~ quark models suggests the 

term "topological quark" as a synonym for peripheral triangle. 

The factor 3 between baryon number and quark number has been 

described as "triality" and we also shall employ this term. We have 

achieved triality and the related 3-feathered structure of Lc by 

triangulating the quantum surface. Was the choice of triangle 

as quantum building unit unavoidable? 

Suppose that LQ had been divided into squares rather than 

triangles. The lunar insertion pattern and the notion of trivial 

vertices would still make sense. However a "core square" would be 

belted as in Fig. 23(a), which would require an adjacent peripheral 

square to be belted as in Fig. 23(b). Junction lines then would 

end on peripheral patches as well as on core patches, and on LC . 
there would be a 3-feathered structure simultaneously with a 4-feathered 

structure. Such a pattern invites a host of unwanted complications 

and difficulties absent for triangulation. The triangular patch is 

the natural a priori choice and its use meshes smoothly with 

bootstrap requirements. 

* Extension to electromagnetism
14 

relaxes the factor -3 relation 

and there appears a new additively-conserved quantity, physically 

identified with lepton number. 

i 
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VII. FLAVOR AND ELECTRIC CHARGE 

The notion of a topological Hilbert space of channel disks, 

whose (unbalanced) internal quantum numbers reside along their 

perimeters, suggests orienting the edges of channel-disk perimeters. 

This we propose to do. These orientations, which remain unaffected 

by perimeter-preserving contractions that carry multiparticle disks 

into single-particle disks, are to be matched when channel disks 

are fitted together to cover LQ. Since mated peripheral-triangle 

(quark) pairs are always placed against each other so as to identify 

edges incident on the belt-intersected trivial vertex, the orien-

tations of these two edges combine to define a 4-valued quark 

attribute which we call edge flavor. 

Figure 24 shows the four edge flavors and the corresponding 

antiflavors with which each must be matched. Notice that the 

third edge of a quark triangle--the belt-intersected edge which 

* never lies on a particle-disk perimeter--has not been oriented • 

Core triangles, whose edges may lie along such nonoriented peripheral-

triangle edges, correspondingly do not carry edge flavor. Defining 

to be the number of clockwi.se quarks with edge flavor f minus qf 

the anticlockwise number, it follows that qf is conserved. 

In the separate pap·ers on electromagnetism14 
it is prOJ;lOSed that 

electric charge be carried by oriented arcs on I: 
C' the end of 

* In an earlier version of our theory, 5 before introduction of 

charge arcs, it was proposed to associate orientation of the 

belt-intersected edge with charge doubling of quarks. 
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(exactly) one charge arc being perpendicularly attached to each 

triangle on the quantum surface: Each charge arc, like an HR 

arc, lies in kc with its ends on the boundary, but HR arcs 

only couple mated peripheral triangles (quarks). Every triangular 

patch on kQ * has an attached charge arc. 

A peripheral triangle (quark) may be described as "charged" 

if HR orientation agrees with charge orientation and "neutral" 

if otherwise:14 Defining q as the number of clockwise charged 
c 

quarks minus the anticlockwise number,_with a corresponding definition 

of qo for neutral quarks, it follows that qc and qo are 

·separately conserved. For each value f of quark edge flavor, 

the quark may be either charged or neutral, and the ordinarily­

defined quark flavor combines the 2-valued charged-neutral option 

with the 4-valued f. Hence our theory has a total of 8 conserved 

quark flavors--4 charge doublets. 

Reference 14 shows how the combination of charges attached 

to peripheral-triangles (quarks) and to core triangles explains 

the experimentally-observed hadron electric charges. Core 

triangles turn out always to be charged (never neutral) for a 

* For electromagnetic interactions 
14 

certain "active" charge arcs 

will connect a triangle on one kQ component with a triangle on a 

different component. The mate of the first triangle is simultane­

ously charge connected to the mate of the second. Readers unfamiliar 

with the contents of Ref. 14 are urged to read at least the shorte~ 

of the two electromagnetic papers before proceeding further in the 

present paper. 
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reason discussed below in Sec. VIII. Orthodox quark models--with 

no counterpart of core triangles--achieve the same total hadron 

charges as topological theory by assigning fractional charge to 

quarks. 

Our topological representation of spin, flavor and electric 

charge accords with the principle enunciated in Sec. V that. 

(unbalanced) channel-disk quantum numbers all reside on the disk 

perimeter. By specifying the peripheral-triangle (quark) sequence 

that builds a channel-disk perimeter, the ordered Hilbert-space 

sector is completely determined. There is no need to say anything 

about interior triangles, even core triangles whose mates lie in 

·other channel disks. Core triangles carry neither spin nor edge 

flavor and, although electrically ·charged, their charge always 

may be inferred from quark orientations. The feature that core 

* triangles remain "hidden" within strong interactions is shown 

explicitly in the next section by the thickened Landau graph 

embellished with quark lines, which is shown in Appendix B to convey 

the entire content of kQ as well as that of kc· 

* Core triangles are physically revealed by electromagnetism. 14 

" ' 
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VIII. THICKENED LANDAU GRAPHS AND TOPOLOGICAL COLOR 

A feature of classical DTU is a connection between the 

Riemann surface for the complex-momentum variables of a topological 

connected part and a thickening, th(L), of the associated Landau 

graph L. The connection, discussed at length in Ref. 3, is not 

completely understood, but the dependence of momentum singularities 

on the cyclic order of Landau arcs in th(L) is central to classical-

* DTU dynamics. 

We shall not here consider the Riemann surface but, in the 

expectation that a Landau graph thickening will prove usefully 

relevant to the s·tructure of complex- momentum singularities, we 

describe in this section a natural definitiop of th(L) that goes 

·with any topology T ~ (1:Q' 1:C). 

The reader may be puzzled to find in Ref. 3 no use of the 

term "thickened Landau graph." The reason is that in classical 

DTU there is ess.entially no difference between th(L) and the 

single-sheeted 1;0 . The thickening can be housed in 1:C and it is 

natural to locate HR arcs along the boundary of th(L) with HR 

orientation agreeing with that of th(L), Adding caps to the endsof· 

HR arcs completes the boundary of th(L). At zero entropy where the 

Landau-graph is a tree, the only difference between 1:C and th(L) 

is a collection of disks along the boundary of 1:(. These disks 

remain uninteresting in connected sums because of the contraction 

rule that always eliminates. closed HR loops. Higher components 

* For example, the order dependence of singularities has led to the 

inference that Regge branch points are absent from planar connected 

parts and that planar Regge poles are "exchange degenerate." 3 
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of the topological expansion in classical DTU thus perpetuate the 

essentiaLequivalence of 1:C to th(L). 

With a multisheeted 1:C the notion of th(L) must be 

reexamined. Let us start with zero entropy where L is confined 

to a single sheet. If there are no junction lines, the situation 

is as in classical DTU, with th(L) embedded in 1:C and with HR 

arcs bounding and orienting th(L). With one or more junction lines 

the only difference is that a core charge arc, rather than an HR 

arc, runs parallel to each portion of sheet boundary built from a 

junction line. We are here implicitly assuming that zero-entropy core 

charge arcs lie on the main sheet of 1~ 1:C. Thus the boundary of 

th(L) is now composed of HR arcs and core charge arcs; the 

orientation of the latter agrees with the HR orientation of the 

sheet. (Hence core triangles always carry electri.c chafge.) 

By examining in more detail the zero-entropy pattern one 

discovers the boundary of a thickened meson arc to be always 

two HR arcs, as in classical DTU, but the boundary of a thickened 

baryon. arc is one. HR arc ·and one core-charge arc. The boundary of a 

thickened baryonium Landau arc is two core charge arcs. Figure 25 

shows the thickened Landau graph for the example of Figs. 10, 20 

and 21. The reader should notice that the core charge arc is playing 

the role of an "antidiq1;1ark-line", a notion that will continue 

to be valid as we proceed beyond zero entropy. 

When a connected sum is made of two zero-entropy surface pairs, 

I II 
1: = 1: # 1: , we postulate an accompanying connected sum of thickened 

Landau graph~: 

th(L) th(L
1

) # th(L'') (8 .1) 
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where corresponding end caps are joined so as to maintain a single 

coherent orientation. This rule means that HR and core charge arcs 

connect smoothly. In repeated connected sums the continuity rule 

allows_ a coherently oriented th(L) to be associated with_ the most 

general surface pair T. 

If T contains glitches, so that L does not reside entirely on 

a single sheet of LC' it is not possible to house th(L) in LC. (At 

a glitch on LC a core-charge arc crosses a baryon arc.) The content 

of T is nevertheless not being expanded; each surface pair L as 

* previously defined implies a unique th(L). Each sheet of LC that 

carries a piece of L, say Li' houses a corresponding thickened graph 

th(Li) (which need not be connected)._ If the various th(Li) are 

coherently sewn together at baryon end caps associated with glitches 

one constructs th(L): 

th(L) = th(L1) # th(L2) # .••• 

It is possible through embellishments of a thickened Landau 

graph to convey the full topological "history" of a surface pair. 

Firstly, by including patch boundaries transverse to the Landau arcs, 

as explained in Subsection 6 of Appendix B [Fig. 45(a)], the patch structure 

of LC can be represented. Further, along a baryon or a baryonium 

Landau arc there may occur a "switch"--corresponding to a plug 

involving a quark permutation, as discussed in detail in Appendix B. 

The term "switch" is suggested by the "railroad-like" structure of 

quark lines on th(L) • 

* The converse is also true, as shown at the end of Appendix B. 

