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BACKGROUND: Numerous epidemiological studies have documented the adverse health impact of long-term exposure to fine particulate matter
[particulate matter ≤2:5 lm in aerodynamic diameter (PM2:5)] on mortality even at relatively low levels. However, methodological challenges
remain to consider potential regulatory intervention’s complexity and provide actionable evidence on the predicted benefits of interventions. We pro-
pose the parametric g-computation as an alternative analytical approach to such challenges.

METHOD: We applied the parametric g-computation to estimate the cumulative risks of nonaccidental death under different hypothetical intervention
strategies targeting long-term exposure to PM2:5 in the Canadian Community Health Survey cohort from 2005 to 2015. On both relative and absolute
scales, we explored the benefits of hypothetical intervention strategies compared with the natural course that a) set the simulated exposure value at
each follow-up year to a threshold value if exposure was above the threshold (8:8 lg=m3, 7:04 lg=m3, 5 lg=m3, and 4 lg=m3), and b) reduced the
simulated exposure value by a percentage (5% and 10%) at each follow-up year. We used the 3-y average PM2:5 concentration with 1-y lag at the
postal code of respondents’ annual mailing addresses as their long-term exposure to PM2:5. We considered baseline and time-varying confounders,
including demographics, behavior characteristics, income level, and neighborhood socioeconomic status. We also included the R syntax for reproduci-
bility and replication.
RESULTS: All hypothetical intervention strategies explored led to lower 11-y cumulative mortality risks than the estimated value under the natural
course without intervention, with the smallest reduction of 0.20 per 1,000 participants (95% CI: 0.06, 0.34) under the threshold of 8:8 lg=m3, and the
largest reduction of 3.40 per 1,000 participants (95% CI: −0:23, 7.03) under the relative reduction of 10% per interval. The reductions in cumulative
risk, or numbers of deaths that would have been prevented if the intervention was employed instead of maintaining the status quo, increased over
time but flattened toward the end of the follow-up period. Estimates among those ≥65 years of age were greater with a similar pattern. Our estimates
were robust to different model specifications.
DISCUSSION: We found evidence that any intervention further reducing the long-term exposure to PM2:5 would reduce the cumulative mortality risk,
with greater benefits in the older population, even in a population already exposed to low levels of ambient PM2:5. The parametric g-computation
used in this study provides flexibilities in simulating real-world interventions, accommodates time-varying exposure and confounders, and estimates
adjusted survival curves with clearer interpretation and more information than a single hazard ratio, making it a valuable analytical alternative in air
pollution epidemiological research. https://doi.org/10.1289/EHP11095

Introduction
Given that collective efforts in previous decades have success-
fully reduced the level of fine particulate matter [particulate
matter ≤2:5 lm in aerodynamic diameter (PM2:5)] globally, quan-
tifying the effectiveness of policies that further reduce ambient
PM2:5 is becoming particularly important in supporting evidence-
based policymaking. Indeed, previous studies found consistent evi-
dence of deleterious associations between long-term exposure to
low levels of PM2:5 (e.g., below the current health-based standards

or guidelines) and risk of mortality1–6 and morbidity,7–9 suggest-
ing potential reductions in health burden if the PM2:5 level were to
be further reduced. Although the evaluation of exposure–response
functions in existing studies provides important information in
understanding the potential effectiveness of policies, further meth-
odological considerations are required to estimate the potential
benefits of realistic interventions.

First, evidence suggested that the risk associated with the
changes in acute exposure to PM2:5 could vary with time,10–13

potentially due to changes in chemical compositions of PM2:5,
with different toxicity and population susceptibility toward
PM2:5.14,15 A similar disparity in toxicity across long-term expo-
sure to PM2:5 components was also observed,16,17 suggesting that
such temporal changes could exist in risk associated with long-
term exposure to PM2:5. In other words, it is important to use ana-
lytical methods flexible enough to incorporate such temporal
changes in estimating related health burdens. However, existing
studies of health impacts of long-term exposure to PM2:5 gener-
ally considered time-fixed exposure and confounders (Table S1
provides a narrative review of recent studies on health impact of
long-term exposure to PM2:5 and their methodological considera-
tions). Furthermore, the most widely used estimate for exposure–
response function in this field is a single hazard ratio (HR) for the
follow-up period estimated with a standard Cox proportional haz-
ards model (Table S1), which is assumed to be constant over
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time and precludes consideration of temporal changes. Although
extension of a Cox proportional hazards model could provide
period-specific HRs that incorporate temporal changes,18 recent
developments in causal inference literature raise concern about
the ambiguity in the causal interpretation of HR and period-
specific HRs.19 Specifically, period-specific HRs have a built-in
selection bias because susceptible people exposed to higher
PM2:5 concentrations are more likely to die early if PM2:5 expo-
sure truly increases risk of mortality and they are removed from
the susceptible population in later periods.20 This differential
depletion of susceptible individuals over time can lead to artifi-
cially diminished or even reversed period-specific HR later in a
study even when the cumulative survival is still lower among
those exposed to higher PM2:5 concentrations, violating the pro-
portional assumption and hindering interpretation.21

Second, the calculation of the health burden related to long-
term exposure to PM2:5 has commonly employed an exposure–
response function previously estimated with the static intervention
strategy, where a fixed change of exposure value was assigned to
the entire population.22 However, the more flexible and realistic
dynamic intervention strategy—where the exposure value was
assigned based on individuals’ history of covariates, including ex-
posure—is hard to apply when existing exposure–response func-
tions are used.22 Methods capable of incorporating a dynamic
intervention strategy to imitate complexities in actual regulatory
interventions are needed to provide direct evidence on effective-
ness of air pollution control policies.23 Tofill this gap in knowledge
translation, we propose the parametric g-computation as an analyti-
cal alternative in air pollution epidemiological research, a method
that could better predict the effectiveness of hypothetical policies
while beingmore flexible in resembling real-world interventions.

