
UC Berkeley
Research Reports

Title
Formal Specification And Verification Of The Entry And Exit Maneuvers

Permalink
https://escholarship.org/uc/item/1z5514gb

Authors
Sachs, S. R.
Varaiya, P.

Publication Date
1996-02-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1z5514gb
https://escholarship.org
http://www.cdlib.org/

This paper has been mechanically scanned. Some
errors may have been inadvertently introduced.

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

Formal Specification and Verification
of the Entry and Exit Maneuvers

Sonia R. Sachs
Pravin Varaiya

California PATH Research Report

UCB-ITS-PRR-96-3

This work was performed as part of the California PATH Program of the
University of California, in cooperation with the State of California Business,
Transportation, and Housing Agency, Department of Transportation; and the
United States Department of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible
for the facts and the accuracy of the data presented herein, The contents do not
necessarily reflect the official views or policies of the State of California. This
report does not constitute a standard, specification, or regulation.

February 1996

ISSN 1055-1425

Formal Specification and Verification of the Entry and Exit
Maneuvers

Sonia R. Sachs and Pravin Varaiya
Department of Electrical Engineering and Computer Sciences

University of California
Berkeley CA 94720

January 30, 1996

Abstract

This is the final report of a study of key questions relating to the interface between
the Automated Highway System or AHS and Urban Arteries or UA. Those questions are
formulated in terms of four tasks:

1. Specify physical arrangement, operational procedures for entry/exit;

2. Conceptualize functions of transfer zone between the AHS and UA;

3. Characterize interaction between AHS and UA;

4. Propose ways of controlling the interaction.

This report documents how these tasks were completed. Five different physical arrange-
ments and associated operational procedures are proposed, differing in cost, land require-
ments, and sophistication of coordination and control. The transfer zone functions as
buffer between the traffic on the AHS and UA, as a place for check-in and check-out,
and as a controller of flow into the AHS. It also provides the infrastructural elements
needed for entry and exit. The interaction between the AHS and UA is characterized by
the queues that develop in the transfer zone, the waiting times to which vehicles must
submit before they gain AHS entry, and the disruption those vehicles inflict on AHS
traffic. Lastly, control of the interaction between AHS and UA is exercised through the
coordination of entry and exit with AHS traffic and the vehicle feedback control laws that
govern the actual trajectory of the vehicle as it enters and leaves the AHS. This study
suggests that most issues relating to the AHS/UA interface can be resolved, although for
some configurations, sophisticated coordination and control will be necessary for smooth
and safe operation.

*Work supported by the PATH program, Institute of Transportation Studies, University of California,
Berkeley, the Federal Highway Administration Contract DTFH-61-93-C-001-99, by National Science Foun-
dation Grant ECS9417370 and Army Research Office Contract DAAH04-94-G-0026. The work reported here
is largely the work of Datta Godbole, Tony Hitchcock, Sonia Sachs and Pravin Varaiya. The simulations
were carried out by Farokh Es=, Delnaz Khomamabadi and Ekta Singh. We also acknowledge the help of
Mireille Broucke.

1 Executive Summary

An automated highway system or AHS will be initially deployed as an “implant” on the
existing roadway network. That is, the AHS will most likely be deployed by converting one
or more lanes of existing highways, or by building a new network link. Like any implant,
the success of the AHS will depend on how well the “host” accepts the implant, i.e., how
well the AHS interfaces with the urban arterials or UA. Past AHS research at PATH has
understandably been concentrated on the design and operation of the AHS in isolation. That
research has now led to a reasonably complete understanding about AHS architecture, the
design options available, and a (not yet complete) set of tools to simulate the performance
of different designs. Although much work remains to be done, our understanding has
reached a stage where we can meaningfully ask how the AHS might be deployed. (We are
concerned with deployment in an engineering sense, not with the institutional and public
policy prerequisites to deployment.)

AHS entrances are the narrow veins that feed the wide arteries of the automated lanes. If
those veins get constricted, the arteries will be starved and the AHS capacity will remain
underutilized. The stream of vehicles leaving the automated lanes debouch into narrow AHS
exits. If those exits are blocked, traffic can spill back into the automated lanes, disrupting
traffic. The design of AHS entry and exit, the management of the processes by which
vehicles negotiate their passage through them, and the coordination of that passage with
the stream on the automated lanes thus have a determining effect on the achievable traffic
flows of the AHS.

Thus key issues relating to deployment concern the AHS/UA interface. Those issues are the
subject of this report. The work presented here was funded in part by Caltrans under MOU
134; greater support came from the Federal Highway Administration Precursor Analysis
Program and from the National Science Foundation.

Those key issues were formulated in MOU 134 as four tasks:

1. Specify physical arrangement, operational procedures for entry/exit;

2. Conceptualize functions of transfer zone between the AHS and UA;

3. Characterize interaction between AHS and UA;

4. Propose ways of controlling the interaction.

This report documents how these tasks were carried out. The work strongly supports the
conclusion that the key issues of AHS/UA interface can be satisfactorily resolved, although
for some configurations, the interaction must be controlled in a sophisticated manner to
ensure smooth and safe entry and exit.

We now summarize our findings for each task.

Task 1

We propose five different physical configurations for entry and exit. The configurations differ
in terms of the physical layout of the “transition zone” between AHS and UA, the relative

2

cost, and the amount of land that is taken up by the transition zone. The operational
procedures concern the coordination between roadside infrastructure and vehicle controller,
the treatment of check-in and check-out, the role of barriers between automated and manual
lanes. (Our study does not concern check-in and check-out mechanisms.)

Task 2
The transfer zone acts as a buffer between the AHS and the UA, provides for check-in
and check-out, controls the flow from UA into the AHS (similar to “ramp-metering”), and
contains the infrastructure (sensors and communication devices) needed for the coordination
of entry and exit.

These configurations and the operational procedures are reported in P. Varaiya, Precursor
Systems Analysis of Automated Highway Systems Activity Area J-Entry/Exit Implementa-
tion Final Report, also available as a PATH Report. A revised version of the configurations
appears in S. Sachs and P. Varaiya, Formal Specification and Verification of the Entry and
Exit Maneuvers, included herein. The operational procedures are also described in that
report.

Task 3
The interface between AHS and UA can be measured in terms of the queues that develop
in the transfer zone and the disruption that entering vehicles inflict upon AHS traffic. A
queuing model is proposed in Precursor Systems A more elaborate study is conducted
in M. Broucke and P. Varaiya, “A theory of traffic flow in automated highway systems,”
Seventy-Fifth Annual Meeting of the Transportation Research Board, Washington, D.C.
January 7-11, 1996. These studies provide a quantitative measure of the disruption.

Task 4
The interaction between AHS and UA vehicles is determined by two sets of controllers
located in the coordination and regulation layers of the AHS architecture that PATH has
developed. (See, P. Varaiya, “Smart cars on smart roads,” IEEE Trans. Auto. Contr., vol.
38(2), 195-207, Feb. 1993.) The coordination layer controller synchronizes the movement
of the vehicles entering the AHS from the transfer zone with the vehicles on the AHS in a
way that minimizes disruption of the AHS flow. It also is used to permit safe exit from the
AHS into the transition zone. The regulation layer controller determines the feedback laws
on-board the vehicles that calculate the throttle, braking and steering inputs which govern
the trajectory of the vehicle.

The coordination layer design is specified in S. Sachs and P. Varaiya, op cit. That report
also provides a limited verification of correctness of the design. The verification is conducted
using Cospan. It is limited because the continuous behavior is abstracted away.

The design of the feedback control laws is presented in Chapter 6 of D. Godbole, Hierarchi-
cal Hybrid Control of Automated Highway Systems, PhD Thesis, Department of Electrical
Engineering and Computer Science, U.C., Berkeley. Simulations of those procedures are
summarized in D.N. Godbole, F. Eskafi, E. Singh and P. Varaiya, “Design of entry and exit
maneuvers of IVHS,” Proc. American Control Conference, June 1994, pp. 3566-3570.

Formal Specification and Verification of the Entry and Exit
Maneuvers

Sonia R. Sachs and Pravin Varaiya
Department of Electrical Engineering and Computer Sciences

University of California
Berkeley CA 94720

January 30, 1996

1 Entry and Exit maneuvers

Entry and exit maneuvers depend on the physical configuration of automated highways. Five
configurations were studied in [l]. They are illustrated in Figures 1, 2, 3, 4, and 5. An
automated lane (AL) is a lane of the highway where vehicles are under automatic control.’ A
transition lane (TL) is a lane where vehicles make the transition from manual control to full
automated control. The other lanes are called manual lanes (ML). The “stop sign” in these
Figures refers to a location where entering or exiting vehicles must stop. They proceed only after
permission is received from the roadside controller.

For the different configurations, different entry/exit maneuvers may need to be designed. For the
arrangement shown in Figure 1, for example, there may be multiple gates between the TL and
the AL. In order to take advantage of this, multiple entry and exit opportunities may be offered
to vehicles in the TL. In the configuration shown in figure 2, the entry/exit maneuver does not
require any processing at the coordination layer because the AL, which follows the TL, does not
have vehicles other than the ones arriving from the TL (i.e., there is no conflict between vehicles
already in the AL and vehicles arriving from the TL). In the configuration shown in Figure 3,
only a single entry/exit gate may exist. Notice that in this configuration, the TL leads only to an
AL, and thus a failed entry maneuver requires that vehicles, which do not enter the AL, stop at
the gate. This is different from the arrangement shown in Figure 1 with one entry gate, because
there a vehicle that fails is not required to stop; it simply proceeds along the TL until a new
entrance is encountered. The configuration shown in Figure 4 is very similar to the arrangement
in Figure 1. The differences are that, in the former, there may be fewer entry/exit gates (since
they all have to fit within a distance of approximately one mile), and vehicles which fail entry
must exit the automated highway system.

‘The TL may be an entire lane alongside the AL, as in Figure 1; it may also be a very short stretch as in
Figures2-5.

Entry Gates Exit Gates

automated lane
U transition lane
D manual lane

MAS : manual to automated section
EMS : entry maneuver section
XMS : exit maneuver section
AMS : automated to manual section

Figure 1: Entry/exit configuration 1

sign

bid check-in check-out d check-in

Figure 2: Entry/exit configuration 2

2

-0.5 miles elevated -0.5 miles elevated
4 F 4 b

Figure 3: Entry/exit configuration 3

4
-1 mile elevated

check-in check-out

Figure 4: Entry/exit configuration 4a

3

-1 mile elevated

Figure 5: Entry/exit configuration 4b

The configuration of Figure 1 is likely to require the least additional construction costs. A
vehicle will enter this highway in the rightmost ML using a currently available entrance ramp.
It will continue its journey on the fast (leftmost) manual lane. At the beginning of the highway
section named Manual-to-Automated Section (MAS), it will change to TL manually. After passing
through a check-in point, the control of the vehicle will be given to the automated control system.
All vehicles at the beginning of the highway section named Entry Maneuver Section (EMS) will be
automatically controlled. On the EMS, the vehicles will accelerate to match the speed of the AL,
and eventually change lanes onto the AL. Those vehicles which fail to enter the AL will be slowed
down in the highway section named Automated-to-Manual Section (AMS), and their drivers will
be asked to resume manual control.

Exiting vehicles will change lanes from AL onto TL at the Exit Maneuver Section (XMS). They
will be slowed down and control will be transferred to manual drivers on the AMS. These manually
driven vehicles will have to change lane from TL to the leftmost (fast) ML. Exit from the highway
is via the rightmost ML using the current exit ramp.

We have modeled the arrangement in Figure 1, assuming one entry and multiple exit gates, as
was suggested in [a]. The system considered in [2] does not include a stop sign, where the vehicles
stop before entering the automated section of the transition lane (EMS). However, for reasons
explained in [l], a complete stop before entering the EMS section of the TL is preferable, since it
reduces the length of the EMS section.

1.1 Entry Maneuver System

Figure 6 illustrates the system components of the entry maneuver for the configuration in Figure
1.

A closely spaced train of vehicles in the transition lane is called a pre-platoon. Vehicle Xe is the
leader of a pre-platoon in the TL. Such a pre-platoon may be formed as vehicles enter the TL. A
pre-platoon with only one vehicle is called a free agent. Vehicle X; represents any vehicle in the
TL which becomes a follower within a pre-platoon. The leader vehicle Xu communicates directly

4

j LAL: Leader Vehicle in AL CP: Check-Point
j X0: Leader Vehicle in TL SL: Stop Light
: Xi: Follower Vehicle in TL ES: Sensor

Figure 6: Entry maneuver: system’s components

with each vehicle X;, and thus it can be seen as playing the role of the “hub” of a star network.
Vehicle LAL is the leader of a platoon in the AL, which communicates with the entering pre-
platoon. The check-point component Cl’ executes the “check-in” procedure: it inquires whether
a vehicle entering the transition lane is properly equipped, and either allows or stops its entry
into the automated highway system. The stop light component SL wakes up a roadside sensor,
and becomes “green” when the sensor indicates that there is space in the AL for the maneuver.
The sensor determines when there is an inter-platoon gap in the AL which is at least as large as
the minimum space required for the entry maneuver. If a platoon is in the AL within the sensor’s
range, then the sensor communicates with it, requesting its identification number. Having sensed
a space in the AL for the maneuver, the sensor communicates this fact to the stop light. In
addition, the sensor communicates with the Xu vehicle, indicating that space was found, the size
of the space, and the identification number of the leader in the AL, if one was identified. The
sensor also gives information to the entering vehicles about the distance to the turn markers at
the gate.

The logical steps needed for the entry maneuver are given in Figures 7 and 8. These figures show
under which conditions vehicle Xu forms a pre-platoon, and under which conditions Xu’s pre-
platoon enters or fails to enter the automated lane. They also show the communication among
the platoon leader (in the AL), the pre-platoon leader (in the TL), the check post, the stop light,
and the sensor components.

One of our goals is to prove that the entry maneuver satisfies the following properties with respect
to system behavior:

l A vehicle which requires entry into the automated highway, eventually enters;

l Entering vehicles do not collide with vehicles already in the AL.

5

Stup Li&t is red
If wakes up the l&try
sensor

wait until space is found

Y
-?.-,_._

/

~__.,_., __I*...

,, ,~~~~~~~.

* > ?,

,,,

..r _ ...,, m+,” ...” I /

receives ‘k’

0continue

receives ‘k’ ACKs

(5continue

Figure 7: Logical steps for the entry maneuver

6

continue0

no space aborts. Any
i vehicle behind it aborts jL--.-.T”,,.” ..,.,,,,... “111 f rhaa~~laiWntq:M+ i/_ “,,x ,,,, x ,

l--J--- +entry nlaneuver completed

Figure 8: Logical steps for the entry maneuver (continuation)

7

j
CP: Check-Point

:
! LAL: Leader Vehicle in AL
i X0: Leader Vehicle in TL SL: Stop Light
1 X1: First Follower Vehicle in TL ES: S e n s o r

; XN: N* Follower Vehicle in TL
LSi: Lateral Sensor of vehicle i /
Vri: Velocity Response of vehicle i i:

Figure 9: Model of the entry maneuver system

To that end, we have represented this system within the L-automata/L-processes framework (see
Chapter 2 of [3]). Figure 9 shows the model of the described system. Multiple layers of control
have been proposed for the automatic control of vehicles. The performance of a maneuver involves
only the first two layers-namely, the coordination and regulation layers. At the coordination
layer of control, we have specified the following L-processes: vehicles Xe, X;, and LAL, the stop
light SL, the check-post CP, and the entry sensor ES. Components are shown to communicate
as required by the entry maneuver. The regulation layer of control is modeled via the following
L-processes.