.) 
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Suppose the HR orientation of th(L) is clockwise, so a thickened 

baryon arc always appears as in Fig. 25, but we choose to represent a 

core-charge arc by a quark-line pair running the opposite way. A 

baryon now appears as in Fig. 26(a). The configuration of Fig. 26(b) 

does not occur; this would correspond to anticlockwise HR orientation. 

Figure 27 shows how association is possible between each of the 3 

quark lines in Fig. 26(a) and a particular triangle in a baryon disk. 

As discussed in Sec. IX and Appendix B, a baryon plug corresponds to 

one of 6 different permutations of the 3 quarks. Designating by p 

a permutation of the two quarks within the diquark ("diquark twist") 

and by p+ a clockwise cyclic permutation, the six different baryon 

plugs correspond to the elem~nts of a permutation group: 

2 2 
1, p, p+' P+, PP+' PP+ (8 .2) 

2 remembering that p 3 2 
p+ = 1 and that p+p = pp+. Each element except 

the identity permutation we characterize as a "switch" and represent 

as in Fig. 28. Glitches are recognizable on th(L) as a quark line 

crossing a Landau arc. It then becomes possible to attach spin-flavor 

indices to quark lines on th(L) • 

Notice that quark lines on th(L) do not correspond in a simple 

way to HR arcs on LC' which never cross either each other or Landau 

arcs (Appendix B, Subsection4). A device is here being invoked to 

keep track within a bonafide 2-dimensional surface of the structure 

in a multisheeted (singular) Lc· For example, as shown in Appendix B, 

a connected sum of two zero-entropy L's through a baryon plug 

.. 
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corresponding to the permutation p ("diquark twist"), leads to a 

toroidal LQ while the new ~C has genus 1. This content forT = (LQ,LC) 

is unambiguously implied by the p switch of Fig. 28 on th(L). 

Ba_ryonium plugs do not include glitches and are confined to the 

four possibilities 

1, p, p, pp (8.3) 

where p means interchange of the two antiquarks within an antidiquark. 

The Fig. 29 representation of bary~nium switches on th(L) is self 

explanatory. 

The coupling between baryonium and mesons provides an interesting 

example of th(L). The transition 

baryonium ->- N mesons (8.4) 

is forbidden at zero entrop~ but the separate transitions 

baryonium ->- baryon + antibaryon (8.5) 

baryon + antibaryon ->- N mesons (8 .6) 

are allowed. There are then higher-order topologies for Eq. (8 .4) 

corresponding to connected sums with baryon-antibaryon plugs of the 

zero-entropy surface pairs for Eqs. (8.5) and (8.6). The thickened 

2-vertex Landau-graph connected sum is shown in Fig. 30 for 2 
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final mesons. The result is a cylinder with the baryonium on one 

boundary and the two mesons on the other. Without switches the 

baryonium here must have vacuum quantum numbers because the 4 bary-

onium quark lines connect to themselves; with switches but only 2 

vertices the baryonium.quantum numbers must be the same as that of a 

meson ("nonexotic"). With 3 or more vertices and intervening 

switches, any baryonium quantum numbers can couple to 2 mesons. 

With or without switches the cylindrical character of th(L) suggests 

a structure of the Riemann surface here .similar to that for OZI­

forbidden meson decays such as q, ->- 11p_3 It is therefore plausibl·e that 

the dynamical mechanism inhibiting baryonium coupling to mesons is 

similar to that responsible for the OZI flavor selection rule, which 

has been extensively explored in classical DTU. 3 

Embellishment of th(L) with quark lines allows recognition of 

a 3-fold conserved "topological color". That is, as seen in Fig. 27, 

each quark line in the neighborhood of a Landau vertex carries a 

"color number", 1, 2 or 3. The "color" can change in a switch, as 

seen in Fig. 28, but the total number of quark lines with a given 

"color" remains constant. Elementary mesons carry only color Ill 

while elementary baryoniums carry only colors #2 and ~3. One way 

to think about the inhibition against baryonium-meson transitions 

is in terms of topological color. 
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IX. ELEMENTARY HADRON QUANTUM NUMBERS 

Section III has discussed elementary-meson spins and parity,which 

remain unaltered by quantum-surface considerations and the associated 

classical-surface feathering. The meson charge~flavor spectrum implied 

by ~ at zero entropy coincides with that of orthodox quark-model ground 

states (orthodox models leave arbitrary the number of differ~nt charge 

doublets.) In the present section we show the same statement to be 

true for baryons and baryoniums although it is less immediate because 

of the order index K in the topological expansion. There is only one 

possible order for the two triangles in a single-meson disk, but 

several orders are possible for the triangles in _a baryon or a baryonium 

disk; the present section discusses the interaction between order and 

spin-'cruirge-flavor. We shall not discuss intrinsic parity and merely 

recall the result of Stapp4 that ortho-para superpo~ition uniformly 

leads to "standard" intrinsic parities for all elementary hadrons. 

Let us begin consideration of order with baryonium where there 

is no glitching complication. Single-baryonium disks in the 

ordered Hilbert space have a definite cyclic order fcir the four 

peripheral triangles--two quarks and two antiquarks. Combining 

electric charge, edge flavor and spin into a single index for each 

peripheral triangle, a baryonium disk is shown in Fig. 31. Here 

the clockwise peripheral triangles (e.g. outgoing quarks) carry 

indices i, j while the anticlockwise peripheral triangles (outgoing 

antiquarks) carr-y indices k, 1. Each cyclic ordering is a distinct 

,l 
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channel in the ordered Hilbert space, but within the topological 

expansion [Eq. (2 .1)) one sums over all possible orders K. Although an 

elementary baryonium is characterized entirely by a pair of quark 

indices and a pair of antiquark indices, for each elementary baryonium 

there are 4 distinct ordered 6-triangle disks. Physical significance 

is lacking for permutations of the two quarks within the diquark or of 

the two antiquarks within the antidiquark. 

Appendix B describes a connected sum where the two identified 

particle areas differ by' a permutation of two quarks. A glance at 

Fig. 31 shows this connected sum not to be a simple plug, as dis-

cussed already in Sec. VIII. But for the purposes here only two 

points need be drawn from Appendix B: 

a) A Landau connected sum is well-defined (unique) when the 

identified particle areas differ by-a permutation of two 

* quarks. 

b) Entropy increases in su'ch a connected sum. 

Taken together these two facts allow consistency between single-

baryonium channels of the ordered Hilbert space and single-baryonium 

channels of the smaller Hilbert space in which the topological 

expansion is defined. Summation over K in Eq. (2.1) includes a sum 

over quark (and antiquark) permutations within particle disks. For 

each baryonium disk there are' four different triangle arrangements. 

* When two quarks carrying the same charge-spin-flavor appear within 

a single-particle disk, plugs are to be made with and without 

permutation, just as for nonidentical quarks. 

' 
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Permutafion summation produces the same effect on the elementary 

baryonium spectrum as achieved for ground states of orthodox quark 

models by assigning 3 colors to quarks, requiring Fermi statistics, 

and assigning diquarks to antisymmetric color triplets. The net 

result for .orthodox· models is to require symmetry under simultaneous 

interchange of spin-charge-flavor. Such symmetry is an automatic 

consequence of permutation summation within. the topological expansion. 

Baryon disks also admit quark permutations, but now there are 6 

distinct possibilities. Here we must pay attention· to the location 

on the disk of the.baryon Landau-arc's end. For meson and baryonium 

disks the Landau arcs end in the disk "center", but as shown earlier 

in Figs. 9 and 27 the position of the baryon Landau arc breaks a 

triangular symmetry; before assignment of spin-charge-flavor, the 

three quark positions in a baryon disk are already distinguishable. 

With regard to the "quark-diquark" terminology of Sec. VIII, the 

peripheral triangle touched by the baryon Landau arc is "the quark" 

while the untouched pair of peripheral triangles constitute "the 

diquark." Permutation summation within the topological expansion 

means that an elementary baryon corresponds to a superposition 

2 2 
1 + p + p+ + p+ + pp+ + pp+ (9.1) 

which is symmetric under all quark permutations. At t4e same time 

the topology of an individual baryon plug depends on the permutation 

relating the two identified 4-triangle areas; and only the plug 

corresponding to the identity permutation fails to increase entropy. 
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Thus we may consistently associate individual 4-triangle disks with 

single-baryon channels of the ordered Hilbert space while at the 

same time summing over all six quark permutations in the topological 

expansion. 

For reasons similar to those for baryonium, our elementary baryon 

spectrum coincides in spin-charge-flavor content with the ground 

states of orthodox quark models. The orthodox approach assigns all 

physical particles to color singlets, which for baryons means a 3-

quark configuration totally antisymmetric in color. Fermi statistics 

then imply symmetry in spin-charg~-flavor, in agreement with Eq. (9.1). 

The upshot then is that our elementary hadrons have all the same 

quantum numbers as the 2, 3 and 4-quark ground states of naive quark 

models. 

rJ 



63 

X. TOPOLOGICAL SUPERSYMMETRY AT ZERO ENTROPY 

The structure bf the discontinuity formulas that connect (and 

hopefully determine) zero-entropy amplitudes does not change when 

applied to differing numbers of quark lines-- 2, 3, or 4--embellishing 

a thickened Landau arc. The Stapp rule (Appendix D) allows zero­

entropy quark-spin dependence to be represented (like electric charge) 

by a 2-valued. conserved index on each quark line. This dependence 

factors completely from the momentum dependence, which may consequently 

be associated a~ zero-entropy with the unembellished Landau graph. 

The bootstrap problem is thereby vastly simplified--being reduced to 

the planar discontinuities of spinless' flavorless connected parts. 