G-computation (also known as g-formula) is a generalization of
nonparametric standardization developed under the potential out-
come framework for causal inference,24 and parametric g-computa-
tion is a variation that employs parametric modeling. Under the
consistency (i.e., the exposure is defined unambiguously, and all
exposed individuals receive the same version of treatment),22,25

exchangeability (i.e., no unmeasured confounding or informative
censoring),25 and positivity (i.e., probability of receiving every expo-
sure conditioning on confounders is greater than zero) assumptions,22

and a time-to-event outcome setting, g-computation can providemar-
ginal causal risk estimates at each follow-up time point under hypo-
thetical intervention strategies (i.e., adjusted survival curves) while
allowing other population characteristics to be altered according to
the intervention.26 Particularly, parametric g-computation excels in
estimating adjusted survival curves under dynamic intervention strat-
egies. In other words, g-computation can directly answer causal ques-
tions such as, “How many lives could we save if we promulgate a
policy that further reduces air pollution to levels lower than the cur-
rent standard among those whose exposure were above the current
standard, comparedwithmaintaining the status quo?”Although para-
metric g-computation has beenwidely applied in otherfields of epide-
miology,27–30 its application in air pollution studies remains limited.
Previous applications in this field either focused on a small cohort in
occupational settings31–33 ormodeled simple air pollution changes on
asthmatic outcomes among children (i.e., not considering time-
varying confounding or changes in effect estimates over time).34,35

In this study, we aimed to demonstrate the use of parametric
g-computation to evaluate the effectiveness of hypothetical inter-
vention strategies targeting long-term exposure to PM2:5 on
reducing mortality using a Canadian cohort experiencing low
PM2:5 exposure from 2005 to 2015. This analytical alternative
can account for previously unaddressed complexities, refine the
effect estimates with less restrictive identification conditions, and
provide estimates that are more intuitive to policy makers.

Methods

Study Population
We created a retrospective cohort with respondents to the
Canadian Community Health Survey (CCHS) from three enroll-
ing cycles in the years of 2000/2001, 2003, and 2005, respec-
tively.36–38 CCHS is a national cross-sectional survey collecting
health status, health care utilization, and health determinants in-
formation of the Canadian population, covering the population
≥12 years of age in the 10 provinces and the 3 territories. The
survey excluded individuals living on reserves and other Aboriginal
settlements, full-time members of the Canadian Forces, the institu-
tionalized population, and residents of certain remote regions.

Among CCHS respondents who gave permission to share and
link their information with other administrative data sets, we
obtained their mailing address history and death records through 31
December 2015 via Statistics Canada’s Social Data Linkage
Environment using probabilistic methods based on common
identifiers.2,39 We focused on nonaccidental death as outcome
(International Classification of Diseases Ninth Revision,40 ICD-9
codes 001–799, and International Classification of Diseases Tenth
Revision,41 ICD-10 codes A–R) in this study. To facilitate pooling
of results across cycles, we restricted the cohort to participants who
were alive on 1 January 2005 and used this date as the start of
follow-up for all cycles. We also restricted our cohort to individuals
>25 and<80 years of age in 2005, thus all cohort participants were
adults and were followed for 11 y or until death. In addition, we
dropped respondents who were missing data for covariates, includ-
ing exposure in 2005. This study was approved by the Health
Canada–PublicHealthAgency ofCanadaResearch Ethics Board.

Exposure Assessment
To estimate respondents’ long-term exposure to PM2:5, we used the
ground-level PM2:5 concentrations from V4.NA.02.MAPLE of
the Atmospheric Composition Analysis Group of Washington
University,42 which covers all ofNorthAmerica below the 70oN lat-
itude. The 0:01� ×0:01� (roughly equivalent to 1 × 1 km2 at the lati-
tudes where most Canadians live) annual estimates of PM2:5
concentrations from 2001 to 2015 were derived using satellite
retrievals of aerosol optical depth and chemical transportmodel sim-
ulations and calibrated with ground-based observations using geo-
graphically weighted regression.43 The annual estimates of PM2:5
concentrations closely agree with long-term cross-validated ground
measurements at fixed-site monitors (n=2,312) across North
America (R2 = 0:70).43 Using the ground-level PM2:5 concentration
surfaces described above, we first assigned the annual PM2:5 con-
centration of the grid cell into which the postal code centroid falls as
the postal code–specific annual PM2:5 concentrations. Then we
calculated respondents’ annual long-term exposure to PM2:5 as 3-y
average postal code–specific PM2:5 concentrations with 1-y lag
based on their mailing address history (e.g., a respondent’s long-
term exposure to PM2:5 in 2013 is the average of their postal code–
specific PM2:5 concentrations in 2010, 2011, and 2012).2 We used
the 3-y average with 1-y lag to represent long-term exposure of
PM2:5 so that the exposure always preceded the outcome and that the
timeframe was consistent with the regulatory review of Canadian
Ambient Air Quality Standards for annual PM2:5 exposure.44 This
metric of long-term exposure to PM2:5 has been widely used in pre-
vious Canada-based studies of long-term health impacts of PM2:5
exposure.2,45,46

Covariates Other than Exposure
In this section we summarize the data sources and meaning of
covariates in this study, whereas the covariate selection to control
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for in our model is discussed in the “Statistical Analysis” section.
We used covariates to describe the collection of exposure, time-
fixed confounders, and time-varying confounders in this study.
Baseline characteristics of respondents were ascertained at the
time of enrollment into CCHS via self-report and were processed
using the same method as in previous studies,2,45 including sex,
age (converted to value in 2005), body mass index (BMI), marital
status, immigrant status, visible minority, indigenous status,
smoking status, alcohol consumption, consumption of fruits and
vegetables, leisure physical activity, working status, and educa-
tional attainment (details of variable categorization are listed in
Table 1). By using 2005 as the start of the follow-up period for
all individuals, we assumed that all baseline characteristics other
than age ascertained at the time of enrollment would remain the
same through the entire follow-up period.

We also obtained characteristics of the respondents and their
neighborhoods through linkage with administrative data sets
using methods similar to those used in previous studies.2,45
Specifically, we obtained the annual income quintile of respond-
ents through linkage with tax data based on common identifiers.45
For person-years with missing annual family income, we
imputed them with the nearest prior values and the proportions
of missing were 5.21%, 4.97%, and 4.69% for cycles 2000/
2001, 2003, and 2005, respectively. We also obtained annual
characteristics of neighborhoods through linkage with census
data from the nearest census year based on respondents’ mail-
ing address postal codes, including community size at the cen-
sus metropolitan area level and the Canadian Marginalization
Index at the census dissemination-area level. The Canadian
Marginalization Index summarizes dissemination area-level socio-
economic status into four dimensions using principal component
analysis to reduce the dimensionality of census data: The immigra-
tion and visible minority index combines information on the pro-
portion of recent immigrants and proportion of people self-
identifying as a visible minority; the households and dwellings
index combines information on types and density of residential
accommodations and family structure characteristics; the material
resources index combines information on access to and attainment
of basic material needs; and the age and labor force index com-
bines information on participation in the labor force and the pro-
portion of seniors.47 Last, we obtained airshed (six distinct regions
of Canada that cut cross jurisdictional boundaries and show similar
air quality characteristics and air movement patterns within each
region) to capture large-scale spatial variation,48 and urban form
information of respondents’ neighborhoods in 2005 to capture the
urbanicity of participants’ residences, through linkage with census
data.2