LS : lateral sensor response of vehicles in TL. Every 0.1 seconds this sensor updates the sensed
distance and velocity of the leader in the AL with which the maneuver is being coordinated.
It also senses when the vehicle is at the stop light, and when it reaches a turn marker.
The model of the lateral sensor for the followers (LS;, i = 1, . . ., N) is slightly different
from that of the leader(LSn) to represent the fact that a follower can only sense an object
on the highway after all vehicles in the platoon ahead of it have already done so.

Vr : velocity response of the vehicles in TL. Similarly, the model of the velocity response for the
followers (Vr;, i = 1, . * . , N) is different from that of the leader(Vrn). The modeling of
events indicating that a follower approached or reached a stop light, achieved full velocity,
started or completed the change lane maneuver depends on the modeling of these events
for the leader and for all followers ahead of it.

Note that this is a closed system model because every component requires only those inputs which
are produced by another component within the system.

1.2 Formal Specification and Verification of the Entry System

The formal specification of these components in the L-automata framework is given in Appendix
A. The desirable behavior of this system is modeled by two L-automata: no-collision and ewen-
tually-enters, also detailed in Appendix A. Verification that the specified system presents the
desirable behavior represented by both no-collision and eventually-enters was successful.

One source of error in protocol design is improper termination of functions. When a distributed
function, executed by asynchronous components, is not properly terminated, the distributed com-
ponents may lose “function synchrony” ; i.e., while one component exchanges messages required
by the execution of a function f;, other coordinating components may be exchanging messages
required by the execution of a function fj, f; # fj. This lack of synchrony at the function level
leads to very complex sequences of events, eventually resulting in deadlocks. A common mistake
is to design a protocol such that only one component checks for the proper termination of a
function.

In the process of verifying this protocol, several deadlocks were found. The error traces produced
by the unsuccessful attempts, which preceded the final successful attempt, were very useful in
determining how to modify the entry protocol. Some of the detected deadlocks were the conse-
quence of a very complex sequencing of events, which could be missed in a design that was tested
only by simulation.

In order to guarantee that the specification of the entry maneuver is amenable to analysis, verifi-
cation of the above-mentioned properties were restricted to the following:

l The number of follower vehicles is a parameter N of the specification (specified at run
time). The verification was done with N = 2.

l The sensor may find that there is space for 0, 1, 2, or 3 vehicles to enter. The size of
the space is not a parameter because it is not possible to assign an arbitrary range to a
variable in the tool used for formal verification (Cospan).

By using the tool Cospan, we have verified that the specified system presents the desirable be-
havior. Documentation of this verification is also found in Appendix A.

1.3 Induction Proof for the Entry System

The formal verification of the entry maneuver was successful, as shown in Appendix A. However,
because of the simplifications made to the specification, the correctness proof was limited to a
pre-platoon of at most three vehicles-i.e., one leader and N = 2 follower vehicles. We would like
to extend the proof to an arbitrary number of follower vehicles. Induction methods [4] can be
applied to extend the proof in question.

The induction method proposed in [4] consists of finding a reduction for the system representation
which can be used in its place, for an arbitrary number of components. Such a reduction is referred
to as an invariant because it preserves the structure of the system’s representation. A system

9

with N coordinating processes is represented by the composition of its processes. The composition
of L-automata/L-process PI, Pz, . . . PN, denoted by BE”=, P;, is explained in Chapter 2 of [3]. A
system S = @;“=, Pi can be shown to perform a property T by applying induction methods, also
explained in Chapter 2 of [3].

Applying induction methods to the system in question, we have to show that the entry maneuver
with an arbitrary number of followers performs the same tasks as the one with only two followers.

The entry system, parametrized by N, the number of followers in the transition lane, is given by:

P O = &@LAL@LS@Vro@CP@ES@SL,

Pi = Xi@)LS;@)Vri,i > 0 .

We now briefly describe the induction method we will use. Let a parametrized system of L-
Processes S(N) = {Pn, . . . , PN} be given. The output of an L-Process P; may be input to one or
more L-Processes Pj,j # i,j = l;.., N. A “variable” of a L-Process can be its output or input.
An L-Process may use both input and output variables in order to determine its “next” state,
and consequently, its output at the next state.

Definition 1.1 [5/A variable x is of bounded computation if the number of variables upon which
its computation depends, is bounded. In particular, a variable of bounded computation cannot have
dependencies upon the number of processes in a system with unbounded number of components.

Definition 1.2 [5] Let D denote the domain of the variables of L-Processes PI, . . . , P,. A func-
tion f : D” -+ D is associative if there exists fi : 0’ -+ D, for i = 1,. . . , n - 1, such that for
zi = fi(%G+1),(% = %),f(q= 21.

Definition 1.3 Let a parametrized system of L-Processes S(N) = {Pa,. * *, PN} be given. If there
exists a number C such that for any finite N, the number of variables associated with S(N) is
bounded by C, then we say that the number of variables in the system is of order one, denoted
by O(1). We also say that the number of variables in the system is bounded. If the number of
variables in the system is bounded by C x N, then we say that the number of variables in S(N)
is of order N, denoted by o(N).

A result from [5] is mentioned here without proof:

Theorem 1.1 A parametrized system of processes S(N) = {Pa, * . 9, PN} is linearizable if:

(a,) For all i > 0, every variable of P; is of bounded computation, and the number of variables of
P; is (3(l);

(b) The number of variables of Po is O(N);

10

(c) Every variable of PO is either of bounded computation, or is associative;

(d) The number of variables of PO not of bounded computation, is bounded.

A discussion of these conditions, an algorithm for the linearization of a system, and the proof
that a system which satisfies (a) - (d) ba ove is linearizable is given in [5]. The reader will also
find in [5] a detailed example of the use of this theorem in the context of distributed fault-tolerant
memory systems.

1.3.1 Linearization of the Entry System

The entry system is linearizable because:

(a) the variables of P;, for i > 0 are of bounded computation(i.e., the variables of the L-Processes
X;, LA’;, Vr,, i > 0 do not depend on the number of processes in the system), and the
number of variables of Pi, for i > 0 is of 0(l), because no variable of Pi is a vector which
depends upon the number of follower vehicles N in the system, thus the bound to the
number of variables of P; is given by the number of local scalar variables of P;;

(b) the number of variables of PO depends upon the number N of follower vehicles in the system,
hence of (3(N);

(c) the variables of PO are either of bounded computation (i.e., they are independent of the
number of followers N), or associative, i.e., each variable z of PO can be “distributed”
into variables ~1,*..,2, of PI;.., PN, by redefining the assignment of 2; at P;, and by
associating to each P; a new internal variable z;, for i = 0, . a . , n, called “propagation”
variable, such that z, = IC,, G = f;(x;, G+I), and zo = fr zu, ~1) assigns the same value to(
2 as the original PO does. An example of associative variable is the output “nospace-now”
generated by the leader X 0. This output is generated when an entry sensor indicates the
amount of space available in the automated lane. The leader checks the number of followers
ready to join a transition lane pre-platoon. If there is space for m vehicles, and Ic > m
followers are ready, than the leader sends “no-space-now” to followers m + 1, . . . , k. This
output is associative because it can be distributed among the followers by allowing the
first follower to read the entry sensor, decide if there is space for it, decrement the sensor
information if space was found, and “propagate” the updated information to the next
follower. When a follower reads the propagated sensor information and finds it to be zero,
it knows that there is no space for entry;

(d) the number of variables in PO which depend upon the number of follower vehicles in the
system is bounded.

By applying the construction suggested in the proof of [5, Theorem 3.11, we have that the linearized
entry system is given by

3(N) = r,g&a,.i=l
11

The process PO has a modified leader, ko, as follows:

l The variable invitation indicates to each follower whether they have been invited to join
the entering pre-platoon. In the linear case, this variable models a broadcast message
to all followers, without the value “nospace-now”. In the non-linear case, we had instead
an array invitation[N] that models point-to-point messages between the leader and each
follower;

l The variable ppsize indicates the size of the entering pre-platoon. In the linear system,
this variable is equal to a new internal va,riable of P,, denoted by number-of-acks. This
variable is is recursively assigned to the number of processes in the range 1, . . a, i, which
responds with “ack-come-with-me”;

l Every transition predicate which in PO depends upon a range of processes, is modified
in PO to depend upon new internal variables of P,, which are recursively assigned. The
new internal variables of Pi, for i = 1, . . a, N, are: number-of-aborts, number-entered-AL,
number-entry-complete.

The process pi has a modified follower gi, as follows:

l The new internal variables mentioned above are assigned in the following way:

number-ofacks = (Xi+1 .number-ofacks + 1) if output of Xi is come-withme,
else is X;+l .number-of-acks.

number-of-aborts = (Xi+1 .number-of-aborts + 1) if output of X; is abort,
else is Xi+1 .number-of-aborts.

number-entered41 = (Xi+1 .number-enteredAL + 1) if output of X; is entered-AL,
else is X;+l .number-of-aborts.

number-entered-AL = (Xi+1 .number-enteredAL + 1) if output of X; is entered-AL,
else is X;+I .number-of-aborts.

number-entry-complete = (Xi+1 .number-entry-complete + 1) if output of X; is entry-complete,
else is Xi+1 .number-entry-complete.

l The predicate of the state transition at-stop-light -+ go-withleader is modified to:

(Xo.invitation = come-with-me) * (i < ES.howmuchspace)

l The predicate of the state transition at-stop-light -+ entry-complete is modified to:

(Xo.invitation = come-withme) * (i > ES.howmuchspace) + (Xo.invitation = too-late-to-join)

l The predicate of the state transition entry-complete -+ idle is modified to:

(XO.# = entry-complete) * (Xi+1 .number-entry-complete = N - (i + 1))

12

l Any dependence on Xi-1 is modified to a. dependence upon X;+r;

l Any comparison i = 0 is changed to i = N, and i > 0 to i < N.

We anticipate that an induction invariant q; might be made of i system processes, such that pu
always communicates with the end of a string (or cascade) of processes, i.e., for a system with N
processes, PO communicates with &. We thus view the leader in the transition lane followed by
the vehicle which has the highest index. The tail of the pre-platoon is the vehicle with the lowest
index i > 0.

The “next” operator for pu is given by 4(&) = PO, and for p;, i > 0, is as follows:

+(rZ-i) = 2i+l,
4(m) = LSi+1,

$b(Vr;) = Vr;+l.

We propose the following invariant:

Q; = &@)pi@&l, w h e r e

Pi-1 = FREE(Tii-1) @ LS;-l@ Vr;-1.

Recall that the operation FREE applied to an L-process gives its trivial homomorphic reduction.
The idea behind the invariant is that all the possible behaviors of a pre-platoon with N > 2
followers is representable by a pre-platoon with only two followers. For our induction base we
choose i = 2. We thus have as our induction base a system with one leader and two followers. In
order to satisfy the induction base, we need to verify that

The language containment of the induction base is trivially satisfied because the language of i)r
is larger than the language of i)l.

The “next” operator for Pi is given by: $(&) = Pi+i. We thus have that the induction step is
given by

Although one may want to submit the induction step to verification by the tool Cospan, it is
clearly satisfied because:

1. The language of & is larger than the language of &;

2. The other processes in the right hand side of the equation are the same as the ones in
the left hand side. The additional process in the left hand side can only constrain the
language of the product in the left hand side.

13

With the induction step satisfied, we can conclude that, for an arbitrary number of followers
iv 2 2,

C ib@(&R) C C((&N).
i=N

Appendix A documents the verification that Q2 performs the task T defined in section 1.2. For
any i > 2, Q; performs the task T because the processes of Qe are the same as the processes of
Q2, i.e., pi is equal to pz of Q2, P;^_l is equal to i)l of Qa, and both share PO. Thus we may
conclude that the entry maneuver is correct for any number of follower vehicles, i.e.,

1.3.2 Timed Formal Specification and Verification

Many details were abstracted in the untimed system specification via non-deterministic outputs
or delays. Because lower and upper bounds of these delays are known, we can make use of timed
specification and verification to achieve a more detailed and accurate model. In [I], we find a
lower bound of 16.1 seconds for the time a vehicle takes to accelerate from a stopped position to a
speed compatible with the platoon in the AL at the first gate. There, we also find a lower bound
of 19.1 seconds for the time a stopped vehicle takes to accelerate to the second gate. While the
upper bounds of acceleration remain to be estimated, the wait at a stop sign is estimated to vary
in the interval [0, lo] seconds. Other timing information concerns lower and upper bounds for:

l The time a leader takes to reach the turn marker;

l The delay of vehicles arriving at the stop light after passing the check-in point;

l The delay of vehicles arriving at the check-in point (this needs to reflect some choice of
interarrival distribution for the vehicles);

l The delay between vehicles in the entering pre-platoon:

- How long after vehicle i achieves a correct velocity for entry, should vehicle i + 1
achieve the same velocity;

- How long after vehicle i sees a turn marker, should vehicle i + 1 see the turn marker;

- How long after vehicle i completes a lane change, should vehicle i + 1 complete its
change lane maneuver.

l Changing lanes;

l Reaching the next EMS;

l Timeouts for the reception of responses.

14

1 LAL: Leader Vehicle in AL
1 X1: First Follower Vehicle in AL

: XN: Nth Follower Vehicle in TL
,. ,___ .,...... ,, ,. ,,,

A: Vehicle in TL

._ _... ,I I .,...

Figure 10: Exit maneuver system

Let S be a given system of L-processes. In order to add timing information to a system, one may
construct an automaton ST, which removes the timing inconsistent sequences from the language
of the system S, i.e., the system given by S @ 5”~ is timing consistent. Such an approach is taken,
for instance, in [6]. Because timing information constrains the behavior of a system, the same
properties verified for the untimed situation hold for the timed system.

The desirable behavior of the timed system can be modified to incorporate bounds on delays. For
example, one desirable behavior is that a vehicle in the TL must either enter the AL within one
minute, or proceed in the TL in search of a new entry section. Another desirable behavior is that
a vehicle admitted to the automated highway system must enter the automated lane within k
minutes, or it must exit the system. The new desirable behavior needs to be properly expressed
as timed L-automata, and the timed system verified against them.

At the time of this writing, many of these delays are not yet known, thus the specification of the
entry maneuver with timing information will be the subject of further research.

1.4 Exit Maneuver System

Figure 10 shows the exit maneuver system with multiple gates.

In the automated lane, vehicle LAL is the platoon leader; vehicles X1, . . . , X, are the followers.
They all may request exit. In the transition lane, vehicle A represents a free agent that missed
its entry in the previous entry maneuver section (EMS), or a vehicle which exited recently and
which failed to leave the TL.

