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TOPOLOGICAL BOOTSTRAP THEORY .HAD NS * ’ .
: OF‘. RO determines allowed hadron disks on quantum spheres together with the

G. F. Chew . : .
associated quantum numbers. Elementary topological hadrons turn out

L Berkel borat :
awrence Berkeley Laboratory to include mesons, baryons and baryoniums, with quarks appearing as

and
"peripheral triangles" (along the perimeters of hadron disks) whose

- Department of Physics,
University of California,
Berkeley, California 94720

attachments correspond to a total of 8 flavors as well as spin.
Individual quarks do not carry momentum and cannot be hadrons; quark

and ) i
confinement is automatic. Also appearing within hadron disks are

V. Poénaru
"core triangles" that carry baryon number and electric charge but no

Département de Mathématiques -

Université de Paris-Sud, 91405, Orsay, France ) flavor or spin. Hadron disks have quantum numbers that accord with
ABSTRACT . the 10@est~mass physically-observed mesons and baryons. The relation

A topologig#l framework is constructed for an S-matrix - of.topological theory to QCD i? diSCUSSEQ'

bootstrap theory of partibles. ‘Eéch component of an S-matrix

tbpological expansion is associated with a pgir of intersecting

"quantum" and "classical surfaces whose complexity exhibits an

entropy property. The bounded classical surface e&geds graphs

that carry the direct observables——energy—momentﬁm, spin and

electric charge. The closed quantum surface carries a triangu-

lation whose orientations represent internal quantum numbers--

which turn out to be baryon number, lepton number and flavor. A

form of "color" automatically appears. All strong-interaction

components of the expansion are generated through 'Landau

connected sums" from ”ze?o—entropy" surface pairs--which are

self generating. Elementary particles correspond to triangu-

lated areas on the quantum surface; consistency at zero entropy

*
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I. INTRODUCTION

The bootstrap idea that S-matrix causality and unitarity might
determine all hadron properties is 20 years old--preceding the quark
idea. Bootstrap theory developed slowly because of its essential

nonlinearity and lost favor when the capabilities of the seemingly-oppo-

site quark approach, eventually formalized within quantum chromodynamics

(QCD), became recognized. It was, however, never established that
conflict ekists between quark and bqotstrap.ideas. This paper de-
scribes a bootstrap theory which explains quarks and their properties
on the basis of S-matrix consistency.

Underlying our theory is the notion of causally-connected events
in a Poincaré-invariant macroscopic space-time. In other words we
accept the analytic S-matrix as described, for example, in the book
by Iagolnitzer.1 We do not require the space-time continuum of
local quantum field theory, and we make no a priori assumptions about
.inﬁernal quantum numbers: Our guiding motivation is to satisfy the
nonlinear cyclical conditions implied by unitarity and causality:
S-matrix connected parts are analytic momentum functions determined
by their singularities, while the singularities are determined by pro-
ducts of connected parts, products associated with Landau gr-aphs.l
Our theory shows how this cycle implies hadron quark structure replete
with internal quantum numbers and tfiality.- We predict 8 flavors.

A precondition for the form of bootstrap theory presented in
this paper was recognition of the relevance to the S-matrix

of combinatorial topology, applied to 2-dimensional surfaces.

An impressive understanding of mesons and meson interactions emerged
during the seventies through the application of combinatorial tppology
to S-matrix causality and unitarity. This program—-sometimes called
"dual topological unitarization" (DTU)--grew out of Harari-Rosner
dual diagrams,2 apd a survey of DIU ‘developments up to 1977
("classical” DTU) has been given in a Physics Reporté review articleﬁ
The general idea is to aséociate S-matrix connected parts
(amplitudes) with 2-dimensional surfaces that admit a connected-sum
operation analogous to matrix multiplication. These surfaces carry
complexity indices wifh an "entropy" pfoperty such that in connected
sums.complekity cannot decrease, Topological e#pansion of the
S-matrix then isolates the nonlinear bootstrap aspect of unitarity-
causality at the level of minimum complexity and maximum symmetry--
often characterized as the “planar" level. Higher terms in the
topological gxﬁansion are to be calculated in succession, starting
from the planar terms. The theory proposed in the present paper
extends DTU but maintains tﬂese general ideas.

Our key-addifion to classical DTU is the '"quantum

sphere,"

which houses the “zero-entropy" bootstrap. Quarks and
quark properties emerge.from demanding consistency of the quantum
sphere——the'residence.of internal (not directly-observable) quantum
numbers--with the classical surface carrying energy, momentum,

spin and .electric charge.

We find it plausible that the low-entropy content of bootstrap

theory is complementary to QCD--which postulates colored and flavored quark



and gluon fields with a gauge-invariant interaction. We argue in
our conclusion that it is because the validity domain of quantum

n

field theory is "high entrépy that the Lagrangian approach cannot
explain the number of colors and fiavors. We anticipate that a
high entropy limit of our theory will eventually be shown to imply
the physical content of perturbative QCD.

‘ Our paper'consists of two well-separated parts plus appendices. In
the first part (Secs. II-IV) we express classical DTU in a precise form
that admits elaborations to describe spin, parity and the possibility
of hadrons more complex than mesons. This part closely relates to
parallel work by. H. P. Stapéﬁ the difference is mainly in our
use of Landau graphs and in our emphasis on "Landau connected sums"”
of graph—carryiné classical surfaces, The notion of entropy,
including zero eﬁtropy‘ géverns both our approach and that of Stapp.

Although it is possible within a topolégical’expansion based
on claséical surfaces to identify»the concept of a zero-entropy
bootstrap; the classicél surface alone does not provide the means
to explore'all consistency requirements on internal quantum numbers.
The second part of our paper deals with the quantum spherg, which

. . %
corresponds to a thickening of the boundary of the zero—entropy
classical surface. Thié thickening is needed to achieve a zero-
entropy Hilbert space, so that zero~entropy components of the
topological expansion become identifiable with elements of an
S-matrix. Causality and contraction rules based on particle-

bound-state correspondence are then shown to constrain the pattern

.of internal quantum numbers.

A preliminary summary of the main ideas in the present paper has
been published,5 but subsequent to that publication theré became
recognized the need for an additional topological feature: singular
junction lines connecting "feathers" of a multisheeted classical
surface; Introduction of junction lines does not-affect the zero-
entropy Hilbert space, but tﬁere is an impact on the subsequent growth
of enﬁropy, which now can be expressed through a thickened Landau
gréph.embellished b§ "colored" quark lines.,

It is natural to extend the topological approach to encompass
electromagnetic and weak interactions. The extension to electro-
magnétism is described in separate papers6 which propose a
topological representation of photons and charged leptons. Leptons
and photoné are not generated by the zero-entropy bootstrap in the
sense of hadrons but there is a common topological framework; the
topology of leptons in particular, is similar to that of quarks. A

further extension of topological theory to weak interactions is in

- progress.



_ II.” CLASSICAL DIU

The unitarity-causality properties of an analytic S matrix are
expressible through. Landau graphs, which stand in one-to-one correspon-
dence with isclated S-matrix singularities (Appendix A). In Ref. 3
(Sec. 5) Landau graphs were given ordered vertices and housed in
bounded two-dimensional surfaces which served as basis for én S-matrix
topoiogical expansion. We shall refer to such surfaces as 'classical"
because one of their functions is to keep track‘of complexity in
momentum-energy--continuous particle attributes associated with the
Lorentz group that play a central role in classical physics. In
Sec. III we shall patchwise orient the classical surface and associ-
ate orientation reversal with space inversion (parity); it will then
also be possible to describe spin complexity. We begin invthe present
section, however, with the unpatched surfaces uéed in Ref. 3 to
describe mesons without attention to spin. These surfaces are
orientable and inherit global orientation from the ordered-vertex
Landau graphs embedded thereon (See Sec. VIII). In Sec. IV a wider
class of hadrons, including baryons, will be accommodated by allowing
the classical surface to be muitisheeted, the sheets being joined

together at singular junction lines. In classical DTU for mesons there

are no junction lines; the surface is a bonafide 2-dimensional connected

manifold with boundary.
Central to classical DIU and to its generalizations is the idea

of a topological expansion of "elementary S-matrix' connected parts.

The Hilbert space in which the elementary S matrix is defined is based

on a notion of '"elementary particles”. In our theory an elementary

. conserved internal quantum numbers are the same, however, as are spin

particle is assumed to correspond to a definite physical particle

but is not identical the;ewith. In particular, elementary.particles
are all stable; their physical counterparts neéd not be. Anticipating
later results, an example is the elementary p meson, which will turn
out to be one of the basis states for the topological expansion. The
physical p meson is unstable and its mass is correspondingly a complex
number. The elemenﬁary p.mass has no imaginary part, and the real
part is only approximately equal to that of the physical p-meson. All
and intrinsic parity. We make the assumption that a unique (not
necessarily finite) set of elementary parficles can be identified
through requirements of S-matrix consistency. Finding this set is

the bootsﬁrap problem. The results found in this paper imply a

finite but modefately large set of elementary hadroms which all have

the same mass; they differ in spin and internal quantum numbers.

The’elémentary S matrix is assumed to have the same pole structure

as the physical S matrix. Thus, even though the elementary p has an

unphysical mass, we assume the presence in appropriate elementary
Sﬂmatrix connected parts of a complex pole whose position corresponds
to tﬁe physical o maés. More generally we assume the usual pole,
physical—particle correspondence for the elementary S matrix, with the
standard factorization property relating pole residues to products

of connected parts (Appendix A). "~ All connected parts of the physical
S matrix are thus assumed to be obtainable by pole-residue factori-
zation from the elementary S matrix, despite the unphysical basis in

which the latter is defined.



Oni§ a finite subset of the infinite collection of poles of the
elementary S matrix can Be.placed in correspondence with elementary
par£ic1es; other poles correspond to "composite" particles. Again
anticipating later results, there will for example be no elementary
particle corresponding to the deuteron or to any ordinary atomic
.nucleus beyond neutrén and proton. »Tﬁe structure of our bootstrap
theéry does not conform to a "nuclear democracy"; there will be a
" definite and restricted set of elementary particles even though each
of the latter is determined by S-matrix consistency and is equivalent
to a "bound state" of othér elementary parfigles.

Let us denote by M_, a connected part of the elementary S matrix,

fi

the indices i and f designating sets of ingoing and outgoing elementary
particles, together with momenta and spins. In classical DTU, as well

as in its generalization, one writes an infinite expansion in two indices:

_ T K
Meg = T Mg . T2
T,K :

We shall refer to Mfi as an elementary connected part and to TMgi as a

topological connected part. The first index T specifies some surface

with embedded graphs, together with some division of the surface
boundary into pieces. For exagple a simple circular boundary component
mightAbe di&ided into n edges--an n-gon. The topological index t
"describes the nature of the surface (sphere, toru;, etc.), the embedded
graphs, and the boundary structure. The second index k describes amn
association of the elementary particles in chahnéls f and i with pieces
of the boundary. Each particie, for example, might attaéh to a

particular polygon edge.

10

In cléssicél DTU each t characterizes an orientable and bounded
2-dimensional connected surface. The index 1 specifies the surface
gehus and boundary structure--the latter corrésponding to removing
a collection of disks from a closed surface. The periﬁeter of each
removed disk is divided‘into pieces, and the order index k associates
each such piece to one of the elementary particles in the collection
i, f. Embedded on the surface is a single-vertex Landau graph
(Appendix A) with one external arc for each particle, each graph "end"
lying on a boundary piece. Assiéning an elementary éarticle to a
boundary piece is equivalent fo attaching this particle's energy-
momentum to the corresponding external Landau arc. The contraction
rules of Appendix A imply that in classical DTU the Landau graph is a
redundant feature of the topology, but it will not be redundant in
oﬁr extension of classical DTU in Secs. III and IV.

Con;idér the elementary—particle reaction AB -+ CD described by
the 4-arc vertex of Fig. 1. One of the terms (t,k) in the topological
expénsion of the.elanentary connected part for this reaction would
correspond to the 4-edge disk of Fig. 2, together with embedded single-

vertex Landau graph. Notice that the arcs incident on a Landauvertex

automatically acquire a cyclic order as soon as the Landau graph is
embedded on a 2-dimensional surface. Reference 3 adopted a convention
of always understanding this order to be "clockwise". Hence the
circular arrow in Fig. 2.

. An example of a different term in the topological expansion of

the same reaction amplitude is shown in Fig. 3. Here the boundary
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consists of 2 discpnnected components* each of which is a 2-gon.
The particles A and B belong to one boundary component while ¢
and D belong to the other. Note the extra closed loop in the
Landau graph--that cannot be contracted. It is'the accommodation
of this loop that fequires two disconnected boundary components.

We have here an illustration of how complexity of graph correlates”
with complexity of surface.

. A third example is given in Fig. 4, where the surface is
toroidal but"tﬂe béundary is connected (a single boundary component)--
quadrilateral as in Fig. 2 even though we have been forced in drawing
Fig. 4 to curve some of the edges. The genus of the surface in
Figs. 2 and 3 is zéro while that of Fig. 4 is 1, The complete

~topological expansion requires classical surfaces of indefinitely
large genus and the number of disconnected boundary components may
be as large as the number of involved particles. All possibie
cyclic sequences of particles on boundaries must be included.
Landau graphs, as originally introduced in S—matrix'theory to
describe connected-part singularities (Appendix I), always have more
"than one vertex and do not have ordered vertices.. A nonordered
Landau grap£ L, such as that of Fig. 5(a).corresponds to a dis-

continuity formula schematically expressible as

dise, ‘M, = jdpL M Mp X tee (2.2)

* .
This 2- boundary surface is a cylinder.
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where fhe integration is over the phase space of all intermediate
elementar& pafticles——each corresponding to an internal arc of

the graph. Because of ﬁhe difference between physical particles
and elementary particles, Eq. (2.2) acquires consistent meaning
when applied to elementary connected parts only after a topological

expansion has been made of each connected part appearing therein.

. We have emphasized that the singularities of each M,. (without expan-

fi

sion)bcorrespond to intermediate physical particles, but the inter-

mediate particles pf Eq. (2.2) are elementary. This conflict we

assume to be reconciled by méss renormalization. The singularities of

indiyidual topological connected parts TMEi correspond to elementary

particles associated with internal arcs of ordered-vertex Landau

graphs. (See Formula (2.3) below.) But because the topological expansion

Eq. (2.1) is infinite it is possible to assume that the expansion diverges

at isolated points in the complex momentum Riemann surface so as to

remove eleménﬁary unphysical‘Singularities present in individual

éxpansion components and to replace them by physical singularities.
Although the foregoing phenomenon might sound unreasonable, it -

is in fact familiar in physical theories Which achieve unitarity

thougﬂ infinite expansions. Mass renormalization is by now understood

in a variety of S-matrix models as well as in Lagrangian field theory.

While recognizing the imporfance for the future of achieving a firm

general basis for this aspect of bootstrap theory, we believe it

reasonable here to proceed by accepting on faith the implicit assumption

of classical DTU3 that mass renormalization will occur through the

—

above mechanism.
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The attribution of formal meaning via the topological expansion
to the discontinuity formula (2.2) associates the notion of Landau con-
nected sum with an ordered multivertex Landau graph. Consider the
2-vertex nonordered Landau graph of Fig. 5(a) and associate this with
a product of two elementafy connected parts, as on the right-hand
side of Eq.(2.2). Topological expansion of each of the two connected

parts leads to a sum of products

t \J " n

. - 3 ' Kk T k" .
dlscL Mfi 2, fdpL M X an . (2.3)
',k
T'_’,K"

each product being associable with a 2-vertex ordered Landau graph L
such as that of Fig. 5(b). Each vertex here corresponds to a

topological connected part, so the incident arcs lie in a definite

cyclic sequence. This ordered graph belongs to a Landau comnected sum,

denoted by - -
Gl # "™y = (1K) _ (2.4)
L .
or, more compactly, if 2 = (t',k'") and Z'E(",«™,
I = 3, (2.4%)
L

a notion defined precisely in Appendix B. There is a joining of
boundary edge segments belonging to intermediate elementary particles
so as to achieve a unique new surface whose boundary edge segments

correspond to external elementary particles. The two ingredient

surface orientations inherited from the single-vertex Landau graphs

14
are to match so that the two-vertex grabh on the new su;face'has a
coherent orientation (say clockwise). Contraction of this graph to
a single-vertex graph (Aépendix_A) then completes the specification
of (T,K)*-

In the example of Fig. 5(b) a connected sum is formed from two
single-boundary, zero-genus classical surfaces, the boundary of each
having 5 pieces. There is-a joining of corresponding boundary
segments on the two surfaces--belonging to intermediate elementafy
particles E, F, G--to achieve a new surface whose boundary only
includes particles A, B, C, D. The new surface in fact is that of
Fig 4., where the single-vertex Landau graph is a contraction
(Appendix -A) of the 2-vertex ordered graph of Fig. 5(b).

7 Suppose now that we topologically expand thevleft~hahd side of
an equation like Eq. (2.3) and associate with each (t,k) those terms on

theright-hand side for which the associated connected sum is (t,«).

We then find

. T K ' o« ™ k :
dise, Mg, —T?KidpL LA (2.5)
k"
where the sum is restricted by (t',k") # ("™ # oo = (1,6) .