Hypothetical Intervention Strategies
In this study, we explored three types of intervention strategies:
a) applying the simulated value of time-varying covariates
without any intervention (natural course), b) setting the simu-
lated long-term exposure to the PM2:5 value at each follow-up
year to a threshold value if the PM2:5 concentration was higher
than the threshold (threshold intervention), and c) reducing the
simulated PM2:5 value by a fixed percentage at each interval (i.e.,
follow-up year; relative reduction intervention). Threshold values
explored included the current Canadian Ambient Air Quality
Standards for PM2:5 of 8:8 lg=m3, 80% of the current Canadian
Ambient Air Quality Standards for PM2:5 (or 7:04lg=m3), the
new World Health Organization (WHO) air quality guideline of
5lg=m3, and a PM2:5 level that was farther below the WHO
guideline (4lg=m3). The interval-specific relative reduction values
explored were 10% and 5% per interval. To avoid extensive model
extrapolation, we restricted the relative reduction intervention so

that individuals with an exposure <1:8lg=m3, the background
PM2:5 level in Canada,49 would not be further reduced. The first
type of intervention strategy represents the predicted covariates
based on the observed data without intervening and serves as the
reference for other strategies. The second and the third are dynamic
intervention strategies that incorporate the impact of intervention
on covariates during earlier time points while simulating covariates
in later time points.

Statistical Analysis
We applied parametric g-computation with different hypothetical
intervention strategies targeting long-term exposure to PM2:5 to
understand the benefits of intervention strategies on cumulative
risk of nonaccidental death. We conducted g-computation analy-
sis for each enrollment cycle separately and pooled the results
across cycles using meta-regression. Briefly, we estimated the cu-
mulative mortality risk at each follow-up year standardized to the
distribution of the confounders and long-term exposure to PM2:5
in the study population, with all time-varying covariates (con-
founders and PM2:5) conditioned on covariates history, with and
without intervention on PM2:5 (i.e., adjusted survival curves).
Next, we calculated the differences in cumulative mortality risks
between the natural course and other intervention strategies on
both absolute and relative scales to provide estimates for the ben-
efits of hypothetical intervention strategies compared with main-
taining the status quo. We pooled results with fixed-effect meta-
regression, which calculates a weighted average of cycle-specific
estimates with weights equal to the inverse of the variance using
the “meta” package.50

The proof of parametric g-computation are described exten-
sively elsewhere,22(chap21),29 and detailed description of how to
implement such an approach in a setting similar to our study was
previously published,28 with the available R package for easy
implementation.51 However, given that the application of paramet-
ric g-computation is limited in air pollution studies, we include a
diagram (Figure 1) summarizing the four steps that carry out the
g-computation in a time-to-event setting with time-varying expo-
sure and confounders and describe the steps in detail below.

Steps to Implement Parametric g-Computation
In Step 1, we fitted a pooled logistic model (i.e., discrete-time haz-
ards model) and adjusted for baseline characteristics, time-varying
characteristics, quadratic function of year, and interaction between
long-term exposure to PM2:5 and categorical year. The pooled
logistic model estimated the probability of death during the year
conditioning on survival until the start of the year given all covari-
ates (including PM2:5), which allowed the conditional probability
of death and its association with PM2:5 to vary over the year. We
chose confounders to control for in the outcome model based on
substantive knowledge of the relationship between long-term
PM2:5 exposure and mortality as summarized in the simplified
directed acyclic graph (Figure S1). We include a full list of covari-
ates in Table 1, with specific forms of covariates listed in Table 2.
We included both individual socioeconomic status indicators (e.g.,
education and family income) and community socioeconomic sta-
tus indicators (e.g., CanadianMarginalization Index for dissemina-
tion area) to fully capture the variation in socioeconomic status
among cohort participants, which is a major source of residual con-
founding. We also included individual behavior indicators, such as
dietary and exercise patterns, which are strong risk factors for mor-
tality, precede the exposure, and might share common unmeasured
causes with the exposure even though theymight not directly cause
the exposure.52 Of note, in the setting when only time-fixed covari-
ates were used, we could estimate marginal adjusted survival
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Table 1. Descriptive statistics for participants of the Canadian Community Health Survey cohort at the start of follow-up (2005) by cycle.

Characteristics

Cycle

2000/2001 2003 2005

Cohort size (n) 62,365a 62,380a 66,835a

Nonaccidental deaths [n (%)] 6,475 (10.4) 6,525 (10.5) 6,135 (9.2)
Time-fixed covariates
Age [y (mean± SD)] 52:1± 13:4 52:1± 14:4 50:9± 14:9
Sex (%)
Female 45.2 45.9 46.2
Male 54.8 54.1 53.8

BMI [kg=m2 (%)]
Normal weight (18.5–24.9) 37.5 32.2 32.0
Overweight (25.0–29.9) 36.7 39.8 39.8
Obese 1 (30.0–34.9) 16.4 19.1 18.9
Obese 2 (≥35) 6.8 8.1 8.4
Underweight (<18:5) 2.6 0.8 0.9

Marital status (%)
Married or common-law 65.9 64.3 63.0
Separated, widowed, or divorced 19.6 20.8 20.8
Single 14.5 14.9 16.2

Immigrant status (%)
Immigrant 10.7 11.3 11.6
Time lived in Canada among immigrants [y (mean±SD)] 37:4± 13:3 36:8± 13:9 35:7± 14:1
Nonimmigrant 89.3 88.7 88.4

Visible minority status (%)
Visible minority 5.4 6.3 4.4
Not a visible minority 94.6 93.7 95.6

Indigenous status (%)
Indigenous 1.8 2.3 0b

Nonindigenous 98.2 97.7 100
Smoking status (%)
Never smoker 26.8 27.6 29.0
Occasional smoker 44.5 47.7 47.1
Smoke <10 cigarettes/d 3.8 4.3 4.2
Smoke 11–20 cigarettes/d 6.0 5.6 5.7
Smoke ≥20 cigarettes/d 10.9 9.0 8.6
Former smoker 8.0 5.8 5.4

Alcohol consumption (%)
Never drinker 4.4 4.2 4.1
Occasional drinker 13.1 13.7 13.6
Regular drinker, binging unknown 20.3 18.7 18.2
Regular, non-binge drinker 29.4 31.0 30.4
Regular, binge drinker 26.9 26.7 27.3
Former drinker 5.9 5.7 6.4