As the vehicles LAL, X1, . . -, X, exit, their order in the transition lane is not necessarily the same

15

as in the automated lane. Both the leader in the automated lane and the leader in the transition
lane need to maintain information about the vehicles participating in the exit maneuver. Any
vehicle in the automated lane, which is not a leader, may become one if a vehicle ahead of it
exits. Also, a follower in the automated lane may become a leader in the transition lane, if no
other vehicle of its platoon exits before it does, or if it is required to exit in front of a vehicle (or
platoon).

Different exiting configurations are possible. Consider, for instance, a system with three poten-
tially exiting vehicles, LAL, X1, and X2. The possible configurations for exit are: (i) only L A L
wants to exit, (ii) LAL and Xr want to exit, (iii) LAL and X2 want to exit, (iv) LAL, Xr and
X2 want to exit, (v) only Xr wants to exit, (vi) only X2 wants to exit, (vii) Xr and X2 want to
exit, (viii) none want to exit.

The logical steps needed for this maneuver are shown in Figure 11.

One of our goals is to prove that the exit maneuver is correct with respect to the following
properties:

a At most M out of N > M vehicles take an exit with M gates;

l Non-requesting vehicles do not exit;

l Intra-platoon spacing in the automated lane is closed up after a vehicle exits;

l The exit maneuver completes for all participating vehicles;

l A vehicle which requests exit does eventually exit;

l Only one vehicle exits via an exit gate at one time.

In order to prove these properties, we have modeled the system in the L-automata framework as
shown in Figure 13. At the coordination layer of control, we have specified identical L-processes
for the vehicles LAL, X0, - - - ,X,. In order to model the fact that any vehicle can be a leader, we
have created an L-process which performs all the required data base update functions (shown in
Figure 13 as DB), and which is dynamically associated with the leader vehicles on the AL and
the TL.

The regulation layer of control is modeled via the following L-processes:

Vr : vehicle velocity response for exit. The model of the velocity response for the followers (VT;)
is different from that of the leader (VQ), because the response of each follower has to be
consistent with the response of the leader, and of all followers ahead of it.

sr : vehicle lateral sensor response. The model of the lateral sensor for the followers (Sr;) is
different from that of the leader (Sre), because it is necessary to represent the fact that
each follower can only sense an object on the highway after a leader, and all followers
ahead of it have already sensed it.

16

; vehicle’s exit

i

next exit ir

Ye&Cl

a follower in TL.
Closes up with vehicle
ahead.

(B
Leader was reassigned gate and
is next to exit

Figure 11: Logical steps for exit maneuver

17

Exiting leader in AL

Exiting leader
is in TL

(,,,,,,, .,,, ,. .,,.

: imnwerbmw I_
l&m IuAI. / 0c5

,l..~.~. ,, ,,,..,,,,.,,,,,,ll11C x ,.... i

Figure 12: Logical steps for the exit maneuver (continuation)

18

1 Xii &&j& V&i& in AJJ ”
__ ____ ..I____......... _.-..

1
VSr: Virtual Lateral Sensor

X1: First Follower Vehicle in AL Sri: Lateral Sensor of vehicle i
1 X,: Nth Follower Vehicle in AL VQ: Velocity Response of vehicle i
I
I Rq: Range Sensor of vehicle i

DB: Leader Data Base
i

Figure 13: Exit maneuver: system model

vsr : “virtual” lateral sensor response. This component is used to maintain a constant leader
sensing component in the AL, even though platoon leadership may dynamically change.

Rr : vehicle range sensor response. This component senses whether an exiting vehicle is a leader
in the TL. The range sensors of the various vehicles also need to be modeled in a way that
no two vehicle responses are contradictory.

In the transition lane, vehicles whose distance to the gate might interfere with the exit maneuver
are modeled as a variable within the lateral sensor response of the exiting vehicles. This variable
is non-deterministically chosen to be “vehicle too close” or “vehicle OK distance”.

1.5 Formal Specification and Verification of the Exit System

The untimed formal specification of the modified system is given in Appendix B. The desirable
behavior of this system (without timing constraints) is modeled by the L-automaton Tusk A,
which checks for the behaviors 1 through 4 listed above.

In order to guarantee that this system’s specification is amenable to analysis, we have made the
following simplifications:

l Only three vehicles are modeled on the AL, and

l only four gates at most are modeled.

19

1.6 Induction Proof for the Exit System

Similar to the entry maneuver, we will prove that the exit maneuver presents the desirable prop-
erties listed in section 1.4. In order to extend the proof to an arbitrary number of X; vehicles,
once again we apply induction methods explained in section 1.3. In order to proceed with the
induction proof, we fix the number of gates to three.

The exit system, parametrized by the number of follower vehicles N, is given by:

The processes of the exit system, interconnected in a star topology, communicate with the hub of
the star, the L-process DB. Similar to the entry system, the hub of the star has variables which
depend upon a parametrized number of processes N. Because the number of processes grow
without bound, and because a hub of a star accumulates information from other N components
in the system, it is possible that no invariant independent of N exists. In order to apply induction
methods to the exit system, one needs first to determine whether this system is linearizable.

1.6.1 Linearization of the Exit System

By inspection, one can see that the exit system is linearizable because:

(u) the variables of Pi, for i > 0, are of bounded computation, and the number of variables
does not depend upon the number of follower vehicles N in the system, hence of U(l) as
required by theorem 1 .l;

(b) the number of variables of PO depends upon the number N of follower vehicles in the system,
hence of 0(N);

(c) the variables of PO are either of bounded computation, or associative. One example of an
associative variable is the output “exit-info”, which the leader LAL maintains in order to
know whether the followers have requested exit. This variable is associative, because the
number of vehicles which request exit can be computed recursively in the following way.
Each follower vehicle maintains its own information about exit request. The last follower
propagates its exit request information to the vehicle ahead of it, which propagates this
information, plus its own exit request information, to the next vehicle. The propagated
number of exit requests that reaches the leader LAL is precisely the same number that
the leader would be able to determine;

(d) the number of variables in PO that depend upon the number of follower vehicles in the system
is bounded.

20

By applying the construction suggested in the proof of [5, Theorem 3.11, we have that the linearized
exit system is given by:

p,, = tiB@Vc,,

Pi = Xi@Sri@Vri@Rri,i > 0 .

The process & has a modified DB process, as follows:

l All variables which were arrays in PO are changed into a scalar variable. These new
variables are assigned the value of the variable with the same name in @N, which is the
propagated value in range N, * . . , 1.

l The array msgfromX[cars] needs to be split into several variables. To each value in the
domain of this array corresponds a variable which represent the number of vehicles in the
range that have sent a message with the same value. These variables are assigned to the
propagated value of &T;

l The variables msg-to-X, toX, gate-DB, assign-DB are removed, because the vehicles Pi
assign themselves to the gates.

l Variable msg-to-C is removed, because vehicles request the neighbor downstream to close
up in AL or in TL, or to take over leadership.

l The variable exiting-cars is removed, because it becomes redundant (with exit-DB) in the
linearized system;

l The variables 1AL and I-TL are changed to leader-index41 and leader-index-TL, and as-
signed to the value of the variables of same name in PN.

Each process pi);, i > 0, has several new state and selection variables:

l A new state variable exitinfo that remembers whether this vehicle has selected itself for
exit, and a new selection variable exit-DB that copies the values of the new state. Also,
another new variable is used to propagate the number of vehicles in the range N, . . . , i + 1
that have selected themselves for exit.

l New propagation variables:

- waiting-exit, which adds to the propagated value from the i + lth vehicle, whether the
ith vehicle is waiting exit;

- index-in_TL, which discovers the most recent vehicle that exited to the TL;
- index-abort, which discovers the index of the vehicle that aborted last;

- index-next-vehicle, which discovers the index of the vehicle next to exit.

l A new local variable gate-assignment that assigns a gate based on the assignment of the
previous vehicle.

l A new local variable msg-to-C that indicates to vehicle Pi-1 when it needs to close up in
AL, or in TL, or to take over leadership in AL. Note that if vehicle Pi-1 is not in the
same lane as Pi, Pig1 is required to propagate this request downstream.

l A new local variable msgfromC, that indicates that vehicle Pi-1 did complete the action
requested via msg-to-C.

We have made the assumption that PO always communicates with the end of a string of processes,
i.e., for a system with N processes, it always communicates with &T. We thus view the leader in
the automated lane followed by the vehicle which has the highest index. The tail of the platoon
is the vehicle with the lowest index.

The “next” operator applied to the new components in Pi;, and pu is defined as follows:

4(xi) = zi+l,
$(tiB) = o^B.

We propose an invariant given by:

The idea behind the invariant is that all the possible behaviors of a platoon with N > 3 vehicles,
for a fixed number of gates, is representable by a platoon with three vehicles, the N, N - 1, and
N - 2 vehicles.

The induction base is given by:

The language containment of the induction base is trivially satisfied because the language of pr
is larger than the language of pr.

The “next” operator for Pi is given by: 4(Pi) = Fi+r. We thus have that the inductive step is
given by:

Although one may submit the inductive step to verification by the tool Cospan, it is clearly
satisfied because:

22

l the language of @J is larger than the language of p2;

l the other processes in the right hand side of the equation are the same as the ones in
the left hand side. The additional process in the left hand side can only constrain the
language of the left hand side, thus guaranteeing language containment.

With the induction step satisfied, we can conclude that, for an arbitrary N 2 3:

Appendix B documents the verification that Q3 performs the task T defined in section 1.4. for
any i > 3, Q; performs the task T because the processes of Qi are the same as the processes of
Qs, i.e., Pi is equal to Ps of Qs, PtL1 is equal to Pz of Qs, Pi:2 is equal to Pr of Qs, and both
share PO. Thus we may conclude that the exit maneuver is correct for any number of follower
vehicles, i.e.,

cL(T),V35 k 5 N .

1.6.2 Timed Formal Specification and Verification

Timing information for the exit maneuver includes lower and upper bounds for:

l the time interval for the change lane maneuver;

l the time interval for acceleration or deceleration of exiting vehicles;

l the time interval for the leader to reach each turn marker;

l the time interval for followers to reach the turn markers;

l the time interval for the close-up after a vehicle leaves;

l the ime interval for vehicles to reach the next XML.

Similar to the timed specification of the entry maneuver, the desirable behavior of the timed exit
maneuver system can be modified to incorporate bounds on delays. At the time of this writing,
timing constraints were largely unknown, and thus the specification of the exit maneuver with
timing information will be the subject of future research.

23

References

[I] P. Varaiya. AHS entry/exit implementation. AHS Precursor Systems Analysis contract report.
Submitted to Federal Highway Administration, December 1994.

[2] A. Hitchcock. Organization of exit and entry on an automated freeway. Technical Report 8,
PATH MOU 19, Occasional Papers, Institute of Transportation Studies, University of Cali-
fornia, Berkeley, 1993.

[3] S. R. Sachs. Formal Verification of Discrete Event and Hybrid Systems. PhD thesis, University
of California, Berkeley, Berkeley, California, June 1995.

[4] R. P. Kurshan and K. McMillan. A structural induction theorem for processes. In Proceedings
of 8th ACM Symp. on Principles of Distributed Computing, pages 239-247, 1989.

[5] R. P. Kurshan, M. Merritt, A. Orda, and S. R. Sachs. A structural linearization principle
for processes. In Proceedings of Computer-Aided Verification, 5th International C onference,
CAV’93, Elounda, Greece, pages 491-504, June 1993.

[6] R. Alur, R. Itai, R. P. Kurshan, and M. Yannakakis. Timing verification by successive ap-
proximations. In Lecture Notes in Computer Science, volume 663, pages 137-150, 1993.

25

2 Appendix A

This appendix contains the latest run of the verification tests for the entry maneuver, and the
COSPAN code of the Entry Maneuver discussed in Section 1.2. Please refer to Figures 6, 7, 8,
and 9.

Tue Sep 13 18:32:27 PDT 1994
m o o n l i g h t [SunOS 4.1. I sun4cl : /tmp_mnt/net/automout/surO/varaiya/ssachs/private/research.
cpn : cospan -DN=2 -DOP=l -DTeventually entrylast.sr

cospan: Version 8.8.2 (AT&T-BL) 22 Apr 1994
+ sr -DN=2 -DOP=l -DTeventually entrylast.sr -0 entry1ast.c
entrylast.sr: Tue Sep 13 18:31:59 1994
./l.h: Sun Sep 4 14:50:17 1994
27 selection/local variables
26 bounded state variables: 8.84e18 states
0 unbounded state variables
0 boolean cysets
2 free selection/local variables: 6 selections/state
8 pausing processes
4 n o n - d e t e r m i n i s t i c (n o n - f r e e) s e l e c t i o n / l o c a l v a r i a b l e s
16 selections/state (maximum)
96 total selections/state (maximum)

sr: 8 pausing processes
+ cc -0 entrylast.an -I/home/surO/varaiya/kurshan/include entry1ast.c /home/surO/varaiya/ku
+ ./entrylast.an
./entrylast.an: Synchronous model
entrylast.an: Initialization complete.
1 initial state.
entrylast.an: Search complete.
47323 states reached.
47323 states searched.
4281 DFS trees generated.
4528 nontrivial SCC's generated.
133944 edges transversed:
10766 plus, 43042 tree, 1014 self, 58 forward,
3739 back, 1785 cross-intra, 73540 cross-inter.
778602 resolutions made.
2+12 boundary frames allocated.
290.133 cpu seconds
entrylast.an: Task performed!

cp.sr cp.sr

proctype Check-post (LTL, X:proc) /* &~uJ y_o& ma c 11 i n e */

import LTL, X
selvar #:(see-vehicle, see-no-vehicle, arc-you-aulo, allow-entry,

stop-entry)
stvar $:(idle, active, allow-entry)
cyset {idle}
init idle
trans

Checkgost()

idle {see-vehicle, see no-v&i&}
->active : # = SC‘2 vehicle-
->$: else;

/*_A11 v e h i c l e s w h i c h a r e t o e n t e r w i l l set a t t h e same
t i m e t h e message’areyou a u t o ’* /- - - - - - - - - - - - -

active {areyu~auto)
->&m-entry : (LTL.#=yes-auto)+((+b i n O..range](

1 ? X[i].#=yesauto 1 O))>O)
->$: else;

allow-entry {allow-entry)
->idle : LTL.#=idle
->$: else;

end /* Chec k-p?g */

M o n_ _- Sep 12 11:54:50 1 9 9 4- - - - - - - - - - - - - - Paxe 1 ofg.sr- - - - - - -

27

proctype Sensor (LAL, SL, LTL:proc) /* JEtry s en SOI */- - - -

import LAL, SL, LTL
selvar #:(no-space, space, I-found-space, what-is-your-id)
stvar $:(idle, no-space, space, found-space)
s tvar L id : (ml, id, no-id)
asg” L-id -> id- 7 (LAL.#=id) (

no-id ? (LAL.#=cmptyspsce) 1
nul 7 ($=idle) 1
L id

Sensor()

selvar leader id: (nil, id, no-i-d)
asg” leader>d:= L-id
selvar x:(0.,2)
asgn x:={O,1,2}
stvar space-size: (0..3)
asgn space-size -> 1 ? (x=O)*(#=spaC