Equation@.5) implies that each topological connected part TMgi is an
analytic function of particle momenta with isolated singularities

corresponding to multivertex ordered Landau graphs that contract to

the single-vertex graph belonging to (1,K). Reference 3 presents

The elaboration of classical DTU discussed in later sections will

require modification of this Landau-graph contraction rule.
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a variety of examples showing how Formula (2.5) implies different
singularity structure for different values of (t,k). Each individual
toﬁological connected part TM;i possesses only a small subset of the
singﬁlarity collection present in all the components'builaing Mfi'

To complete a meaning for the topological expansion it is
necessary to assume that discontinuity formulas such as (2.5) together
with Cauchy-Riemann formulas (dispersion relations), provide a basis
for calculating topological connécted parts. The scheme by which the
calculétion is - supposed to proceed dé56nds on notions of entropy and
zero gntroEy.;!Thé Landau connected sum of ciassical surfaces has the
property that if the genuses of the ingredieng surfaces are é', gy i,
and. the gépus of the resultant is g, then »

g =g +sg"+ ... | | (2.6)

We refer to such a property ;haf surface complexity can only increase
through surface addition as "entropyﬁ. Its importance for the S matrix
was first noted by Veneziano.7 Eﬂtropy rulés also apply to boundary
structure (Appendix B). For example, if the number of boundary compo-
nénts on the surface resulting from a Landau connected sum is smaller
‘than the maximum number on any ingredient surface, there must be an
increase in resultant genus over the sum of ingredient_genuses,8

A consequence of suéh entropy rules is the possibility of
identifying a-minimal subset of zero-entropy topological connected
parts, whose‘discontinuities are built entirely from products of

zero-entropy connected. parts. In classical DTU the zero-entropy

16

subsetcoﬂsiéésof all 1 wherethesﬁrface is a disk--with zero genus
and a single boﬁndary component--commonly characterized as "plapar".
(In our genergliiations'of classical DIU, the adjective "planar" will
not be sufficient to describe zero entropy.) That is, any discontin-

uity of a planar connected part is a product of planar connected parts.

Classical DTU makes the assumption, to which we shall adhere in our

' generalijzations, that zero-entropy connected parts may be calculated

first, without having to calculate any connected parts outside this

subset.

A second assumption, also to be mai;tained, is that all strong-
interaction compoﬂents of the topological expansion (2.1) correspond to
surfaces that can be'formeé by successive connected sums of zero-
entropy surfaces. A feature of our theory is that any higher component
in the topological expansion may be calculated through linear equations,
given components of lower entropy. This feature accords with the
fact that the complexity of any ingredient surface in a Landau
connected sum cannot-exceed that of the resultant. For.example, the
inequaiity " (2.6) means that the only genus of a resultant surface
which can occur more than once among ingredient surfaces is zero
genus; discontinuity formulas for a topological connected part of
genus g # 0 may contain at most a single factor correspondiné to a

genus-g connected part. All other factors must have smaller genus,

so the calculation may proceed through a linear equation.

In contrast, the calculation of zero-entropy connected parts is
nonlinear and herein lies the bootstrap potential. Arbitrary assign-

ment of elementary particles is presumed not to be possible: the

’a s
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basis for the topological expansion must be chosen so as to permit attached to HR arcs so as to agree with the vertex orientation
satisfaction of the nonlinear zero-entropy equations. It is shown in the Landau graph. ‘Henceforth we shall refer to this global

in Ref. 3 how these equations imply a zero-entropy "ordered S matrix". orientation of the surface as HR orientation.

We do not at this point repeat the reasoning\since we shall later To contract a multimeson boundary interval into a single-
consider in detail the ordered S matrix after adding the "quantum meson interval one removes all mated pairs and erases the corres-
surface", a notion absent from classical DTU. Suffice.it here to ponding HR arcs. Topologically this contraction may be describéd
say that unitarity and causality properties of the physical S matrix as a degenerate connected sum, as seen in the example of Fig.7,
imply corresponding properties in a zero-entropy Hilbert space of where adjacent mesons C and D contract to a single meson. Notiﬁe
elementary particle channels. : : ‘ ’ how the contraction produces and erases a closed HR loop; such
Every elementary hadron is at the same time a composite "bound closed loop production and erasure is also a typical feature of

state'" built from other elementary hadrons. This idea is made zero-entropy Landau connected sums.

precise by topological contraction rules. For elementary mesons in It should be remarked (see Fig. 6*) that in classical DTU the

;lassical DTIU the rule means that a connected boundary interval Landau graph and the HR graph give the same information, although

belonging to several mesons can be uniquely contracted to a smaller such will no longer be the case after the classical surface is

boundary piece belonging to a single meson. The notion of multi- generalized to accommodate elementary hadrons other than mesons. As

particle boundary-piece contraction to a single-particle boundary

piece is the essential element in distinguishing strong from

discussed in Appendix B, ordering of Landau-graph vertices allows a

unique 2-dimensional thickening of thHe Landau graph; the Harari-

. . 14 - : *k
electroweak interactions. Rosner graph lies along the boundary of the thickened Landau graph.

“The classical-DTU contraction rule is often expressed with the

2
aid of graphs invented by Harari and Rosner. Every meson boundar * . . . . .
grap y ¥ y The orientation of the Landau arcs 1is not significant, since

piece is divided into two subpieces, :and the complete set of subpieces . . . . ) .
i analytic continuation in particle energy (Appendix D) changes

building a zero-entropy boundary is grouped into adjacent mated . . . . . .
E—— ingoing particles to outgoing antiparticles.

subpiece pairs, where the two members of a pair belong to different *k
_ ‘ Chapter 5 of Ref. 3 describes a rule which allows the genus
mesons. An arc can be drawn on the classical surface connecting the

and boundary structure of the classical-DTU surface to be deduced
two members of a mated pair, as shown in Fig. 6 (which corresponds to

entirely from the vertex-ordered Landau graph. Section VIIT
Fig. 2), and the collection of mate-connecting arcs is the Harari-

below gives further discussion of thickened Landau graphs.
Rosner (HR) graph. Figure 6 also shows how orientations may be :
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We are here encountering a characteristic feature of topological
bootstrap theory, where a single structure may simultaneously play
different roles. ‘HR‘graphs reflect singularity structure in contin-
uous energy-momentum variables, inasmuch as they conform to Landau
érapgs, but in describing zero-entropy contraction rules they also
gohtrol the structure bf dependence on discrete "internal" variables.

_Weisémann? was ablerto show for classical DTU that additively-
conserved internal quantum numbers can consistently be introduced
into the zero-entropy topological S matrix only as indices attached
to HR arcs,* to be matched in connected sums. A glance at Fig. 6
then allows the conclusion that, so far as flavor is concerned,’
mesons necessarily act iike quark-antiquark combinations. Below,
by slightly enlarging classical DTU, we shall find that zero-
entropy spin dependence conforms to this same pattern. Thus HR
arcs, with respect both to flavor and to spin, may be described as
"quark lines"; in this sense the zero-entropy classical-DTU bootstrap

has explained the quark structure of mesons.

The original discovery of HR graph52 rested on attachment of

flavor indices to HR arcs.

-
\du

20
I1I. CLASSICAL PATCHES AND SPIN

To describe spin and parity a patchwise orientation (Appendix o,
that induces an orientation of patch boundaries, is assigned to the
classical surféce. -A zero-entropy surface is a single patch; if the
patch orientation agrees with the HR orientation we characterize the
zero-entropy topology as 'brtho", if the two orientations disagree
the adjective "para" will be employed. Stapp4 has shown how the
ortho-para distinction allows elementary-particle spin to be
described through 2-valued indices belonging to (0, %) or (%3 0)
spinor representations of the Lorentz group, one index for each quark

interval on the classical-surface boundary. The spin of an elémentary

_meson is then carried by a pair of such indices. In Appendix D we

give tﬁe precise form of Stapp's zero-entropy topological conneéted—
part dependence on spin indices, which loosely may be-characterized
as a maintenance of spin value along an HR arc. That is, at zero
entropy if the nature of the spinor indices is correctly chosen, one
may think of a definite spin value (* %) as being attached to each
HR arc.

The Stapp zero-entropy spin structure furthermore corresponds to
associating the parity operation with reversal of classical-surface
patch orientation (Appendix D) fpplving space inversion toan ortho component
of the topological expansion produces a result equal to the corres+

*
ponding para component. Since zero-entropy components always occur in

Separate zero-entropy components of the topological expansion

are not parity invariant. '
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symmétrical orthd—para pairs and since higher strong—interéction
expansion com%bnents are all generated from zero entropy,bit follows
that parity is a strong-interaction symmetry. Stapp also has shown
that charge conjugation corresponds to simultaneous reversal of
patch and HR orientation--another symmetry operation.4 The
elaborétion of topological theory to describe hadromns more complex
than mesons will maintain strong-interaction C and P symmetry by
continuing to employ both patch and HR orientatioms (Appendix D). -
From the foregoing it follows that.thé spectrum of elementary
mesons is characterized by spin quartets, each a triplet (S = 1)
degenerate with a singlet (5 = 0). The ortho-para doubling of the
topology means that each elementary meson appears twice in the
spectrum of zero-entropy poles. An ortho plus para (0 + P) zero-
entropy ground state pole turns out to have negativé intrinsic parity
while an ortho minus para (0 - P) has positive intrinsic parity.
It is shown by Stapp7'that the superposition in Formula (2.1) (also
Formula(31) below) eliminates ground-state poles corresponding to
0 - P, so elementary mesons possess odd intrinsic parity. The spin-

parity content of the elementary DTU meson spectrum is thus identical

to that of ground states in naive quark models; at the same time ortho-

para topdlogi&al doﬁbling is essential for completeness and consistency.
A Landau connected sum of two zero-entropy surfaces, one ortho

and one para, leads to a 2-patched surface with a transition arc

separating an ortho patch from a para patch. Further connected sums

may add further 'tlassical patches" and; correspondingly, further

transition arcs. Patches cannot disappear; the number of patches

22

resulting from a connected sum is never less than the maximum number
in any ingredient surface.* This entropy property allows the con-
sistent demand of no transition arcs on zero-entropy surfaces.

The rules of Landau connected éums imply that, for strong-
interaction topologiés, transition arcs reaching the boundary do so
only at points separating ;ne hadron piece from the next.. The
boundary direction induced by the adjacent batch can reverse only at
such points, being continuous thoughout any particle interval;** in
any strong-intersection topological connected part each elementary
hadron is attach;d unambiguously either té an ortho or to a para patch.

The Stapp spin rule4 implies that after making a Landau

connected sum, Landau-graph contractions are to be made only within

individual classical patches. There is a single Landau vertex inside

‘each patch, and the number of arcs connecting two vertices in different

patches is a significant aspect of the topology t; the (external) spin
dependence of a topological connected part is sensitive to the number
of patch-connecting internal Landau arcs.

What is the connection between the unpatched classical DTU of

Sec. II and the ortho-para extension? At zero entropy there is no

difference; the unpatched problem is duplicated twice. Suppose we

The number n° of closed trahsition arcs (loops not touching the

boundary) exhibits a stronger entropy rule: In a connected sum

- c 5 c c
z El # 22, n o+ n,.

This property changes when electromagnetism is introduced.14
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generally designate by Te the content of T apart from classical
patches and Landau graphs; in other words Te has the content described
in Sec. IT. The full set of topologies T is divided into subsets each

labeled by t . Then, if a "fully patched" topological connected part
c

'is defined as

Te K T, K :
= 2z 3.1
Meg = 2 Mgy G.1
TET
c
. » ST
Stapp's considerations show that the discontinuity formulas for M

fi

have the same form as in unpatched classicai DTU, with all poles
corresponding to 0 + P.

There is, however, a subtle difference between a theory that
starts witﬁ classical patches and then sums over them and a theory
that ignores this topological degree of freedom. The difference
lies in the basis——in the "elementary" particles to which the indices
i,f refer. For example, zero-entropy elementary mesons exhibit
singlet-triplet (e.g.,p-w) degeneracy. There is no reason to expect
such degeneracy in unpatched classical DTU. Correspondingly if one
considers the first few terms in Formula(2.l)... one patch plus 2
patches plus 3 patches, etc. ... for a planar connected»part, one
finds that with more than a single patch Stapp's spin rule breaks tbe
singlet-triplet degeneracy.9 The infinite series building a fully-
patched planar connected part shifts pole positions by the mass-
renormalization mechanism discussed inSec. IT and there is no reason
for these shifts to be equal for spin 0 and spin 1. At the same

T K

c
time the basis for Mfi remains zero-entropy. In unpatched

classical DTU the basis would correspond to the poles of the planar
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S matrix and there would be no immediate way to know the spin and
R ) % )
parity values for the basis states. Spin and parity remain outside

the bootstrap framework in unpatched classical DTU.

Calculations in unpatched classical DTU have taken the meson spins

and parities as given by experiment.3
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Iv.’ FEATHERED CLASSICAL.SURFACES, GLITCHES AND THE BELT GRAPH
The classical surfaces described in Secs: II and III are inade-

quate for the full representation of hadrons more complex than mesons.
Although the Landau graph can be accommodated, the topology is too
-simple to represent spin and internal quantum numbers for elementary
particles whose structure goes beyond 2 quarks. It was suggested
some years ago by several independent authors10 that "feathered"
surfaces might be appropriéte; in this section we attach to the topo-
logical index 7 a sigﬂificance belonging to such an object.* A com-
plete and precise definition of a feathered T depends, as for the T of
unfeathered classical DTU, on a notion of zero éntropy and on the way
that classical surfaces are inductively constructed from zero entropy.
Let us commence forthwith the gradual, somewhat circular, defining .

process.

* .
An earlier version of our theory, described in an unpublished pre-,

print (G. F. Chew and V. Poenaru LBL-9768, Sept. 1979) and summarized
.in Ref. 5, attempted to describe complex hadrons without feathered
surfaces. It was pointed out to us by J. Finkelstein and

J. Uschersohn, (Berkeley, 1980) that inconsistencies develop at
nonzero .entropy if ZC is unfeathered. The form of the quantum

surface, 2, described here in Sec. V is unchanged from the earlier

Q’
version of the theory. Furthermore, because at zero entropy all the
action is on a single sheet of EC (see below), it turns out that the

topology of zero entropy remains unchanged for the entire surface

pair (EQ’ EC)'

26

A fgathered classical surface EC is a 2-dimensional object
which locally is like a bounded smooth surface except for a finité
number of "junctio?'lines". A junction line can be either a segment
or a circle, and along such a line three pieces of smooth surface

meet. Why three? After introduction of the quantum surface there

»will emerge reasons for the magic quality of 'threeness" in the

achievement of overall consistency. Temporarily, the reader may be
content to anticipate that a 3-feathered classical surface will
correspond to the 3 quarké within a baryon. We shall find, however,
that 3-feathered surfaces can accommodate elementary particles with
more than 3 quarks and also with lesg. ‘In Fig. é we show a junction-
line segment,* with 3 adjoining pieces of smooth surface.

When ZC is disconnected along the junction lines it becomes
decomposed into a number of conhected smooth surfaces which we call
sheets. Each sheet is orientable and patchwise oriented--the Kind of
object described in Sec. III. Each sheet furthermore carries a
coherent HR orientation which, as in classical DTU, can be associated

with ordered Landau vertices on the sheet (see below) or, alter-

" natively, with HR arcs along the boundary (see Fig. 8).

The boundary of the full multisheeted classical surface EC is a

closed cubic graph (3 arcs incident on each nontrivial. vertex)

The 3 pieces of smooth surface can interconnect in a nontrivial

fashion.
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which we call the belt and denote byBE%.* If S is oﬁe of the sheets
of_EC,-the boundary of S consists of belt segments (SnéEC) and
junction lines. Along SﬂBZC there are HR arcs, as in Fig. 8, which
pro§ide’HR orientation. Attaching the HR orientation to the sheet
boundary orients any junction line along the boundary. We require
that all 3 sheets meeting aldng a junction line J give the same HR

. ET 3
orientation to J.

~

Each HR arc carries a certain conserved flavor just as in

classical DTU. For the time being we continue to treat flavor as amn

index; later we shall find its origin and interpretation in the quantum

surface. Also as in classical DTU, the boundary of EC (the belt) is
carved into pieces éotreSponding to ingoing or outgoing elementary
particles. Conéistency consideraﬁions including the quantum surface
eventually will lead us to admit only three kinds of elementary
hadrons: mesons, baryons, (antibaryons) and baryoniums. Anticipating
the results of Sec. V, the forms of the corresponding belt pieces are
shown in Fig. 9, where the arrows are HR orientations transferred to

to the boundary. The entire belt is made up from such pieces whose

*
It will be shown in Sec. VI that the nontrivial belt vertices
always occur in "mated!' pairs of opposite HR orientation. The
two vertices of Fig. 8 are mated.

&% -

After introduction of the quantum surface the representation of
electric charge will lead to a "core charge arc", similar in many
ways to an HR arc but parallel to a junction line rather than to

the belt. Core-charge orientation coincides with HR orientation.
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general structure was recognized in Ref. 11. Just as in classical
DIU, points along the belt that separate particle pieces are each
enclosed by an HR arc; the collection of-HR-arcs the?eby delineates
the particle étructure of the belt (see Fig. 10).