Daily consumption of fruits and vegetables (%)
<5 servings/d 64.7 59.6 29.9
5–10 servings/d 32.4 37.0 19.6
≥10 servings/d 2.9 3.4 1.6
Chose to not answerc NA NA 48.9

Employment status (%)
Employed 66.6 62.3 61.8
Not employed 2.6 2.6 2.3
Not in work force 30.8 35.1 35.9

Education (%)
No high school diploma 24.1 22.4 20.6
High school 18.9 18.0 15.4
Any postsecondary 42.0 42.5 46.1
University 15.0 17.1 17.9

Leisure time physical activity (%)
Active 21.2 24.0 23.4
Moderately active 25.4 26.4 26.7
Inactive 53.4 49.6 49.9

Urban form (%)
Active urban core 6.2 7.0 7.0
Transit-reliant suburb 3.9 4.3 4.6
Auto-reliant suburb or no data 26.5 29.4 29.3
Exurb 4.8 5.0 4.8
Non-CMA/CAd 58.6 54.3 54.3

Airshed (%)
Western 12.0 10.7 10.4
Prairie 16.0 14.9 13.5
Western Central 9.1 8.6 7.8
Southern Atlantic 17.2 14.6 17.3
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curves directly using outputs from this pooled logistic model by
predicting the probability of death standardized to the distributions
of covariates under the intervention of interest (e.g., setting the
baseline level of exposure to a specific value while keeping all
baseline covariates the same as observed for all participants).19,53

However, in our study setting of time-varying covariates and time-
to-event outcome, we also needed to model time-varying covari-
ates (including PM2:5) concentration so that we could simulate
time-varying covariates at all follow-up years for all cohort partici-
pants, especially for periods after participants’ death.28,29

In Step 2, we modeled the time-varying covariates (including
PM2:5 concentration) using linear regressions while including
variables such as the previous-year value of the covariate of inter-
est, baseline characteristics, same-year values of time-varying
covariates set to occur before the covariate of interest, and quad-
ratic function of time. The choice of independent variables in
covariate models was based on substantive knowledge as sum-
marized in the simplified directed acyclic graph (Figure S1). We
summarize the list of all covariates in Table 1 and the specific

forms of covariates included in the covariate models in Table 2.
We set the sequence of time-varying covariates as community
size, income, immigration and visible minority, material resour-
ces, households and dwellings, age and labor force, and long-
term exposure to PM2:5. Given that previous studies using differ-
ent cycles of CCHS found a supralinear PM2:5–mortality associa-
tion,2,45,54,55 we used natural logarithm-transformed long-term
exposure to PM2:5 as the independent variable in both the out-
come and covariate model in the main analysis.

In Step 3, we simulated new data sets based on the intervention
strategies. For each intervention, we randomly sampled 10,000
participants from the cohort with replacement (i.e., Monte Carlo
sampling) and created an empty data set of all sampled participants
for all follow-up years until the end of the period of interest (nor-
mally the end of the follow-up period, as in this study, but extrapo-
lation is possible with extra assumptions). We simulated new data
sets for only 10,000 individuals instead of the number of partici-
pants in the study cohorts (∼ 60,000 participants in each cohort) to
save computation time, and a similar practice was conducted

Table 1. (Continued.)

Characteristics

Cycle

2000/2001 2003 2005

East Central 44.1 49.3 48.9
Northern 1.6 1.9 2.1

Time-varying covariates
Community size (population) [n (%)]
>1,500,000 13.5 14.7 16.9
500,000–1,499,999 10.3 11.9 10.4
100,000–499,999 20.4 21.0 19.7
30,000–99,999 14.7 13.2 12.4
10,000–29,999 7.4 7.0 7.5
Non-CMA/CAd 33.7 32.2 33.1

Annual family income quintile (%)
1st (lowest) 19.0 19.1 19.3
2nd 19.7 19.3 19.1
3rd 19.9 19.8 19.5
4th 20.7 20.4 20.8
5th (highest) 20.7 21.4 21.3

Canadian Marginalization Index—age and labor force [quintile (%)]
1st (lowest marginalization) 14.4 15.3 14.8
2nd 13.5 13.6 13.7
3rd 13.7 13.9 14.1
4th 22.2 20.9 20.8
5th (highest marginalization) 36.2 36.3 36.6

Canadian Marginalization Index—material resources [quintile (%)]
1st (lowest marginalization) 15.5 15.7 15.2
2nd 16.8 16.9 17.0
3rd 20.8 20.8 20.2
4th 18.1 17.8 17.0
5th (highest marginalization) 28.8 28.8 30.6

Canadian Marginalization Index—immigration and visible minority [quintile (%)]
1st (lowest marginalization) 42.6 41.4 41.8
2nd 26.9 26.9 26.5
3rd 17.0 17.3 15.9
4th 8.5 9.0 9.9
5th (highest marginalization) 5.0 5.4 5.9

Canadian Marginalization Index—households and dwellings [quintile (%)]
1st (lowest marginalization) 22.7 21.2 21.7
2nd 28.3 27.7 27.1
3rd 21.0 21.7 21.0
4th 17.3 17.8 17.6
5th (highest marginalization) 10.7 11.6 11.8

Average PM2:5 of previous 3 y (lg=m3) (mean±SD) 6:4± 2:2 6:5± 2:3 6:5± 2:3
Average PM2:5 of previous 3 y (lg=m3) [median (minimum, 25th
percentile, 75th percentile, maximum)]

5.9 (1.7, 15.0, 4.6, 7.8) 6.1 (1.7, 4.7, 8.1, 15.0) 6.1 (1.6, 4.6, 8.2, 15.0)

Note: BMI, body mass index; CA, census agglomeration (status); CMA, census metropolitan area; NA, not applicable; PM2:5, particulate matter ≤2:5 lm in aerodynamic diameter.
aRounded to the nearest 5 or 0 in the last digit to protect privacy.
bWe did not include the indigenous status indicator in models of cycle 2005.
cConsumption of fruit and vegetable was listed with an additional option in cycle 2005 but not in the other two cycles.
dNot categorized as CMA or CA status and likely in rural area.
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beforewith the smaller cohort.29 Next, we assigned the baseline val-
ues of all covariates (values of baseline covariates and values of
time-varying covariates at the start of the follow-up period) in each
simulated data set to the same as its original data set, we then altered
the relevant covariate values based on the intervention strategy (e.g.,
setting the baseline long-term exposure to PM2:5 to 5 lg=m3 if it
was higher than 5 lg=m3 in the threshold intervention of 5 lg=m3,
but we could include other covariates if needed). Last, we simulated
time-varying covariates at each year after baseline based on their
history with covariate models estimated in the second step and
altered the covariates based on the intervention strategy.