* Elementary mesons, baryons and baryoniums all share a single mass. 

Their M functions (Appendix D) differ only by trivial Kronecker delta­

function factors in spin and flavor indices. Following Ref. 15 where the 

concept was first emphasized, we refer to this zero-entropy pattern as 

"topological supersymmetry", because it places bosons and fermions into 

a single supermultiplet. 

It is evident that topologies with switches (glitches and diquark 

twists) will break topological supersymmetry. In fact ortho-para 

transitions already do so--coupling spin dependence to particle 

momentum. Whether the observed mass differences between mesons and 

baryons can explained quantitatively by our theory remains unknown 

* At this stage of our understanding it is conceivable that the 

universal zero-entropy elementary hadron mass is zero. 

J 

* at this point. 
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Topological super symmetry implies flavor s.ymmetry, which is 

experimentally observed to be badly broken with respect to masses. 

Appendix D discusses a possible coupling of flavor with spin and 

"topological color" that can break flavor symmetry when switches 

occur. 

* It is noteworthy that the observed mass splitting between spin 

0 and spin 1 mesons is as large as the observed splitting 

between mesons and baryons. 

~-
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XI. CONCLUSION: QCD vs. DTU 

This paper has described a DTU theory of strong-

interaction quantum numbers. Omitted have been the 

flavor-symmetry breaking and complex-momentum Riemann-

surfac~ considerations needed to predict hadron masses, but analytic 

S-matrix developments during two decades of general S-matrix theory 

and almost one decade of classical DTU are compatible with the 

topological structure described here. In the combination of 

topological entropy with unitarity-analyticity we believe there 

resides a complete and unique theory at least of strong interactions. 

Parallel DTU work by Stapp with emphasis on Landau singularities4 

is providing support for such optimism, as is the extension to 

electromagnetism
14

which is found to fit naturally with the framework 

described here. Prospects are excellent for a further extension to 

unified electroweak interactions. 

Topological bootstrap theory proposes to explain not only 

hadron quark structure but quark attributes--spin, color, flavor 

and electric charge; these are not arbitrary and do not always 

assume the forms familiar in quantum chromodynamics (QCD). Quarks 

can be said to carry one of three conserved "colors", but there 

is no continuous su3 color symmetry; topological color permutations 

are discrete and gluons need not be mentioned. Nevertheless, it 

turns out that the spin, parity, electric charge and flavor of 

elementary hadrons in topological theory coincide with those of 

ground states in orthodox quark models. 

66 

The triangular character of kQ patching leads not only 

to 3 "colors" but uniquely to 8 flavors--4 doublets each containing 

one charged and one neutral quark. Topological quarks carry integral 

electric charge, like leptons, in contrast to the fractional charges 

of orthodox models, but core triangles also carry charge and the 

total charges of elementary hadrons in topological theory agree 

with those of their physical counterparts. 14 

Although core triangles possess neither spin nor flavor, they 

are the unique carriers of baryon number. Elementary hadrons 

contain either zero, one or two core triangles, the latter case 

corresponding to baryonium which in DTU plays a more significant 

role than in orthodox quark models. Although baryonium can decay 

into mesons, such communication is inhibited, because of oore 

triangles, to a degree at least as great as that of the usual OZI 

rule. 3 The prediction of a family of baryonium states with 

properties closely and predictably related to those of mesons and 

baryons is a distinctive and experimentally testable feature of DTU. 

Classical DTU has found that rapid convergence of the topological 

expansion beyond the planar level is confined to the region of small 

transverse momentum (p1 ).
3 

Planar amplitudes fall exponentially 

in magnitude with increasing p1 and are rapidly overtaken by non­

planar corrections, so to describe large pl even approximately it 

is necessary to sum over components of high complexity. At the same 

time, model calculations of the cylinder and related toroidal 

components (Reggeon calculus
8
), have shown how orthodox linear 

techniques can build on planar components to yield understanding 
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of phenomena where the planar approximation fails. We therefore 

expect DTU in principle to describe strong interactions at both 

large and small p
1 

• 

At the same time we anticipate that from the summation over 

high-complexity components there will develop high-pl regularities 

not immediately apparent at the planar level and even less visible 

at zero entropy. Our. expectation here is motivated by classical 

physics. Extension of topological theory to electromagnetism
14 

has allowed a one-t?-one identification of Feynman graphs in quantum 

electrodynamics with (noncontractible) surface pairs, the number of 

photon vertices being an entropy index. A large number of photons 

thus means large complexity, even at low p
1

, and classical physics 

becomes a limit of extremely high entropy. Now classical physics 

exhibits collective iow-p1 regularities such as rigid-body motion 

of "real objects", that are unanticipated from first quantum 

principles; it is plausible that there will be analogous high-

entropy collective regularities in the high-pl domain of·strong 

interactions. Such regularities may include successful aspects of 

QCD such as the parton limit associated with asymptotic freedom. 

The parton idea, which attributes momentum to "current quarks", is 

hard to understand from the DTU viewpoint, which attaches discrete 

quantum numbers but not momentum to topological quarks. In a 

high-entropy limit, however, where continuous space-time begins to 

acquire meaning, perhaps parton momentum will also achieve approxi-

mate significance. 

~'i 
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Because the observable space-time continuum is meaningful 

only in classical physics (the "real world")' we suspect.that 

significance for the local field notion requires a domain of large 

complexity; the space-time continuum may lack absolute meaning and 

represent an approximate high-entropy collective regularity. The 

time notion, for example, might be under·standable as an average 

measure of entropy growth. Support for such conjectures comes 

·from the fact that quantum field theory has achieved useful 

significance only through perturbative expansions around "classical" 

limits. In QCD the re.ievant domain is high pl ;' the existence of 

individual hadrons has not yet been explained. 

Combining the foregoing considerations we are'led to suggest 

that QCD has meaning only as a high~p1 approximation and is 

inapplicable· for physics characterized in DTU as "low entropy". 

The tolerance of QCD for variation in the number of colors and 

flavors we then find understandable because the bootstrap con-

straint on hadron quantum·numbers arises at zero entropy. The 

·need in QCD to assign fractional charges to quarks we attribute 

to a high-entropy averaging that obliterates memory of core triangles 

in somewhat the same sense that baryon. number becomes lost in 

classical physics. Local color gauge invariance--a cornerstone of 

QCD--we conjecture to have no significance near zero entropy but 

'to emerge, together with the local-field concept, near a "classical" 

limit. Generally speaking, all physically-useful continous notions 

we see as high-complexity "collective" approximations to an 

~ 



' 

69 

* underlying discrete structure. 

To the extent that currently-available methods for evaluating 

· predictions of QCD and DTU apply in nonoverlapping domains (high 

pl and low pl, respectively), it is difficult to arrange an experi-

mental confrontation. If the DTU prediction of 8 flavors is 

successful, the value of topological theory will be established, 

but QCD would not thereby be shown wrong-- only incomplete. The 

apparent-"glueball" prediction from QCD15 is interesting but 

indecisive. There are no glueballs among elementary DTU hadrons, 
( 

but composite glueballs (analogous to deuterons) cannot be ruled out 

as consequences of higher entropy. On the other side of the coin, 

no QCD proof has been given that glueballs must exist. QCD is 

similarly unsure about baryoniums; metastable baryoniums seem 

unlikely in a theory with no counterpart of core triangles but, 

because low pl is involved, field theory has not made a secure 

statement. Although the core triangles of DTU remain 

invisible with respect to strong interactions, it is possible 

that certain spin-sensitive electromagnetic properties of baryons 

will be affected in an experimentally-testable way, allowing a 

distinction from QCD. This question is receiving attention but the 

answer so far remains uncertain. 

* The energy-momentum continuum is a consistent adjunct of DTU 

because measurement of energy-momentum is inevitably classical--

involving highly complex systems with many photons. 
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It may be hoped that extension of DTU to weak interactions will 

yield certain predictions different from those of field theory. 

The complexity associated with nonorientable topological objects, 

so far unutilized in our theory, is crying to be recognized as 

physically relevant. Because DTU couples electric charge to surface 

orientation, 14 the c, P topological structure of weak charged and 

neutral currents may have unorthodox consequences. It also 

appears that core triangles make the breaking of baryon-number 

conservation more difficult than in field theory. 

Added note: 

Implicit in the zero-entropy topology described in this paper 

but nowhere discussed explicitly is a feature that independently 

doubles each quark: the relative order of the quark charge and 

spin (HR) arcs. This order must be preserved in zero-entropy plugs, 

so that charge and spin arcs do not cross on LC' but generally· there 

may be "quark twists" with a corresponding increase of entropy. The 

charge-spin order within a quark, like classical-patch orientation 

and topological color, is a "hidden variable"--always summed over 

before contact is made with experimentally-measureable amplitudes. 
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APPENDIX A: LANDAU GRAPHS 

The term Landau graph as originally introduced in general 

1 S.-matrix theory to describe connected-part singularities is a 

connected open graph with the_ following additional properties: 

a) Every vertex has at least 3 incident arcs (no trivial 

vertices) . 

b) No arc connects a vertex to itself. 

c) It is possible to find an ordering of the set of vertices, 

v1 , v 2 .... vn' and a system of orientations for the arcs, 

such that every vertex has both incoming and outgoing arcs, 

and no arc- goes' from a vertex of higher index to one with 

lower index. The ordering and orientations in question are 

not unique. 

In such graphs vertices may be associated with causally-

connected "events", each event having both a past and a future. 