" Again as in classical DTU the surface Zb houses a connected
open Landau graph (Appendix.A);bthe ends of . the graph lie on the
belt and correspond to the particles, as indicated by the dotted
arcs in Fig. 9. Note how the position of the baryoﬁ Landau arc
breaks the triangular symmetry of the baryonic piece of belt. "It is
possible for a baryon Landau arc to cross a junction line, passing
from one sheet to another}* Points of such crossing are called
glitches and will.be found to constitute a measure of entropy
(Appendix B).

As in classical DTU the surface Zb is divided into ortho and
para éatches with intervening transition arcs which, if they
end on the belt, in strong-interaction topologies, do so at points
separating one elementary-particle piece from the nexf. Since such
a point is a}ways enclosed by an HR arc, there must be a crossing of
transition arc with HR arc. Transition arcs also may end on junction
lines. Attaching‘ciassical-patch orientation to patch boundaries
gi&es an orientation to junction-line segments that lie between the
end points of transition arcs. The three adjacent patches along such

a junction-line segment induce the same parity orientation of the

The reason why meson and baryonium arcs do not "glitch" in strong-

interaction topologies will be explained in what follows.
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segment, which meaﬁs that the three patches are either all ortho or
all para. All the forégoing rules follow by induction from zero
entropy, where as in classical DTU the entire Z% is ortho or para--
with no transition arcs. The relation of ortho-para orientation of
EC to spin dependence and parity inversion\is the same as described
.in §ec. III and Appendix D.

The notion of Landau (multiplugged) connected sum is easily

extended to feathered classical surfaces (Appendix B), and will be

expressed by the notation
T, =T 42

Corréspoqding elementary-particle pieces of belt are identified as
in classical DTU, a coherent HR orientation of the new surface being
ensured if\the HR orientations are éggosite for a ﬁair of matched
belt segments. The connected sum of éurfaces is accompanied by
similar connected sums of HR arcs and junction lines; HR flavor
matching is to be respected. As in classical DTU, when an ortho
patch is glued to a para patch, the corresponding piece of belt
becomes a transition arc. Otherwise we erase it from the connected
sum. Also to be erased from a connected sum is a closed HR loop with
disk interior lying within a single classical patch,-as.is a closed
junction line when it is the intersection of an unpatched sphere
with a plane.

Figure 9 shows that in baryonium and meson plugs the Landau

arcs always can be directly joined to build a new connected Landau

™ ¥
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graph on the new classical surface EC' In baryon plugs, howeve?,the
two Landau arcs to be coﬁnected may reside on ;heets that are not
united by the connected sum. This mismatch is corrected by an addi-
tional glitch and we shall regard as inequivalent the three situ- .
ations depicted in Fig. 11.* A plug which simultaneously involves a
glitch and an O-P transition generates something like Fig. 11C. -

What are the special characteristics of zero-entropy classical

surfaces from which all strong-interaction Z_ are to be built by

C
successive connected sums? A zero-entropy classical surface obeys the
following requiréments:
10) Each sheet is topologically a disk and consists of a single
patch.
20) There are no glitches, the Landau graph sitting on a single
"main sheet" which sees all the particles.’
30) The Landau graph is a tree with a single vertex.
Such demands were also present in classical DTU. The difference is
that, there, requirement (20) is satisfied for éll.zc"HOt only zero
entropy. The zero-entropy absence of glité¢hes ensures that no EC’
achieved through connected sums starting from zero entropy, will
ever have junction lines crossed either by meson or baryonium arcs.
Appendix B establishes th;t, in any connected sum leading to a zero-
entropy EC’ no glitches can appear in constituent classical surfaces;
once present, glitches cannot disappear.
The foregoing properties of zero-entropy classical surfaces
constrains the zero-entropy belt graph to be extremely simple--

a single-stand "necklace of beads", as illustrated by the 2-bead

example of Fig. 10. Necklace graphs were introduced in Ref. 11 but

The trivial Landau vertices discussed in Appendix A clarify this

inequivalence.
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without an interpretation as the boundary of a multisheeted classical
surface; there consequently were no attached Landau ares. Withattach-
ment of Landau and HR arcs to a single-strand necklace graph as in
Fig. 10 (HR flavor indices not shown), the zero-entropy topology ¢

is almost completely specified--all the action residing in the main
~sheet. The only loose feature is a possible ordering of the two
ineft sheets belonging to each bead——whosebboundaries define the
sead-within the belt graph.

Giving an order to these inert sheets amounts to ordering the

vertices of the belt graph, which in turn amounts to thickening the
belt (Appendix B). We shall follow a proposal of Ref. 11 by adding

*
to the structure of 2% an ordering of the belt graph. In more precise

terms we postulate that the belt comes with a 2-dimensional thickening
which will be an orientable and oriented (also patchwise oriented)
surface denoted by th(BEC). At zero entropy th(BEC) is planar and
the three sheets at.each bead are cyclically ordered. Thus a belt

graph such as that of Fig. 11 is not zero entropy.

Combining this order with the fact that the Landau graph always
givesra'special status to one of the 3 sheets can be thought of

as attaching one of 3 different and distinguishable topological
colors to each sheet at zero entropy {(Sec. VIII). The possibility
of glitching in connected sums means that beyond zero entropy
topological color is not attachable to sheets, but Sec. VIII shows
how "color" is attached to the quark lines that embellish a

thickened Landau graph.
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In giving a precise definition of a feathered topological object

T, we have introduced several arbitrary features: 3 feathers,

flavored HR arcs and the special elementary—particle‘belt pieces
of Fig. 9. In our introduction the expectation has been expressed

that the interplay with zero entropy of S-matrix unitarity and

~causality will explain the need for such special features. In Refs.

8, 11, 12 partial explanations hdave been proposed in terms of
ordered (thickened) belt graphs together with the notion of an

ordered S matrix whose connected parts are the zero-entropy components

of a topological expansion. In this earlier work the belt graph

was not recognized as the boundary of a classical surface where

Landau and HR arcs reside. We may now, therefore, expect to go
further in grasping the consistency implications of zero entropy.

It may be that the topological object described in the presént
section is adequate for such analysis but in the following section
we show how the thickened belt is extendable to a closed triangulated
surface. Consistency requirements are then much easier to control,

especially because at zero entropy the closed surface will be a sphere.

L]
v
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V. QUANTUM SURFACES; GENERAL REQUIREMENTS

FOR QUANTUM SPHERES

The previousvsegfion introduéed the thickening of the belt
graph; th (BEC), a” 2-dimensional orientable surface with boundary.
Caﬁping off the boundary components with disks then yields a
2<dimensional orientable ;ioéed surface--to be called the qﬁanfﬁm

surface Z.. Note that X and Z. meet along the belt

Q Q
=] - 5
BEC Zb n EC G. 1N
At zero entropy each EQ is a sphere, and all higher-entropy.strong-
interaction Zb will be built from these spheres by connected sums.
Like a EC each EQ will carry. additional structures, but

before describing these in full we present in this section a
collection of natural requirements for zero-entropy quantum spheres.

Just as for EC the full characterization of Z_, has a circular

Q

aspect that depends on zero entropy.

We postulate that any X, 1is covered by particle areas which

Q

cut the belt into the particle pieces described in the previous section.

Anticipating bootstrap results from Sec. VI, we show in Fig. 13 the
form of the four distinct particle areas that correspond to the four
Q-is completely

covered by combinations of these four possibilities. Together with its

belt pieces of Fig. 9. Any strong-interaction Z
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division into particle areas, naturally houses the belt; our

z
-Q
thickened belt th(azc) is, among the various abstractly possible
thickenings of BEC, that one uniquely specified as the thickening of
BEC inside,zb'(see-Appendix B).

Each index T appearing in the topological expansion corresponds
to a surface pair 2 = (Zb, EC) with various attachments, any Landau

connected sum of classical surfaces being accompanied by a connected

sum of the corresponding quantum surfaces

(E('z’ T (Zy, By - (Eé # 20 ZL 4T

Q (5.2)

Here 26 # 26 means “connected sum of closed surfaces "(Appendix B, Sub-
section 1), there being identification (and erasure) of those areas on
ZB and 25 that correspond to the particle pieces of belt identified

in Eé # Eg -~the simultaneous ciagsical-surface "Cénnected sum glong the
boundary." Complete rules for Landau connected sums of surface pairs
areldescribed in Appendix B, attention being given to surface
attachments. At zero entropy particle_areas are disks .and, in

connected sums that maintain zero eﬁtropy, collections of identified

particle areas are also disks; thus zero-entropy connected sums

invariably are single plugs.
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Because every zero-entropy EQ is an oriented sphere and
because, as explained in Appendix B, any Landau connected sum
1 1" M
Z_ # Z_  of oriented surfaces inherits an orientation from the

e Q

constituent EQ'S; it follows that every strong-interaction
component of the topological expansion corresponds to an orientable
and.orienééd Eé; Zero«éntropy*quantum spheres are furthermore
patchwise oriente& (_ Appendix C); a property transmitted via_Landéu
connected sums to all strong-interaction EQ' Because particle-
area boundaries lie along patch boundaries, it is possible to
characterizemostparficleareasas clockwise or anticlockwise,* a
distinction that we shall connect to the physical distinction
between ingoing and outgoing Particles or (by crossing, as explained
in Appendix D) between particles and antiparticles.

We come now to special zero-entropy quantum-sphere properties

not generally shared by higher entropy Z In Ref. 3 there was

Q
introduced the concept of an'oraéréd Hilbert space. The vectors of
this space are labelled not only by elementary-particle momentum and
spin but by chanﬁélvdiéks which are particle-disk combinations with
an attached belt segment and with  unique quantum-patch orientations.

The belt carries an ortho or para orientation as described above in

Secs. IIT and IV, A connected part of the ordered S matria is a

The exceptions correspond to self-conjugate particles like Py

all of whose quantum numbers are zero.
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zéro-entropy amplitude corresponding to a surface pair where the
quantum sphere is covered by an ingoing channel disk together
with an outgoing channel disk. The two aisks are joined along
their perimeters.

Ordered S-matrix -elements are nonvanishing only between channel
disks wﬁésé perimeters match in an appropriate way. Not only must
the number of edges aiqng.the pexiﬁeters be the same but the QUantum—
patch orientations fust Teverse from one channel disk to the next
across each perimeter segment. Furthervattachments~to ZQ also must
match, and belt segmants~musf connect smoothly to form a éloséd
belt graph that is.entirely ortho or entirely para. Two ordered
channels with the property that the ingoing perimeter of one matches
the outgoing périmeter_of the other will be said to’EOmmﬁniééfé.

The ordered Hilbert space splits~into'séct§rs, ordered channels
within one sector communicating with each other but not with ordered
channels in any other sector. Each sector has a charaéieristic

. *
perimeter.

It is made plausible -in Refs. 8, 11 and 12 that unitarity
and analyticity of a cluster*decomposablefﬁhygicél S matrix implies
unitarity and analyticity of a cluster-decomposable orderg& S matrix.
This reasoning preceded the splitting of each ordered sector into
ortho and para subsectors, and it has been shown by Stapp that

ortho-para splitting conflicts with ordered unitarity«.4 Nevertheless

it continues to be true that inversion of Stapp's separate ortho and

This statement will later become recognizable as a generalized

0ZI rule.
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para S matrices is related in the usual way to analytic. continuation

in momentum along the '"path of Hermitian analyticitynl

s (5.3)
The ordered S-matrix relation - ' ﬁ

“ha S 77 (5.4)

then leads to the usuai discontinuity formulas for ordered connected
parts, which provide the basis for .calculating masses and amplitudes.
Because of the need to give meaning to ordered S-matrix multiplication,
the following condition on our topological index and Landau connected
sum is natural:

(1) If (z', ') and (", k') designate zero-entropy components
of the topologicél expansion, then any single-plug connected sum that

preserves zero entropy,
@ kD#F a" "= @, «), (5.5)
D

should be uniquely defined;

Here D denotes the disk that is plugged. In generating higher
components of the topological expansion the presence of indistinguish-
able quantum-surface subareas (such as when there are identical
particles) m;y>require several diffefent connected sums of two

surface pairs for a given set of intermediate particles, But at

38

zero entropy it is always possible to divide each quantum sphere into

two hemispheres, one of these being the disk D to be plugged,

" Furthermore by appropriately choosing the signs of particle energies

(Appendix D) all particles in one hemisphere can be ingoing while
all those in the complement are outgoing. We represent this possi-

bility schematically. as

' !

(x's k') (Pin’ out)

(5.6)
v
(ts k")« (Dyps Dp)
The connected sum Eq. (5.5) then becomes representable as
] d R 1 = Ernd 1
I Dout)' ® (Din’ Dout) (Din’ Dout) ’ (5.7)

Remembering that the amplitude corresponding to (D;n, Déut) is built

from a sum over all intermediate channels, one sees here how
zero-entropy connected sums relate to products ;f matrices. Uniqueness
of zero-entropy connected sums is evidently essential to ordered
S-matrix multiplication.

The reader may5wpnder how uniqueness could fail in a single-
plug connected sum. The danger lies in a rotational symmetry of the
plugged disc that allows the residual (non-plugged) areas of the two
quantum spheres to be joined in more than one way. Channel disks
with any such symmetry are disallowed by the demand.for an ordered

S—matrix.l1
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Two additional properties of Landau connected sums ensure
"completeness" fér'the ordered Hilbert space: |

-(2) In any Landau connected sum, X = s EU, both I
and X must be zero entropy if X is zero entropy. This rule is
a special case of the gemeral entropy property.

(3) Any single-plug connected sum of zero-entropy surface pairs
has itself zero entropy  if the identified channel disks correspond
to "in" and "out" wversions of the same vector in the ordered Hilbert
space.

Cluster decomposition of the ordered S matrix8 relates to the
notion of quantum~sphere~fis§ionl Suppose that a zero entropy
sphere is divided into ingoing and outgoing hemispheres, as described
above. Suppose further that some ingoing subchannel is adjacent to
an outgoing subchannel with the perimeters completely matching.
This means that the eﬁtire perimeters of these subchannel discs match,
not only those portions which necessarily match already on EQ'
Under such conditions it is pdssible to fold onto each other the
remaining portions of the matching perimeters and thereby to split
the zero-entropy sphere (together with the corresponding EC) into two
2erofentropy spheres (each with its EC). When fission is thus possible
the ordered S-matrix element contains two terms--one corresponding to
a single connected part and the other to a product of two connected
parts. If further fission is possible; there will be further products.

The fission process is easily confused with the process of
géﬁtréctigi;eto be discussed next. The difference is that, under

contraction, portions of particle discs disappear while under

fission entire particle disks become discomnnected from the rest.
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Fission describes the physicai indistinguishability from forward scat-
tering of no scattering and more generally provides a sense in which an
ingoing-outgoing channel pair can be smoothly removed from (1,«)

without disturbing the remaining particle areas. Contraction

“instead describes the connection of the single-particle concept to

‘that of the multiparticle bound state and will distinguish strong

interactions from electromagnetic and weak interactions. Contraction,

[2]

a notion introduced by Harari and Rosner, . is the topological
kéy to the bootstrap and to quark confinement.

The singlevparticle disk belonging to a multiparticle channel
bound state is achieved by eliminating within the channel disk certain
internal areas that do not touch the disk boundary. We require that
such contraction of any~channé1 disk belonging to a given sector of

the ordered Hilbert space should lead to the same particle disk;

every- channel disk is uniquely contractible to a particle disk deter-

mined completely by the sector perimeter.

Section VI will give a complete and precise definition of what we
mean by contraction, including surface attachments, but let us here
present a‘preliminary picture. If on a quantum sphere we see two
belt-intersected oppositely-oriented adjacent patches with matching
perimeters, the portions [a, b, ¢l of which are already joined
together on EQ as>in Fig, 14(a), then we can remove this "mated" .

pair of patches from X without disturbing the relationship

CQ
of residual patches, in such a way that the only remnant on the new EQ
from these two patches is the segment [, a=a% c] shown in Fig. 14(b).

This process is like a degenerate connected sum.
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An example of the foregoing is shown by the 2-meson channel
disk of Fig. 15 contracting to the single-meson disk Of'Eig; 16,
four triangular patches here being reduced to two. The HR graph
equivalent of this example is shown in Fig. 17. It may happen, as
in a 3-meson disk, that the order of mated-patch removal is not well
defined. A general requirement on the patch pattern is that the
resulting single-particle disk be nonetheless unique.

The foregoing implies that any zero-entropy quantum sphere is
completely contractible--that successive patch-antipatch erasures
eventually leave the sphere in the form of a‘Eiopégafér~vcovered
by a single particle disk and the corresponding anti-particle disk.
That is, if we consider any- particle disk, the complement is a |
channel disk which contracts uniquely to another particle disk. Now
a éingle—particle to single-particle connected.part corresponds
physically to nothing happening and so can be nonvanishing only if
these two disks correspond to "in" and "out" versions of the same
single-particle channel in the ordered Hilbert space or, by crossing,
to particle and antiparticle. Because each quantum: patch within an
"in" particle disc must correspond to an antipatch within the "out"
particle disc, we conclude that gxgzi_patch on a zero-entropy quantum
sphere is mated to an antipatch, This topological rule of-complete
contractibility parallels tﬁe familiar algebraic representation of
invariance properties thrqugh saturation of adjacent tensor or
spinor indices; and extends in a natural wgy»the analogy between

matrix multiplication and connected-sums.
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The existence of two separate indices (r,«) attached

to components of the topological expansion implies a further

requirement on zero-entropy quantum spheres: The pattern

of patches on the quantum sphere should uniquely delineate

‘the location of particle areas. The topological index 1 then

prescribes the location of particle areas while the order index «
assigns momentum and spin values to each area; once the topology
is specified, there must be.no ambiguity about where one particle
area ends and another beéins. Section VI will show how to meet this
és well as all previously stated requirements.