In Step 4, with the simulated data sets and outcome model
from the first step, we calculated for each individual the probabil-
ity of dying during each year, conditioning on surviving to the
beginning of this year, standardized to the distribution of the con-
founders and long-term exposure to PM2:5 under the intervention
strategies, regardless of their observed outcomes. Next, we calcu-
lated for each individual the cumulative mortality risk at each
year as the cumulative sum of the abovementioned conditional
probability of mortality times the probability of surviving until
the beginning of the time interval. The estimated cumulative mor-
tality risk at each year equals the average of estimates from all
individuals for all hypothetical interventions. We also calculated
the absolute difference in cumulative mortality risk and the per-
centage change in cumulative mortality risk with estimated cu-
mulative mortality risk from the natural course as the reference.

In addition, we calculated the 95% confidence intervals (CIs)
for all estimates using standard errors from 200 bootstrap itera-
tions.56 In each iteration, we randomly sampled the same number
of participants as in the original cohort with replacement and ran
the four steps described above to calculate cumulative mortality
risks under the intervention strategies. We chose this number of
iterations because we were constrained by available computa-
tional resources (>1 h of computational time for each bootstrap
iteration), and the original application of parametric g-computa-
tion in time-varying covariates and time-to-event setting used the
same number.29 Future studies with more computational resour-
ces might consider a larger number of bootstrap iterations.

Sensitivity Analyses

To test the robustness of our results to model misspecification, we
considered a number of different model specifications for both out-
come and covariate models, including a) reordering the sequence
of time-varying covariates in covariate models by moving “age
and labor force” to before other dimensions of the Canadian
Marginalization Index, moving income to after all dimensions of
the Canadian Marginalization Index, and moving PM2:5 to the first
place among all covariates; b) extending the extent of historymod-
eled by including the previous 1- and 2-y values of all the time-
varying covariates in the covariate models other than just the
previous-year value of the covariate of interest; and c) including
time-varying covariates other than long-term PM2:5 as categorical
in the outcomemodel and using the multinomial logistic model for
them in the covariate model instead of modeling them as continu-
ouswith bounds using the linearmodel (Table 2 presents the details
of the model specifications for each time-varying covariate in the
main analysis). We also visually evaluated the simulated and
observed adjusted survival curves and histories of covariates under
no intervention in the main analysis as a heuristic check of model
misspecification.27

Next, to facilitate comparison with previous studies, we used
long-term PM2:5 concentrations in the original scale in all models
as a sensitivity analysis, which assumed the same log-linear
PM2:5–mortality association used in other cohorts4,7 instead of the
supralinear one supported by previous studies of different cycles
of the CCHS cohort.2,45,54,55 In addition, we also ran a Cox pro-
portional hazards model with the same specification as the out-
come model in our main analysis except that we included no time
variable and used long-term PM2:5 concentrations in the original
scale, which assumed a log-linear PM2:5–mortality association.

Last, given that most deaths occurred among older individuals
and that age could modify the health impact of long-term expo-
sure to PM2:5, we conducted a subset analysis restricted to cohort
participants ≥65 years of age at the time of enrollment. Because
it took up to 24 h to run one round of the sensitivity analysis
without bootstrapping, we were unable to perform bootstrapping

Figure 1. Diagram of g-computation with time-to-event outcome and time-varying covariates. Arrows indicate source of information for the indicated step.
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to calculate CIs for sensitivity analyses owing to computational
constraints and, therefore, do not present variances for our esti-
mates. We pooled cycle-specific estimates from sensitivity analy-
ses by averaging the estimates in each cycle. All analyses were
done in R (version 4.0.5; R Development Core Team) with the
“gfoRmula” package.51 The R code to replicate these analyses
and a simulated data set are available at the following link:
https://github.com/suthlam/cchs_g_computation.git.

Results
We observed 6,475 (10.4%), 6,525 (10.5%), and 6,135 (9.2%) non-
accidental deaths in the 11 y follow-up period starting from 2005
among the three cycles of CCHS cohorts of 62,365, 62,380, and
66,385 participants, respectively (Table 1). The three cycle cohorts
were comparable in all descriptive statistics (Table 1). Without any
hypothetical intervention, the observed average long-term exposure
to PM2:5 in three cycles of our cohort decreased slightly from
6:4±2:2lg=m3, 6:5± 2:3 lg=m3, 6:5± 2:3 lg=m3 in 2005 to
5:8±2:0lg=m3, 6:0±2:0lg=m3, and 6:0± 2:0 lg=m3 in 2015,
respectively (Table 1).

All hypothetical intervention strategies explored in this study
led to lower 11-y cumulative mortality risks than the estimated
value under a natural course without intervention, 102.5 per
1,000 participants (95% CI: 100.3, 104.8). The reductions in 11-y
cumulative mortality risks from the natural course were 0.20 per
1,000 participants (95% CI: 0.06, 0.34) under the threshold of
8:8 lg=m3, 0.63 per 1,000 participants (95% CI: 0.18, 1.07) under
the threshold of 7:04lg=m3, 1.87 per 1,000 participants (95% CI:
0.53, 3.21) under the threshold of 5 lg=m3, 3.08 per 1,000 partic-
ipants (95% CI: 0.85, 5.31) under the threshold of 4 lg=m3, 1.68

per 1,000 participants (95% CI: −0:15, 3.51) under the relative
reduction of 5% per interval, and 3.40 per 1,000 participants
(95% CI: −0:23, 7.03) under the relative reduction of 10% per
interval. Of note, the reduction in 11-y cumulative mortality risks
could also be interpreted as the number of deaths that would have
been prevented if the intervention was employed instead of main-
taining the status quo. Changes in relative scale showed a similar
pattern (Table 3). To fulfill the four threshold intervention strat-
egies, averages of 18.7%, 38.3%, 72.0%, and 91.4% of partici-
pants experienced change in their natural course exposure every
year, respectively, whereas 100% had their exposure changed
under the two relative reduction intervention strategies (Table 3).
The corresponding reductions in average simulated PM2:5 from
the start of follow-up to the end of year 11 ranged from 0.13 to
1:87 lg=m3 for threshold intervention strategies, and from 1.25
to 2:18lg=m3 for relative reduction intervention strategies
(Table 3). Across all strategies, we observed steady expansions in
differences of yearly cumulative mortality risks between the natu-
ral course and other strategies until the seventh year of follow-up,
after which the differences remain constant and shrank during the
last year of follow-up (Figure 2, numeric results in Table S2). In
the main analysis, we pooled estimates of yearly cumulative mor-
tality risks across cycles using random-effect meta-regression and
pooled estimates of differences (absolute and relative scale) in
cumulative mortality risks using fixed-effect meta-regression.
Cycle-specific results with corresponding I2 values are summar-
ized in Figure S2, with numeric results in Table S3.