Arcs may be given a particle interpretation; an energy-momentum 

* four vector may be attached to each arc, with the conservation 

law that the total flow of energy-momentum into any vertex is 

zero. Although reference is made in Property (c) to arc orien-

tation, Landau arcs are not oriented. The distinction between 

ingoing and outgoing particles arises from the sign of the particle 

energy (see Appendix D) not from Landau arc orientation. Properties 

* Although energy-momentum depends on the Lorentz frame of reference, 

each particle has a unique mass. Thus Landau arcs are ·labeled by 

particle masses. 
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(b) and (c) may be restated in combined form without reference to 

orientation as: 

d) No vertex is allowed where a cut can isolate a closed 

subgraph (see Fig. 32). 

In an ordered Landau graph the arcs incident on each vertex are 

placed in a definite cyclic sequence. The distinction between 

ordinary S-matrix theory and topological S matrix theory lies in the 

distinction between ordinary Landau graphs and ordered Landau graphs. 

The latter admit a unique thickening--which is housed within ~C in 

classical DTU, where the HR graph lies along the boundary of the 

thickened Landau graph. Section 8 has described a general relation 

between th(L) and ~c· 

Ordinary (non-ordered) Landau graphs describe the nature and 

location of isolated complex-momentum singularities of physical 

S-matrix connected parts. The book by Iagolnitzer1 may. be consulted 

for the detailed set of Landau singularity rules. We here state only 

the most basic aspects: A single-vertex ordinary Landau graph 

corresponds to an S-matrix connected part, while any multivertex 

ordinary Landau graph G corresponds to a singularity of the connected 

part belonging to the graph resulting from contraction of G to a 

single vertex (without internal arcs). For example, if cutting a 

single arc of a 2-vertex Landau graph disconnects the graph, then this 

arc corresponds to a pole with a factorized residue; the two factors 

of the residue correspond to the two single-vertex connected-part 

graphs that result from the cut. The location of the pole is deter-

mined by the particle mass attached to the cut arc. 

y ' 
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IVith ordered (thickened) Landau graphs the rules are related 

to the foregoing but different, being dictated by the topological 

expansion in conjunction with Landau connected sums based on zero 

·entropy. Although the graphs directly built by connected sum from 

zero entropy will satisfy conditions (a), (b) and (d) above, con­

tractions may violate these conditions. Both closed loops and 

trivial vertices must be admitted. What are the contraction rules? 

In classical DTU, where there are neither classical patches 

nor switches (Sec. VIII) two kinds of contraction are allowed: 

(1) Two "parallel" internal Landau arcs may be contracted to 

a single arc. "Parallel" means that the arc pair is incident on 

the same pair of vertices in immediate sequence at both vertices 

but in opposite cyclic order so that the arcs are embeddable on a 

planar surface without crossing. 

(2) Any internal arc connecting a pair of different vertices 

may be shrunk to a point so that the two vertices become one vertex. 

Although in classical DTU these rules always lead to a single 

Burviving vertex, certain internal arcs may survive, as in Figs. 3 

and 4. The contracted graph with some minimum number of internal 

loops is not generally unique (i.e., depends on the order in which 

contractions are performed), but we define as topologically equivalent 

(belonging to the same T, K) any pair of graphs related by a 

"duality" transformation which slides an external arc along ·the 

boundary of the thickening of internal arcs, without crossing another 

external arc. Figure 33 gives examples of duality-equivalent single­

vertex Landau graphs. Fully-contracted ordered Landau graphs are 

• ~ 
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unique up to a duality transformation. Any such graph may be 

completely characterized by the genus and boundary structure of the 

thickening. of its .internal loops. For example the graph of Fig. 33(a) 

has genus 0 and two boundary components, with external arcs 

arranged in the cyclic (clockwise) sequences ABC and FED. The 

graph of Fig. 33(b) has genus 1 and a single boundary component 

with external arcs in the cyclic sequence DCBA. 

' . 
It is easy to verify that any momentum singularity of a zero-

entropy connected part corresponds to a multivertex Landau graph that 

can be contracted to a single vertex tree--without internal loops. 

Weissmann
8 

has shown that Eq. (2.5) implies all the 

ordinary Landau singularity rules for the ordered S matrix built 

from zero-entropy connected parts. 

Classical-patching assigns an ortho or para status to each vertex 

of an ordered (thickened) Landau graph. Two adjacent vertices may 

be contracted to a single vertex only if both are ortho or both 

para. If not, all arcs connecting these vertices must be kept. 

Contraction now may lead to trivial vertices as shown by the example 

of Fig. 34(a). 

The thickened Landau graph associated with a feathered classical 

surface has an additional feature that inhibits contractions. Any 

baryon or baryonium arc may carry a "switch" (Sec. VIII) and switches 

never disappear (Appendix B). Adjacent Landau vertices connected by 

arcs with switches may not be contracted to a single vertex, even 

if both are ortho or both para, and there develops a new source of 

trivial vertices, as shown by the example of Fig. 34(b). 
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APPENDIX B: CONNECTED SUMS, PLUGS, THICKENINGS 

AND ENTROPY 

This appendix, being relatively long, is divided into several 

subsections. 

1) Review of usual topological connected sums. 

Already in a purely topological sense the notion of "connected 

sum" is defined in a variety of interrelated contexts. we' shall refer 

to any of these usual notions as a "topological connected sum". The 

"Landau connected sum" employed in this paper generalizes the topological 

connected sum in several respects; the additional ingredients-will be 

introduced here one at a time as they become needed. 

The usual topological connected sum # is defined in the four 

different contexts represent"ed in Fig. 35. Although the manifolds of 

concern in this paper are all of dimension n ..;2, most of the statements 

in this subsection apply to higher dimensions. 

In the context I with dimension n = 2 we have two oriented, closed, 

connected surfaces s
1 

and s
2

• One considers two disks D1 C s
1 

and 

D
2 

C s
2 
wh~ch one glues together so that their orientations, coming 

respectively from s
1 

and s2, are mismatched. From the union s 1 u s 2 so 

obtained one erases the common interiors of D1 and n2 , leaving a new 

closed connected surface (S1 - int n
1

)V(S2 - int D2). On this surface 

the orientations of s1 - int n
1 

and s 2 - int D2 fit together into a 

unique coherent orientation and the resulting oriented surface is by 

definition s 1 # s
2 

in the context I. 

76 

The operation is commutative and associative. Moreover one has 

the following formula for the genus 

g(Sl # S2) g(Sl) + g(S2) (B.l) 

We adopt here the convention that the genus of a torus with h handles 

is 2 h. Formula (B.l) implies that the usual 2-sphere s 2 plays the 

role of a unit for the operation #. This formula, which we later will 

recognize as an entropy property, excludes the possibility of nontrivial 

inverses for #. 

Still in the context I we make the following remarks: 

A) Specifying the gluing map n1 ~ n
2 

leaves no ambiguity about 

the defined object sl # s2. 

B) The operation # makes sense in an arbitrary dimension n, pro-

vided of course that one makes a connected sum of manifolds of the same 

dimension. 

C) In sufficiently high dimensions nontrivial inverses may exist. 

We pass now to context III (nonoriented.manifolds). This is a 

straightforward generalization of I except that uniqueness of the 

resulting object s 1 # s 2 (up to homeomorphism) does not immediately 

follow, since the gluing map n1 ~ n2 is arbitrary. NevertheLess, 

either of the following 2 conditions assures uniqueness. 

i) One or both of the ingredient surfaces is nonorientable. 

(The connected sum is then also nonorientable. The reader 

is cautioned not to confuse the terms "nonoriented" and nonorientable".) 

t• • 
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ii) One of-the two surfaces is orientable and admits a homeo-

morphism which reverses the orientation. This requirement is always 

met in dimensions n = 1,- 2. 

For a general closed surface with h handles and £ crosscaps 

we define the genus by g = 2h +~ Formula (B.l) then continues to 

hold. 

We pass now to context li--the sum of two connected n-dimensional 

oriented and boun~ed manifolds, Ml_ and M2 • The boundaries aM1 and aM2 

are naturally oriented (the orientations being induced by the orien~ 

tations of M1 and M2 , respectively) and of dimension n- 1. We shall 

speak now as if n = 3, but everything works similarly in the general 

case. 

One takes disks n1 C aM1 and D2 C aM2 and glues them together so 

that their orientations mismatch. The connected union M1 U M2 then 

has a coherent orientation coming from M1 and M2 • 

connected sum by M1 If M
2 

(context II) one has 

a (M
1 

11 M
2

) aMl If aM2 (context I). 

The extension to context IV is straightforward. 

2) Connected sums for surface pairs. 

Denoting this 

The topological index T for our theory of strong interactions, as 

well as for the extension to electromagnetism,14 consists of a 

"surface pair" (!:Q,!:C) with some extra structures. Here !:Q is a closed 

oriented surface, with some mild singularities to be dessribed below, 

and !:C is a 3-feathered surface with boundary 

a!: c !:cn!:Q, 

4 

78 

which we call the belt. In this section we do not use the entire 

structure of"= (!:Q, !:C) but refer only to the features that !: is 
- Q 

oriented and patchwise-oriented, while each sheet of !: is HR-oriented 
c 

and also patchwise oriented (as explained in Sec. IV) . The quantum 

surface is divided into triangles which are exactly the patches of the 

patchwise orientation. This means that any edge, adjacent to triangles 

T', T" receives a common patch-induced edge orientation (not to be 

confused with edge-flavor orientation) from T' and T". 