Some general remarks: are now in order about the role of the
quantum surface. Our theory represents hadrons- as bounded quantum

areas (disks, at zero entropy) while reaction amplitudes are

represented by closed orieﬁtab;e surfaces covered by particle areas
whose boundaries are glued together. This idea, first expressed in
Ref. [13], offers a natural description of discrete internal (not
directly-observable) quantum numbers through topblogical attachments
along a particle-area perimeter, attachments whose orientations

must be matched by those belonging to adjoining particle areas.
Conservation of such internal quantum numbers (e.g., flavor) is.
automatic for closed orientablé surfaces. Also natural is associating
the "particle-antiparticle' distinction with the two orientations
(clockwise or anticlockwise) possible fér any quantum patcﬁ. A

final motivation for Z_. 1is that the bootstrap becomes more

Q

tractable than previously thought when formulated as a system of

internally-consistent contractions on a spherical surface.
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The quantum surface cannot stand alone as basis for the topolog-
ical expansion. The direct observables-energy-momentum and spin (also
electric charge, as will be seen later)--live on the classical surface.

C

the genus of X, can decrease in certain Landau connected sums. At

Q

the same time, as we have already observed, certain features of EC

A good notion of entropy, furthermore, requires X ; it turns out that

that appear;arbitrary in.the gbsence of EQ vwill become“aetermined
in a consistent ;ﬁrfacéégﬁir zero-entropy bootstrap.

We close these general remarks with an observation whose signif-
icance is obscure but which nevertheless may help the reader to follow
the developments of Secs, VI and VII, At zero entropy it turns .
out thét the complete topology of 'Zh may- be iﬁferréd from
Zb and the attachments thereto while the converse is almost but
not quite true. (The exception relates to flavor,) Such-redundancy,

which does not persist in higher orders of the topological expansion,

means that the bootstrap problem can be focussed on the quantum surface.
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VI. SPHERICAL BOOTSTRAP: LUNAR INSERTION, QUARK CONFINEMENT,
BARYON NUMBER AND TRIALITY

This sectioq describes a patch péttern for zéro—entropy
quantum spheres that is consistent with the requirements of Sec.

V as well as with the zéro-entropleIassical surface of Sec. IV.
We shall not establish uniqueness of the pattern but are aware

of ;o satisfactory alternative; many other forms have been considered,*
but all have proved deficient. Fulfillment of the bootstrap brogram
requires a uniqueness demonstration, but at the same time there
must‘also be established the existence of an analytic ordered

S matrix acting in a Hilbert space of channel disks. The latter
question, which involves the Riemann'complex—mémentum surface
corresponding to planar Landaﬁ discontinuity formulas, will not

be addressed in the present paper. -

The pattern to- be described--the sole survivor of an extended
seanch—-mﬁkes successful contact with a variety of established
experimental facts and is not known to conflict with any. It will
take further work to confirm that this pattern in fact constitutes
a complete and correct basis for strong interactions} but optimism
is warranted.

Forgetting for the time being about the classical surface, let
us consider a triangulation pattern for quantum spheres. That is,
our decomposition of 2. into patéhes is to be the kind of

Q

triangulation familiar in the topology of surfaces (or manifolds).

* An example of an earlier proposal may be found in Ref. 13.

k2
o
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This fact will be connected below with triality (3 "colors"). Our

triangulation, to be called the lunar insertion pattern, was

introduced in a dual form in Ref. 11.

Let the quantum sphere be divided into two triangular patches
of opposite orientation aé in Fig. 18(a). Next split any of the
three edges into a "lune" as in Fig. 18(b) and then divide this lune
itself into two oppositely-oriented patches as in Fig. 18(c). Such
a process can be continued indefinitely and the following features
are notable:

1) Triangles occur in "mated" pairs of opposite orientation.
A pair of mates is uniquely identifiable by the fact that the
corresponding triangles have all three vertices in common (though
the two might have no edges in common).

2) Each creation process of a matea triangle pair is the
inverse of a contraction, as described in Sec. V. Complete
contractibility of the quantum sphere is thus assured,

3) There occur trivial verticesivwith only two incident
edges-—each trivial vertex being shared by an immediately-
adjaceﬁt pair of mated patches in position to be contracted.

4) Each patch is adjacent to patches of opposite orientation,
so our process naturally creates a patchwise-oriented sphere
(Appendix C).

5) All trivial vertices iie on the perimeters of particle
disks because ény particle disk, being maximally contracted,
cannot include both members of a mated pair that share a triQial

vertex.
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The list can be continued; for example it is easy to show that
both members of a mated patch pair, whethgr or not they share a
trivial vertex, never occur within the same particle disk. But the
above features suffice for the immediate needs.:

We proceed next to specify the defining characteristics of a zero-

entropy topological index T = (ZQ’ EC) and to show how these
characteristics accommodate the general requirements of Sec. V. The
reader should realize that our prescription for zero entropy is not
achieved by freezing entropy indices to zero but rather is a direct post-
ulate. Any nonzero-entropy strong-interaction t is to be achieved from
ze?o entropy by repeated connected sumé. It must of course turn out that
consistent entropy indices all vanish at our directly-defined entropy
zero (and only at entropy zero), but the bootstrap's ngnlinearity
obliges us to start by guessing the structure of the ordered Hilbert
space and only later to verify the cénsistency of this structure.

We have in Sec. V‘specified the characteristics of a zero-entropy
classicdl surface .EC. A zero~entropy Zb will be a topological
sphere, triangulated according to a lunar insertion pattern (hence
patchwise oriented), housing the belt BEC, and further such that

A) EQ houses the planar thickened belt, as defined in Sec. V.

B) There are two kinds of triangles: core triangles with no

trivial vertex that meet the belt as in Fig. lé(a) at the end of a

junction line, and ﬁeripheral triangles with (exactly) one trivial
vertex that meet the belt as in Fig. 19(b). A peripheral triangle
thus intersects a single sheet of EC while a core triangle intersects

3 sheets.
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C) The belt's particle pieces are delineated by the trivial
vertices of peripheral triangles, as in the example of Fig. 20
which corresponds to Fig. 10. The belt crosses particle boundaries
always at a trivial vertex. At the same time the trivial vertices
prgvi@g unique delineation of the particle discs on EQ. Figure 21
prévides an example correqunding to Figs. 10 and 20. The heavy
lines are particle boundaries and the dotted lines are the belt.
Notice how»the heavy boundary lines always separate mated pairs of
peripheral triangles and how all vertices (trivial and noﬁtrivial)
appear on thgse boundaries. As réquired in Sec. V the delineated
_ single~particle disks in Fig. 21 admit no internal contractioms.
Note also that all multiparticle channel disks in Fig. 21 do admit
contraction--to one of the forms exhibited in Fig. 13. Recall thé
requireﬁent of Sec. V that all-sectors of the ordered Hilbert space
contain single-particle channels; any multiparticle channel disk
must contract to a single-particle disk, and the contractions must
not remove any of the peripheral triamngles building the channel-
disk perimeter.

We are now in position .to enumerate the possible elementary
hadron disks on EQ' A single triangle is excluded because a
2-particle channel disk-with such a constituent would not admit a
perimeter-preserving contraction. Anticipating the association

(immediately below) of "

quark" with peripheral triangle, we have here
an explanation of quark confinement. Lobsely speaking our explanation
amounts to saying that a quark-particle would be incapable of sub-

merging its identity within a bound state; such identity loss, as

represented by contraction, constitutes the distinguishing feature
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of strong interactions.

In a separate paper on electromagnetism14 it is shown that»single—
triangle disks can be associated with charged leptons and introduced
togethef with photons at a complexity level above that of .zero entropy.
Leptons and photons, once introduced, never lose tépological identity--
in contrast to hadrons which do so readily in zero-entropy contractions.

The hadron disks of Fig. 13, built from a total of 2, 4 or 6
triangles and containing, respéctively, 2, 3 or 4 peripheral triangles,

are individually uncontractible and, if combined into multihadron

‘channel disks, the larger areas are uniquely contractible back to

one of these four basic forms. A reason for not including elementary-

hadron disks with more than 2 core triangles will emerge in.Sec. VIII in
connection with thickened Landau graphs and topological-color. Inclusion
of the disk form labeled "baryonium' in Fig. 13 reflects the original

Rosner consideration:2 Once core triangles are admitted, there is no
way to exclude from the ordered Hilbert space channel disks with
two unmated core triangles. This fact will become clearer in
Sec. VIII when we consider thickened Landau graphs.

For each particle disk there is an additively-conserved quantity:
the number of anticlockwise core triangles minus the clockwise number.
For "out" disks (positive energy, see Appendix D) we identify this

n

quantity with baryon number B; for "in" disks (negative energy) the.

identification is with -B. Baryon number is conserved for all terms
of. the topological expansion-- B summing to zero over any z .

Q

Also conserved is the number of clockwise minus anticlockwise
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peripheral triangles, but this latter number invariably is equal

to 3B, so.there is a single conservation law.* Figure 22 exhibits

the foregoing considerations for baryon and antibaryon disks.
Compérison of Fig. 13 with orthodox quark models suggests the

term "topological quark" as a synonym for peripheral triangle.

The factor 3 between baryon number and quark number has been
vdeséribed as "triality" and we also shall employ this term. We have
achieved triality and the related 3-feathered structure of Z. by
triangulating the quantum surface. Was the choice of triangle

as quantum building unit unavoidable?

Suppose that X had been divided into squares rather than

Q
triangles. The lunar insertion pattern and the notion of trivial
vertices would still make sense. However a 'core square" would be
belted as in Fig..23(a), which would require an adjacent peripheral
square to be belted as in Fig. 23(b). Junction lines then would

énd on peripheral patches as well as on core patches, and on . EC

there would be a 3-feathered structure simultaneously with a 4-feathered
structure. Such a pattern invites a host of unwanted complications

and difficulties absent for triangulation. The trianguiar patch is

the natural a priori choice and its use meshes smoothly with

bootstrap requirements.

. . 4 .
Extension to electromagnetlsm1 relaxes the factor -3 relation
and there appears a new additively-conserved quantity, physically

identified with lepton number.
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VII. FLAVOR AND ELECTRIC CHARGE

The notion of a topological Hilbert space of channel disks,
whose (unbalanced) internal quantum numbers reside along their
perimeters, suggests orienting the edges of channel-disk perimeters.
This we propose to do. These orientations, which remain unaffected
by perimeter-preserving contractions that carry multiparticle disks
into single-particle disks, are to be matched when channel disks
are fitted together to cover EQ' Since mated peripﬁeral—triangle
(quark) pairs are always placed against each other so as to identify
edges incident on the belt-intersected trivial vertex, the orien-
tations of these two edges combine to define a 4-valued quark
attribute which we call edge flavor.

Figure 24 shows the four edge flavors and the corresponding
antiflavors with which each must be matched. Notice that the
third edge of a quark triangle--the bélt—intersected edge which
never lieé on a particle-disk perimeter--has not been oriented.*
Core triangles, whose edges may lie along such nonoriented peripheral-
triéngle edges, correspondingly @o not carry edge flavor. Defining
9 to be the number of clockwise quarks with edge flavor f minus
the anticlockwise number, it follows that df is conserved.

In the separate paperson electromagnetism14 it is proposed that

electric charge be carried by oriented arcs on EC’ the end of

. . 5 . .
In an earlier version of our theory,” before introduction of
charge arcs, it was proposed to associate orientation of the

belt-intersected edge with charge doubling of quarks.
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(exactly) one charge arc being perpendicularly attached to each
triangle on the quantum surface. Each charge arc, 1iké an HR
arc, lies in Zé with its ends on the boundary, byt HR arcs
only couple mated peripherél triangles (quarks). Every triangular
patch on Zb ﬁas an attached charge arc.*

‘ A pefipheral friangle (quark) may be described as 'charged”
if 'ﬁﬁ Qrientation agrees with charge orientation and "neutral"
if otherwise;14 Defining q. as the number of clockwise charged
quarks minus the anticlockwise number, with a corresponding definition
of 1, for neutral qﬁarks, it follows ;hatA 9. and q, are
-separately conserved. For each value £ of quark edge fiavor,
the quark may be either charged or neutral, and thebordina;ily-
defined quark flavor combines the 2-valued charged-neutral option
with the 4—va1ue& f. Hence our theory has a total of 8 conserved
quark flavors--4 charge doublets.

Reference 14 shows how the combination of charges attached
to peripheral-triangles (quarks) and to core triangles explains
the experimentally-observed hadron electric charges. Core

triangles turn out always to be charged (never neutral) for a

<

* 14 .
For electromagnetic interactions certain "active' charge arcs

will connect a triangle on one X, component with a triangle on a

Q
different component. The mate of the first triangle is simultane-
ously charge connected to the mate of the second. Readers unfamiliar
with the contents of Ref. 14 are urged to read at least the shorte#

of the two electromagnetic papers before proceeding further in the

present paper.

52

reason discussed below in Sec. VIII. Orthodox quark models--with

" no counterpart of core triangles--achieve the same total hadron

charges as topological ‘theory by assigning fractional charge to

" quarks.

Our topological representation of sﬁin, flﬁvor and electric
charge accords with the principle enunciated in éec. V that .
(unbélanced) channel-disk quantum numbers all reside on the disk
perimeter. By specifying the peripheral-triangle (quark) sequence
that builds a channel-disk periﬁeter, the ordered Hilbért—space
sector ‘is completely determined. There is no need to say anything

about interior triangles, even core triangles whose mates lie in

-other channel disks. Core triangles carry neither spin nor edge

flavor and, although electrically charged, their charge always
may be inferred from quark orientations. The feature that core
triangles remain "hidden" witﬁin strong interactions* is shown
explicitly in the next section by the thickened Landau graph

embellished with quark lines, which is shown in Appendix B to convey

the entire content of Z. as well as that of EC'

Q

Core triangles are physically revealed by electromagnetism.14
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- VIII. THICKENED LANDAU GRAPHS AND TOPQLOGICAL COLOR
A feature of classical DTU is a copnection between the
Riemann surface for the complex—momen;um variables of a topological
connected part and a thickening, th(L), of the associated Landau
graph L. The connection, discussed at length in Ref. 3, is not

completely understood, but the dependence of momentum singularities

on the cyclic order of Landau arcs in th(L) is central to classical-

DTU dynamics.*

We shall not here consider the Riemann surface but, in the
expectation that a Landau graph thickening will prove usefully
relevant to the structure of cémplex— momentum singularities, we
describe in this section a natural definition of th(L) that goes
-with any topology <t = (EQ’ ZC).

The reader may be puzzled to find in Ref. 3 no use of the
term "thickened Landau graph." The reason is that in classical
DTU tﬁere is essentially no difference between th(L) and the
si?glé—sheeted 2 The thickening can be héused in ZC and it is ,
natural to locate HR arcs along the boundary of th(L) with HR
orientation agreeing with that of th(L), Adding caps to the endsof"
HR arcs completes the boundary of th(L). At zero entropy where the
Landau-graph is a tree, the only difference between EC and th(L)
is a collection of di;ks along the boundary of EC' These disks

remain uninteresting in connected sums because of the contraction

rule that always eliminates closed HR 1loops. Higher components

* .
For example, the order dependence of singularities has led to the

inference that Regge branch points are absent from planar connected

parts and that planar Regge poles are 'exchange degenérate."3

54

of the topological expansion in classical DTU thus perpetuate the
essential.equivalence of ZC to th(l).

With a multisheeted EC the notion of th(L) must be
reexamined. Let us start with zero entropy where L is confined
to a single sheet. If there are no junction lines, the situation
is as in classical DTU, with  th(L) embedded in EC and with HR
arcs bounding and orienting th(L). With one or more junction lines
tﬁe only difference is that a core charge arc, rather than an HR
aré, runs parallel to each portién of sheet boundary built from a
junction line. We aré here implicitly assuming tﬁat zero-entropy core

charge arcs lie on the main sheet of 20.14

Thus the boundary of
th(L) is now composed of HR arcs and core charge arcs; the
orientation of the latter agrees with the HR orientation of the
sheet; (Hence core triangles always carry electric cha;ge.)’

By examining in more detgil the zero-entropy pattern one
discovers the boundéry'of a thickened meson arc to be always
two HR afcs, as in classical DTU, but the boundary of a thickened
baryon arc is one. HR arc ‘and one core-charge arc. The boundary of a
tﬁickened baryonium Landau arc ié two core charge arcs. Figure 25
shows the thickened Landau graph for the example of Figs. 10, 20
and 21. The reader should notice that the core charge arc is playing
the role of an "antidiquark-line", a notion that will continue
to be valid as we‘proceed beyond zero entropy;

When a connected sum is made of two zero-entropy surface pairs,

z=3" ¢ 2", we postulate an accompanying connected sum of thickened

Landau grapﬂé:

th(L) = th(L') # th(") 8.1)
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where corresponding end caps are joined so as to maintain a single
coherent orientation. This rule meéans that ﬁR and core charge arcs
connect smoothly. In repeated connected sums the continuity rule
- allows a coherently oriented th(L) to be associated with_the most
genééal surfacekpair T.