Heuristic checks of model fitting in the main analysis support
the robustness of our estimates: a) The cumulative mortality risk
estimated by parametric g-computation under the natural course
closely tracked the value observed (Figure S3), and b) the observed

Table 2. Details for covariate formats and model types for both outcome and covariate models in main analysis.

Variable name

Type

Independent variable
Dependent variable and

corresponding model used

Time-fixed covariates
Age in 2005 (y)a Restricted cubic spline function with 5 knots Not predicted
Sex Binary Not predicted
BMI 5 categories Not predicted
Marital status 3 categories Not predicted
Immigrant An indicator for immigrant and an interaction term

between the indicator and a continuous variable for
years in Canada among immigrants

Not predicted

Visible minority Binary Not predicted
Indigenous status Binary Not predicted
Smoking status 6 categories Not predicted
Alcohol consumption 6 categories Not predicted
Daily consumption of fruit and vegetables 4 categories Not predicted
Leisure time physical activity 3 categories Not predicted
Employment status 3 categories Not predicted
Education attainment 4 categories Not predicted
Urban form 5 categories Not predicted
Airshed 6 categories Not predicted
Time-varying covariates
Time Year and quadratic term of yearb Not predicted
Community size Continuous Bounded normalc (1 to 6) and linear regression
Annual family income quintile Continuous Bounded normal (1 to 5) and linear regression
Canadian Marginalization Index
Immigration and visible minority Continuous Bounded normal (1 to 5) and linear regression
Material resources Continuous Bounded normal (1 to 5) and linear regression
Households and dwellings Continuous Bounded normal (1 to 5) and linear regression
Age and labor force Continuous Bounded normal (1 to 5) and linear regression

3-y average PM2:5 concentration with 1-y lag Natural logarithm-transformed Normal with linear regression

Note: BMI, body mass index; PM2:5, particulate matter ≤2:5 lm in aerodynamic diameter.
aIn subset analysis restricted to cohort participants ≥65 years of age, we used restricted cubic spline function with 3 knots for age.
bCategorical year was used in the interaction terms between time and the exposure.
cVariables with bounded normal category were modeled and simulated by using the standardized value (subtracting the minimum value and dividing by the range) in linear regression.
Simulated values that fell outside the observed range were set to the minimum or maximum of the observed range.
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mean values of all time-varying covariates were similar to those
simulated under the natural course over time (Figure S3). Of note,
given that cohort participants had no time-varying covariates
recorded after their death, whereas we simulated participants’ time-
varying covariates for all years, differences between observed and
simulated covariates were to be expected, especially later in the
study period. Furthermore, sensitivity analyses with different model
specifications (i.e., different sequence of time-varying covariate,
extent of history modeled, and parametrization of time-varying
confounders) resulted in estimates similar to those for the main
analysis (Figure 3, numeric results in Table S4).

When assuming a log-linear PM2:5–mortality association in the
sensitivity analysis (compared with the supralinear association
assumed in main analysis by log-transforming the exposure),
reductions in 11-y cumulative mortality risks comparing other
intervention strategies to the natural course ranged from 0.01 per
1,000 participants to 1.65 per 1,000 participants, slightly smaller
than in the main analysis assuming a supralinear PM2:5–mortality

association (log-transformed PM2:5 was used as exposure in
modeling) (Table S4). The Cox model assuming a log-linear
PM2:5–mortality association found a 15.6% (95% CI: 4.0%,
28.5%) increase in hazard of death per 10-lg=m3 increase in
PM2:5. When focusing on cohort participants ≥65 years of age at
the start of follow-up, reductions in 11-y cumulative mortality
risks comparing other intervention strategies to the natural course
ranged from 0.49 per 1,000 participants to 7.07 per 1,000 partici-
pants (Table S4), which is larger than was found for the main
analysis using the general population at≥25 years of age.

Discussion
In the present study, we applied the parametric g-computation as
an analytical alternative that is particularly valuable for air pollu-
tion epidemiological research, especially for evaluating specific
intervention strategies. With application in a large Canadian
cohort, we demonstrated how to incorporate consideration of
complex time structure in the data and how to calculate causally
interpretable cumulative risk estimates over the follow-up period
(i.e., adjusted survival curves) with parametric g-computation.
We described that any intervention further reducing the long-
term exposure to PM2:5 would reduce the cumulative mortality
risk, even in a region with relatively low levels of ambient PM2:5.
Such a reduction in cumulative risk increased over time and flat-
tened toward the end of the follow-up period on both the relative
and the absolute scales. The older population also experienced
greater benefits from the explored hypothetical intervention strat-
egies than the general population.

Numerous observational studies have found positive associa-
tions between long-term exposure to PM2:5 and nonaccidental
mortality. A meta-analysis reported a pooled effect estimate of
6% (95% CI: 4%, 8%) increase in hazard of death per 10-lg=m3

increase in PM2:5 (HR-1).5 A recent study from 2000 to 2012 in a
similar Canadian cohort found an 11% (95% CI: 4%, 18%)
increase in hazard of nonaccidental death per 10-lg=m3 increase
in chronic exposure to PM2:5 with a Cox proportional hazards
model.2 Our sensitivity analysis using the Cox model without
time-varying coefficients found similar numeric results [15.6%
(95% CI: 4.0%, 28.5%)]. Although we cannot directly compare
our estimates from the main analysis to previous results given the
difference in interventions explored, the consistent reductions in
cumulative mortality risk over the follow-up period across inter-
vention strategies when compared with the natural course in this
study lend further support to previous findings that PM2:5 is detri-
mental to health, even at levels below current standards. For
example, we identified a 0.19% (95% CI: 0.05%, 0.33%) decrease
in 11-y cumulative mortality risk comparing the hypothetical
intervention strategy with the threshold of 8:8 lg=m3 to natural

Table 3. Summaries of estimated 11-y cumulative mortality risk under different intervention strategies pooled across cycles and differences in estimated risk
compared with natural course in relative and absolute scale, and corresponding average simulated PM2:5 and proportion of cohort participants with exposure
changed for all intervention strategies.