Already at the level of the quantum surface !:Q alone, we shall 

need multi-plugged connected sums, as opposed -to the single-plugged 

connected sums considered above in Subsection (1). Precisely, we shall 

perform connected sums 

. D" II "' agaJ.nst 1 , ... Dk C "'q"" 

!:Q, If !:Q" where disks Di, •... DkC~, are plugged 

We will always assume the following: 

(1) The gluing of Di to Di mismatches the orientations (as in 

Case I of Subsection (1)) so that the global orientations of !:Q' and 

~Q" match to a global orientation of !:Q 1 /1 !:Q". 

(2) Each triangle T'C Di is plugged against some triangle 

T" C n': of opposite orientation in such a way that patch-induced edge 
]. 

orientations match. In this way !:Q, If !:Q" inherits a patch-orientation 

from ~Q' and ~~~· 

It may happen that. D~ and D'.' touch, with D';' and D'.' touching or not 
]. J ]. J 

0r the other way around). This possibility has several consequences: 

(3) Our quantum "surfaces" may ha~e singularities of the type 

shown in Fig. 36, although nothing worse. 

(4) Relations of the type (B.l) may be violated for quantum 
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surfaces. Our ~ 's will not generate any "entropy indices". Q . 

Just as our l:Q' II ~Q" is a multiplugged generalization of the 

topological connected sum I, the associated connected sum ~C, II ~C" 

will be a multiplugged generalization of II. To achieve consistency 

between classical and quantum connected sums the following further 

requirements are imposed on ~Q connected sums: 

(5) An edge cut by the belt must be identified with another 

belt-intersected edge and a vertex cut by the belt must be identified 

with a belt-intersected vertex.* 

With the foregoing requirements, when we perform a connected 

sum for the full surface pair 

(~Q' ~c) (~Q'' ~c,) II·(~Q'" ~c .. ) 

one has disk plugs 

Di •••• D~ C ~Q' d " "c '<' an n1 .... Dk ""q" 

which carve out 1-dimensional "piece" plugs from the corresponding 

belts: 

* 

A~ 
1 

nj_ na~c" A" 
i 

" '<' Di na""c" 

With a required matching of edge-flavor orientations (described in 

Sec. VII), any two particle areas whose triangles can be plugged 

together by these rules represent in-out versions of the·same 

physical particle. 

,. 
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and when D! is plugged against D'.' the piece A: is plugged against A:', 
1 1 1 1 

with all HR orientations mismatched. After gluing Di to Di and 

erasing int D~ A~ (and hence also int Di" - Ai.i) one achieves a new 
1 1 

surface pair 

C~Q" ~c.) II c~Q"' ~c .. ) (~Q' II ~Q"~c' II ~C"). 

One notices that ~C' II ~C" naturally inherits a patch structure 

from ~C, and ~C" and if one denotes .the number of 0-P patches by 

p(~ ) then 
c 

p(~c' II ~c") ~max (p(~c,), p(~c")) (B .2) 

To proceed further we need some additional definitions. Denote 

by M the Mobius band and by T the punctured torus (T = s1 
_x Sl minus 

a disk). By definition a feathered ~C will be called orientable if 

it does not house any copy of M and nonorientable otherwise. (Each 

separate sheet of ~C is orientable but M might cross junction linesJ 

For an orientable ~C we define the genus g(~C) to be tw~ce the 

maximum number of disjoined T's which we can embed in ~C' with possible 

crossing of junction lines. For a nonorientable ~C consider any 

family F consisting of disjoined M's and T's embedded in ~C: 

F {M1 , .•.• , M.Q,,T1 , .•.• , Th} 

By a straightforward generalization of a similar argument for smooth 

surfaces one can change F into a similar family 

~ 



" 

81 

fl {Ml, M2 •••. M2h+t} 

Moreover when F is maximal so is F 1 (and conversely). By definition 

the maximal 2h +tis the genus g(~C) in the nonorientable case. With 

these definitions one finds 

g(~c~ 11 ~c .. ) ;;;;. g(~c~) + g(~c .. ) (B.3) 

Remark~ (a) Our notion of classical-surface genus is a straightfor-

ward generalization from the smooth case (no junction lines) well 

known in classical DTU. 

(b) The (possible) inequality in Eq. (B. 3) arises from the 

multiplugged character of the connected sum. 

We shall also consider the quantity b(~C) = {the number of 

connected components of a~C}. In the smooth classical-DTU case this is 

just "the number of boundaries". Now in making our multiplugged 

connected sum ~C 1 II ~C" let us think of the various plugs being made 

successively, passing from a first connected object ~(1) to successive 

objects ~(2), •.• ~(n) = ~C 1 II ~en• After the first step one has 

g~(l)) g(~c~) + g <~c .. ) 

and 

b~(l)) b(~c~) + b(~c .. ) - 1. 

Then, in passing from ~(j.) to ~( j + 1) one of the following things can 

happen: 

• 
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a) The !-dimensional piece plugs Aj+~ and Aj1+·l are on different 

components of the belt a(~(j)) but do not both exhaust those components. 

In that case g increases by 2 units and b decreases by one unit. 

b) Each of the AJ+l and Aj1+l constitutes an entire belt component. 

Then g increases by 2 units and b decreases by 2 units. 

c) AJ+l and Aj1+l are on the same belt component but not adjacent. 

There are two subcases: (c-1) The number of.MBbius bands increases. 

Then g increases by one unit and b stays constant. (c-2) Otherwise 

g stays constant and b increases by one unit. 

d) If A\1 and A1.'+l are adjacent on the same belt component and 
.J J 

do not exhaust it, then nothing changes so far as g and b are concerned. 

e) AJ+l and Aj1+l together exhaust a belt component. Then g stays 

constant and b decreases by one unit. 

We see that, except for Case (e), when b decreases there is an 

increase in g by at least the same amount. ea·se (e) can occur exactly 

when an entire belt component B1 C a~C 1 is identified to an entire belt 

component B "C a~cn· Let us assume that there are exactly q such occur-

rences 

' ' " " " ~ B1 , .... Bq C ~~ and B1 , .... Bq C~C" 

Now for physical reasons b( ~C 1 ) > q and b( ~C") > q. This is because 

our classical surfaces house Landau graphs and our If are matched by 

corresponding Landau connected sums of the graphs. The vertices of a 

Landau graph repr.esent time-ordered causally-connected events. It is 

therefore impossible for all the arcs incident on a Landau vertex to 

pass to a single neighboring vertex. (Energy-conservation also can be 
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invoked to preclude disappearance of an entire 3LC' or 3LC" in a 

connected sum.) 

So Case (e) splits into the following subcases: 

e.l) q > 1. .Then the total contribution of the q gluings of 

B ~ to B~ is a decrease of b by 2q and an increase of g by at least 

2q-2 (assume that the first step passing to L(l) is replaced by these 

q gluings}. 

e.2) q = 1. Then g does not change while the total b has 

decreased by two units (to b(LQ,) + b(LQ 11 ) -2). Two conclusions 

may be drawn from this analysis: 

a) Defining the quantity _j(LC) = b(LC) + g (LC) there is the 

property 

j (LC) ;;;. max (j (L ,) , j (LC")) c . (B.4) 

Proof: This is obvious in cases a through d. In Case (e) one has 

j(L II L ) ;;;. g' + g" + b' + b" -2 
c' c" 

Now if q > 1, then b' > q;;;. 2 and b" > q;;;. 2, which implies 

If g 

j(LC' II LC") >max (j(LC 1), j(LC,.)) 

1 then b' ;;;. 2 and b";;;. 2, which implies 

j(Lc' II LC,.) ;;.max (j(LC 1 ), j(L C")) 

The fact that a combination of g and b, as well as g, possesses an 

entropy property, allows control of g and b in the topological 

expansion. 

S) In terms of g and b only two self-reproducing situations are 

al'lowed: 

S.l) g = 0 and b 1, which corresponds to "planar", a character-

istic of zero entropy. 

S.2) g = 0 and b 2, which corresponds to the "cylinder". 

't; .1' 
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(The fact that a cylinder can reproduce itself does not conflict with 

the fact that the cylinder may be built by connected sum from two 

planar LC' s. On the other hand, the self-reproducibility of the cylin­

der is important to the topological theory of photons14 and pomerons.
3

) 

3) Thickenings 

The subject of thickenings is an important and complicated topic 

in topology. We shall here give only a sketchy intuitive glimpse--

the bare minimum for our needs. For more details the reader may 

consult "A Course in Simple - Homotopy Theory" by M. M. Cohen 

(Springer, 1970) or either of the following papers: "Simplicial 

spaces, nuclei and m- groups" by J. H. C. Whitehead (Proc. Lond. 

Math. Soc. 45, 1939, pp. 243 - 327); "Whitehead Torsion", by 

J. Milnor (Bull. A. M. S. 72, 1966, pp. 358 - 426). 

The general idea is the following. Consider some "space" X, 

such as a graph or a feathered surface. Choose some dimension 

n >dim X. Is it possible to "thicken" X into an n-dimensional 

smooth manifold? Or, in slightly more precise terms, is it possible 

to find a smooth compact bounded n-dimensional manifold An, containing 

X and collapsing on X in a nice way? The notion of "collapsing" is 

d.efined explicitly in the references listed above, but we try now to 

convey an intuitive feeling by examples. 

I. Two-dimensional thickening of a graph. Consider the single-

vertex, 2-arc graph of Fig. 37, There are exactly eight distince 2-

dimensional ways to thicken this graph, depicted in Fig. 38, The A2 

thickenings are, respectively, (a) a sphere with 3 holes, (b,c) a 

Mobius band with one hole, (d,f,g) a Klein bottle with one hole, (e) 

a torus with one hole, and (h) a Klein bottle with two holes. Although 
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:in Figs. 38(b) and 38(c) [and similarly in Figs. 38(f) and 38(g)] the space 

A2 is the same, the thickenings are different since in one the Mnbius 

band sits around y and in the other around y • In more formal terms a 

thickening A is endowed with a collapsing map A + X which retracts 
n 

it on X. Two thickenings are equivalent if there is a commutative 

diagram as in Fig. 39. 