2 7 (x=l)*(#=space) I
3 ? (x=2)*(#=space) I
0 ? (&no-space) I
space-size

selvar how-much-space: (0..3)
asg” how-much-space:= space-size
cyset (“o~space)
init L id:=nul, space-size:=0
init idle
trans

,c) I

idle {no-space}
->no-space : SL.# = wake-up-sensor
->8 : else;

no-space {no-space, space)
->space : #=space
->$: else;

space {what-is-your-id)
->foound-space : (LAL.#=id) + (LAL.#=empty-space)
->$: else;

found-space {I-found-space)
->idle : LTL.#=idlc
->$: else;

end /* E n t r y S e n s o r * /

M o n Sg 1 2 11:55:21~)_9_4- - - -

28

Pase 1 o f es.sr

proctype Light (LTL, ES:proc) /* l i g h t s t o p machine */ Light0

import LTL, ES
sclvar #:(red, green, wake-up-sensor)
stvar $:(red, active, green)
stvar leader id: (nul, id, no id)
asgn IeaderIid-> ES.leaderid ?(ES.#=I-foundspacc)*(lcader-id = nul)

1 nul ?($=rcd)
1 leader-id

selvar how-much-space: (0..3)
asgn how-much-space:= ES. l~ow~mucl~~spacc
init l e a d e r id:=nul-
init red
tram

red {red)
->active : LTL.# = I-am-here
->$: else;

active {wake-up-sensor)
->grcen : ES.#=I-Cound-space
->$: else;

green b-1
->red : LTL.#=accelerate to enter
->$: else;

end /* _Lti& */

M o n 12 11:55:08 1 9 9 4- - - Sep- - - - - - - - - - - - - -

29

P a g e 1 o f sl.sr- - _---__

lsl.sr I&r

proctype Leader-Lateral-Sensor(LTL, LAL, Vr:proc) Leader-Lateral-Sensor0
/*-$&r’s l a t e r a l s e n s o r machine: i t senses v e l o c i t y
o f t h e p l a t o o n ln_A whlth w h i c h i t i s c o o r d i n a t i n g the_ - - -
e n t r y m a n e u v e r a n d t h e t u r n m a r k e r s */- -------! - - -

import LTL, LAL, Vr
selvar #: (%, turn-marker, nothing)
selvar velocity-comparison: (velocity-correct.

velocity-notcorrcct)
asgn velocity~comparison:=

velocity-correct ? (Vr.#=Cull~vclocity) 1
velocity-not-correct

stvar $: (idle, in-cml, turn)
cyset (in_emlQ)
init idle
tram

idle WI
->in-em1
->8

: ,i;.T”-“=scce1cratc t o enter)

in-em1
->turn
->$

{%: turn-marker}

::,ff.=
turn-marker)

turn {turn-marker}
->idle : (LTL.#=idle)
->$: else;

end /* L e a d e r L a t e r a l S e n s o r ’/

. Man Sep 1 2 11:55:43 1 9 9 4 PajJe 1 o f lsl.sr- - - - -

30

lsx.sr lSX.Sr

proctype FollowerLateral_Sensor(i: integer; LTL, X, Xs:proc) Follo\~er_LateraI_Sensor()
/* f o l l o w e r s lat,eral s e n s o r machine: i t s e n s e s- - - -

_oph t h e t u r n m a r k e r s . Ve1ocit.y o f f o l l o w e r s a s thg- - - -
_approach t h e t u r n m a r k e r i s a s s u m e d t,o b e c o r r e c t- - - - --:-
because t h e i r r e g u l a t i o n la~cr i s simpl?;performlng- - - - - - - - - - - - -
f o l l o w e r l a w */

import i, LTL, X, Xs
selvar #: (%, turn-marker, nothing)
st,var $: (idle, turn)
cyset {t,urn@}
init idle
tram

idle 1”/J
->t,urn : (Xs[i] .#=ack-comewill~-me)*

(((i=O)*(LTL.#=rcach_Iralc)) +
((i>O)i(X[i-l].#=reacl~_gat,r)) +
((i>O)*(X[i-l].#=abort,)))

->$: else;

turn {W: turn-marker}
->idle : (X[i].#=idle)
->$: else;

end /* F o l l o w e r L a t e r a l S e n s o r * /

M o n Sep 1 2 11:56:03 1 9 9 4- - - - - - - - - - - - - - - - -

31

P a g e 1 o f lsx.sr_- - - - - - -

proctypc Leader-Velocity-Rasponsc(LTL:proc) Leader-V&city-Response0

import LTL
selvar #:(%, cruise, closing, closed-up, approaching,

reached-stop-light, accelerating, full-velocity,
changing, change-lane-complctc, abort)

stvar $:(cruising, close-up-in-AL, approach-light, waiting,
accelerate, ready, change, abort)

cyset {close-up-in-AL@}, {approach-light@}, {accelerate@),
(change@}

init cruising
tram

cruising {cruise}
->approach light
->&se-upjn-AL

: LTL.# = approach stop-light
: LTL.# = close-up-in AL

->$: else;

closeup in AL {closing: closed up}
->cruising
->$

: ;/St= closed-up) -

approach-light {approaching: reached-stop-light)
->waiting
->$

: dl6~=rcached_stop_lighl)

waiting {reached-stop-light}
->accelerate : LTL.# = accelerate to enter- -
->$: else;

accelerate {accelerating: full-velocity)
->ready : (#=full-velocity)*(LTL.#jabort)
->abort : (LTL.#=abort)
->$: else;

ready wo)
->change : (LTL.#=ok-to-change)
->abort : (LTL.#=aborl)
->$: else;

change {changing: change-lane complctc)-
->cruising : # = change-lane-complete
->$: else;

abort {abort)
->cruising : true;

end /* L e a d e r V e l o c i t y Response */

M o n 12 11:56:29 1 9 9 4- - - -- Sep - - - - - - - - - - - -

32

PaAe 1 o f vrl.sr_- - - -__-

WX.Sr

proctype Follower_Velocil.y_Response
(i: integer; X,Vr, Vr X:proc)

vrx.sr

Followcr_Velocit.y-~Response()

import i, X, Vr, VrX -
sclvar #:(%, cruise, approaching, reachcdstoplighb,

following_lcader, changing, changc_lane:complete, abort)
stvar $:(cruising, approach-light, get-there, wa&ng,

follow-leader, change, abort)
cyset {change@), {get-there@}
init cruising
trans
cruising {cruise}

->approach light- : X[i].# = spproacll_slo~-1iglifilIt
-2s : else;

approach-light {approaching)
->wt. there : CCi>OJ*

(V~~Xil].#=resched_sl,op_light))
+((i>Ol*

i~[i-l~.#=entrycomplete))
+((i=O)*

(Vr.#=reachedsbop-light))
->$

gel-there :?za roaching: reached-stoplight}
->waiting
->$

: kl~~=reached-st,op-liglll,)

waiting {reached-stop-lighl)
->followleadcr : (X[i].# = follo~vlcader)
-xruising : (X[i] .# = ent,ry-complete)
->L : else;

follow leader
->change

{followingjeadcr)
: (X[i].#=okt.ochangc)

->abort : (X[i].#=aborr.)
->S : else;

change {changing: changelant_complete}
->cruising : # = change-lane complete-
->$: else;

abort {abort}
-xruising : true;

end /’ F o l l o w e r V e l o c i t y R e s p o n s e */

Tut Dee 12 13:53:16 1 9 9 5_-- - - - - - - - - - - - - - -

33

Paxe 1 o f vrx.sr- - - - - - -

l&r lal.sr

proctype Leader-in-AL(LTL, ES:proc) Lcadcrjn-AL()
import LTL, ES
selvar AL-option: (platoon, space)
asgn A L - o p t i o n : = platoon 1 (option = 1) 1 space

/* u p d a t e t h e p l a t o o n s i z e alter receiving entry c o m p l e t e m e s s a g e
f r o m t h e l e a d e r i n the T L */_- -_ _--- - - - - -

s t v a r nps:(0..2*N+l)
=g* nps-> pps + LTL.ncv-size ? (LTL.#=entry-complete) 1

PPS

selvar #: (%, id, empty-space, ack-entry, nack-entry, entry-complete)
stvar $: (idle, send-id, empty-space, check-busy,

wait-complete, entry-complete)
cyset {check-busy}
init nps:=pps
init idle
trans
idle WI

->send-id : (ES.#=whatjs_yourjd)*(AL-option=platoon)
->emptyspace : (ES.#=what-is-yourjd)*(AL-option=space)
->$: else;

send id
-->check busy ‘id)LIL.#=are_you-busy

->$ - : else;

empty-space {emPtYsPace)
->idle : true;

/*_n_on-deterministically i t decides t h a t i t i s b u s y or_n2&*/
check-busy {ackentry, nack-entry}

->wait-complete : #=ack-entry
->$: else;

wait complete
->entrycomplete

{%o)
: LTL.#=entry-complete

-3 : else;

entry-complete {entry-complete)
->idle : true;

e n d /* L e a d e r i n A L */

M o n Sep 1 2 11:57:48 1 9 9 4 Paxe 1 o f lal.sr

34

ltll.sr 1t11.sr

proctype Leader-in_TL (CP, Vr, ES, SL, LAL, LSr, X, Xs, Y:proc) Leader-in-TL()

import CP, Vr, ES, SL, LAL, LSr, X, Xs, Y
/* I f a f o l l o w e r i s stopped a t lhe s t o p l i g h t , t h e n i t

w i l l regond w i t h a n a c k t o thc’come w i t h m e reg_uest’.
I f i t d i d n ’t reach t h e stoykht when t h e request- - - - - - - - - - - - - - - - - - - - - -
w a s i s s u e d , then n o response w i l l b e yroduced */- - - - - - - - - - - - -

selvar invitation[N]:(come-with me, no-space-now, too-latetojoin, %)
asgn [i i n O..range]{invitation[i]:=

come-with-me ? ((($=check-busy)*(LAL.#=ack-entry)) +
($=entering))
*(i< ES.how-muchspacc) 1

no-space-now ? (($=check-busy)*(LAL.#=ack-entry))
*(i>- ES.honr-much-space) (

too-late-to-join ? ($=enterAL)+($=checkfollowers)+
($=check-adjustment)+
($=adjust space)+($=entry-complete)l

%I

stvar ppsize: (0 cars)
aagn ppsize ->

ppsize + (+[i in O..range](
1 ? Xs[i].#=ack_comc-~~itll-me 1
0))

? ($=checkbusy)*(LAL.#=ackenlrg)*
((+[i in O..range](
1 ? Xs[i].#=ack_comc-~~~itll-me (
0 1) > 0) I

ppsize
sclvar new-size: (0 ,_ cars)
-g* new-&x= ppsize

stvar gate-sensor: (space-still-available, no-space-available, %)
asgn gate-sensor->

space~still~available ? (Y.position=OI(_distsnce)*
(S=cntering)*
(LSr.#=turn-marker) 1

no-space-available ? (Y.position=too-close)*
($=entering)*
(LSr.#=turnnarkcr) 1

gate-sensor
selvar #: (%, idle, yes-auto, approach-stop-light, I-amJere,

arc_you-busy, accelerate to enter,
reach-gate, ok to change, a&xl,- -
closeup in AL, entry-complete)- -

stvar $: (idle, check-auto, active, at-stop-light. cheek-busy,
entering, proceed, reach-gate, enter-.&L, check-followers,
check-adjustment, adjust-space, abort, wait-completion,
entry-complete)

cyset {check-auto}
r e c u r reach-gate->abort
init ppsise:=O, gate-sensor:=%

T h u S~J 1 5 10:13:07 1 9 9 4 PaBe 1 o f Itll.sr

1112.sr ltl’L.sr

init idle
tram

idle (idle}
->cbeck auto : CP.#=arc_you auto
->$ -

-
: else;

/*_T_hApossibility t h a t the c h e c k rclurns a n o a u t o i s_ _ _ _ ___-- __-- - - - - - - -
n o t m o d e l e d althou~~possiblc. I n the r e a l system,2_-- - - - - 2 - - - -
v e h i c l e checkins n o - a u t o w i l l n o t b e a l l o w e d i n t h e T L */__--_ _---- -_---

cheek auto {W, Ycs~auto)
->active : #=ycs-auto
->$: else;

/*_Commands r e g u l a t i o n l a y e r jvclocity response) t o
a p p r o a c h t h e s t o p l i g h t */

aclive {approach-stop-light)
->&-stop-light : Vr.#=rcachedstop-light
->s : else;

/* 2 _ _ _ _ _ _ _ -w...-b- _ _ __-- _ --I-Y &&!!t */e n d s t h e messa *e ‘I a m hcrc’ t o the S t o
at-stoplight (I~am~here)

-xheck-busy : (ES.#=Ifound-space)*
(ES.leaderjd=id)

->entering : (ES.#=I-found space)*
(ES.lcsder-id=no-G)

->$: else;

check-busy {arcyou-busy)
->entering : LAL.#=ackentry
->$: else;

I* I--- - __-- -_ -L--- -Y- - - - - - - - -,ommands t h e re u l a t i o n l a CP t o accelerate f o r en&*/
entering {accelerate-to-enter)

->reach-gate : LSr.# = turn-marker
->s : else;

reach sate {reach-gate}
->enter-AL : (gate-sensor = space still-available)

*(LSr.velocitg_comparison=rclocilg:orrecl)
->abort : (gate-sensor = no-spscc-available)

+(LSr.velocity~comparison=velocity-not-correct)
->$: else;

abort {abort)
->entry-complete : (+[i in O..range]

(1 7 Xs[i].#=abort) 0))
= N

->9; : else;

T h u Sg 1 5 10:12:01 1 9 9 4

36

Pa,Se 1 o f 1t12.sr- - - - - - - -

1113.sr 1113.Sr

/* ?-- _ - - - - - - A---- LA- - -p--b- - - - */,ommands the re rulation lover t o than re l a n e
enter AL- {ok-to-change)

->check-followers : Vr.#=cl~angc~lanc~complele
-2 : else;

check-followers WI
->check-adjustment : (+[i in O..rangc]

(1 ? (Xs[i].# = cntercd-AL)t
(Xs[i].# = abort,) 1 0))

= N
-2 : else;

check-adjustment 1%)
->adjust-space : ES.leadcrjd=id
->wait-completion : else;

I* C-- - --__ -s---- -I-- _ -----I ti_usL z&s.!ommands re u l a t i o n l a cr to close u
p l a t o o n w i t h t h e p l a t o o n i n A L , G?q */

adjust-space (close-up-in-E.]- -
->wait-completion : Vr.#= closed-up
->$: else;

wait-completion 1%)
->entry-complete : (+[i in O..range]