Intervention strategy
11-y CMR (per 1,000
participants) (95% CI)

Difference in 11-y CMR
(per 1,000 participants)

(95% CI)
Percentage change in
11-y CMR (95% CI)

Average percentage
of participants with
exposure changeda

Average simulated
PM2:5 concentration

(lg=m3)a

Natural course 102.5 (100.3, 104.8) Ref Ref 0 5.62
Threshold (lg=m3)
8.8 102.3 (100.1, 104.6) −0:20 (−0:34, −0:06) −0:19 (−0:33, −0:05) 18.7 5.49
7.04 102.0 (99.7, 104.2) −0:63 (−1:07, −0:18) −0:60 (−1:03, −0:17) 38.3 5.21
5 100.9 (98.4, 103.5) −1:87 (−3:21, −0:53) −1:79 (−3:11, −0:48) 72.0 4.42
4 99.8 (96.7, 102.9) −3:08 (−5:31, −0:85) −2:95 (−5:14, −0:77) 91.4 3.75
Percentage reduction per interval (%)
5 101.4 (98.6, 104.2) −1:68 (−3:51, 0.15) −1:61 (−3:40, 0.17) 100 4.37
10 99.8 (95.6, 103.9) −3:40 (−7:03, 0.23) −3:27 (−6:81, 0.28) 100 3.44

Note: CI, confidence interval; CMR, cumulative mortality risk; PM2:5, particulate matter ≤2:5 lm in aerodynamic diameter; Ref, reference.
aThis is the three-cycle average of the mean value across all years.

Figure 2. Differences in yearly cumulative mortality risks pooled across
cycles comparing different intervention strategies to natural course, with
weights equal to the inverse of variance. Numeric results are presented in
Table S2. Note: PM2:5, particulate matter ≤2:5 lm in aerodynamic diameter;
R90, yearly relative reduction values set at 10% per interval; R95: yearly rel-
ative reduction values set at 5% per interval; T4, threshold value set at a
PM2:5 level that was further below the WHO guideline (4 lg=m3); T5,
threshold value set at the new WHO guideline of 5 lg=m3; T7.04, threshold
value set at 80% of the current Canadian Ambient Air Quality Standards for
PM2:5 (or 7:04 lg=m3); T8.8, threshold value (reduced to threshold value if
above) set at the current Canadian Ambient Air Quality Standards for PM2:5
of 8:8 lg=m3; WHO, World Health Organization.
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course, providing evidence of health benefits from policies that
further reduce the air pollution level to below the current
Canadian standard of 8:8lg=m3, which is already lower than the
12-lg=m3 standard of the United States explored by previous
studies.4,9 To facilitate comparison with previous studies assum-
ing a log-linear PM2:5–mortality association, we included sensi-
tivity analysis using PM2:5 on the normal scale and found
reduced cumulative mortality risks in all hypothetical interven-
tions compared with maintaining the status quo, but the numeric
values are smaller than those in the main analysis. The observed
difference in the numeric values of analysis assuming log-linear
association and analysis assuming supralinear association is a
combination of difference in how the exposure–response rela-
tionship is modeled and how the exposure model performs.
However, given the existing evidence from Canadian cohorts and
the similarity between the observed survival curve and the esti-
mated survival curve using parametric g-computation under no
intervention in the main analysis,2,45,54,55 we have confidence in
the validity of results assuming a supralinear association.

More importantly, in this study we demonstrated how to
incorporate more flexibilities in simulating real-world interven-
tions with g-computation and provide intuitive estimates for the
benefits of such interventions. Taking the hypothetical interven-
tion strategy with the threshold of the current Canadian Ambient
Air Quality Standards as an example, the average long-term ex-
posure to PM2:5 in 2005 was ∼ 6:5 lg=m3, below the standard of
8:8 lg=m3. However, some cohort participants were exposed to
PM2:5 levels >8:8lg=m3 during some years of follow-up, and
our hypothetical intervention affected only these subject-years by
reducing their exposure to 8:8 lg=m3, representing a three-cycle
average of 18.7% of participants across all years. Because the
observed PM2:5 levels decreased without any intervention in our
study, fewer participants were directly intervened on in later
years under threshold intervention strategies, explaining the

flattened differences observed in the cumulative risks between
intervention strategies in later years. However, all time-varying
covariates after the intervention on PM2:5 would change accord-
ingly owing to the intervention on PM2:5, thus influencing future
outcomes as well. Such a dynamic intervention strategy incorpo-
rated the consideration of people who could be intervened on and
is more realistic than the static intervention strategy commonly
employed in health burden estimation with traditional exposure–
response function, which sets change in exposure at a fixed value
for all individuals throughout the period of interest. In addition,
although we provided differences only in cumulative risk as com-
pared with the natural course, it is easy to estimate differences
between any two hypothetical intervention strategies.

Furthermore, the estimated cumulative risks over the follow-up
period by g-computation (i.e., adjusted survival curves) and corre-
sponding comparisons of values between different hypothetical
interventions provided clearer causal interpretation and more in-
formation than a single HR or period-specific HRs, as generally
used in air pollution studies (Table S1). In the context of health
impacts from chronic exposure to PM2:5, HR can change over time
because the toxicity of PM2:5 (e.g., chemical composition of
PM2:5) and the susceptibility of the population to PM2:5 could
change over time, whereas the standard Coxmodel assumed a con-
stant HR and period-specific HR from extensions of the Coxmodel
had a built-in bias that led to ambiguity in causal interpretation.57

On the other hand, the cumulative mortality risks estimated in the
present study avoided such ambiguity in interpretation while also
demonstrating the change of intervention effect over time.19 In
addition, obtaining the casually interpretable absolute differences
in cumulative risks between hypothetical intervention strategies
over time could be particularly helpful for comparing different sce-
narios regarding public health benefits.58 Moreover, if policies
affecting air pollutants such as PM2:5 could further affect prognos-
tic covariates influencing both future PM2:5 levels and health