Generally speaking 2-dimensional thickenings of a graph r are 

completely specified by 

i) some cyclical order of the edges around each vertex 

ii) for each closed circuit C C r one has to specify whether, 

along C, the thickening is orientable or not. The thickened Landau 

graph th(L) is the particular 2-dimensional thickening of the ordered 

Landau graph (Appendix A) obtained by demanding global orientability. 

II. Whenever X is already embedded in some n-manifold }f, there 

is a more or less unique way to thickenX inside M
0

; this will be 

denoted by N(X; ~) and is called the "regular neighborhood of X in 

~". In classical DTU, th(L) = N(L; ~C). More generally this 

st~tement holds for'each separate (smooth) sheet of ~c· With glitches, 

however, the full th(L) described in Sec. VIII cannot be housed in 

~c· 

The following fact is important to the contraction rules of 

Appendix A. If one changes X to X' ,inside ~ by an elementary m~ve 

like that of Fig. 40, then the regular neighborhoods N(X, Mn) and 

N(X', Mn) are homeomorphic in a more or less unique and canonical 

way. Moves like that of Fig. 40 are called "duality transformations" 

in classical DTU (also in dual resonance models) and '\lliitehead 

moves" in topology. 
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For any surface pair (~Q' ~C) the belt a~C = ~C n~Q has a well­

defined regular neighbor~ood N(a~C; ~Q) which we call the thickened 

belt and denote by th(a~C). It is, of course, always orientable. The 

information contained in th(a~C) is an ordering of the belt graph 

analogous to the ordering of the Landau graph (Appendix A). 

III. The 3-dimensional thickenings of a smooth surface 5 are 

just the line bundles E of basis S(see Appendix A of Ref. 14). 
~ 

IV. The above examples show t~t, in general, n-dimensional 

thickenings of a given X are not unique. It furt.hei'lltOre may happen, 

for a given dimension n >dim X, that X fails to admit any n-dimen-

sional thickening. Consider for example an annulus A and a Mobius 

ribbon M with embedded loops r and r• as shown in Fig. 41. If 

I 

X = {A_ U M, with r glued to r } 

then X does not admit ~ 3-dimensional thickening. 

4. Landau graph and glitches 

A classical surface ~C within a topological index T = (~Q' ~C) 

houses a Landau graph L as well as HR arcs and charge arcs. Connected 

sums of surface pairs are accompanied by sums of the Landau graphs 

and also of the HR arcs and charge arcs; the ensemble of connections 

is a "Landau connected sum". A variety of general features of any 

"admissable" surface pair .may be deduced by induction from the 

requirement that any admissable T be obtainable from our a priori-

defined "zero-entropy" pairs through Landau connected sums followed 

by specified contractions. The contraction rules for L are given in 

Appendix A. The rules for HR arcs and junction lines, given in the 
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main text, state that any closed HR loop within a single patch of LC 

is to be erased, as is any closed junction line uncut by a Landau arc 

where a single-patch sphere cuts a plane equatorially (the sphere also 

disappears). Each charge arc connecting peripheral triangles runs 

"parallel" to the associated HR arc and obeys the same contraction 

rules; each core charge arc obeys the same contraction rules as the 

associated junction line. The deducible general features of any T are: 

a) HR arcs touch neither charge arcs nor L nor junction lines 

(HR arcs lie along the belt, joining adjacent belt segments from 

different particle pieces.) 

b) The "ends" of L, aL 

(or cor.e charge arcs) . 

L()aLC' do not touch junction lines 

c) Although at zero entropy L is entirely on one sheet (together 

with all core charge arcs), certain connected sums lead to glitches 

where L crosses a junction line (Sec. IV, main text) as well as 

crossing the associated core charge arc. L never touches the end of a 

junction line (or the end of a charge arc). 

d) Any sheet of LC housing a portion of L contains at least one 

Landau vertex on each connected piece of L. (Trivial Landau vertices 

may occur). Contraction of L never moves a Landau vertex out of its 

smooth sheet across a junction line (Appendix A). 

If the total number of glitches within some LC is y(LC), it 

follows from the foregoing that 

y(LC' if LC,.) ;;;;. y(LC,) + y(LC,.) (B .5) 

~ -~· 
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That is, a baryon plug may produce a new glitch, but glitches once pre­

sent cannot be removed through a contraction following any Landau con­

nected sum. Loosely speaking. a Landau graph that once enters some 

sheet of LC remains forever tied to that sheet by a Landau vertex. 

5. Twisted diquark plugs 

When does a baryon plug generate a glitch? An elementary­

particle disk not only houses an end of a Landau graph, but electric 

charge and edge flavor are attached to the quark triangles. Suppose 

that an intermediate baryon contains 3 different flavors, say u,d,s. 

As explained in Sec. VIII of the main text, there are 6 different plugs 

to consider--corresponding to the six permutations of the 3 flavors as 

shown in Fig. 42. Only the identity permutation fails to increase 

entropy. The other five permutations ar~ characterized as "switches" 

in Sec. VIII. Cyclic permutations lead to glitches, but apart from the 

required displacement of the Landau graph, any cyclic quark permutation. 

allows the entire "in" baryon disk to be "turned over" and superposed on 

the "out" baryon disk. A plug corresponding to an odd permutation of 

quarks cannot be so directly accompl~shed; here some quark triangles 

must be plugged independently. 

If the odd permutation interchanges the two triangles not touched 

by the Landau graph, we characterize the plug as a "diquark twist" or 

simply as a "twist". The two other odd permutations correspond to a 

twist together with a glitch. It suffices then to describe the simple 

twist. Our description will also be appropriate to baryonium plugs 

with one or two diquark twists (Sec. VIII main text). 

Refering to the example of Fig. 42, the simple diquark 

twist corresponds to a permutation of the u and d quarks, with 

the s quark remaining in contact with the Landau graph. As a 
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first step let us plug the 2-triangle disks that contain the core 

triangle and the s quark. We arrive at anintermediate surface 

pair. and thence proceed to two further plugs--of "in" u quark to 

"out" u quark and "in" d quark to "out" d quark. The result of these 

three consecutive plugs is the same as if we had made simple plugs 

to a "twisted" baryon propagator: 

T T' It T11 = T' It [twisted (Bi, B )propagator,'t.) II T11 

n out J. 

diquark 
twist 

siJnple 
plug 

. l (B.6) sJ.mp e 
plug 

The twisted propagator T1 = (~~. ~~) is as follows: 

a) ~~ {s a torus covered by the B. , B disks of Fig. 42 . ~n out 

with all six of the nontrivial vertices (marked by heavy dots) 

identified. This torus is ?btained from the bounded, genus-2, sur-

face of Fig.43 by crushing the entire boundary to a single point-­

the just-described nontrivial vertex of the ~~ triangulation. Note 

that ~~- is the nonplanar orientable thickening of the corresponding 

belt. 

s) The classical surface~~ is obtained by joining the u, d 

sheets of Fig. 44(a) in such a way as to create a Mobius band [Fig. 44(b)]. 

The boundary of ~~ is the belt shown in Fig. 43, It follows that 

g(~) = 1, so the diquark twist increases entropy. 

6. Entropy Theory 

The following list of 4 entropy indices has been identified: 

g~c), p(~)- .1, j(~c)- 1, and y(~c), (B.7) 

~ 
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accounting, respectively, for genus, classical patches, boundary 

structure and glitches. Each index has the entropy property· either 

in the strong form 

i(T' II T11
) ;;. i(T ') + i(T") 

or at least in the weak form 

i(T' II T ") ;;. max (i(T '), i(T ")) 

The following claims are easy to check: 

I. Consider all "admissable" surface pairs (~Q, ~C) obtained 

by connected sum from our a priori defined "zero-entropy" pairs. 

Then any admissable (~Q' ~C) with all four indices Eq. (B.7) equal to 

zero is of zero entropy. 

II. A zero-entropy surface pair cannot be obtained from a 

Landau connected sum of admissable surfaces pairs T i, T" if either 

ingredien7 is of nonzero entropy. 

III. Moreover, any splitting T = T' II T", where T is zero entropy, 

implies that T' and T11 are admissable and hence zero entropy. (The 

concept of ordered S matrix, introduced in Sec. V of the main text, 

rests on requirements II and III.) 

IV.· Fixing the values of the four indices (B.7) determines an 

admissable surface pair up to finitely many possible choices. 

V. Our indices are intrinsically defined, independently of 

the way that T = (~Q' ~C) has been obtained from zero entropy. The 

indices are "natural"--making sense in a purely topological context. 



91 

There is of course no claim that (B.7) is the only possible list 

of entropy indices meeting requirements I+ v. In fact we now proceed 

to describe an alternative list of 5 indices. 

The thickened Landau graph th(L) described in Sec. VIII of the 

main text can be used conveniently to record the entropy history of 

T(~Q' ~C). or each T there is a well-defined th(L) on which we can 

record, in a natural fashion, 0-P patching as in Fig. 4S(a) 

glitches as in Fig. 4S(b) and twists as in Fig. 4S(c), with the under-

standing that 

i) glitches, twists and patch boundaries do not commute, 

ii) neither switches (glitches or twists) nor patch boundaries 

may be slid past a Landau vertex, 

iii) each Landau vertex has a definite 0-P character (Appendix A), 

iv) a thickened Landau-arc segment between two successive Landau 

vertices carries at most one switch and at mos·t one patch 

boundary (if both switches and patching are absent the 

segment can be contracted to a point). 