(1 ? (Xs[i].#=entered-AL)+
(Xs[i].#=abort)(O))
= N

-9 :else:

entry-complete
->idle

-3

(entry-complete]
: (+[i in O..range]
(1 ? (X[i].#=cntry-complete) IO)) = N
:else;

end /* L e a d e r i n T L */

T h u Sg I.5 10:12:14 1 9 9 4 Paxe 1 o f 1t13.sr

37

fl,l.sr Ct.l.Sr

proctype Follower-in-TL(i: integer; LTL, Cl’, X, Vr-X, LSr-X, Y:proc) Follower in TL()- -
import i, LTL, CP, X, VF-X, LSr-X, Y
stvar gate-sensor: (space~still~available, no-space-available, %)
aSgIl gat,esensor-:,

space-still-available 1 (Y.posil.ion=OK-disI.ance)*
($=gowilh-leader)*
(LSr_X[i].#=t,urnmarker) 1

no-space available- 7 (Y.posit~ion=l.oo~rlose)*
($=go-wilh-leader)*
(LSr_X[i].#=t,urnmarker) 1

gate-sensor
selvar #: (W, idle, yes-auto, approach-slop-light. al.-sl.op-light,

follow leader, abort., reach gate,

stvar

cyset
RCW
init
init
tram
idle

o k tochange, entry camp&c)
5: (id?eFcheck-auto, active, at-stop-light., go-wit.h-leader,

abort, reach-gate, ent,er-AL, cnt,ry-camplebe)
{check-auto@}
reach-gate->abort

gate-sensor:=%
idle

->check auto
->$ -

{idle}
: CP.#=are_vou-aut,o

: else:
/*J?&possibility ihat 111e c h e c k r e t u r n s a n o a u t o i s-L- - - - - - - - - - ----_ -

n o t m o d e l e d althoug_hpossible. I n t,he r e a l system,_a- - - - --__ 7 - - - -
v e h i c l e c h e c k i n g n o - a u t o w i l l n o t , b e a l l o w e d i n t h e T L */- - - -

check auto- {%: yes-auto}
->active : (#=yes-aut,o) +

((i=O)*(LTL.#=yesauI.o)) +
((i>O)*(X[i-l].#=ycs-auto))

->$
/* c- - - - - - i2l- -1-- (---’ --E!se) .Eommands re pulat,lon l a ‘cr velocll 7 res

_approacb the stoPb&*/- - - - -
active {approach~stop~lighb)

-x-stop-light : Vr-X[i].#=reachcd stop light,
->$: else:

- - - - A p r - - -Sun 23 13:16:48 1995- - - - - - - - - -

38

P a g e 1 o f ftl.sr- - - - - - -

ftl2.sr rt12.sr

/* T_he f o l l o w e r i s p r e v e n t e d f r o m entry .a~ t h e same
t i m e t h a t a l e a d e r i n t w o c a s e s :-_-__-----------
1 . I t i s a t t h e stopbht bul i t d o e s n o t receive a n_ _ _ _ _ -_- --(_--_--_ - - - - - - - - - -

i n v i t a t i o n t o e n t e r w i t h t h e leader f o r l a c k o f_ _ _ _ _ _ _-_- - _ - - - - - - - - - - - -
g>~ i n t h e A L (g i v e n b y t h e ‘ES.how m u c h s p a c e ’) ;_---- - - - - - - - - - - - - - -

2 . I t i s n o t a t the stopbht when t h e l e a d e r i s_ _-__------ -------T - - - -
e n t e r i n g t h e En& M a n e u v e r Secllon.-__ - - - - - - - - - - - - - - - - -

_The f i r s t f o l l o w e r w h i c h i s p r e v e n t e d e n t r y b e c o m e s
a l e a d e r o f a n e w r o u n d . I n t h i s m o d e l we v i e w t h i s_ __-_ _-- - - - - - - _ _- - ---2
v e h i c l e a s a n e w r o u n d al thcyrocess ‘L_T_L’,th>s--_ - - - - - - - - - --_-
i s i s p o s s i b l e t o ‘f i n i s h ’ this process u n d e r t h e s e
t w o c o n d i t i o n s . */

at-stop-ligf;t ------{at_stoplight)
->gowith-leader : (LTL.invitation[i]=come-with-me)
->entry-complete : (LTL.invitation[i]=no_space now)

+ (LTL.invitation[i]=too_late-to-i&)
->$: else;

/* f-v _ _ _ _ _ -b--y- -Y- (---Y JG.P?JSe) to,ommands re vulation l a cr velocit
f o l l o w t h e l e a d e r a s i t accelcrstes t o e n t e r */

go-wit.hleader {follow-leader}
->abort : (LTL.#=abort)
->reach-gate

->$

: (LTL.#=/abort)*
(LSr-X[i].# = torn-marker)
: else;

abort (abort)
->entry-complete : true;

reaclt-gate {rcsch~ate)
->enter-AL : (gate-sensor = space-still available)
->abort : (g&c-sensor = no_space-a&able)
->$: else;

I* c- _ ___-__ A---- -I-- ----IL r-- “I.ommands t h e re u l a t i o n l a cr t o than pe a n e
enter AL- {ok-to-change)

->entrycomplete : ~~rir_X[i].#=change~lancomplete
->$: else;

entry-complete
->idle

->$

(entry~complctc)
: (LTL.#=cntrycomplctc)*
((+[k in O..range]
(1 ? X[k].#=entrycomplete I O))=N)
: else;

end /* F o l l o w e r i n TL*/~--

T h u 1 5 10:17:19 1 9 9 4- - - - S~J - - - - - - - - - - - - _P>ge 1 o f ftl2.sr

39

status.sr status.sr

proctype status(i: integer; W-X, X, LTL:proc) slalus()

import i, Vr-X, X, LTL
stvar $:(no-response, at-stop-light, ack-come-with mc, abort,-

entered-AL)
selvar #:(no-response, at-stop-light, sck-come-with-me, abort,

entered-AL)
init no-response
tram
no-response {no-response)

->at-stop-light : (Vr_X[i].#=reached_stoplight)
->abort : (X[i].#=abort)
->$: else;

at-stop-light (at-stop-light}
->ack-corn-with-me

: (LTL.invitation[i]=come-withmc)
->no-response : (X[i].#=idle)
->$: else;

ack come-with-me {ack-come-with-mc}
->entered-AL : (Xb].#=okto chnngc)
->abort : (X[i].#=abort)
->$: else;

abort {abort}
->no-response : (X[i].#=idle)
->$: else;

entered-AL {entered-AL)
:go-response : (X[i].#=idle)

: else;

e n d /* s t a t u s () */- - -

M o n Sep 1 2 11:57:17 1 9 9 4- -- -- -

40

_p>xe 1 o f status.sr

ahr all.sr

/* Ent,ry s e n s o r machine ‘f

proc ES: Sensor (LAL, SL, LTL)

/* C h e c k p o s t m a c h i n e */

proc CP: Checkgost (LTL, X)

/* _SQJ j,k& _m*d in c */- -

proc SL: Light. (LTL, ES)

/* 31, L e a d e r l a t e r a l s e n s o r f o r cnt.ry */

proc LSr: l~eader_Lateral_Scnsor(LTI,, LAL, Vr)

/*J’J L e a d e r velocit,y r e s p o n s e Car cna */- - - - - - -

proc Vr: Leader-Velocity-Response(LTL)

/* _T_L F o l l o w e r s l a t e r a l s e n s o r f o r cnlry */

proc LSr-X[i<N]: Follower_Lateral_Sensor(i, LTL, X , Xs)

/* rr, F o l l o w e r s v e l o c i t y response f o r cna */- - - - - - -

proc Vr[(i<N]: Follower_Velocit.y-~Response(i,X, Vr. Vr-X)

/* _T_L L e a d e r p r o t o c o l m a c h i n e */

proc LTL: Leader-in_TL (CP, Vr, ES, SL, LAL, JSr, X, Xs, Y)

/*A_L L e a d e r p r o t o c o l m a c h i n e */

proc LAL: Leader-in-AL (LTL, ES)

/*_A_L r a n d o m v e h i c l e prot,ocol m a c h i n e */

proc Y: Vehicle in AL (LSr, Vr, M-X, Vr-X, J.TL)

/* TL F o l l o w e r s (_Xu) p r o t o c o l gachincs */

proc X[i<N]: Follower-in-TL(i, LTL, Cl’, X, Vr-X, IS-X, Y)

proc Xs[i<N]: status(i,Vr-X, X, LTL)

ES

CP

SL

LSr

Vr

LSr-x

vr-x

LTL

LAL

Y

X

XS

-Wed JunAl 08:12:06 1 9 9 5- - - - - - - - - -

41

P a g e 1 o f all.sr- - -_ - - - -

#if Teventually monitor eventually-enter
import S-LTL, SLAL, S-X
stvar 3: (zero, one, two, three)
cyset {zero}, {zero, one, two, three}
init zero
tram
zero
->one : (S~LTL.#=approach~stop~li&l~t)
->$: else;

monitorssr

eventually-enter

one
->two : (S-LTL.#=cntry-complcle)
->$: else:

two
->three : (+[i in O..range]

(1 1 S_X[i].#=entry_complete 1 0))
=N

->$: else:

three
->zero : (S-LAL.#=entry-complete)
->$: else;

end /* eventually e n t e r */ #endif- - - -

collisionmonitor collision: STOP(((S-LTL.$=entcr-AL)*
(S_LTL.gate_sensor=no_space_availsblc))+
((+[i in O..range]

(1 ? (S-X[i].I=cnter-AL) *
(S_X[i].gate_scnsor=nospacc_available)

IO)) w 1

M o n Sep 1 2 11:58:47 1 9 9 4- - - - - - - - - - - - - - - - - P a g e 1 o f monitors.sr

42

3 Appendix B

This appendix contains the latest verification run for the exit maneuver, and the COSPAN code
of the Exit Maneuver discussed in section 1.4. Refer to figures 10, 11, 12, and 13.

/* This run specifies that all followers request exit */
/* Runtime parameter x=3 */

Fri Aug 19 01:07:46 PDT 1994
moonlight [SunOS 4.1.1 sun4cl: /tmp-mnt/net/automout/surO/varaiya/ssachs/private/research.
cpn : cospan -Dfollowers=2 -Dgates=2 -Dx=3 exit8.sr

cospan: Version 8.8.2 (AT&T-BL) 22 Apr 1994
+ sr -Dfollowers=2 -Dgates=2 -Dx=3 exit8.sr -0 exit8.c
exit8.sr: Fri Aug 19 01:07:21 1994
./l.h: Thu Aug 4 15:19:31 1994
64 selection/local variables
45 bounded state variables: 6.54e28 states
0 unbounded state variables
0 boolean cysets
3 free selection/local variables: 8 selections/state
4 pausing processes
0 non-deterministic (non-free) selection/local variables
1 selections/state (maximum)
8 total selections/state (maximum)

sr: 4 pausing processes
+ cc -0 exit8.an -I/home/surO/varaiya/kurshan/include exit8.c /home/surO/varaiya/kurshan/li
+ ./exit8.an
./exit8.an: Synchronous model
exit8.an: Initialization complete.
1 initial state.
exit8.an: Deadlock at 37(26).
exit8.an: Search complete.
194 states reached.
194 states searched.
2 deadlock states reached.
10 DFS trees generated.
19 nontrivial SCC's generated.
348 edges transversed:
9 plus, 184 tree, 26 self, 8 forward,
7 back, 0 cross-intra, 114 cross-inter.
2112 resolutions made.
l+l boundary frames allocated.
1.23333 cpu seconds

43

exit8.a.n: Task performed!

/* This run specifies that only the first follower requests exit */
/* Runtime parameter x=2 */

Fri Aug 19 00:53:19 PDT 1994
moonlight [SunOS 4.1.1 sun4cl: /tmp,mnt/net/automout/surO/varaiya/ssachs/private/research.
cpn : cospan -d -Dfollowers=2 -Dgates=2 -Dx=2 exit7.sr

cospan: Version 8.8.2 (AT&T-BL) 22 Apr 1994
+ sr -Dfollowers=2 -Dgates=2 -Dx=2 exit7.sr -0 exit7.c
exit7.sr: Fri Aug 19 00:53:10 1994
./l.h: Thu Aug 4 15:19:31 1994
64 selection/local variables
45 bounded state variables: 6.54e28 states
0 unbounded state variables
0 boolean cysets
3 free selection/local variables: 8 selections/state
4 pausing processes
0 non-deterministic (non-free) selection/local variables
1 selections/state (maximum)
8 total selections/state (maximum)

sr: 4 pausing processes
+ cc -0 exit7.an -I/home/surO/varaiya/kurshan/include exit7.c /home/surO/varaiya/kurshan/li
+ ./exit7.an -d
./exit7.an: Synchronous model
exit7.an: Initialization complete.
1 initial state.
exit7.an: Search complete.
489 states reached.
489 states searched.
27 DFS trees generated.
29 nontrivial SCC's generated.
859 edges transversed:
34 plus, 462 tree, 37 self, 8 forward,
16 back, 8 cross-intra, 294 cross-inter.
5368 resolutions made.
l+l boundary frames allocated.
3.03333 cpu seconds
exit7.an: Task performed!