If 1 coﬁtains glitches, so that L does not reside entirely on
a single shee; of EC’ it is not.poésible‘to house th(L) in ZC' (At
a glitch on Ecra core~charge afc crosses a baryon arc.) ‘The content
of T is nevertheless not being expanded;.each surfacé pair £ as
previousiy defined implies a unique th(L).* Each sheet of EC that
vcérrie; a piecé of L, say Li’ hoﬁses a corresponding thickened graph
:tﬁ(Li) (which ﬁeed not be connected). If the various th(Li) are
coherently sewn together at baryon end caps associated with glitches

" . one constructs th(L):

th(l) = th(Ll) # th(LZ) oo

It is possible through embellishments of a thickened Landau
graph to convey the full topological "history" of a surface pair.

Firstly, by including patch boundaries transverse to the Landau arcs,

as explained in Subsection 6 of Appendix B [Fig. 45(a)l,the patch structure

of EC can be represented. Further, along a baryon or a baryonium
Landau arc there may occur a "switch"—~cofresponding to a plug
involving a quark permutétion, as discussed in detail in Appendix B.
Thé term "switch" is suggested by the "railroad-like" structure of

quark lines on th(l).

The converse is also true, as shown at the end of Appendix B.

\
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- . Suppose the HR orientation of th(L) is clockwise, so a thickened

baryon arc always appears as in Fig. 25, but we choose to represent a

core-charge arc by a quark-line pair running the opposite way. A

baryon now appears as in Fig. 26(a). The configuration of Fig. 26(b)
does not occur; this would correspond to anticlockwise HR orientation.
Figure 27 shows how association is possible.between each of the 3
quark lines in Fig. 26(a) and a particular triangle in a baryon disk.

As discussed in Sec. IX and Appendix B, a baryon plug.corresponds to

-one of 6 different permutations of the 3 quarks. Designating by p

a permutation of the two quarks within the diquark ("diquark twist')
and by p, 2 clockwise cyclic permutation, the six different baryon

plugs correspond to the elements of a permutation group:
2 2
1 8.2
» Ps Pys» Py PPy, PP ) . (8.2)

remembering that p? =p = 1 and that PP = ppi. Each element except

Py

the identity permutation we characterize as a "switch" and represent

.as in Fig. 28. Glitches are recognizable on th(L) as a quark line

crossing a Landau arc. It then becomes possible to attach spin-flavor
indices to quark lines on th(L).

Noticé that quaik lines on th(L) do not correspond in a simple
way to HR arcs on 2%, which never cross eitﬁer’eagh other or Landau
arcs  (Appendix B, SubsectionQD. A device is here being invoked to
keep track within a bonafide 2-dimensional surface of the structure
in a multisheeted (sinéular) 2%. For example, as shown in Appendix B,

a connected sum of two zero-entropy X's through a baryon plug
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corresponding to the permutation p ("diquark twist™), leads to a
~ .

toroidal EQ while the new ZC has'genus 1. This content for 1 = (£ ’EC)

Q
is unambiguously implied by the p switch of Fig. 28 on th(L).

Baryonium plugs do not include glitches and are confined to the

four possibilities
1, p, Ea PS (8.3)

where p means interchange of the two aﬁtiquarks within an antidiquark.
The Fig. 29 representation of baryénium switches on th(L) is self
explanatory. ‘

The coupling between baryonium and mesons provides an iﬁteresting

example of th(L). The transition

baryonium » N mesons (8.4)
is forbiddeg at zero entropy, but the separate transitions

baryonium - baryon + antibaryon ' (8.5)

baryon + antibaryon * N mesons (8.6)
are allowed. There are then higher-order topologies for Eq. (8.4)
corresponding to connected sums with baryon-antibaryon plugs of the
zero-entropy surface pairs for Egs. (8.5) and (8.6). The thickened

2-vertex Landau-graph connected sum is shown in Fig. 30 for 2
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final mesons. The result is a cylinder with the baryonium on one
boundary and the twobmesons on the other. Without switches the ~
baryonium here must have vacuum quantum numbers because the 4 bary-
onium quark lines connect to themselves; with switches but only 2
vertices the baryonium.quantum numbers must be the same as that of a
meson ("nonexotic™). With 3 or more vertices and intervening
switches, any baryoni;ﬁ quantum numbers can couple to 2\mesons.

With or without switches the cylindrical character of th(L) suggests
a structure of the Riemann surface here similar to that for 0ZI-
forbidden meson decays such as ¢ +1m? It is therefore plausible that
the dynamical mechanism inhibiting baryonium coupling to mesons is

similar to that responsible for the 0ZI flavor selection rule, which

“has been extensi&ely explored in classical DTU.3

Embellishment of th(L) with quark lines allows recognition of
a 3-fold conserved "topological color". That is, as seen in Fig. 27,
each quark linme in the neighborhood of a Landau vertex carries a
"color number", 1, 2 or 3. The "color" can change in a switch, as
seen in Fig. 28, but the total number of quark lines with a-given
"color" remains constant. Elementary mesons carry only color #1
while elementary baryoniums carry only colors #2 and #3. One way
to think about the inhibition against baryonium-meson transitions

is in terms of topological color.
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IX. ELEMENTARY HADRON QUANTUM NUMBERS

Seétion IIT has discussed elementary-meson spins and parity, which
remain unaltered by quantum-surface considerations and the associated
cl;ssical-surface feathering. The meson charge-flavor spectrum implied
bb;.za‘at zero entropyvcoinci&es with .that of orthodox quark-model ground
states (orthodox models leave arbitrary the number of different charge
doublets.) In the present sectiog we show the same statement to be

true for baryons and baryoniums although it is less immediaté because

of the order index k in the topological expansion. There is only one
possible order for the two triangles in a single-meson disk, but

several orders are possible for the triangles in .a baryon or a baryonium
digk; the present section discusses the intefaction between order and
spin-charge-flavor. We shall not discuss intrinsic parity and merely
recall the result of'StapéA that ortho-para suﬁerpoéition ugiformly
leads fo "standard" intrinsic parities fér all elementary hadroms.

Let us begin consideration of order with baryonium where there
is no glitching complication. Single-baryonium disks in the
ordered Hilbert épace have a definite cyclic order for the four
peripheral triangles--two quarks and'two antiquarks. Combining
electric ¢charge, edge flavor and spin into a single index for each
peripheral triangle, a baryonium disk is shown in Fig. 31. Here
‘the clockwise peripheral triangles (e.g. outgoing quarks) carry
indices i, j while the anticlockwise peripheral trianéles (outgoing

antiquarks) carry indices k, 1. Each cyclic ofdering is a distinct
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channel in the ordered Hilbert space, but within the topological
expansion [Eq. (2.1)] one sums over all possible orders «. Although an
elementary baryonium is characterized entirely by a pair of quark
indices and a pair of antiquark indices, for each elementary baryonium
there are 4 distinct ordered ‘6-triangle disks. Physical significance
is lacking for permutations of, the two quarks within the diquark or of
the two antiquarks within the antidiquark.

Appendix B describes a connected sum where the two identified
particle areas differ by a permutation of two quarks. A glance at
Fig. 31 shows this connected sum not to be a simple plug, as dis-
cussed already in Sec. VIII. But for the purposes here only two
points need be drawn from Appendix B:

a) A Landau connected sﬁm is well-defined (unique) when the
identified particle areas differ by a permutation of two
quarks.*

b) Entropy increases in such a connected sum. -

Taken togethgr these two facts allow consistency betweenpsingle—

baryonium channels of the ordered Hilbert space and single-baryonium
channels of the smaller Hilbert space invwhicﬁ the topological

expansion is defined. Summation over Kk in‘Eq. (2.1) includes a sum

over quark (and ‘antiquark) permutations within particle disks. For

each baryonium disk there are four different triangle arrangements.

* j )
- ‘When two quarks carrying the same charge-spin-flavor appear within
a single-particle disk, plugs are to be made with and without

permutation, just as for nonidentical quarks.
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Permutation summation produces the same effect on the elementary
baryonium spe;trum as achieved for ground states of orthodox quark
models by assigning 3 colors to quarks, requiring Fermi sgatistics,
and assigning diquarks to antisymmetric color triplets. ‘The net
result for .orthodox models is to require symmetry»under simultaneous
interchange of spin-charge-flavor. Such symmetry is an automatic
consequence of permutation summation within the topological expansion.

Baryon disks also admit quark permutations, but now there are 6
distinct possibilities. Here we must pay attention to the location
on the disk of the.baryon Landau-arc's end. For meson and baryonium
disks the Landau arcs end in the disk "center", but as shown earlier
in Figs. 9 and 27.the position of the baryon Landau arc breaks a
triangular symmetry; béfore assignment of spin-charge-flavor, the
three quark positions in a baryon disk are already distinggishable.
With regard to the "quark-diquark" terminology of Sec. VIII, the
peripheral triangle touched by the baryon Landau arc is "the quark"
while the untouched pair of peripheral triangles constitute "the
diquark." Permutation summation within the topological expansion

means that an elementary baryon corresponds to a superposition
1+ v+ + 2, + pp2 (9.1)
P+ P, TP, TPP,TPP, . .

which is symmetric under all quark permutations. At the same time
the topology of an individual baryon plug depends on the permutation
relating the two identified 4-triangle areas; and only the plug

corresponding to the identity permutation fails to increase entropy.
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Thus we may consistently associate individual 4—trién§le diské with
single-baryon channels of the ordered Hilbert space while at the
same time summing over all six quark permutations in the topological
expansion. -

For reasons similar to those for baryonium, our elementary baryon
spectrum coincides in spin—Eharge—flavor content with the ground
states of offhodox quark models. The orthodox approach assigns all
physical particles to color singlets, which for baryons means a 3-
quark config;ration totally antisymmetric in color. Fermi statistics
then imply symmetry in spin;charge—flavor; in agreement with Eq. (9.1).
The upshot then is that our elementary hadrons have all the same
quantum numbers as the 2, 3 and 4-quark g;ound states of naive quark

models.
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X. TOPOLOGICAL SUPERSYMMETRY AT ZERO ENTROPY

The structure of thebdiscoﬁtinuity férmulas that con;ecﬁ (and
hopefully determine) zéro;entropy amplituées'does nof ;hangé wﬁeﬁ
applied to differing numbers‘of quark lines-- 2, 3; or A—Lembellishing
.a thickened Lan&au arc. The Stapp rule (Appendix D) allows zero-
entropy quark-spin dependence to be represented (like electric charge)
by a 2—va1ued‘ponéerved index on each quark line. This-dependence
factors completely from the momentum dependence, which may consequently
be associated at zero-entropy with thebunembellished Landau graph.

The bootstrap problgm is thereby v;stly simplified--béing reduced to
the planar discontinuities of spinless, flavorless connected parts.
'ﬁlementary mesons, baryoné and baryoniums.all share a single mass.*
Their M functions (Appendix D) differ only by trivial Kronecker delta-
fuﬂction factors in spin and flavor indices. Following Ref. 15 where the
concept was first emphasized, we refer to this zero-entropy pattern as
"topological supersymmetry", because it places bosons and fermions into
a single supermultiplet. '

It is evident that topologies with switches (glitches and diquark
twists) will break topological supersymmetry. In fact ortho-para
transitions already do so——;oupling spin dependence to particle
momentum. Whether the observed mass differences between mesons and

baryons can ‘explained quantitatively by our theory remains unknown

At this stage of our understanding it is conceivable that the

universal zero-entropy elementary hadron mass is zero.
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at this point.*

Topological supersymmetry implies flavor symmetry, which is
experimentally observed to be badly broken with respect to masses.
Appendix D discusses a poséible coupling of flavor with spin and
"topological color'" that can break flavor symmetry when switches

occur.

It is noteworthy that the observed mass splitting between spin
0 and spin 1 mesons is as large as the observed splitting

between mesons and baryons.
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XI. CONCLUSION: QCD vs. DTU

This paper has described a DTU theory of strong-
interaction quantum numbers. Omitted have been the
flavor-symmeﬁry breaking and complex-momentum Riemann-
surface considerations needed to predict hadron masses, but analytic
S-matrix develobments during two decades of general S-matrix theory
and almost one decade of classical DIU are compatible with the
topological structure described here. In the combination of
topological entropy with unitarity-analyticity we believe there
resides a complete and unique theory at least of strong interactions.
Parallel DTU work by Stapp with emphasis on Landau singularities4
is providing gupport for such optimism, as is the extension to
electromagnetim&AuMichis found to fit naturally with the framework
described here. Prospects are excellent for a further extension to
unified electroweak interactioms.

Topological bootstrap theory proposes to explain not only
hadron quark structure but quark attributes--spin, color, flavor
and electric charge; these are not arbitrary and do not always
assume the forms familiar in quantum chromodynamics (QCD). Quarks
can be said to carry one of three conserved "colors', but there
is no continuous SU3 color stmetry; topological color permutations
are discrete and gluons need not be mentioned. Nevertheless, it
turns out that tﬂe spin, parity, electric charge and flavor of
elementary hadrons in topological theory coincide with those of

ground states in orthodox quark models.
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The triangular character of Zb patching leads not only
to 3 "colors" but uniquely to 8 flavors--4 doublets each containing
one charged and one neutral quark. 'Topological quarks carry integral
electric charge, like leptons, in contrast to the fractional charges
of orthodox models, but core triangles also carry charge and the
total charges of elementary hadrons in topological theory agree
with those of their physical counterparts.14

Although core triangles possess neither spin nor flavor, they
are the unique carriers of baryon number. Elementary hadrons
contain either zero, one or two core triangles, the latter case
corresponding to baryonium which in DTU plays a more significant
role than in orthodox quark models. Although baryonium can decay
into mesons, such communication is inhibited, because of core
triangles, to a degree at least as great as that of the usual OZI
rule.3 The prediction of a famil} of baryonium states with
properties closely and predictably related to those of mesons and
baryons is a distinctivé and experimentally testable feature of DIU.

Classical DTU has found that rapid cbnvergence of the topological
éxpansion beyond the planar level is confined to the region of small
transverse momentum (pl).3 Planar amplitudes fall exponentially
in magnitude with increasing Py and are rapidly overtaken by non-
planar corrections, so to describe large p; even approximately it
is necessary to sum over components of high complexity. At the same
time, model calculations of the cylinder and related toroidal

8 . A
components (Reggeon calculus ), have shown how orthodox linear

techniques can build on planar components to yield understanding
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of phenomena where the planar approximation fails. We therefore
expect DTU in principle to describe strong interactions at both
_la;ge and small Py -

At the same time we anticipate thﬁt from the summation over
high-complexity components there will develop high—pl regularities
‘not immediately apparent at the planar level and even less visible
at zero entropy. Our expectation he;e is motivated by classical
physics. Extension of topological theory to electrbmagnétism14
has allowe@ a one-to-one identification of Feymman graphs in quantum
electrodynamicé with (noncontractible) surface pairs, the number of
photon vertices being an entropy index. A large number of photons
thus means large complexity, even at low P> and classical physics
becomes a limit of extremely high entropy.. Now classical physics
‘exhibits collective low-p| regularities such as rigid-body motion
of "real objects", that are unanticipated from first quantﬁm
principles; it is plausible that there will be analogous high-
entropy collective regularities in the high-p} dqmain of ‘strong
interactions. Such regularities may include successfullaspects of
QCD such as the parton limif associated with asymptotic freedom.
The parton idea, whicﬁ attributes momentum to "current quarks", is
hard to understand from‘the‘DTU viewpoint, which attaches discrete
quantum numbers butvnot momentum to topological quarks. In a

high-entropy limit, however, where continuous space-time begins to

acquire meaning, perhaps parton momentum will also achieve approxi- -

mate significance.
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" Because the observable space-time continuum is meaningful
only in classical phyéics (the "real world"), we suspect that
significance for the local field notion requires a domain of large
complexity; the space-time continuum may lack absolute meaning and
represent an approximate high-entropy collective regularity. The
time notion, for example, might be understandable as an average
measure of entropy growth. Support for such conjectures comes
:from the fact that quantum field Fheory has achieved useful
significaﬁce only through perturba£ive expansions around "classical"
limits. In QCD the rgiebant domain is high Py s the existence of
‘individual hadrons has not yet been explained.