The embellished thickened Landau graph (which we still denote by 

th(L)) completely determines the surface pair (~Q' ~C) and hence the set 

of four entropy indices g(~c) ~ p(~c), j (~c) = g(~c) + b(~c) and y(~c). 

So far as p(~C) and y(~C) ar~ concerned, this fact is evident since the 

embellishment of th(L) .records 0-P patching and glitches. 

How can one reconstruct the whole (~Q' ~C) from its th(L)? 

Remember that th(L) contains the contracted Landau ,graph L and hence 

can be divided unambiguously irito pieces each containing exactly one 

* Landau v.ertex v
1

: 

th(L) th(L1) # th(L2) # ... · (B.8) 

* The total number of Landau vertices satisfies the weak entropy 

property. 

~ • 
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It is understood that all the 0-P division lines, glitch and twist 

markings occur at the # signs. There is furthermore a decomposition 

1 1 2 2 
c~Q' ~c) = <~Q' ~c) ° C~Q' ~c) # (B. 9) 

which parallels Eq. (B.B) and such that~~ contains Li. One obtains 

(~~. ~~) surface pairs by taking a set of zero-entropy 

builds up (~Q' ~C), performing all plugs that do not 

involve 0-P transitions, glitches or twists, and then making all the 

the connected 

surfaces that 

necessary contractions. The object th(Li) is the thickened Landau 

graph corresponding to (~~. ~~) and we claim that it determines 

. i i) 
{~Q' ~c . 

Indeed ~~ has only one patch, no glitches and only one Landau 

vertex vi' with L i living on a "main sheet". Also ~~ has been built 

without twists. So clearly 

p(~~) i i 
1, y(~c) = o, g(~c) g (th(L i), b(~i) c b(th(Li)). 

For all practical purposes ~~ is like a classical-DTU bounded smooth 

surface. Topologically speaking, this' surface is the {main sheet of 

~~}, homeomorphic to {th(L), without embellishments}. This ~~ can be 

supplemented with a~~ built out of spheres as in classical DTU. 

Once the(~~. ~)'s are determined, Formula (B.8) tells us 

exactly how to perform the plugs in Formula (B.9), because the 

embellishments record exactly the whole story of 0-P transitions, 

glitches and twists. It follows that th(L) determines (~Q' ~C). 

How can one compute directly g(~C) and b(~C) (hence j(~C)) from 

th(L)? Assume for the moment that there are no twists. ~C does not 

house th(L) but it contains 1 and retracts on L (if Lis contracted). 
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Hence it retracts on the possibly ~-orientable smooth thickening of L 

contained in kC' which we denote th(L). So g(kc) = g(th(L)). The 

·object th(L) can be determined from the embellished th(L): one takes 

L with the same ordering as for th(L) but one makes the thickening 

along a closed circuit orientable or not according to whether the 

number of glitches along the circuit is even or odd. In the general 

case with twists it is easy to show that 

g(k ) c g{th(L)) + {number of twists}. 

One first cuts along the twists; applies the special case above, and 

then glues back to restore the twists •. 

If th(L) is embellished with quark lines, b(kc) is determined in 

the following way. The ends of L correspond exactly to the external 

particles which fill the belt akc according to two rules: 

(1) Two (external) particles on the ends of the same quark line 

belong to the same component of akc· 

(2) Quark lines attached to the same (external) particle belong 

to the same component of akc· 

These two rules allow us to divide unambiguously the'ends of L into 

boundary components of akc· 
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APPENDIX C: PATCHWISE-ORIENTED SURFACES 

A patchwise-oriented surface S is, by definition, a usual 

surface divided into 2-dimensional regions of disjoined interiors 

called "patches", such that: 

i) Each patch is oriented, 

ii) Two adjacent patches have always opposite orientations so 

that they induce the same orientation of any common edge, as 

in Fig. 46. 

This definition makes sense ~or surfaces with or wit~out boundary 

and extends without trouble to any dimension. If S is orientable and 

globally oriented the orientation of. a particular ,patch may agree or 

may disagree with the global orientation. When in the main text we 

have described a quantum triangle orientation as "clockwise" 

("anticlockwise"), wha.t was meant is that the patch orientation 

agrees (disagrees) with the global orientation. 

One can easily show that any surface (more generally, any 

n-manifold), whether orientable or not, can be patchwise oriented 

in many ways. For example, two possible ways to patchwise orient a 

triangular disk are shown in Fig. 47. We have employed the scheme of 

Fig. 47(a) in our theory but not the scheme Fig. 47(b), because of 

contraction considerations. The possibility of patchwise orienting 

nonorientable surfaces means that a significance for orientation 

reversal does not require global orientability. 
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APPENDIX D: TOPOLOGICAL M FUNCTIONS; Zero-Entropy Spin Dependence 

and P, C, T 

s~matrix connected parts in the absence of spin are analytic 

functions of particle momenta, apart from isolated singularities des~ 

cribed by Landau-graphical rules (Appendix A and Ref. 1. In the 

presence of spin, Landau rules continue to have their spinless form if 

understood as applying to M.functions,1 • 17 whose spin indices in 

changes of Lorentz frame of reference transform independently of the 

values of momenta. An M function is not immediately equal to an 

S-matrix connected part but is related thereto by a well-defined 

momentum-dependent spin-index tranfbrmation.1 • 17 The advantage of 

M functions is exemplified by the principles of crossing and TCP 

invariance. Let an M. function for an N-particle event be labeled 
_,. 

M Cp1t 1 , ... ,pNtN), where the pk = (Ek' pk) are energy-momentum 
a.l,. •. ,a.N 

four vectors, the tk designate particle types (e.g., t 1 =proton, 

t 2 =positive pion •.. ), and the~ are spinor indices whose essential 

property is that their behavior in a Lorentz transformation is controlled 

entirely by the 6 parameters (rotation and boost) labeling the Lorentz-

group element. The crossing principle states that the complex momentum 

space of a single analytic M function contains nonoverlapping physical 

regions in all of which the pk are real but each of which belongs to a 

distinct collection of signs lk = ± for the Ek. The usual convention, 

which we adopt, is that if nk = + (-) the k'th particle is outgoing 

(ingoing) with physical energy-momentum pk(-pk). The physical inter-

pretation of the type-indices tk and the spinor indices Cf.k obeys a 

similar rule: For example if a certain value of tk designates "proton" 

~. l 
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for nk = + then the same value of tk means "antiproton" when 

nk = - If a certain value of a.k means. sz + 1/2 for nk = + then 

the same value of a.k means sz 1/2 for nk = An M function is 

invariant if a proper complex Lorentz transformation is applied to all 

pk and all a.k One such transformation turns out to change each pk to 

-pk while leaving untouched the a.k; this transformation is equivalent 

to the product of time reversal (T), parity (P) and particle-anti-

particle conjugation (C). Invariance under CPT is thus an automatic 

property of any M function. 

T K M (p1, .. ,pN) lacks particle-type 
~·~ 

A topological M function 

indices but instead carries the topological index T and the order index 

K described in the main text. The topological expansion of an elementary 

connected part now reads 

Ma.l' .. ,aN (pl' tl .. ,pN' tN) L TMK 
T(tl,. • •tN)' K a.l,. • ·~ (pl'. • ,pN) 

(D.l) 

where by T(tl' ••• ,t:N) we mean that each surface pair within the sum con-

tains N quantum discs appropriate to the elementary particle types 

t 1~ .• ,t:N. Apart from spin degeneracy each elementary particle corres­

ponds to a distinct and different collection of oriented triangles, 

each with an attached oriented (charge) arc and with separate (edge flavor) 

orientations for those edges building the particle-disk perimeter. The 

order index K attaches each (pk, a.k) to a_particular quantum disk 

compatible with the particle type. 
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Each elementary-particle spin index ak is actually a collection of 

2-valued indices belonging to (0, 1/2) or (1/2, 0) spinor representations 

of the Lorentz group. This idea, stemming from Stapp 1 s original 1962 

M-function paper,
17 

was associated with HR graphs by Mandelstam in 

1970.18 HR arcs are attached to peripheral triangles 

of particle disks, and.Mandelstam's scheme is equivalent to attaching 

one 2-valued.spinor index to each peripheral triangle. Thus elementary 

mesons carry two spinor indices, elementary baryons carry 3 spinor 

indices and elementary baryoniums carry 4 spinor indices. It is 

furthermore natural and convenient to agree that the physical spin 

significance of a spinor index attached to a counterclockwise 

peripheral triangle is the negative· of that for an index attached to 

a clockwise triangle, because counter-clockwise peripheral triangles 

are always matched with clockwise both in contractions and in 

Landau connected sums. Our rule for the dependence of zero-entropy M 

functions on spinor indices employs this convention. 

The rule is the same as that of Stapp, 4 although we express it 

differently. Any HR arc joins two mated peripheral triangles, so we 

associate with each HR arc the pair of spinor indices coming from its 

triangle pair. As explained in Stapp's paper, a spin index may appear 

in one of four different types: upper dotted, lower dotted, upper 

undotted and lower undotted, Each type transforms in a distinct and 

well-defined way under a Lorentz transformation [Eq. (2.9) of Ref. 4]. 

It is pureiy a matter of convenience which type of index is attached 

to an M function, the connection always being well defined between M 
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functions with different index types.* We adopt the rule that, 

between the two indices belonging to the same HR arc, one index is 

upper and one lower according to the sense of the patch orientation 

(not the sense of the HR arc) • We shall consistently associate the 

lower index with the "front" particle (following the patch arrow; 

see Fig. 48) of the pair connected by the HR arc. 