/* This run specifies that the leader and the second follower request exit */
/* Runtime parameter x=1 */

Thu Aug 18 19:09:43 PDT 1994
moonlight [SunOS 4.1.1 sun4cl: /tmp_mnt/net/automount/surO/varaiya/ssachs/private/research.
cpn : cospan -Dfollowers=2 -Dgates=2 -Dx=l exit6.sr

cospan: Version 8.8.2 (AT&T-BL) 22 Apr 1994
+ sr -DfolIowers=2 -Dgates=2 -Dx=l exit6.sr -0 exit6.c
exit6.sr: Thu Aug 18 19:09:10 1994
./l.h: Thu Aug 4 15:19:31 1994
63 selection/local variables
45 bounded state variables: 6.54e28 states
0 unbounded state variables
0 boolean cysets
3 free selection/local variables: 8 selections/state
4 pausing processes
0 non-deterministic (non-free) selection/local variables
1 selections/state (maximum)
8 total selections/state (maximum)

sr: 4 pausing processes
+ cc -0 exit6.an -I/home/surO/varaiya/kurshan/include exit6.c /home/surO/varaiya/kurshan/li
+ ./exitg.an
./exit6.an: Synchronous model
exit6.an: Initialization complete.
1 initial state.
exit6.an: Search complete.
281 states reached.
281 states searched.
16 DFS trees generated.
20 nontrivial SCC's generated.
504 edges transversed:
15 plus, 265 tree, 28 self, 6 forward,
8 back, 0 cross-intra, 182 cross-inter.
3128 resolutions made.
l+l boundary frames allocated.
1.91667 cpu seconds
exit6.an: Task performed!

proctype Vr (i:inleger; V: proc) /* velociiy response m a c h i n e f o r exitw)

import i, V
selvar #:(%, changing, CL-complete, CL-abort, accelerate, decelerate,

gap-closed, aligned-with-b-minus-l, aligncdvitll-bglus-1)
stvar $:(cruising, close-up, check-conditions. change,

abort, align-with b minus-l,
align-with-bglul-c)

selvar monitor_TL: (vehicle-too-close, vclliclc-TIC-distance)
asgn monitor-TL:= (vchicletoo-close. vclliclc_OI(-~listancc)

init cruising
cyset {close-up@), {changeQ}, {align-with-l~_minus_l),

{align-with-b-plus-l)
trans

cruising I%1
->close-up : (V.#=close-up)
-xheck conditions : (V.#=ok-to-change)
->alignjith-b-minus-1: (V.#=align-~~itlt-b-minus-l)
->align-with-b-plus-1 : (V.#=align-with-b-plus-l)
->$

ClOSf?-Up
->cruising
->$

check-conditions
->change
->abort

change
->cruising
->$

abort
->cruising

align-with b minus-l- -
->cruising
->$

align-with-Qlus-1
->crusing
->$

: else;

WI
: (monitor_TL = vellicle-~I(_distance)

: (monitor_TL = vehicle-too-close);

(changing: CL complctc)
: # = CL-conYplcle

: else;

{CL abort}
: t,r;e;

{decelerate: aligned_witl~~b_minusl)
: i/s? = aligned~~~itl~~l~_minus_1)

(accelerale: aligned-wilh b plus-l}- -
: ;{s$ = aligned-with-b-plus-l)

W e d 14 13:17:49 1 9 9 4- - - Se.1- - - - - - - - - - - - - -

46

lsv.sr lsvsr

proctype Sr-X(i:integer) sr-X()
/* 3’s l a t e r a l s e n s o r machine: fi=nscs w h e n a X v e h i c l e- - - - - - - - - - - - -
r e a c h e s thegate marker. Sensin$&&Q] d e p e n d s o n s e n s i n g- - -
&;_A, _a_n_d sensing&L>@ depends o n scniing foL_Xp]. */- -

import i, Virtual-Sr, XSr, X, Info, ME
selvar #: (%, gate-marker, first-turn-marker, second-turn-marker)
stvar $: (nothing, see-gate, waitqatc. gate)
cyset {gate@)
RCUI gate->nothing
init nothing
tram

/* Oily --P-- - - - - - A-- - - - - - -I- - -------Iex ects t o s e n s e a rate after l h c CUP i n f r o n t alread
s e n s e d i t */

nothing WI
->see-gate : (Virtual-Sr.#=scesate)
->$: else;

see-gate 1%)
->waitJate :

((Virtual-Sr.#=gate-marker)*(i=O)) t
((XSr[O].#=gate_marker)*(i=l)) +
((XSr[l].#=gatc_marker)*(i=2))

->8 : else;

/* G a t e c a n n o t b e sensed b e f o r e X[il i s r e a d y t o s e e i t */
waitsate {%I
->gate : ((X[i].#=wait-GM)*(Info.nex(toexit=i)) +

(Info.msg~to~X[i]=no~exit~gatc) +
((Infoassign-DB[i]=exil-assigned)*
(Infonext to exi t+))

->$: else; - -

gate {gate-marker}
->see-gate : (Virtual~Sr.#=see~gate)*(ME.#jcxit~complete)
->nothing : (ME.#=exit-complete)
->$: else;

end /* _SrX *I

W e d Sg 1 4 13:20:04 1 9 9 4

47

Pase 1 o f lsv.sr- - - - - - - -

p r o c t y p e SP()/* Vir tua l la te ra l sensor machine : i t , senses w h e n a v e h i c l e- - - - - - - - - - - - -
reaches the XMS sect.ion and the ga1.c markers */

import Info. XSr. M E
selvar
s t,var

selvar
=g*

stvar
asgn

#: (“/b, seeLgat,e, gate marker, XMSsection reached)
$: (nothing, wait-exitinitiate, waitsal.c, gate,

wait-completion)
g a t e s - s e e n : (0..4)
gates-seen:= seen

cyset,

seen: (0..4)
seen-> (seen + 1) ? ($=~vait,_gat.e)*(#=see_gale) 1

0 ? (S=nothing) I
seen

{not,hing@}, {wait-gat,eQ)
wait-completion -> no&q, gale->nothmg,

wva~t~ate->nothmg
init seen:=0
init nothing
trans
nothing
->wait-exit-initiate

{%: XMS-section-r,eachcd}

->$
: el;e{#= XhlS_sect,lon-reached)

wait exit initiate
->Gitjie

{%I
: (ME.#=exitjnil,iat,e)

->$: else;

wait-gate
->nothing
->gate
->$

{%:see-ga1.e)
: (ME.#=cxit-complete)

::g=
see_gate)*(~lE,#=jcxitcomplet.e)

/* i t c a n o n l y s e e a n o t h e r g a t e m a r k e r , i f t.hc l a s t , v e h i c l e
h a s a l r e a d y s e e n t h i s one a n d i f there i s a n o t h e r gate */2 - - - - - - - - - - - - - -gate {gat,emarker}

->wait_gate
(XSr[2].#=gate_marker)*
(number_gates > gates-seen)*
(ME.##exit-complete)

->wait completion- : (gat.es-seen = number-gal.es)*
(ME.#=/exit-complet,c)

->nothing : (ME.#=exit-complcbc)
->fi : else;

wait, completion
->nGhing

{gate-marker}
: (ME.#=exit,-complete)

->$: else;
end /* _SJ */

S u n A p r 2 3 13:06:52 1995- - - - - - - P a g e 1 o f ls.sr- - - - - - -

Figure 14: Exit Maneuver: Lateral Sensor of the Vehicles

p r o c t y p e Rr(i: in teger) /* Jt?>se sensor response in the TL */ Rr()
import i, Info, ME
selvar sensing:(car-ahead, no-car-ahead, nothing)
stvar S:(O)
asgn s e n s i n g : = /* _N’JJI: th i s wi l l do for now, but i t i s no t correct */

car-ahead
(Info.msg~f~om-X[i]=I-~mjn_TL)*
((+[k in O..N]
(l?(Info.msg~from~X[k]=I_amjn_TL) IO)) > 1) 1

no car-ahead ?-
(Infomsg-from-X[i]=I am-in-TL)’
/* i s t h e o n l y vch~clc i n the T L */
(((+[k in O..N]
(1 ? Info.msg_from_X[k]=I-amjnTL 1 0)) = 1) +
/* or i t e x i t e d throughx?fiJ */
(Info.msg~to~X[i]=exit~atc~l) +
/* or i t e x i t e d throughgate 2 b u t n o o n e e x i t e d

through s.s&A */
((Infamsg_to_X[i]=exit_gate2)*
((+[k in O..N]
(1 ? (Infomsg-from X[k]=Iamjn-TL)*
(Info.msg~to~X[k]=e~it~ate~l) 1 0)) = 0)) +
/* or i t e x i t e d througllg?fi 3 b u t no,ne e x i t e d- - - - - -

throughj@ctc~~2*/
((Infomsg~to-X[i]=exit-gate)’
((+[k in O..N]
(1 ? (Info.msg~from~X[k]=I~amjn~TL)*
(Info.msg~to~X[k]=exit~gste~l) 1 0)) = 0)*
((+[k in O..N]
(1 ? (Info.msg~from~X[k]=I~amjn~TL)*
(Infomsg-to-X[k]=cxit_gate-2) I 0)) = 0)) +
((Infamsg-toX[i]=exit-gate-4)*
((+[k in O..N]
(1 ? (Infomsg-from X[k]=I-am-in-TL)*
(Infomsg-to-X[k]=cxit-gate-l) I 0)) = 0)*
((+[k in O..N]
(1 ? (Info.msg~rom_X[k]=I_amjn_TL)*
(Infamsg-to-X[k]=exitsate-2) 1 0)) = 0)*
((+[k in O..N]
(1 ? (Info.msg-from_X[k]=I-~mjnTL)*
(Infomsg-to_X[k]=exitqate,7) I 0)) = 0))) I

nothing

init 0
tram

: else;

W e d S e p 1 4 13:20:33 1 9 9 4- - -_ - - - - - - - - - - - - Paxe 1 o f rr.6r- - - - - - -

49

vl.sr V1.W

proctype Vehicle(i: integer) Vehicle()
import i, Info, X, XVr, XRr, XSr, Virtual-Sr, ME

selvar #: (X, idle, wait assignment, wait-GM, ok-to-change, close-up,
align-with-b-&us-l, align-~itll-b-plus-l, exit-complete)

stvar $: (idle, wait-assignment, wait-gate-marker, in-AL,
monitor-followers-in-TL, monitor-followers-in-AL,
transfer-leadership, take-over, Close-up-in-AL,
return-lead, authorize-CL, abort,
wait-reassignment, in_TL, leader_TL, followcr~~L,
wait-completion, command-close-up, update fad,
closeup in TL, align-with b plus-l, align-~~ithminus_1,
exitcon$lete)

/*A p l a t o o n h a s a l w a y s a l e a d e r (vehicle XE]) a n d t w o f o l l o w e r s- - - - - - - - - - -
JLI],~~],_which~>~ r e q u e s t e x i t . A s t h e e x i t m a n e u v e r p r o c e e d s ,
a f o l l o w e r &XL m a y b e c o m e a lea,lertA-f;nbtheieaderinAL- - - - - - - - - - - - - - - - - ____---I-------------

_m_ay b e c o m e a f o l l o w e r i n T L .
_Dy&_duction w e c a n s h o w t h a t w h a t e v e r i s t r u e f o r t h i s p l a t o o n i s-__- __--- __- -T---------_--T--
t r u e f o r aplatoon o f a n arbltraly n u m b e r o f X vehicles._ _ _-- _--- - - - - - - - - - - - - - - - - - - - -

* /

selvar next to exit
wn next-to-exit:=

:(-1, 0, 1, 2)
Info.next to exit- -

selvar msg-from-X :(I-amjn_TL, abort,
nothing,
wait-assignment, wail-reassignment,
I-am-next)

asgn msg-from x:=- from-X

stvar f rom x- :(I-amjn_TL, abort,
nothing, wait-assignment,
wait-reassignment, I-am-n&)

asgn f r o m x ->
I-am-G-TL ? &in-TL) I
abort ? (&abort)
nothing ? (&idle) I
wait-assignment ? ($=wait-assignmenl) I
wait-reassignment ? ($=~~ait_reassignment) I
I-am-next ?

((from-X = waitassignmcnl)+
(from-X = wait-reassignment)) *
(((Virtual_Sr.gates-scen=l)*

(InCoo.msgto_X[i]=e.uityate_l)) 4
((Virtual Sr.gates seen=2)*

(Info.msg~to~X[i]=exi~~ate~2)) +
((Virtual_Sr,gatcs_seen=3)*

(Infomsg~to~X[i]=exil~gatc~3)) +
((Virtual Sr.gates seen=4)*

(InCo.msg~to~X[i]=cxit~ate~4)))~
from-X

T h u Sg 1 5 10:52:59 1 9 9 4 Pa&e 1 o f vl.sr

50

vz.sr vl.sr

stvar to-C[cars] :(close-up-in-AL, close-upjnTL, takeover,
take-back-leadership, nothing)

asgn [k in O..N] {to-C[k]->
/*The l e a d e r i n A L r e q u e s t s vehicles b e h i n d

t h e e x i t i n g one i n A L l o close u p */- - - - - - - - - - - - - - -
close up in AL ?- - -

($=monitor followcrsjnAL)*
(k#i)*(k>O)*
(Infomsgfrom-X[k-l]=I-amjn_TL) I

/*The leader i n T L requests e x i l i n g v e h i c l e s
to c lose up */

close-up in TL ?
($=close-up in TL)*(k=ncxt- - to exit)*
(Info.msg~from~X[k]=I~amjn~TL) I

/*j’o~_N >2,G_econdition f o r t a k e over- - - - - - - - - - - - -
n e e d s t o s e a r c h k>=i+l u n t i l f i n d o n e k- - - - - - - - - - - - - - - - - - - - -
w h i c h c a n take o v e r leadershb */- - - - -__ - - - - - - - - - - -

take-over ?
($=transfcr-leadership)*(k=i+l)*
(Info.msg~from~X[k]jI~amjn~TL)

take-back-leadership ?
(axeturn-lead)*
(k=Info.leader in AL)- -

nothing ? (&idle) Il
to-f31 I

selvar msg-to-C[cars] :(close-up-in-AL, close-up-in-TL, take-over,
take-back-leadership, nothing)

asgn [k in O..N]{msg-to-C[k]:= to-C[k]}

s t v a r from-C :(closed-up-in-AL, closed-upjn_TL, took-over, nothing)
asgn f r o m - C - > closed-up in AL ?- -

($=close_up_in_AL)*(XVr[i].#=&npclosed)J
closed-up in TL 7
($=&se-ip>n-TL)*(XVr[i].#=gapclosed)l
took over 1
($=takc over) I
n o t h i n g?
($=idle) I
from-C

selvar msg-from-C :(closed-up-in-AL, closed-upjn_TL,
took-over, nothing)

asgn msg-from~c:= from-C

init to-C[O]:=nothing, to-C[l]:=nothing. LO-C[2]:=nothing,
from-C:=nothing, fromX:=nothing

T h u S- 1 5 10:28:10 1 9 9 4_ _ _ - _- -__--- - - - -

51

Pase 1 o f v2.sr_- - - _---_

“3.61 v3.sr

init idle
tram

idle {idle]
->waitassignment : (ME.#=cxitjniliale)
->$: else;

wait assignment
->&it_gate-marker

->in-AL

{wait-assignment)
: (i=/Info.leadcr in AL)*

(Info.msg~to~X[i]~nothing)*
(Info.msg~to~X[i]$no~e~t~galc)

: (ijInfo.lcader in AL)*- -
((Info.msg~to~X[i]=no-exi-gate) +
@f&exit DB[i]=nocxit)) *-
/* a s s i g n m e n t c o m p l e t e d */-
((+[k in O..N]
(l? Info.msg~to~X[k]jnothing) 0))
=cars)

->monitor_followersjn-AL : (i=Info.leaderjn-AL)
->$: else;

wait-gate-marker
->authorize-CL

->$

{wait-GM}
: (XSr[i].#=gale marker)*-

(Info.msg~from~X[i]=I~am~ncxt)
: else;

authorize CL
->in-TL -
->abort
->$

{ok-to-change)
: XVr[i].#=CL-complctc

: XVr[i].#=CLabort
: else;

abort {%I
->wait reassignment
->mo&r-followers in AL

: numbcrsates > Info.exiting cars
- - : (number-gates <- Info.e&ng-cars)*

(i=Info.leaderjn-AL)
->in AL- : (numbersatcs <- Info.exiting-cars)*

(i#Info.leaderjn-AL);

wait reassignment
->wait-gate-marker

{%I
: (ijInfo.lcadcr in AL)*

(Info.msg~to~X[i]jnoll~ing)*
(Info.msg-lo_X[i] jno-exit-gate)

->in AL- : (ijInfo.leadcrjn_AL)*
(Info.msg~toto)([i]=no~esit~ale)

->monitor_followersjn-AL : (i=Info.lcadcr-in-AL)*
(Infomsg-toX[iJ;jnothing)*
(Info.msg~to[[i]Jno~exil~gate)

-3 : else;

in AL 1%)

T h u 15 10:32:07 1 9 9 4_-- Sg- - - - - - - - - - - - -

52

Page 1 o f v3.sr

v4.sr v4.s

in AL
->Closc up in AL- - -

->take over

-AL)*

->cxit-complete
->$

@I
: (Info.msg~to~~~[i]=cIosc_upjn~

(from-Cjclosed up in AL)- - -
: (Info.msg-to_to[i]=lakc_ovcr)*

(from-+&ok-over)
: Info.waiting-exit=n

: else;

Close-up-in-AL
->in-AL

->waitsate-marker

->$

{closc~up}
: (XVr[i].#=gap-closed)*

(Info.msg_to_X[i]=noexil~ate)
: (XVr[;] .#=gap~closcd)*

(Info.msg~to~X[i]=/no~exit~gate)*
(Infomsg-to-X[i]=/nothing)
: else;

take over- WI
->monitor-followers in AL- - :((i=l)*(Info.msg~from~X[O]=I~am-in_TL)) +

((i=2)*(Info.msg~from~X[l]=I~am in TL))
->return-lead :((i=l)*(Info.msg-from-X[O]=abort)) +

((i=2)*(Info.msg~fro~~~X[l]=abort))
->$: else;

return-lead WI
->in AL- : (ijInfo.lcader in AL)*- -

(Info.msg_to_X[i]=no-exit~ate)
->wait-assignment : (ijInfo.leadcr-in-AL)*

(Info.msg_to_X[i]jno_exil_gate)*
(Info.msg~lo~X[i]~noLl~ing)

->$: else;

monitorfollowers in AL {%I- -
->transfer-leadership

. I

->command-close-up

: (Info.msg-from_-X[i]=I_am_next)
/* next t o e x i t i s a c t u a l l y l a s t- - - - - -

t o e x i t a t thisyoint s i n c e- - - - - - - - ---9 - -
t h e r e w a s n o time t o uydate i t
ys. S a v i n g o n v a r i a b l e s _._ */

: (Info.msg-from_X[next_to_cxit]=
I-am in TL)*- -

(true ?