Combining the foregoing considerations we are‘ied to suggest
that QCDIhas meaning only as a highfpl approximation and is i
inapplicable for physics characterized in DTU as "low éntropy";
The toleréﬁce of QCD for variation in the number of colors and

flavors we then find understandable because the bootstfap con-

straint on hadron quantum numbers arises at zero entropy. The

_ need in QCD to assign fractional charges to quarks we attribute

to a high-entropy averaging that obliterates memory of core triangles
in somewhat the same sense that bafyon,number becomes lost in
classical:ﬁhysics. Local color gauge invariance--a cornerstone of
QCD--we conjecture to have no significance near zero entropy but

‘to emerge, together with the local-field concept, near a “classical"
limit. Generally speaking, éll physicallyQuseful continous notions

we see as high-complexity "collective" approximations to an
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underlyiné discrete structure.*

To the exgent that currently-available methods for evaluating
:predictions of'QCD and DTU apply in nonoverlapping domains (high,
P and low P respectively), it is difficult to arrange an experi-
mental confrontation. If the DTU prediction of 8 flavors is’
successful, the value of topologicai theory will be established,
but QCD wouldAnot thereby be shown wrong-- only incomplete. The
apparent "glueball” prediction from QCD15 is interesting but
indecisize. There are no glueﬁalls among elementary DTU hadrons;
but combosite glueballé (analogous to deuterons) cannot be ruled out
as consequences of higher entropy. On the other side of the coin,
no QCD proof has been given that glueballs must exist. QCD is
similarly unsure about baryoniums; metastable baryoniums seem
unlikely in a theory with no counterxpart of core triangles bué,
because low Py is involved, field theéry has not made a secure
statement. Although the core triangles of DTU remain
invisible with respect to strong interactioms, it>is possible
that certain spin-sensitive electromagnetic properties of baryons
will be affected in_an experimentally-testable way, allowing a

distinction from QCD. This question is receiving attention but the

answer so far remains uncertain.

The energy-momentum continuum is a consistent adjunct of DTU
because measurement of energy-momentum is inevitably classical--

involving highly complex systems with many photons.
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It may Ee hoped that extemsion of DTU to'weak interactions will
yield certain predictions different from those of field theory.
The complexity associated with nonorientable topological objects,
so far unutilized in our theory, is crying to be recognized as
physically relevant. Because DTU couples electric charge to surface
orientation,lé the C, P topological structure of weak charged and
neutral currents may have unorthodox consequences. It also
appears that core triangles make the breaking of baryon-number

conservation more difficult than in field theory.

Added note:

Implicit in the zero-entropy topology described in this paper.
but nowhere discussed explicitly jis a feature that independently
doubles each quark: the relative order of the quark charge and
spin (HR) arcs. This order must be preserved in zero-entropy plugs,
so that charge and spin arcs do not cross on Z, but generally there
may be '"quark twists" with a corresponding increase of entropy. The
charge-spin order within a quark, like classical-patch orientation
and topological color, is a "hidden variablé"-—always summed over

before contact is made with experimentally-measureable amplitudes.
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APPENDIX A: LANDAU GRAPHS

The term Landau graph as originally introduéed in general
S-matrix theory to describe connected-part singularities1 is a
connected open graph with the following additional properties:

a) Every vertex has at least 3 incident arcs (no trivial

vertices).

b) No arc connécts a vertex to itself.

c) It is possible tb find an ordering of thewseﬁ of veftices,

vl, v2....%1, and a system of orienpations for the arcs,
such that every vertex has both incoming and outgoing arcs,
and no arcmgoe§ from a vertexﬂof higher index to one with
" lower ‘index. The ordéring and orientafion; in question are
not uniﬁue[~f

In such graphs vertices may be éssociated with causally—
connected "events", each event having'Both a past and a future.

Arcs may be given a particle interpretation; an energy—momentum
four vector may be attached to each arc;* with the conservation
1a§ that the total fiéw of energy-momentum into any vertex is

zero. Although reference is made in Property (c) to arc orien-
tation, Landau arcs are not oriented. The distinction between
ingoing and outgoing particles arisés from the sign of the particle

energy (see Appendix D) not from Landau arc orientation. Properties

Aithough‘energy-momentum depends on the Lorentz frame of reference,
each particle has abunique mass. Thus Landau arcs are labeled by

particle masses.
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(b) and (c) may be restated in combined form without reference to
orientation as:
d) No vertex is allowed where a cut can isolate a closed

subgraph (see Fig. 32).

In an ordered Landau graph ;he arcs incident on each vertex are
placed in a definite cyclic sequence. The distinction between
ordinary S-matrix theory and topological § matrix theory lies ;n the
distinction between ordinéry Landau graphs and ordered Landau graphs.
The latter admit a unique thickening--which is housed within .EC in
classical DTU, where the HR graph lies along the boundary of the
thickened Laﬁdau graph.. Section 8 has described a genergl relation
between th(L) and EC'

Ordinary (non-ordered) Landau graphs describebthe nature and
location of isolated complex—momgntum singularities of physical
S-matrix connected parts. The book by Iagolnitzer1 may. be consulted
for the detailed set of Landau singularity rules. We here state only
the most basic aspects: A single-vertex ordinary Landau graph
corresponds to an S;ﬁatrix connected part, while any multivertex
ordinary Landau graph G corresponds to a singularity of the connected
part belonging to the graph resulting from contraction of G to a
single vertex (witﬁout internal ares). For eiample, if cutting a
single arc.of a 2-vertex Landau graph disconneétsrthebéraph, then this
arc corresponds to a pole with a f;ctorized residue;rthe two factors
of the residue correspond‘to thé two single-vertex connected-part
graphs that result from the cut. The location of the pole is deter-

mined by the parficle mass attached to the cut arc.
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With ordered (thickened) Landau graphs the rules are related
to the foregoing but différent, being dictated by the topological
expansion in conjunction with Landau connected sums based on zero
“entropy. Although the graphs directly ﬁuilt by connected sum from
zero entropy will saFisfy conditions (a), (b) and (d) above, con-
.tractions may violate these conditions. Both closed loops and
trivial vertices must be admitted. What are the contraction rules?

In classical DTU, where there are neither classical patches
not switches (Sec. VIII) two kinds of contraction are allowed:

(1) Two "parallel" internal Landau arcs may be contracted to

a single arc. '"Parallel'" means that the arc pair is incident on

the same pair of verticeé in immediate sequence at both vertices
but in opposite cyclic order so that the arcs are embeddable on a
planar surface without crossing.

(2) Any internal arc connecting a pair of different vertices
may be shrunk to a point so that the two vertices become one vertex.

Although in classical DTU these rules always lead to a single
surviving vertex, certain internal arcs may survive, as in Figs. 3
and 4. The contracted graph with some minimum number of internal
loops is not generally unique (i.e., depends on the order in which
_contractions are performed), but we define as topologically equivalent
(belonging to the same 1, k) any pair of graphs related by a
"duality" transformation which slides an external arc along the
boﬁndary of the thickening of internal arcs, without crossing another
external arc. Figure 33 gives examplgs of duality—equivélent single-

" vertex Landau graphs. Fully-contracted ordered Landau graphs are
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unique up to a duality transformation. Any such graph may be
compiefely characterized by the genus and boundary structure of the
thickening of its .internal loops. For example the graph of Fig. 33(a)
has genus O and two boundary comﬁonents, with eéternal arcs
arranéed in the cyciic (clockwise) sequences ABC and IFED. The
graph of Fig. 33(b) has genus 1 and a single boundary component
with external arcs in the cyclic sequence DCBA.

It isveasy to.verify that ény momentum singularity of a zeré-
entropy connected part corresponds to a multivertex Landau graph that
can be contracted to a single vertex tree--without intérnal loops.
We'issmann8 has shown that Eq. (2.5) implies all the
ordinary Landau singularity rules for the ordered S matrix built
from zero—éntrapy connected parts.

Classical patching assigns an ortho or para status to each vertex
of an érdered (thickened) Landau graph. Two adjacent vertices may
be contracted to a single vertex only if both are ortho or both
para. If not, all arcs connecting these vertices must be kept.
Contraction now may lead to trivial vertices as shown by the example
of Fig. 34(a).

The thickened Landau graph associated with.a feathered classical
surface has an additional feature that inhibits contracfioné. Any
baryon or baryoniuﬁ arc may carry a "switch" (Sec. VIII) and switches
never disappear (Appendix B). AdjacentvLandau vertices connected by
arcs with switches may not be contracted to a single vertex, even
if both are orthb or both para, and there develops'a new source of

trivial vertices, as shown by the example of Fig. 34(b).
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APPENDIX B: CONNECTED SUMS, PLUGS, THICKENINGS

AND ENTROPY

This appendix, being relatively long, is divided into several
subsections.

1) Review of usual topological connected sums.

Alrea&y in a purely topological sense the notion of "comnected
sum" is defined‘in a variety of interrelated contexts. We shall refer

to any of these usual nbtions as‘a "topological connected sum". The
"Landau connected sum' employed in this paper generalizes the topological
connected sum in several respeéts; the additional ingrediénts-will be
introduced here one at a time as they.become needed.

The usual topological.connected sum # is defined in the four
different contexts represented in Fig. 35. Although the manifolds of
concern in this paper are all of dimension n<2, most of the statements
in this sub;ection apply to higher diménsions.

In the context I with dimension n = 2 we have two oriented, closed,

connected surfaces S One considers two disks Dl C S1 and

1 2°
D2 C 52 which one glues together so that their orientations, coming

‘and §

respectively from S1 and Sé, are mismatched. From the union S1 L_)S2 so

obtained one erases the common interiors of Dl and D2, leaving a new
closed connected surface (S1 - int Dlj\JSZ - int D2). On this surface
the orientations of Sl - int Dl and 52 - int D2 fit together into a

uhique coherent orientation and the resulting oriented surface is by

definition 5, # 32 in the context I.
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The operation is commutative and associative. Moreover one has

the following formula for the genus
g(s; #8,) =g(8)) + 8(s,) (B.1)

We édopt here the convention that the genus of a torus with h handles
is 2 h. Formula (B.l) implies that the usual 2-sphere 82 plays the
role of a unit for the operation #. This formula, which we later will

recognize as an entropy property, excludes the possibility of nontrivial

inverses for #.

Stili in the context I we make the féllowiﬁg remarks:

A) Specifying the gluing map D1 - D2 leavés no ambiguity ébout
the defined object S, # S, -

B) The operation # makes sense in an arbitrary dimension n, pro-
vided of course that one makes a connected sum of manifolds of the same
dimension.

C) In sufficiently high dimensions nontrivial inverses;may exist.

We pass now to context III (nonoriented manifolds). This‘is a’
straightforward generalization of I except that uniqueness of the
resulting éﬁject S1 # S2 (up to homeomorphism) does not immediately

follow, since thé gluing map D1 > D2 is arbitrafy. Nevertheless,

v

either of the following 2 conditions assures uniqueness.
i) One or both of the ingredient surfaces is nonorientable.
(The connected sum is then also nonorientable., The reader

is cautioned not to confuse the terms "nonoriented” and nonorientable".)
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ii) One of the two surfaces is orientable and admits a homeo- '
morphism which reverses the orientation. This requirement is always
met in_dimensions n=1, 2.

For a general closed surface with h handles and { crosscaps
we define the genus by g = 2h +% Formula (B.l) then continues to
hold.

Wé pass now to context II--the sum of two connected n-dimensional

oriented and bounded manifolds, M1 and M, The boundaries BMl and 8M2
\ .

-
are naturally oriented (the orientations being induced by the orienx
tations of M1 and MZ’ respectively) and of dimension n - 1. We shall
speak now as if n = 3, but everything works similarly in the general
case.

One takes disks DlC:BMl and D2<: BMZ' and glues them together so

that their orientations mismatch. The connected union Ml U M2 then

and M,. Denéting this

has a coherent orientation coming from Ml 5

connected sum by Ml # M2 (context II) one has -
a(Ml # M2) = oM, # aM2 (context I).

The extension to context IV is straightforward.

2) Connected sums for surface pairs.

The topological index t for our theory of strong iﬁteractions, as

well as for the extension to electromagnetism,lA consists of a
"surface pair" (EQ’ZC) with some extra structures. Here EQ is a closed

oriented surface, with some mild singularities to be described below,

and EC is a 3-feathered surface with boundary
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BZC = ECO EQ’
which we cali the belt. In thié section wé do not use the entire
structure of ¢ = CZQ, EC) but refer only £o the features that EQ is
oriented and patchwise-oriented, while each sheet Of.EC is HR-oriented
and also patchwise oriented (as explained in Sec. IV). The quantum
surface is divided into triangles which are exactly the patches of the

patchwise orientation. This means that any edge, adjacent to triangles

T', T" receives a common patch-induced edge orientation (not to be

confused with edge-flavor orientation) from T' and T".

Already at the level of the quantum surface ¥ alone, we shall

Q

need multi-plugged connected sums,- as opposeditoAthe single-plugged
connected sums considered above in Subsection (l). Precisely, we shall
perform connected sums 3

# X, where disks D! "'DiC:§F are plugged

Q' Q 1
against ﬂ',...D;.C Zb". We will always assume the following:
(1) The gluing of Di to D; mismatches the orientations (as in

Case I of Subsection (1)) so that the global orientation; of Zb, and
Eb" match to a global orientation of Zb, # Zb".
(2) Each triangle T'C Di is plugged against some triangle
T < D; of opposite orientation in such a way that patch-induced edge
orientations match. In this way Zb. # Zb" inherits a patch-orientation
from Zb, and Zb".
It may happen that D; and Dg touch, with D; and DH touching or not

(or the other way around). This possibility has several consequences:

(3) Our quantum "surfaces" may have singularities of the type

shown in Fig. 36, although nothing worse.

(4) Relations of the type (B.l) may be violated for quantum
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surfaces. Our Zb's will not generate any "entropy indices".

Just as our EQ' ft EQ" is a multiplugged generalization of the
topological connected sum I, the associated connected sum EC' # EC"

will be a multiplugged generalization of II. To achieve consistency
between classical and quantum connected sums the following further
requirements are imposed on Zb conngcted sums:

(5) An edge cut by the belt must be identified with anmother
belt-intersected edge and a vertex cut by the belt must be identified
with a belt-intersected vertex.*

With the foregoing requirements, when we perform alconnected

_sum for the full surface pair
Z%,) #‘(Zb", Z%")

By 3 = (B,

- one has disk plugs

Al | N l; Ul
Dj....D, C Eq, and Dl....DkCEQ"

which carve out l-dimensional "piece" plugs from the corresponding

belts:

v ' no_ oo
Al = DiﬂaEC,, Al = Dinaz "

With a required matching of edge-flavor orientations (described in
Sec. VII), any two particle areas whose triangles can be plugged
together by these rules represent in-out versions of the same

physical particle.

. erasing int D{ - Ai (and hence also int D
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and when Di is plugged against'D; the piece A; is plugged against A;,

with all HR orientations mismatched. After gluing Di to D; and

"

i A;) one achieves a new

surface pair

(Zges Zo0) # (EQ.., .0 = (Eq. # Ty I 4 Zoa).

Q q"

One notices that 2., # EC" naturally inherits a patch structure

Cl

from EC' and ZC" and if one denotes .the number of O-P patches by
Z) th

p( c) en

P(ZCI # ZCII) 2 max (p(ZC')’ P(Ecn)) (B.2)

To proceed further we need some additional definitions. Denote
by M the Mobius band and by T the punctured torus (T = Sl_x S1 minus
a disk). By definition é feathered EC will be called orientable if
it does not house any copy of M and nonorientable otherwise. (Each
separate sheet of EC is orientable but M might cross junction lines.)
For an orientable EC we define the genus g(EC) to be twice the

maximum number of disjoined T's which we can embed in ZC’ with possible

For a nonorientable Z

crossing of junction lines. e

consider any

family F consisting of disjoined M's and T's embedded in ZC:
F= {Ml,...., ME,Tl,...., Th}

By a straightforward generalization of a similar argument for smooth

surfaces one can change F into a similar family
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F' = {M, M,....M

2 2ht+q

Moreover when F is maximal so is F' (and conversely). By definition
the maximal 2h +¢ is the genus g(ZC)-in the nonorientable case. With

these definitions one finds

gZ ., # EC") P{g(EC.) + g(EC") (B.3)

Cl

Remarks: (a) Our notion of classical-surface genus is a straightfor-
ward generalization from the smooth case (no junction lines) well
known in classical DTU.

(b) The (possible) inequality in Eq. (B. 3) arises from the
multiplugged character of the connected sum.

We shall also consider the quantity b(ZC) = {the number of
coﬁnected components of 320}. In the smooth classical-DTU case this is

just "the number of boundaries". Now in making our multiplugged

connected sum ZC' # EC" let us think of the various plugs being made

successively, passing from a first connected object Z(1) to successive

objects Z(2),..,Z(n) = 2, # 2

ct After the first step one has

Cll‘

1]

g (D))

g(zcv) + g (E'C")

and

1]

b(5<1>)

b(EC.) + b(EG..) - 1.

Then, in passing from 2(3j) to Z(j + 1) one of the following things can

happen:
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are on different

- P . . "
a) The l-dimensional piece plugs A.j+1 and Aj+1

components of the belt 3(Z(j)) but do not both exhaust those components.
In that case g increases by 2 units and b decreases by one unit.

b) Each of the Al

and A",. constitutes an entire belt component.
j+1 i+l .

Then g increases by 2 units and b decreases by 2 units.
1] " . -

c) Aj+l and Aj+l are on the same belt component but not adjacent.
There are two subcases: (c-1) The number of M8bits bands increases.
Then g increases by one unit and b stays constant. (c-2) Otherwise
g stays constant and b increases by one unit.

1] " 1
d) If Aj+1 and Aj+l are adjacent on the same belt component and

do not exhaust it, then nothing changes so far as g and b are concerned.