With the foregoing conventions the Stapp spin dependence for zero-

entropy M functions is simply a product of Kronecker delta functions, 

one for each HR arc; the momentum-dependence resides in a separate 

factor. Figure 48 gives an example. Provided the conventions are 

consistently followed one may then at zero entropy associate a single 

spin-index value, like a flavor-index value, to each HR arc. This rule 

may not be used when orth~para transitions occur. 

What determines whether the Kronecker-delta function belonging to 

a given quark line carries dotted or undotted indices? This important 

question we do not resolve in the present paper. Given the fact that 

a quark line effectively carries a flavor label and that at zero 

entropy it also carries a (1,2,3) "topological color" label, we can 

assign to each flavor-color combination either dotted or undotted 

indices in the ortho case, with the opposite assignment in the para 

case. The Stapp spin dependence has the essential property of 

transitivity (self-reproducing) in zero-entropy connected sums. This 

property i~ transparent once it is established that the connection · 

between M functions and S-matrix elements implies M-function 

* Tranformation between dotted and undotted indices depends on the 

velocity of the associated particle. 17 
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"spin propagators" in Landau products that are of the same Kronecker-

delta form as the ortho and para zero-entropy propagators. We refer 

the reader here to the Appendix of Iagolnitzer's book.
1 

The parity operation on spin indices changes upper to lower and 

dotted to undotted, or vice versa,17 so that Stapp's zero-entropy 

form associates the parity operation P with classical-patch 

orientation inversion (Ic
2
)in the following sense: 

p TMK 
Up• • • ·~(pl.' •• •,PN) =: 

TMK 
Pap •. ~Pa (Ppl'' • ,p%) 

N 

Ic2 TMK (pl,.' .,pN)' 
al'' • ·>XN 

(D.2) 

where Ppk = (Ek'- pk). The zero-entropy momentum dependence resides 

in a separate factor which, by Lorentz invariance, can only depend on 

scalar products p.p. of momenta. Since such products are automatically 
~ J 

invariant under the parity operation it is natural that this scalar 

factor be the same for ortho and for para. The one-to-one matching 

of ortho and para zero-entropy topologies then assures parity invariance 

for strong interactions. 

The C operation of particle-antiparticle conjugation similarly 

has been shown by Stapp to correspond to simultaneous inversion of all 

orientations, both quantum and classical. That is 

C TMK (pl'. •. ,pN) 
ar· ··~ 

'{;T K 

Mal'' •• ·~ (pl'' •. ,pN)' (D.3) 

where 

CT= (Idx IQ)T 

'! ,. 
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with 

IQ =: IHR ® Ich ® Ift' (D.4) 

The symbols IHR and Ich refer to quantum patch and charge orientations, 

respectively. (A global inversion of one of these two orientations 

without inverting the other is never allowed because for core triangles 

these orientations must agree.) The symbol If
2 

refers to quark edge 

(flavor) orientation. The C operation does not change ortho to 

para but reverses the sign of all internal quantum numbers. It is 

consistent and natural to postulate at zero entropy that the scalar 

factor belonging to any (T,K) has the same value as that belonging to 

(CT ,K) ,· thereby assuring C invariance for strong interactions. 

From TCP invariance it may be inferred that 

TV (pl'"pN) 
al'''~ 

IQT MK (pl ••. pN). 
a1 • ··aN 

(D.S) 

Although time reversal does interchange ortho and para, an ortho + para 

transition remains ortho + para and similarly for para+ ortho. It can 

be shown 
14 

that such transitions may. be interpreted as quark 

coupling to right-handed or left-handed "currents". Thus, as 

expected, right-handed transitions·remain right-handed under time 

reversal and left-handed transitions remain left-handed. 

The unresolved issue of how to associate dotted and undotted 

spinor indices with flavor-color combinations has the potential of 

breaking the flavor symmetry inherent in zero entropy (Sec. X). This 

important matter will be discussed elsewhere. 
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.FIGURE CAPTIONS 

1. NonordeJed vertex corresponding to a 4-particle physical connected 

part. 

2. 

3. 

Planar (single-boundary) classical surface.for a topological 

component of the physical amplitude of Figure 1. 

Cylindrical (2-boundary) classical surface for a topological com­

ponent of the physical amplitude of Figure 1. 

4. Toroidal (single boundary) classical surface for a topological 

component of the physical amplitude of Figure 1. 

5. (a) NonorderedLandau graph associated with a singularity of 

the physical amplitude of Figure 1. 

(b) Ordered Landau graph corresponding to one of the topological 

components of the singularity graph of Figure 5(a). 

6. The classical surface of Figure 2 with embedded HR arcs. 

7. The contraction of two adjacent (C,D) meson.pieces of classical­

surface boundary to a single meson piece. The C-meson piece ex­

tends ·from vertex #1 to vertex #3 while the D-meson piece extends 

from vertex #3 to vertex #5. (All vertices are trivial.) The 

contraction forms and then erases a closed HR loop. Not shown 

but easily inferred is the corresponding Landau-graph contraction 

(Appendix A) which replaces two "parallel" meson arcs by a single 

arc. 

8. Intersection of three sheets of Ec at a junction line. In this 

example the boundary of one sheet, whichhappens to be interrupted 

only by the single (exhibited) junction line, is shown in its 

entirety. The boundaries of the other two sheets, left incomplete 

in the figure, might be interrupted by further junction lines • 
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The .oriented lines attached to the belt are HR arcs. 

9. The four elementary-hadron belt pieces allowed by-the zero-entropy 

bootstrap (see Sec. V): 

(a) meson-

(b) "out" (E > 0) baryon or "in" (E < 0) antibaryon (see 

Appendix D) 

(c) "out" (E > 0) antibaryon or "in" (E < 0) baryon 

(d) baryonium 

10. (a) HR-oriented belt-graph for a (zero-entropy) 4-particle 

connected part (two ba_ryons, one meson and- one· baryonium). Dotted 

lines are HR arcs.-

(b) Separation of this belt graph ,into particle pieces. 

11. Three types of glitches: (a) ortho (b) para (c) ortho-para tran-

sition. 

12. A 2-bead "twisted" belt graph_belonging to a tc of nonzero_entropy. 

In Appendix B it is shown that the classical surface here has only 

4- sheets, rather than the 5 associated with the untwisted belt 

of Fig. lO(a). The "disquark twist" has united the two inert sheets 

of one bead. 

13. "Elementary-particle" quantum disks corresponding to the belt 

pieces of Fig. 9. 

14. Contraction (erasure) of two adjacent matching disks on Eq. 

15. A 2-meson· (A,C) channel disk. 

16. Contraction of the Fig. 15 channel disk to a single-particle disk. 

17. Harari-Rosner diagramof the contraction from Fig. 15 to Fig. 16. 

18. Division of a Eq sphere into 4 patches by lunar insertion. 

19. (a) Core triangle on Eq. 
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(b) Peripheral triangle on Eq· 

20. Trivial vertices of· the EQ triangulation belonging to Fig. 10, 

shown along the belt graph. Notice the correspondence between 

Eq trivial vertices and HR arcs on EC; either delineate the ele­

mentary particles. 

21. The Eq triangulation correspondings to Figs. 10 and 20. 

22. Patch orientations of baryon disks. 

23. Belt patterns if Eq were divided into squares. 

24. The four edge flavors (and antiflavors). 

25. Thickened Landau graph for the topol~gy of Figs. 10, 20, and 21. 

The dashed lines are core charge arcs while the dotted lines are 

HR arcs. 

26. Thickened- baryon Landau arc when the core charge arc is replaced 

by a pair of quark lines (antidiquark). 

(a} Clockwise HR orientation. 

(b) Anti-clockwise HR orientation. 

27. The three topological colors. 

28, Swt.tches along a baryon Landau arc. 

29. Switches along a baryonium Landau arc. 

30. Connected sum of zero-enthropy T 1 S that corresponds to meson decay 

Of baryonium. Dashed lines are core charge arcs while dotted are 

HR. arcs·. 

31. Spin-flavor labels attached to the quarks and antiquarks of a 

baryonium disk. 

32, Examples of forbidden and allowed ordinary Landau graphs, 

33. Exall)ples of equivalence between ordered Landau graphs. 

34. Exall)ples· of contractions leading to trivial Landau vertices. 
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35o Four categories of connected sums. 

36. Singularities of the quantum surfaceo 

37. A single-vertex, 2-arc graph. 

38. The 8 distinct thickenings of the graph of Figo 37. 

39.. CoDJD)utative diagram representing equivalence of two thickenings 

A and A'. 

40. Example of a "Whitehead move" or "duality transformation'·'. 

41. Example of a "space" that admits no thickening: The annulus A 

and Mobius band M are glued along the loops r and T'. 

42o The six different quark permutations that may. occur in a baryon 

plug. 

43. Thickening of the belt belonging to a baryon "propagator" for a 

diquark twist. 

44. (a) I:c for the zero-entropy (identity-permutation) baryon 

propagator corresponding to Fig. 42~ 

(b) rc for a diquark-twist baryon propagator. 

45. A notation for recording complexity on th(L): Dashed lines 

are core charge arcs, dotted lines are HR arcs. 

Ci!I Ortho-para transition. 

G>l Glitch 

Ccl Diquark twist 

46. A patchwise-oriented disk. 

47. Two ways o.l; patchwi.se orienting a triangular disk. 

48. Example of Stapp's zero-entropy spin dependence for a 3-meson 

connected part. The central arrow :indicates the classical patch 

orientation" 
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