-rexit-complete
->$

((next-to-exit < cars-l)*
(Info.msg~from~C:[ncxt~to~cxit+l]~

T h u SgJ,5 14:23:46 1 9 9 4- - - - -__--- - - - - P a g e 1 o f v4.sr- - - - - - - - -

v5.m

update-fail mJ1
->wait reassignment : number-gates > N
->mon%or-followers in AL : else;

/* TL ___ _ ____ __ __- __ _ - - _ --- -1 JPJ2 ‘IIS c o m m a n d s t h e Tollowcrs i n A L l o close u

command-close-up 1%)
->monitor_followcrsjn-AL : (Infoo.msg~from~~~[ncxt~to~exit+l]=

closed-up-in-AL)
->$: else;

transfer leadership {wait-GM)
->auth&e-CL : (XSr[i].# = gatcmarker)
-9 : else;

in_TL
->leader-TL
->follower-TL
->$

{%I
: (XRr[i].sensing= no-car-ahead)

: cl;?CRr[i].scnsing= car-ahead)

/* I f i t i s a f o l l o w e r i n T L i t orders lhe rcyulation l a y e r t o_->---_----
c l o s e - u p w i t h t h e v e h i c l e i n f r o n t . */

follower_TL {close~up)
->wait-completion : (XVr[i].#=gapclosed)
->$: else;

wait completion
->exitcomplete
->$

WI
: (Info.\Yaiting_cxi(=O)

: else;

1eadcrTL 1x1
->&t-complete : (Info.waiting_cxil = 0)

/* a l i g n w i t h t h e v e h i c l e i n f r o n t i f (i=_=_O) ?gd (i==_2) i s t h e n e x t
e x i t i n g vehicle */--7--

->alignwith b mmusI : (i=O)*(Info.I~lsgfrom-X[2]=I_am_next)
/* If(&A) 2nd e i t h e r (&II) _01(&-_1) ore next t o e x i t , t h e n

t h e n e x t o n e t o egt i s a v e h i c l e w h i c h w a s i n f r o n t o f t h i s--------_--T--
o n e i n A L . Abn with the~~ttleI,eIl;ndtllenexl~neiting*/

->a~~~%h~~~i&-l
_ _- _ _ _ _ _ _ _ _ - - - - - - - - - - - - - - -

: (i=l)*
((Info.msg~from~X[Oj=I~am~nest)+
(Info.msg~from~X[1]=I_am_next))

/* JVith o n l y t w o f o l l o w e r s we cannot m_q_d~$
1 . c a s e s w h i c h r e q u i r e s d e c e l e r a t i o n because t h e n e x t o n e t o

e x i t i s f u r t h e r t h a n 2 vehicles b e h i n d it- - -
Z.~a~e~which-~%e

--T-- -
a&smcnt with b - 2 because t h e n e x t o n e- - -

- tozTLi><-vehicle w h i c h w a s b e h i n d t h i s one i n A L */- -
->monitor_followersln_TL : else;

T h u S~J 1 5 14:24:30 1 9 9 4_-- - _ _ _---_- - - - - P a g e 1 o f v5.sr_ _ _------

VliX “6s .

alignvith-b-minus-~ (align-with-b-minus-l)
->monitorfollowers m T L : (XVr[i] .#=aligncd-with-b-minus-l)
->$: else;

align-with-bglus-1 (align-withb-plus-l)
->monitor-followers in TL : (XVr[i].#=aligncd~with~b~plus~l)
->$: else;

exit-complete (exit-complelc)
->idle : (l\lE.#=exit~complcte)
->8 : else;

monitor-followers in TL- - {%1
/* _Only t h e f o l l o w i n g c o n f i g u r a t i o n s a r e p o s s i b l e :

(2 1 !a (3 2 3, @ 19, (l_o), @ >)I(2 La (3 21, (2 3,
(.j 21, (LO, (4, (2). Bx.b triple (A P 9 ind~~kz de 5.z
e x i t i n g i n t h e o r d e r : lirst x, t h e n y, lhen Z. */- -

->align-with-b&s-l : ((i=l)*(Infomsg~from~X[2]=abort)*
(Info.msg~from([O]=I~am~ncxt))+

((i=2)*(Infomsg_from_X[l]=abort)*
(Info.msg,from[[0]=I~am~next))

/* a l l o t h e r c o m b i n a t i o n s o f a b o r t e d maneuvers and?
n o a c t i o n b y t h e l e a d e r i n T_L */

.ssignmen

/*~eg_ucst_acl_ose-u~ ______ _______ ------t o t h e n e w vchiclc i n T L i f t h i s v e h i c l e
c o n t i n u e s t o b e t h e leader i n T L */_ _ _ _ _ - - - - - - - - - - - -

->&se-up-in_TL : (next_toexit=2)*
(Info.msg_from[[next-tocxit]=Iamjn_TL)*
(Info.msg-from-~[nextto-exitIS
closed-up-in-TL)

/*&&s i f i t b e c a m e a f o l l o w e r */
->wailcompletu3n

--: - -‘- - - --:(xnr[i].senslng=car_allead)
->exit-complete : (Info.waiting-cxit = 0)
->$: else;

close-up in TL
->monit&-gllowersjn-TL

(%I
: (Info.msg~from~C[ncxt~to~exit]=

closed-up-in-TL)
->8 : clsc;

t l e a d s t o- - - - -

e n d /* Vehic le */- - - - -

T h u Sep I5 14:25:14 1 9 9 4_ _ _ -_ _ _ - _ _ _ _ - - - - - Paze 1 o f ~6.61- - - - - - - - -

55

dblsr dblsr

proctype Leader-info0
import X, XSr, XRr, Virtual-%, M E
stvar $: (idle, exiting, exit-complete)

Leader-info0

/*‘Jhc followingbformation i s m a i n t a i n e d b y t h e l e a d e r i n t h e- - - - -
A L a n d c o m m u n i c a t e d t o t h e l e a d e r i n t h e T L . S i n c e 1eadershG- - _-- - - - - - - - - - - - - - - - - - - - _-__
o n b o t h l a n e s mayjynamically cha_nge,&_u4_ayroctype c a n n o t b e- - - - -
_dynamically a s s i g n e d t o aproccss w e m o d e l t h i s i n f o aspart o f----a - - - - - - - - - - - - -
_aproctype w h i c h i s s e e n b y a l l v e h i c l e s , b u t o n l y u s e d byfie- - - - - - -
c u r r e n t l e a d e r s o f A L a n d T L */- - - - - - - - - - - - - - - -

/* V e h i c l e s w h i c h e n t e r e d t h e automaled hti&v_ay w e r e a s s i g n e d a n- - - - - - - - - - -
e x i t n u m b e r bytJe Network Laysr. A s a vehiclep>s_a_Link L a y e r- - - - - - - - - - - - --__
s e c t i o n i t a s k s t h e L i n k Layer:---,-----------
” W h a t i s t h e X M S n u m b e r o f t h i s s e c t i o n m y exit ?“. O b t a i n i n g- - - - - -
the r e s p o n s e f r o m t h q L i n k Layer, fieycmyare i t w i t h t h e i r
a s s i g n e d e x i t n u m b e r . I f i t m a t c h e s , t h e n t h e v e h i c l e i n f o r m s i t s
p l a t o o n l e a d e r t h a t i t requires exit i n lhe n e x t X_M_S.
Cys m o d e l t h i s p r o c e s s by_a v e h i c l e d a t a b a s e w h i c h i s- - - - - - _ _ - - - - - - - - - - -
_n,ll-deterministically s e t b y t h e L i n k Lay:r,_a_n_d_w_h&h i s s e e n b y- - - -
t h e p l a t o o n l e a d e r a n d t h e v e h i c l e s t h e m s e l v e s . */

stvar exitjnfo[cars]: (yes-exit, no-exit, nothing)
selvar exit-DB[cars]: (ycsexit, no-exit, nothing)
asgn [i i n O..N]{exitjnfo[i]->

yes-exit ? (i=O)*(arbitcr=l)*(exiljnfo[i]=nothing) +
(i=l)*(arbiter=2)*(exit infoo[i]=nothing) +
(i=Z)*(arbiter=l)*(exit-info[i]=nothing) 1

no-exit ? (i=O)*(arbiter=2)*(e$info[i]=nothing) +
(i=l)*(arbiter=l)*(exitinfo[i]=nothing) +
(i=2)*(arbiter=2)*(exitjnfo[i]=nothing) 1

exitjnfo[i] }
asgn [i in O..N]{exit-DB[i]:=exit info[i])-

selvar waiting-exit: (O..l)
wn waiting-exit:=

0 ? (+[i in O..N] (1 ?
(exit-DB[i]=no-exit) +
(((msg-from-X[i]=wait-assignment)+

(msg-from-X[i]=wait-reassignment)+
(msg-from-X[i]=abort))*
(to-X[i]=no-exit gate)) +

((assign-DB[i]&-assigned) *
(msg-from-X[i]=I-am in TL) *
(true ? ((i < cars-l) *
(msg~from(:[i+l]=closed~up~in~AL)) +
(i >- cars-l)) false)) IO))

= cars 1
1

T h u 15 14:26:29 1 9 9 4- - - - Sg - - - - - - - - - - - -

56

P a g e 1 o f dbl.61- - - _ __---_

dbl.sr db2.sr

s&a exiting-cars: (0..3)
asgn exiting-cars:=

0 ? (+[i in O..N](l ? exit-DB[i]=yes-exit 1 O))= 0 1
1 ? (+[i in O..N](l ? exit-DB[i]=yrs-exit. 1 O))= 1 1
2 ? (+[i in O..N](l ? exit-DB[i]=ycsexit 1 O))= 2 1

s&w next-to-exit :(O, 1 , 2)
win next-to-exit:= next-exiting

stvar n e x t - e x i t i n g :(O, 1, 2)
asgn next-exiting-> 0 7 (Virtual_Sr.#=gate_markcr)*

(msg~from~X[O]=I~am ncxl) 1
1 ? (Virtual_Sr.#=gste-darker)*

(msg-from_X[l]=I_am_next) 1
2 ? (VirtualSr.#=gatcmarker)*

(msg-from-X[2]=I_am-next) I
next-exiting

I* _T_h- _ -.lL- _ _e messa e s f r o m a l l vehicles i s r e c o r d e d h e r e_ _ _ _ _ _ _ _ _ - - _ _ _ _ - - *I

selvar msg-from-X[cars]:(I_amjn_TL, abort,
nothing, wait-assignment,
wait-reassignment, I-am_next)

asgn [i in O..N]{msg_from_X[i]:= X[i].msg-from-X)

/* T h e l e a d e r a l s o m a i n t a i n s a d a t a b a s e a b o u t the g a t e a s s i g n m e n t- - - -
t o h i m s e l f a n d t o t h e f o l l o w e r s . */- - - - - - - - _ - - - - - -

selvar assign-DB[cars]: (exit-assigned, exit-not-assigned)
asgn [i in O..N] {assign-DB[i]:=

exit-assigned ?
(to-X(i]=exit_gate-1) + (to-X[i]=exit-gate-2) +
(toX[i]=exitsate-3) + (to-X[i]=exit-gate-4) 1
exit-not-assigned)

T h u S~J 1 5 10:56:05 1 9 9 4

57

Paze 1 o f dbl.sr_ _ - - - - - - - -

db3.a db3.m

/* T h i s k e e p s t r a c k o f t h e vehicle a s s i g n e d t o whichga& */- - - -

selvar gate-DB[5]:(-1, 0, 1, 2)
asgn [i i n 0..4]

{ gate-DB[i]:= 0 7
((to-X[O]=exit-gate-l)*(i=l) +
(to_X[O]=exitqate2)*(i=2) +
(lo-X[O]=exitsate_3)*(i=3) +
(to-X[O]=cxit_satem4)*(i=4)) I

l?
((toX[l]=exitsate-l)*(i=l) +
(to-X[l]=exitsate_2)*(i=2) +
(to-X[l]=exill(ate 3)*(i=3) +-
(to-X[l]=exitsate-4)*(i=4)) (

2?
((to-X[2]=exit-gate l)*(i=l) +
(toX[S]=exit-gate 2)*(i=2) +
(to-X[2]=exit_gate_3)*(i=3) +
(to-X[2]=exit_gate-4)*(i=4)) 1

-1 1

T h u 15 10:56:54 1 9 9 4- - - - Sg - - - - - - - - - - - - Paxe 1 o f db3.sr- - - - - - - - - -