Figure 3. Differences in 11-y cumulative mortality risks comparing different intervention strategies to natural course for main analysis and sensitivity analyses.
Numeric results are presented in Tables 3 and S4. Note: 65+, subset analysis restricted to cohort participants ≥65 years of age; Cat, including time-varying
covariates other than long-term PM2:5 as categorical in outcome model and using multinomial logistic model for them in the covariate model; O1, placing
Canadian Marginalization Index-age and labor force before the other Canadian Marginalization Index in occurring sequence of time-varying covariate; O2,
moving income to after Canadian Marginalization Index in occurring sequence of time-varying covariate; O3, moving PM2:5 to the first in occurring sequence
of time-varying covariate; Org, using long-term PM2:5 in original scale in all models; PM2:5, particulate matter ≤2:5 lm in aerodynamic diameter; R90, yearly
relative reduction values set at 10% per interval; R95, yearly relative reduction values set at 5% per interval; T4, threshold value set at a PM2:5 level that was
further below the WHO guideline (4 lg=m3); T5, threshold value set at the new WHO guideline of 5 lg=m3; T7.04, threshold value set at 80% of the current
Canadian Ambient Air Quality Standards for PM2:5 (or 7:04 lg=m3); T8.8, threshold value (reduced to threshold value if above) set at the current Canadian
Ambient Air Quality Standards for PM2:5 of 8:8 lg=m3; TV, adding all time-varying covariates of the previous 1 and 2 y to the covariate model; WHO, World
Health Organization.
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outcomes (commonly referred to as exposure–confounder feed-
back), traditional regression methods based on adjustment in a
multivariable model would fail and lead to biased estimates for the
effect, whereas g-computation is designed particularly to solve this
problem.24,26,59 An example of such exposure-confounder feed-
back is that people might move due to high level of PM2:5 in their
current community and subsequently change the characteristics of
their community of residence, while the characteristics of their
new community also affect the level of PM2:5 and probability of
death. Controlling for such community characteristics is necessary
for confounding control, but doing so with traditional methods will
remove the indirect effect mediated through community character-
istics and introduce collider-stratification bias60 if any unmeasured
confounder of the community characteristics and death exists.59

However, making the decision to move based on the community
level of PM2:5 is unlikely in countries with relatively low PM2:5
levels, such as Canada. Therefore, exposure–confounder feedback
is expected to be negligible in our study, but it is possible to be
meaningful in countries with higher PM2:5 levels.

This study has a few limitations that need to be acknowledged.
First, parametric g-computation can only account for measured
confounders and a lack of conditional exchangeability (i.e., resid-
ual confounding) might exist due to unmeasured confounders or
measurement errors of existing confounders, regardless of our
extensive list of confounders considered based on substantive
knowledge on risk factors of PM2:5 exposure and death (Figure
S1). For example, we assumed many individual behavior, demo-
graphic, and socioeconomic variables to be time-invariant (e.g.,
employment status, BMI) owing to data availability (these varia-
bles were only reported once at the time of enrollment), whereas
they likely actually changed over the study period. However, we
also included time-varying individual income and community de-
mographic and socioeconomic variables in our models, mitigating
the concern of residual confounding from these baseline variables.
In addition, like other cohort studies of air pollution, we used postal
code–level PM2:5 levels as surrogates for individual exposure to
PM2:5, which might introduce exposure misclassification.61

Recent studies, however, have shown that such bias may either not
bias effect estimates62 or bias these estimates toward the null,63

making our estimatesmore conservative.
Second, although we explored different model specifications

and found similar results in the sensitivity analyses, we cannot rule
out the possibility of model misspecification, especially given the
fact that parametric g-computation requires correct model specifi-
cation of both the outcome and covariate models to achieve
unbiased results. Notably, McGrath et al. demonstrated that the
g-null paradox, a form of model misspecification that was tradition-
ally believed to cause false rejection of null hypothesis under a sharp
null effect,64 is unavoidable in parametric g-computation evenwhen
the sharp null hypothesis does not hold, and they recommended
using more flexible models in analysis.65 However, the magnitude
of bias depends on the extent of exposure–confounder feedback and
time-varying confounding. In the context of this study, we would
expect relatively small exposure–confounder feedback and, thus,
less concern over the g-null paradox. In addition, consistent results
from sensitivity analysis using more flexible models supported the
robustness of our results.

Third, this being an active research field, the existing R pack-
age for parametric g-computation does not support features like
incorporation of spline functions of time-varying covariates into
the model, direct estimation of randomized interventional strat-
egy,66 model fit checking with significance tests, or bias analysis.
However, the current package provided enough flexibility for our
study to employ flexible models that mitigated the possibility of
violating the positivity assumption via model extrapolation. For

example, we were able to a) incorporate flexible supralinear
PM2:5–mortality association and temporal changes into the condi-
tional probability of mortality in the estimation as supported by
previous studies,2,54,55 b) incorporate restricted cubic spline func-
tion of baseline age in all models, and c) conduct sensitivity anal-
ysis with categorical time-varying confounders. In addition,
although not relevant to our cohort given that we had the all-
cause mortality as the outcome and no loss to follow-up, right
censoring and informative loss to follow-up could be handled by
parametric g-computation and the existing R package by simulat-
ing data on participants as though they had not been censored.67
It is worth mentioning that other methods could also handle the
methodological considerations that g-computation addresses—
consideration of complex time structure and reporting of
adjusted survival curves—and have been applied in air pollu-
tion epidemiological research, including Inverse Probability of
Treatment Weighting.6 Furthermore, some recent approaches,
such as the targeted maximum likelihood estimation, can also
be used to directly evaluate individualized dynamic intervention
strategies of continuous exposures and provide doubly robust
estimates that are less vulnerable to model misspecification
with valid statistical inference when data-adaptive/machine-
learning methods are incorporated.68,69

Finally, PM2:5 is a mixture of varying chemical components
and toxicity and is generated from different sources of emissions
(e.g., traffic, industries, wildfires). In this paper, we focused on
PM2:5 without distinguishing the PM2:5 composition or the sources
of emissions. This potentially violated the consistency assumption
(i.e., no-multiple-versions-of-treatment and all exposed individuals
received the same version of treatment). If there is any unmeas-
ured confounder of the “version of treatment” and outcome rela-
tionship, the effect estimates could be biased according to a recent
simulation study, with magnitude and direction of such bias
depending on the strength of confounding.70 In future studies, it
would be important to consider the possible differential toxicity of
PM2:5 components and define hypothetical interventions targeting
different sources of PM2:5 emissions separately.

Conclusion
This study demonstrated the benefits of using parametric g-com-
putation as an analytical alternative for air pollution epidemiolog-
ical research, especially for evaluating the potential effects of
realistic dynamic intervention strategies in the time-to-event set-
ting with time-varying exposure and confounders. With a large
Canadian cohort, we calculated causally interpretable cumulative
risk estimates over the follow-up period and corresponding bene-
fits compared with maintaining the status quo. We also found that
any intervention further reducing the long-term exposure to
PM2:5 would reduce the cumulative mortality risk from maintain-
ing the status quo, even in a population already exposed to rela-
tively low levels of ambient PM2:5.
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