T
e A,

and Aﬁ;l together exhaust a belt component. Then g stays
constant and b decreases by one unit.

We see that, except for Case (e), when b decreases there is an
increase in g by at least the same amount. Case (e) can occur exactly
when an entire belt component B‘Clazé, is identified to an entire belt

component B"C:BEé". Let us assume that there are exactly g such occur-

rences

Bl,....B:lC %, and B'l',....Bg C8on

Now for physical reasons b(zé,) >q and b(zE") >q. This is because
our classical surfaces house Landau graphs and our # are matched by
corresponding Landau connected sums of the graphs. The vertices of a
Landau graph represent time-ordered causally-connected events. It is
therefore impossible for all the arcs incident on a Landau vertex to

pass to a single neighboring vertex. (Energy-conservation also can be
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in a

invoked to preclude disappearance of an entire BEC' or QEC"

connected sum.)

So Case (e) splits into the following subcases:

e.l) ¢ > 1. .Then the total contribution of the q gluings of
B; to B; is a decrease of b by 2q and an increase of g by at least
2q-2 (assume that the first step passing to Z(1l) is replaced by these
q gluings).

e.2) q = 1. Then g does not change while the total b has
decreased by two units (to b(ZQ,) + b(EQ")-Z). Two conclusions

- may be drawn from this analysis:

®) Defining the quantity j(Z) = b(Z) + g (T there is the

property '

3(ZQ = max (3(Z ), j(EC,,)) (B.4)
Proof: This is obvious in cases a through d. 1In Case (e) one has
j(EC' # ZC") Z g'+g"+b"+ 0" -2
: .Now if q > 1,. then b' > q =2 and b" > q > 2, which implies
j(ZC,' i EC") >max (j (EC'-), j(EC"))

If g =1 then b' >2 and b" > 2, which implies
IE ) Zmax (30, 3CE )

The fact that a combination of g and b, as well as g, poésesses an

entropy property, allows control of g and b in the topological
expansion.

B;b In terﬁs of g and b only two self-reproducing situations are
allowed:

g.1) .g = 0 and b = 1, which corresponds to "planar", acharacter-
istic of zero entropy. | A

B.2) g = 0and b= 2, which corresponds to the "cylinder".
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(The fact that a cylinder cam reproduce itself does not conflict with
the fact that the cylinder may be built by connected sum from two
planar EC'S. On the‘othéf'hand,>the self-reproducibility of the‘cylin-
der is important to the topological theory of.p}.lotons14 and pomerons.3)

3) Thickenings

" The subject éf thickenings is an important and complicated topic
in topology. We shall‘here give only a sketcﬂy intuitive glimpse--
the bare minimum for our needs. For more details the reader méy
consult "A Course in Simple - Homotopy Theory" by M. M. Cohen
(Springer, 1970) or either of the following papers: "Simplicial
spaces, nuclei and m - groups" by J. H. C. Whitehead (Proc. Lond.
Math. Soc. 45, 1939, pp. 243 - 327); '"Whitehead Torsion", by
J. Milnor (Bull. A. M. S. 72, 1966, pp. 358 - 426). |

The general idea is the following. Consider séme "space" X,
such as a graph or a feathered surface. Choose some dimension
n >dim X. Is it possible to "thicken" X into an n-dimensional
smooth manifold? Or, in slightly more precise terms, is it possible
to find a smooth compact bounded n-dimensional manifold An, containing
X and collagéing on X in a nice way? The notion of "collapsing" is
definedrexplicitly in the references listed above, but we try now to
convey an intuitive feeling by examples.

I. Two-dimensional ﬁhickening of a graph. Consider the single-
vertex, 2-arc graph of Fig. 37, Thefe are exactly eight distince 2-
dimensional ways to thicken this graph, depicted in Fig. 38. The A2
thickenings are, respectively, (a) a sphere with 3 holes, (b,c) a
Mobius band with éne‘hole,'(d,f,g) a Klein bottle with one hole, (e)

a torus with one hole, and (h) a Klein bottle with two holes. Although
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in Figs. 38(Db) and 38(c) [and similafly in Figs. 38(f) and 38(g)] the spaée
A2 is the same, the thickenings are different since in one the Mvbius
band sits around y and in the other around y . In more formal terms a
thickening A is endowed with a collapsing map A : X which retracts
it on X. Two thickenings are equivalent if there is é commutative
diagram as in Fig. 39.

Generally speaking 2-dimensional fhickenings of a graph I are
completely specified by

i) some cyclical order of the edges around each vertex

ii) for each closed circuit C C T one has to specify whether,
along C, the thickening is orientable or not. The thickened Landau
graph th(L) is the particular 2-dimensional thickening of the ordered
Landau graph (Appendix A) obtained by demanding global orientability.

I1. Whenever X is already embedded in some n-manifold Mn, there
is a more or less unique wayAto thickenX inside Mn; this will be

denoted by N(X; MY and is called the "regular neighborhood of X in

"

M . In classical DTU, th(L) = N(L; EC). More generally this

statement holds for ‘each separate (smooth) sheet of EC‘ With glitches,
however, the full th(L) described in Sec. VIIT cannot be housed in

ZC. .

The following fact is important to the contraction rules of
Appendix A. If one changes X to X' inside o by an elementary move
like that of Fig. 40, then the regular neighborhoods N(X, M%) and
N(X', Mn) are homeomorphic in a more or less unique and canonical
way. Moves like that of Fig. 40 a£e cglied “"duality transformations"

in classical DTU (also in dual resonance models) and "Whitehead

moves" in topology.
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For any surface pair (Zh, Z.) the belt 3L, = I, F\Zb has a well-
defined reguiar ngighborhood N(BEC; Zb) which we call the thickened
belt énd denote by th(aEC). It is, of course, alwayg orientable. The
information contained in th(aEC) is an ordering of the belt graph
analogous to the oédering of the Landau graph (Appendix A).

I1I. The 3-dimensional thickenings of a smooth surface S are
just the line bundles E of basis S(see Appendix A of Ref, 14).

IV. The above examples show thét, in :;neral, n-dimensional
thickenings of a given X are not unique. It furthermore may happen,
for a given'dimension n > dim X{ that X.fails to admit any n-dimen-

sional thickening. Consider for example an annulus A and a M&bius

ribbon M with embedded loops T and TI'' as shown in Fig. 41.  If
]
X=1{aUM, with T glued to T 1

then X does not admit any 3-dimensional thickening.

4. Landau graph and glitches

A classical surface EC within a topological index T = (Zh, ZC)
houses a Landau graph L as well as HR arcs and charge arcs. Connected
sums of surface pairs are accompanied by sums of the Landau graphs
and also of the HR arcs and charge arcs; the ensemble of connections
is a "Landau connected sum". A variety of general features of any
"admissable" surface pair may be deduced by induction from tﬂe

requirement that any admissable T be obtainable from our a priori-

defined "zero-entropy" pairs through Landau connected sums followed

by specified contractions. The contraction rules for L are given in

Appendix A. The rules for HR arcs and junction lines, given in the
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main text, state that any closed HR loop within a single patch of EC
is_to be erased, as is any closed junction line uncut by a Landau arc
where a single-patch sphere cuts é plané equatorially (the sphere also
disappears). Each charge arc connecting peripheral triangles runs
"parallel" to the associated HR arc and obeys the same contraction

rules; each core charge arc obeys the same contraction rules as the

associated junction line. The deducible general features of any T are:

a) HR arcs touch neither charge arcs nor L nor junction lines
(HR arcs lie along the belt, joining adjacent belt segments from
different particle pigcés.)

b) The "endé" of L, 3L = L(\aEC, do not touch junction lines
(or core charge arcs).

c) Although at zero entropy L‘is entirely on one ;heet (together
with all core charge arcs), certain connected sums lead to glitches
where L crosses a junction line (Sec. IV, main text) as well as
crossing the associated core charge arc. L never touches‘the end of a
junction line (or the end of a charge arc).

d) Any sheet of EC housing a portion of L contaiﬁs at least one
Landau vertex on each connected piece of L. (Triviai Landau vertices
may ocecur) . Coptraction of L never moves a Landau vertex out of its
smooth sheet across a junction line (Appendix A).

If the total number of glitches within some EC is Y(EC), it

follows from the foregoing that

Y(EC'I #Z

em) = Y Eg) + v (Ep) _ (B.5)
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That is, a baryon plug may produce a new glitch, but glitches ohce pre-
sent cannot be removed through a contraction following any Landau con-
nected sum. Loosely speaking. a Landau graph that once enters some

sheet of ZC remains forever tied to that sheet by a Landau vertex.

5. Twisted diquark plugs

When does a baryon plug generate a glitch? An elementary-
particle disk not only houses an end of a Landau graph, but electric
charge and edge flavor afe attached to the quark triangles. Suppose
that an intermediate baryon contains 3 different flavors, say u,d,s.

As explained in Sec. VIII of the main text, there are 6 different plugs
to consider--corresponding to the sig_permutations of the 3 flavors as
shown in Fig. 42. Only the identity permutation fails to increase
entropy. The other five permutations are characterized as "switches"

in Sec. VIII. Cyclic permutations lead to glitches, but apart from the
required displacement of the Landau graph, any cyclic quark permutation
allows the enfire "in" baryon disk to be "turned over" and supefposed on
the "out" bafyon disk. A plug corresponding to an odd permutation of
quarks cannot be so directly accomplished; here some quark triangles
must be plugged independently.

If the odd permutatiqn interchénges the two triangles not touched
by the Landau graph, we characterize .the plué as a "'diquark twiét" or
simpl§ as a "twist". The two other odd permutations éorrespond to a
twist together with a glitch. ' It suffices then to describe the simple
twist. Our description will also be appropriate to baryonium plugs
with one or two diquark twists (Sec. VIII main text).

Refering to the example of Fig. 42, the simpie diquark
twist corresgbnds to a permutation 0£ the u and & quarks, with

the s quark remaining in contact with the Landau graph. As a
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first step let us’plug the 2-triangle disks that contain the cére
triangle and the é quark. We arrive at an intermediate surfa;e
pair. and thence proceed to two further plugs--of "in" u quark to
Yout" u quark and "in'" d quark to "out" d qua?k. The result of these

three consecutive plugs is the same as if we had made simple plugs

to a "twisted" baryon propagator:

T=1"#1"=71"'# [twisted (Bin’ B )propagator;&] # "

B.6
diquark simple simple (3.6)

twist plug plug

out

The twisted propagator T; = (El, Eé) is as follows:
1 . : .

a) ZQ is a torus covered by the Bin’ Bout disks of Fig.42
with all six of the nontrivial vertices (marked by heavy dots)
identified. This torus is obtained from the bounded, genus-2, sur-
face of Fig.43 by crushing the entire boundary to a single point--

the just—descfibed nontrivial vertex of the Eé triangulation. Note

that Eé is the nonplanar orientable thickening of the corresponding

belt. -

B) The classical surface Zé is obtained by joining the u, d

sheets of Fig. 44(a) in such a way as to create a Mdbius band [Fig. 44(b)].

The boundary of Eé is the belt shown in Fig. 43. It follows that

g(Eé) = 1, so the diquark twist increases entropy.

6. Entropy Theory

The following list of 4 entropy indices has been identified:

g€, P& - 1, j(EC)- 1, and ¥(Z), : ’ (B.7)
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accounting, respectively, for genus, classical patches, boundary
structure and glitcﬁes. Each index has the entropy property either

in the sffong form
i # " > ik + 16
or at ieaét in the weak form
it # 1™ 2 max (iGz"), iG"))

The following claims are easy to check:

I. Consider éll "admissable” surface pairs (ZQ, EC) obtained
by connected sum from our a priori defined 'zero-entropy" pairs.
Theﬁ'any admissable (ZQ, EC) with all four indices Eq. (B.7) equal to
zero is of zero entropy; .

II. A zero-entropy surface ﬁair cannot be obtained from a
Landau connected sum of admissable surfaces pairs Ti, ™ if either
ingredient is of nonzero entropy.

ITI. Moreover, any‘splitting t=r1"# 1", where Tt is zero entropy,
implies that ' and 1" are admissable and hence zero entropy. (The
concept of ordered S matrix, introduced in Sec. V of the main text,
rests on requirements II and III.)

IV. Fixing the values of the four indices (B.7) determines an
admissable surface pair up to finitely many possible choices.

. V. Our indices are intrinsically defined, independently of

the way that 1 = (EQ, EC) has been obtained from zero entropy. The

indices are "natural''--making sense in a purely topological context.
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There is of course no claim that (B.7) is the only possible list
of entropy indices meeting requirements I -+ V. In fact Qe now proceed
to describe an alternative list of 5 indices.

The thickened Landau graph th(L) described in Sec. VIII of the
main text can be used conveniently to record the entropy history of
T(EQ, EC). or eagh 7 there is a well-defined th(L) on which we can'
record, in a natural fashion, O-P patching as in Fig. 45(a)
glitches as in Fig. 45(b) and twists as in fig. 45(c), with the under-
standing that

i) glitches; twists an& patch boundaries do not commﬁfe,

ii) neither switches (glitches or twists) mnor patch boundaries
may be slid past a Landau vertex,
iii) each Landau vertex has a definite 0-P characFer (Appendix A),
iv) a thickened Landau-arc segment between two successive Landau
vertices cérries at most one switch and at most one patch
bSundary (if both switches and patching are absent the
segment.can be contracted to a point).

The embellished thickened Landau graph (which we still denote by
th(L))comp;etely determines the surface pair (EQ, EC) and hence the set
of four entropv indices g(EC); p(EC), j(EC) = g(EC) + b(EC) and Y(ZC)-
So far as p(EC) andly(EC) are concerned, this fact is evident since the
embellishment»of';h(L)‘records 0-P patching and glitches.

How can one.reconstruct the whole (EQ, ZC) from its th(L)?
Remember that th(L) contains the contracted Landau graph L and hen;e
can be divided unambiguously into pieces each containing exactly one

Landau vertex vyt

th(1) = thly # tntd) 4 ... (8.8)

* The total number of Landau vertices satisfies the weak entropy
property. ‘
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It is understood that all the 0-P division lines, glitch and twist

markings occur at the # signs. There is furthermore a decomposition
ol 2 2 ;
(ZQ, EC) = (EQ, EC) # =, EC) # ... (8.9)

which parallels Eq. (B.8) and such that Eé contains Li. One obtains
the connected (Zé, Eé) surface pairs by taking a set of zero-entropy
surfaces that builds up tZQ, EC), performing all plugs that do not

involve O0-P transitions, glitches or twists, andtthen making all the

necessary contractions. The object th(Ll) is the thickened Landau

graph correspondiﬁg to (El, Eé) and we claim that it determines

i i f
(ZQ, EC).

Indeed Eé has only one patch, no glitches and only one Landau
vertex v, with L* living on a "main sheet". Also 28 has been built

without twiéts. So clearly
P =1, ¥ =0,8(Z) = g(eh(L), bEY = b(th(LD)).
For all practical purposes Eé is like a classical-DTU bounded smooth

surface, Topologicéllyrspeaking, this surface is the {main sheet of

Eé}, homeomorphic to {th(L), without embellishments}. This Eé can be

supplemented with a 2% built out of spheres as in classical DTU.

Once the (Z%, Z%)'s are determined, Formula (B.8) tells us
exactly how to perform the plugs_in Formula (B.9), because the
embellishments record exéctly the whole story of 0-P tramsitioms,
glitches and twists. It follows that th(L) determines (Zh, 2%).

How can one.compute directly g(zb) and b(zé) (hence j(zé)) from
th(L)? Assume for the moment that there are no twists. Z% does not

house th(L) but it contains L and retracts on L (if L is contracted).
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Hence it retracts on the possibly non-orientable smooth thickening of L

contained in EC’ which we denote th(lL). So g(Zb) = g(EE(L)). The
‘object EE(L) can be determined from the embellished th(L): one takes
L with the same ordering as'for th(L) but one makes the thickening
along a closgd circuit orientable or not according to whether the
number -of glitches along the circuit is even or odd. In the general

case with twists it is easy to show that
g(EC) = g(th(L)) + {number of twists}.

One first cuts aiong the twists, applies the special case above, and
then glues back to reStore-the twists.-

If th(L) is embellished with quark lines, b(EC) is determined in
the following way. The ends of L correspond exactly to the external
particles which fill the belt BEC according to two rules:

(1) Two (external) particles on the ends of the same quark line

belong to the same component of BEC.

(2) Quark lines attached to the same (external) particle belong

to the same component of BEC. .
These two rules allow us to divide unambiguously the 'ends of L into

boundary components of BEC.
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APPENDIX C: PATCHWISE-ORIENTED SURFACES

. A patchwise-oriented surface S is, by definition, a usual
surfdce divided into 2-dimensional regions of disjoined interiors
called "patches'", such that:
i) Each patch is oriented,
ii) Two adjacent patches have always opposite orientations so
that fhey induce the same orientation of any common edge, as
in Fig. 46.
This definition makes sense for sﬁrface; with or witpout boundary

and extends without trouble to any dimension. If S is orientable and

globally oriented the orientation of a particular)patch may agree or
may disagree with the global orientatioﬁ. When in the main text we
have described a quantum triangle orientation as "clockwise"
("anticlockwisé"), what was meant is fhat the patch orientation
agrees (disagpees) with the global orientation.