58

db4.sr db4.S

/* t h e g a t e a s s i g n m e n t i s i n f o r m e d t o v e h i c l e s v i a t h e a r r a y msg t o X ,
a n d r e m e m b e r e d b y u s i n g t h e staG ~,~,~,t~~*~--

selvar msg-to-X[cars]: (exit-gate-l, exit-gate-2, cxit~ale-3,
exit-gate-4, nocxit-gate, nothing)

asgn [i in O..N] {msg-toX[i]:= to X[i] }
stvar to-X[cars]: (exit-gate-l, &it gate2. cxil gate-3,

exit-gate-4, nocxit:gate, nothin;)
asgn to-X[O]->

exit gate-l- ? (exit DB[O]=ycs-exit)*
(msg-fr&X[O]=wait assignment) I

exitxate-2 ? (msg-f~om_X[O]=~~il_rcassignmenl)*
(gate_DB[2]=-l)*(number_gates >- 2) (

exit-gate-3 ? (msg-from[[O]=waitreassignment)*
(gate_DB[3]=-l)*(numbcr&ates >- 3) 1

exitsate-4 7 (msg-from_X[O]=rvait_rcassignment)*
(gate-DB[4]=-l)*(number-gates = 4) I

n o - e x i t - g a t e ? (exit-DB[O]=no-exit) +
((msg-from-X[O]=abort)*
(numbers&es <- exiting-cars)) I

nothing ? (S=idle) + ((msgfrom-X[O]=abort)*
(numbersates>cxiting cars))- I

km
a s g n to-X[l]->

exi t -ga te- l ? ((exit-DB[l]=ycs-cxit)‘(exit-DB[O]=no-exit)*
(msg~from~X[l]=wait~assignment)) +
((msg~from~X[l]=wait~reassignment)*
(gate-DB[l]=-1)) I

exitA:ate-2 ? (numberqates >- 2)*
(((exit-DB[l]=yes-exit)*(exit-DB[O]=yes-exit)*
(msg~from~X[1]=wait~assignment)) +
((msg~from~X[l]=wait~i+eassignmcnt)*
(gate-DB[2]=-1))) I

exit-gate-3 1 (number-gates > 3)*
(msg_from[[l]=wait_rcassignment)*
(gate-DB[S]=-1) I

exitJate_4 ? (numbersates = 4)’
(msg~from~X[l]=wait~rreassignmcnt)*
(gatc_DB[4]=-1) I

no-exitsate ? ((number-gates < 2)*
(exit-DB[I]=yes-exit)*
(exit-DB[O]=yes-exit)’
(msg-from([l]=wait-assignment,)) +
((msg-from_X[l]=wait_rcassignmcnt)*
((+[i in 1..4](1 7 gate-DB[i]j-1 I 0))
= number-gates)) +
((msg~from~x[l]=abort)*
(numbersatcs <- exiting-cars)) +
(exit-DB(l]=no-exit) I

nothing ? (kidlc) + ((msg-from_X[l]=abort)*
(numbersatcs > exiting-cars)) I

to-w1

_T_h_u_S= 1 5 10:59:24 1 9 9 4

59

P a g e 1 o f db4.sr

db4.sr db4.sr

/* t h e g a t e a s s i g n m e n t i s informed l o v e h i c l e s v i a t h e a r r a y m s g t o X ,- - ---__ - - - - -_
a n d remembered b y u s i n g t h e s t a t e v a r i a b l e t o X . */- - - - - - - - - - - - - - - - - - - - - - -

selvar msg-to-X[cars]: (exit-gate-1, exit-gate-2, exitxate-3,
exitsate-4, no-exit-gate, nothing)

asgn [i in O..N] {msgto-X[i]:= to X[i]]
stvar to-X[cars]: (exit-gate-l, exit gale-2, exit gate-3,

exitxate-4, no-exit>ate, nothing)
asgn to-X[O]->

exit-gate-l ? (exit-DB(O]=yes exit)*
(msg-from-X[O]=&t assignment) I

exit-gate-2 ? (msg-from-X[O]&&reassignment)*
(gate_DB[2]=-l)*(number_gates >- 2) (

exit-gate-3 ? (msg~from([O]=wait~reassignment)*
(gate_DB[3]=-l)*(number-gates >- 3) I

exitsate- ? (msg_from_X[O]=wait_reassignment)*
(gate-DB[4]=-l)*(numbersatcs = 4) I

no-exi t -gate ? (exit-DB[O]=no-exit) +
((msg-from-X[O]=abort)*
(numbers&es (exiting cars)) I
1 (&idle) + ((msg-from-X[O]=abort)*

(numbersates>exiting-cars)) I
nothing

to-w4
a s g n t o - X [l] - >

exit-gate-1 ? ((exit-DB[l]=yes-exit)*(exit-DB[O]=no-exit)*
(msg~from~X[1]=wait~assignmcnt)) +
((msg~from~X[l]=wait~reassignment)*
(gate-DB[l]=-1)) I

exitsate- ? (numbersates > 2)*
(((exit-DB[l]=yes&it)*(exit-DB[O]=yes-exit)*
(msg~from~X[l]=wait~assignment)) +
((msg~from~X[l]=wait~reassignment)*
(gate-DB[2]=-1))) I

exit-gate-3 ? (number-gates > 3)*
(msg~from~X[l]=wait~rrcassignment)*
(gate-DB[B]=-1) I

exitsate- ? (numbersates = 4)*
(msg~from~X[1]=wait~rreassignrnent)*
(gatepB[4]=-1) I

no-exit_gate ? ((numberdates < 2)*
(exit-DB[l]=yes-exit)*
(exit-DB[O]=yes-exit)*
(msg-from-X[l]=wait assignment)) +
((msg-from-X[l]=waiT-reassignment)*
((+[i in 1..4](1 ? gate-DB[i]$-1 (0))
= number-gates)) +
((msg_from_X[l]=abort)*
(number_gates <- exiting-cars)) +
(exit-DB[l]=no-exit) I

nothing ? ($=idle) + ((msg_from_X[l]=aborl)*
(numbersates > exiting-cars)) I

to-m

_T_h_u_sg 1 5 10:59:24 1 9 9 4

59

P a g e 1 o f db4.sr- - - - _---__

db5.sr db5.sr

asgn to-X[2]->
exi t -ga te- l ? ((exit_DB[2]=yes exit)*(exit-DB[l]=no-exit)’

(exit-DB[O]=noexil)7
(msg-from-X[2]=wait assignment)) I

exitsate 2 ? ((exit DB[2]=yes_exit)*-
((exiD@l]=yesexil)+(exit-DB[O]=yes-exit))*
((exit)B[l]=no-exit)+(exitD[Ol=no_exit))*
(number_gatcs >- 2)*
(msg~from~X[2]=wait~assignment)) +
((msg~from~X[2]=wait~reassignment)*
(gate_DB[2]=-1)*
(numbersates > 2)) I

exit gate 3 7 ((exit DB[Z]=yes exit)*
(exitl)B[1]=yes_exi~*(exitDB[O]=yes_exit)*
(number-gates >- 3)*
(msg-from-X[2]=wait assignmcnl)) +
((msg-from-X[2]=waiF-reassignment)*
(gate-DB[3]=-1)*
(number_gates >- 3)) I

exitsate- ? ((msg~from~X[2]=wait~reassignment)’
(gate-DB[4]=-1)*
(number-gates = 4)) I

no-exit-gate ? ((cxit_DB[2]=yes_exit)*
(exit_DB[l]=yes_exit)*(exitl3D[0]=ycs_exit)*
(number-gates < 3)*
(msg~from~X[2]=wait~assignmcnt)) +
((msg~from~X[2]=w.it~reassignmcnt)*
((+[i in 1..4](1 ? gate-DB[i]j-1 I 0))
= number-gates)) +
((msg-from-X[2]=abort)*
(number-gales <- exiting cars)) +
(exitpB[2]=no_exit) - I

nothing ? ($=idle) + ((msg-from-X[2]=abort)*
(numbersates > exiting-cars)) I

to--WI
selvar msg-from-C[cars]:(closed-up-in-AL, closed-up-in_TL,

took-over, nothing)
asgn [i in O..N]{msg-from-C[i]:= X[i].msg-from-C}

selvar msg-to-C[cars] :(close-up-in-AL, close-up-in-TL, takeover, nothing)
asgn [i in O..N] {msg to C[i]:=

close-up in AL ?- -
X[leader~in~AL].msg~to(:[i]=close~up in AL)- -

close-up in TL ?- -
X[leader i n TL].msg to C[i]=close up in TL I- -

take over ?
-X[I de a erjn-AL].msg to C[i]=lake-over- - (

nothing)

Thu S e p 1 5 10:59:58 1 9 9 4- - ----- _ _ _ _

60

P a g e 1 o f db5.sr

db6.a db6.sr

s e l v a r l e a d e r in-AL :(O,l,Z)
asgn l e a d e r - i n A L : = I-AL- -
s t v a r l-AL :(0,1,2)
asgn l-AL-> 0 ? (msg from X[O]=/-amjnTL)

1 ? (msg-from-X[OT=I-am in_TL)
I

2 ? (msg~from~X[O]=I~am~n~TL)*
I

(msg-from-X[l]=I am-%-TL)- I
l-AL

selvar l e a d e r inTL :(0,1,2)
a s g n l e a d e r - i n TL:= l_TL- -
stvar I-TL :(0,1,2)
asgn ITL-> 0 ? XRr[O] .sensing=nocsr-ahead I

1 ? XRr[l].sensing=nocar-ahcsd I
2 ? XRr[2].sensing=nocar_ahcsd
l_TL

init to([O]:=nothing, to-X[l]:=nothing, toX[2]:=nothing,
1 AL:=O, l-TL:=O,
&it info[O]:=nothing, exitjnfo[l]:=nothing.
exiteinfo[2]:=nothing, next-exiting:=0

recur e$complete->idle
init idle
trans

idle
->exiting : ME.#=exit-initiate
->$: else;

exiting
->exit-complete : ME.#=exit-complete
->$: else;

exit-complete
->idle : true;

e n d /* L e a d e r i n f o */----___-

T h u S~J 1 5 11:Ol:ll 1 9 9 4_ _ _ _ - - - - - - - - - - - - P a g e 1 o f db6.sr- - - - - - - - - -

61

me.sr mc.sr

proctype Monitors-Exit0 Monitors Exit0
/* m o n i t o r s t h e s t a r t a n d c o m p l e t i o n o f t h e e x i t m a n e u v e r . I t i s a- - - - - - - - - - -7 -f u n c t i o n o f t h e l e a d e r inA,. I f a l t e r a l l veh~clcs

e x i t , n o l e a d e r i n A L r e m a i n s the function IS s w i t c h e d_ _ - - ---1 - - - - - - - - -~-
t o t h e l e a d e r i n t h e T L . */

import X, Virtual Sr
selvar #:(%, e&in i t i a t e , exit-complele)
stvar $:(idle, mokoring, exit-complete)
recur exit-complete->idle
init idle
trans

idle m,)
->monitoring : (Virtual-Sr.# = XMSscctionrcsched)
->$: else;

monitoring {exit-initiate)
->exit complete
->$ -

: (+[i in O..N](l 7 X[i].#=exit-complete) 0)) =N+l
: else;

exit-complete {exitcomplcte}
->idlc : true;

end /* M o n i t o r s E x i t */

W e d Sep 1 4 13:20:48 1 9 9 4_ _- -_ _- - _ _ _ _ - - - - - P a g e 1 o f me.sr

62

allsr all.sr

/* TL --- - ---- -- ---A --A ~4~s L-v tielis i s u s e d t o o r d e r t h e sensin r o f t
v e h i c l e s s i n c e i t i s n o t p o s s i b l e t o d y n a m i c a l l y c h a n g e---1-- - - - - - - - - - - - - - -
t h e a s s o c i a t i o n o f s e n s o r s t o vehicles (w h a t w o u l d b e- - - - - - - - - - - - - - ---~
n e c e s s a r y i f a f o l l o w e r b e c o m e s a leader i n A L */- - - - - - - - - - - - - -

proc Virtual-Sr: Sr () Virtual Sr-

/* V e h i c l e s l a t e r a l s e n s o r machine */- - - - - - - - -

proc XSr[i<cars]: Sr-X (i) xsr

/* r e m o v e s froms:J he avior o f t h e l a t e r a l s e n s o r m a c h i n e s- - - - - - - - - - - - - - - - - - - --___
thepossibility o f f o r e v e r sensing”vehicle t o o c l o s e ” i n- - - - - - - - - - - - - ---~
t h e t r a n s i t i o n l a n e */- - - -- - - - -

proc Sr-finally[i<cars]: FINALLY((XVr 1[‘I.monitorTL=vellicle-too-close)* Sr finally
(X[il.#=ok-to change))

/*ve&icles v e l o c i t y r e s p o n s e ‘/- - - - - -

proc XVr[i<cars]: Vr(i, X[i])

/* ~a_np;e s e n s o r s */

proc XRr[i<cars]: Rr(i)

/* J’he l e a d e r s ’ i n f o r m a t i o n d a t a bases */

XVI

XRl

proc Info: Leader-info0

/*~&icles’~rotocol m a c h i n e */~ - - - - - - - - - -

proc X[i<cars]: Vehicle (i)

/* m o n i t o r e x i t */

Info

X

proc ME: Monitors-Exit0 ME

T h u Sg 15 14:33:25 1 9 9 4- - - - - - - - - - - - -

63

PaJJe 1 o f all.sr- - - - - - - -

monitorl.sr monitorlsr

/* T a s k A : a t m o s t N v e h i c l e s t a k e a n e x i t w i t h M=_Ngates). */- -

monitor Task-A: STOP(Task A
(+[i in O..N](l ? Info.msg~from~X[i]=I~amjn~TL) 0)) >-
number_gates)

I* T a s k B : Non-wquesting_vehicles d o not exit. */- -- - - _ - - -

monitor Task-B: STOP((+[i in O..N](l ? (InCaexit-DB[i]=no-exit)* Task-B
(Info.msg-from-X[i]=Iamjn-TL) 1 0))

> 0) /* T a s k C : Inter-Platoon s p a c i n g i s c l o s e d - u p a f t e r a v e h i c l e- - - - - - - - - - - -
sz&. */

I’ T a s k D:A_ny v e h i c l e w h i c h requests exit, w i l l e v e n t u a l l y e x i t */- - - - - - - - - - - -

i f Leader monitor Task-DL Task-DL
import A
stvar $: (idle, request)
cyset {idle}, {idle, request}
init idle

tram
idle
->request : (A.Leadcrexit-request = yes)
->9; : else;

request
->idle : (A.$ = Acxitcompletc)
->$: else;

e n d /* task DL */ #endif- - - -

Thu S~J 1 5 14:35:22 1923- - - - Pase 1 o f monitorl.sr- - - - - - - -

64

monitor2.w

i f Fl monitor Task DFl
-import X, A

stvar $: (idle, request)
cyset {idle), {idle, request)
init idle

trans
idle
->request : (X[O].# = exit-request)
->$: else:

request
->idle

->I

: (X[O].$ = exit-complete)*
(A.$ = exit-complete)
: else;

e n d /* t a s k DFl */ #endif- - - - -

i f F2 monitor Task DF2
-import X, A

stvar 8: (idle, request)
cyset {idle], {idle, request)
init idle

trans
idle
->request : (X[l].# = exit-request)
->$: else;

request
->idle

->$

: (X[l].$ = exit-complete)*
(A.$ = exit-complete)
: else;

e n d /* t a s k D F 2 *f #endif- - - - -

T h u__- Sg 15 14:35:09 1 9 9 4- - - - - - - - - - - - -

monilorlsr

Task-DFI

Task-DF2

Pase 1 o f monitor2.sr- - - - - - - - - -

65