One can easily show that any surface (more generally, any
n-manifold), whether orientable or not, can be patchwise oriented
inmany ways. For example, two possible ways to patchwise orient a
triangular disk are showﬂ in Fig. 47. We have employed the scheme of

Fig. 47(a) in oﬁr theory but not‘the scheme Fig. 47(b), because of
contraction considerations. The possibility of patchwise orienting
nonorientable‘surfaces means that a significance for orientation

reversal does not require global orientability.
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APPENDIX D: TOPOLOGICAL M FUNCTIONS; Zero-Entropy Spin Dependence

and P, C, T

S-matrix connected parts in the absence of spin are analytic
functions of particle momenta, apart from isolated singularities des-~
cribed by Landau-graphical rules (Appendix A and Ref. 1. 1In the
presence of spiﬁ, Landau rules continue to have their spinless form if

understood as applying to M_functions,l’ b whose spin indices in

changes of Lorentz frame of reference transform independently of the
values of momenta. An M function is not immediately equal to an

S-matrix connected part but is related thereto by a well-defined

17

momentum-dependent spin-index tranfbrmation.l’ The advantage of

M functions is exemplified by the principles of crossing and TCP
invarjiance. Let an M function for an N-particle event be labeled

M (p,t t.), where th = (E, , p.) t
o e a0ty Pytyseeespyty)s W e?e ep, = x® Py) are energy-momentum

four vectors, the t, designate particle types (e.g., tl = proton,

k

t2 = positive pion ...), and the o, are spinor indices whose essential

property is that their behavior in a Lorentz transformation is controlled
entirely by the 6 parameters (rotation and boost) labeling the Lorent;—
group element. The crossing principle states that the complex momentum
space of a single analytic M function contains nonoverlapping physical
regions in all of which the py are real but each of which belongs to a

distinct collection of signs m = + for the E The usual convention,

K
which we adopt, is that if n = +'(-) the k'th particle is outgoing
(ingoing) with physical energy-momentum‘pk(—pk). The physical inter-

pretation of the type-indices t, and the spinor indices % obeys a

k

L}

similar rule: For example if a certain value of ty designates "proton"
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for n = + then the same value of t, means "antiproton' when

k
nk = -, 1If a certain value of oy means.sz =+ 1/2 for ni = + then
the same value of o, means s = - 1/2 for no= - An M function is

invariant if a proper complex Lorentz transformation is applied to all

and all mk. One such transformation turns out to change each Py to

Py
“Py while leaving untoucﬁed the o3 this transformation is equivalent
to the product of time reversal (T), parity (P) and particle-anti-
particle conjugation (C). Invariance under CPT is thus an automatic
property of any M function.

A topological M function 'M° (pr..,pN) lacks particle-type

Qs = oy

indices but instead carries the topological index 1 and the order index

« described in the main text. The topological expansion of an elementary
connected part now reads

TyE

(P;--,P)
Qyye o o 1 N
T(tr...;‘),K ik PN

alr-,aN(pl"tl"’pN’ tn) -
(D.1)
where by T(t1”°';N) we mean that each surface pair within the sum con-
tains N quantum discs appropriate. to the elementary particle types
tl”";N' Apart from spin degeneracy each elementary particle corres-

ponds to a distinct and different collection of oriented trianmgles,

each with an attached oriented (charge) arc and with separate (edge flavor)

'orientations for those edges building the particle-disk perimeter. The

order index .k attaches each (pk, ak) to a particular quantum disk

compatible with the particle type.
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Each elementary-particle spin index o, is actually a collection of

k
2-valued indices belonging to (0, 1/2) or (1/2, 0) spinor representations
of the Lorentz group. This idea, stemming from Stapp's original 1962
M—fuﬁctioﬁ paper,l7 was associated with HR graphs by Mandelstam in-
1970.18 HR arcs are attached to peripheral triangles
of particle disks, and. Mandelstam's scheme is equivalent to attgching
one 2-valued. spinor index to each peripheral triangle. Thus elementary
mesons carry two spinor indices, elementary baryons carry 5 spinor
indices andvelementary baryoniums carry 4 spinor indices. It is
- furthermore natural and con&enient to agree that the physicalbspin

significance.of a spinor;index‘attached to. a counterclockwise
-periﬁheral triangle is the negative-of that for an index attached to

a clockwise triangle, because counter-clockwise peripheral triangles

are always matched with clockwise both in contractions and in

Landau connected-sums. Our rule for the dependence of zero-entropy M

functions on spinor indices employs this convention.

The rule is the same as that of Stapp,4 although we express it’
differently. Any HR arc joins two mated peripheral triangles, so we
associate with each Hk arc the pair of spinor indices coming from its
triangle pair. As explained in Stapp's paper, a spin index may appear
in one of four different types: upper dotted, lower dotted, upper
undotted and lower undotted., Each type transforms in a distinct and
well-defined way under a Lorentz iransformation [Eq. (2.9) of Ref. 4].

It is purely a matter of convenience which type of index is attached

to an M function, the connection always being well defined between M
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functions wigh differént index types.* We édopt the rule that,
between the two indiqes belonging to the same HR arc, one index is
upper and one lower aécording to the sense of the patch orientation
(not. the sense of the HR arc). We shall con;isteﬁtly associate the
lower index with the "front" particle (féllowing the patch érrow;
sée Fig. 48) of the pair connected by the HR arc.

With Fhe foregoing conventions the Stapp spin dependence for zero-
entropy M functions is simply a product of Kronecker delta functions,
one for each HR arc; the momentum-dependence resides in a separate
factor. Figure 48 gives an example. Provided the conventions are
consistently followed one may then at zero entropy associate a single
spin-index value, like a flavor-index value, to each HR arc. This rule
may not be used when ortho<>para transitions occur.

What determines whether the Kronecker-delta function belonging to

. a given quark line carries dotted or undotted indices? This important

questiop we do not resolve in the present paper. Given the fact that
a quark line effectiveiy carries a flavor label and that at zero
entropy it also carries a (1,2,3) "topological color" 1abel; we can
assign to each flavor-color combination either dotted or undotted
indices in the ortho‘case, with the opposite assignment in the para
case. The Stapp spin dependence has the essential property of -
transiti&itx (self-reproducing) in zero-entropy cpnnected sums. This
property is transparent once it is established that the connection -

between M functions and S-matrix elements implies M-function

Tranformation between dotted and undotted indices depends on the

velocity of the associated particle.17
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"spin propagators" in Landau products that are of the same Kronecker-
delta form as the ortho and para zero-entropy propagators. We refer
the reader here to the Appendix of Iagolnitzer's book.1

The parity operation on spin indices changes upper to lower and
dotted to undotted, or vice vversa,l7 so that Stapp's zero-entropy
form associates the parity operation P with classical-patch
orientation inversion'(Icz)in'the following sense:

T,

™<. M

Oe + + iy

P ( Yz ™M
Py - ePy) = P"‘l" .sPao (Ppl" . ,_PPN)
N .

ICQTMK

L N D.2
al,..aN(pl’ PN) ( )

where-Ppk = (Ek, - Bk). The zero-entropy momentum dependence resides
in a separate factor which, by Lorentz invariance, can only depend on
scalar products Pipj of momenta. Since such products are automatically
" invariant under the parity ope;ation it is natural. that this scalar
factor be the same for ortho and for para. The one-to-one matching
of ortho and para zero-entropy topologies then aésures parity invariance
for strong interactioms.

The C operation of particle-antiparticle conjugation similarly
has been shown by Stapp to correspond. to simultaneous inversion of all

orientations, both quantum and classical. That is

¢ ¢

ql’. . -p,N

) = O (pp-mopy)s  (D.3)

(.PP' .. ’PN °‘1" .. 'UN

where

Ct= (I px To)T
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with

Q® r®Icp @1

Ll
1
H

£0° (D.4)

The symbols I__ and Ic refer to quantum patch and charge orientations,

HR h

respectively. (A global inversign of one of these two orientatiéns
without inverting the other is never alloﬁed because for core triangles
these orientations must agree.)‘ Thg symbol Ifg refers to quark edge
(flavor) -orientation. The C operation does not change ortho to

para but reverses the éign of all internal quantum numbers. It is
consistent and natural to postulate at zero entropy that the scalar
factor belonging Eo any (1,k) has the same value as that belonging to
(Ct,x), thereby assuring C invariance for strong interactionms.

From TCP invariance it may be inferred that

IpT .
. I L
T'&zl...a“(pl"'pN) Mul...aN(Pl"'pN)' (p.5)

Although time reversal does interchange ortho and para, an ortho » para

transition remains ortho + para and similarly for para -» ortho. It can

be shownlh that such transitions may. be interpreted as quark
coupling to right-handed or left-handed "currents". Thus, as
expected, right-handed transitioms remain ;ight—handed under time
reversal and left-handed transitions remain ;eff-handed.

The unresolved issue of how to associate dotted and undotted
spinor indices with flavor-color combinations has the pofential of
breaking the flavor symmetry inherent in zero entropy (Sec. X). This

important matter will be discussed elsewhere.
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.FIGURE CAPTIONS

Nonordered vertex corresponding to a 4-particle physical connected

part.

Planar (single-boundary) ciassical surface. for a topological

component of the physical amplitude of Figure 1.

Cylindricalr(Z—boundary) classical surface for a topological com-

ponent of the physical amplitude of Figure 1.

Toroidal (single boundary) classical sﬁfface for a topological

component of the physical amplitude of_Figufe 1.

(a) Nonordered Landau graph associated witﬁ a singularity of
the. physical amplitudé of Figurg 1.

(b) . Ordered Landau graph correspbndiﬂg to one of the topological
components of the singularity graph of Figure 5(a).

The classical surf;ce of Figure 2 with embedded HR arcs.

The contraction of two adjacent (C,D) meson pieces of clgssical—

surface Eﬁundary to a single meson piece. The C-meson piece ex-

terids from vertex #1 to vertex #3 while the D-meson piece extends

from vertex #3 to vertex #5. (All vertices are trivial,) The

_contraction forms and then erases a closed HR loop. Not shown

but easily inférred is the corresponding Landau-graph contraction
(Appendix A) which replaces two "parallel” meson arcs by a single
arc.

Intersection of three sheets of I¢ at a junction line. 1In this
example the boundary of one sheet, which happens to be interrupted
only by the single (exhibited) junction line, is shown in its
entirety. The boundaries of the other two sheets, left incomplete

in the figure, might be interrupted by further junction lines.



10.

11.

12.

13.

14,
15.
1@.
17.
18.

19.
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The oriented lines attached to the belt are HR arcs.
The four elementary-hadron belt pieces allowed by .the zero-entropy
bootstrap (see Sec. V):
(a) meson -
(b) "out" (E > 0) baryon or "in" (E < 0) antibaryon (see

Appendix D)
(c) "out" (E > O) antibaryon or "in;I (E < 0) baryon
(d) baryonium .
(a) ﬁR—orien;ed belt-graph for a (zero-entropy) 4-particle
connected part (two bafyons, one meson and’one:baryonium). Dotted
lines are HR arcs.
(b) Separation of this belt graph into particle p;eces.
Three‘types of glitches: (a) ortho (b) para (c) ortho-para tran-
sition. -
A 2-bead "twisted" belt graph belonging to a.ic of nonzero entropy.
In Appendix B it is shown that the classical surface here has only
4" sheets, rather than the 5 .associated with -the untwisted belt
of Fig. 10(a). The "disquark twist" has united the two inert sheets
of one bead.
"Elementary-particle" quantum disks corresponding to the belt
pieces of Fig. 9.
Contraction (erasure) of two adjacent matching disks on ZQ.
A 2-meson’ (A,C) channel disk.
Contraction of the Fig. 15 channel disk to a single-particle disk.
Harari-Rosner diagramof the contraction from Fig. 15 to Fig. 16.
Division of a_ZQ sphere into 4 patches by lunar insertion.

(a) Core triangle on Iq.

20.

21.
22.
23,

24,

26.

27,
28,
29.

30.

31.

32,

33.

34.
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(b) Peripheral triangle on ZQ.
Trivial vertices of' the EQ triangulation belonging to Fig. 10,
shown along the belt graph. Notice the correspondence between

ZQ trivial vertices and HR arcs on EC; either delineate the ele-
mentary particles.

The ZQ triangulation correspondings to Figs.. 10 and 20.

Patch orientations of baryon disks.

Belt patterns if ZQ were divided into squares.
The four edge flavors (and antiflavors).

Thickened Landau graph for the topology of Figs. 10, 20, and 21.

The dashed lines are core charge arcs while the dotted lines are
HR arcs.

Thickened baryon Landau arc when the core charge arc is replaced
by a pair of quark lines (antidiquark). »

(a) Clockwise HR orientation.

(b) Anti-clockwise HR orientation.

The three topological colors.

Switchés along a baryon Landau arc.

Switches along a baryonium Landau arc.

Connected sum of zero-enthropy T's that corresponds‘to meson decay
of baryonifum. Dashed lines are core charge arcs while dotted are
HR arcs.

Spin-flavyor labels attached to the quarks and antiquérks of a
baryonium disk.

Examples of forbidden and allowed ordinary Léndau graphs.,
Ekamples of equivalence between ordered Landau graphs.

Examples of contractions leading to trivial Landau vertices.



35,

36.

37.

38.

39.

40.

41.

42,

43.

44,

45,

46.

47.

48,
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Four categories of connected sums.

Singularities of the quantum surface.

A single-vertex, 2-arc graph.

The 8 distiﬁct thickenings of the graph of Fig. 37.

Commutative diagram representing equivalence of two thickenings
A and A",

Example of a "Whitehead move" or "duality transformation!.
Example of a "space” that admits no thickening: The annulus A
and Mobius band M are glued along the loops I' and I'.

The six different quark permutations that may occur in a baryon
plug.

Thickening of the belt belonging to a baryon "propagator" for a
diquark twist.

(@) 7Ip for the zero-entropy (identity-permutation) baryon
propagator corresponding to Fig. 42.

(b) Xc.for a diquark-twist baryon propagator.

A notation for recording complexity on th(L): Dashed lines

are core charge arcs, dotted lines are HR arcs.
(a) Ortho-para tfansition.

(b) Glitch

(c) Diguark twist

A patchwise-oriented disk.-

Two ways of patchwise orienting a triangular disk.

-Example of Stapp's zero-entropy spin dependence for a 3-meson

connected part. -The central arrow indicates the classical patch

orientation,
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XBL 802-204

Figure 1

XBL 802-205

 Figure 2

XBL802-206

Figure 3
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XBL 802-208

Figure 6

XBL802 -207
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Figure 8
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(out) baryon

.

A (b)

(ih) baryon

baryonium

XBL 814-723
Figure 10
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ortho para ortho para

| e | glitch

| 7‘u .................. ‘K\\ //z( e eeneeeaa
glitch junction line -

(a) . | ‘ (b)
~ortho para
(c)
XBL 814-724

Figure 11
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" Figure 12
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AN 4
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(a) (b) ‘ (c) (d)
meson baryon ~ antibaryon baryonium
quantum-patch a
d orientation A
~ Nh a,' ~
__;_ S —_—- Q_L Figure 14
- 7 —P | -4 g
classical-patch S contraction c*
oriented belt @ | (b)

XBL8I4-726
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XBL 802-217

'XBL802~-218
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XBL 802-219
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Figure 15

Figure 16

Figure 17
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(a)

. Figure 18

(b)

XBL 802-220
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trivial -~ .

vertex — . /i

end of a . |
junction line - !
" belt—" - belt — "
(a) (b)

Figure 19

trivial
vertices\

Figure. 20 XBL 814-727
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Figure 21
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E >O:"out" baryon
E\<O:"in" antibaryon

E>O:"out" antibaryon
E<O:"in" baryon

(b)

Figure 23

XBL 814-729
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XBL 814-730

Figure 24
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Figure 25

Figure 26
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Figure 27

Figure 28

Figure 29

XBL 814-73I



- XBL 814-732



126

Forbidden Allowed
DEF EF D J . . Figure 33
~ (b)
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XBL 814-735
Figure 34
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connected
closed manifolds with
manifolds  boundary

oriented

manifolds I I

_ Figure 35
manifolds without

orientation, possibly T vV

non-orientable
% % Figure 36
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Figure 37
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homeomorphism _,
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identity map — X
Figure 39
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Figure 40

Figure 41
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Even permutations Odd permutations

/Ny
S u

v glitch glitch & v
| \ twist / |

N N 3 8 o A
u d u d

—p —p

v identity twist
"in" baryon \

glitcry
glitch &
A ' twist A A
d A S d S
(\
Landau graph end u

"out" baryons “out" baryons

Figure 42 XBL 814-737
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trivial vertex

ath (belt)

| .
,‘ Landau graph end | ~ trivial vertex Landau
\\ graph end
\\' trivial vertex
\\\ /
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XBL 814 -‘738

Figure 43
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| . junction line )/ |
junction line——\ oo Figure 44
Janeton / | Landau arc S
Landau arc -
s .
(a) (b)
------- -
| (a)
R S
_______ > Figure 45
% (b)
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Figure 46

(a)

Figure 47

(b)

XBL 814-740

Q')



134

By <% o7
Sp A §,¢ 8.8
Be "% "Ny

(para)
XBL8I4-74

Figure 48
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