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Abstract

This is the fina report of a study of key questions relating to the interface between
the Automated Highway System or AHS and Urban Arteries or UA. Those questions are
formulated in terms of four tasks:

1. Specify physical arrangement, operational procedures for entry/exit;
2. Conceptualize functions of transfer zone between the AHS and UA;
3. Characterize interaction between AHS and UA;

4. Propose ways of controlling the interaction.

This report documents how these tasks were completed. Five different physical arrange-
ments and associated operational procedures are proposed, differing in cost, land require-
ments, and sophistication of coordination and control. The transfer zone functions as
buffer between the traffic on the AHS and UA, as a place for check-in and check-out,
and as a controller of flow into the AHS. It also provides the infrastructural elements
needed for entry and exit. The interaction between the AHS and UA is characterized by
the queues that develop in the transfer zone, the waiting times to which vehicles must
submit before they gain AHS entry, and the disruption those vehicles inflict on AHS
traffic. Lastly, control of the interaction between AHS and UA is exercised through the
coordination of entry and exit with AHS traffic and the vehicle feedback control laws that
govern the actual trgjectory of the vehicle as it enters and leaves the AHS. This study
suggests that most issues relating to the AHS/UA interface can be resolved, athough for
some configurations, sophisticated coordination and control will be necessary for smooth
and safe operation.

*Work supported by the PATH program, Institute of Transportation Studies, University of California,
Berkeley, the Federal Highway Administration Contract DTFH-61-93-C-001-99, by National Science Foun-
dation Grant ECs9417370 and Army Research Office Contract DA AH04-94-G-0026. The work reported here
is largely the work of Datta Godbole, Tony Hitchcock, Senia Sachs and Pravin Varaiya. The simulations
were carried out by Farokh Eskafi, Delnaz Khorramabadi and Ekta Singh. We also acknowledge the help of
Mireille Broucke.



1 Executive Summary

An automated highway system or AHS will be initially deployed as an “implant” on the
existing roadway network. That is, the AHS will most likely be deployed by converting one
or more lanes of existing highways, or by building a new network link. Like any implant,
the success of the AHS will depend on how well the *host” accepts the implant, i.e., how
well the AHS interfaces with the urban arterials or UA. Past AHS research a¢ PATH has
understandably been concentrated on the design and operation of the AHS in isolation. That
research has now led to a reasonably complete understanding about AHS architecture, the
design options available, and a (not yet complete) set of tools to simulate the performance
of different designs. Although much work remains to be done, our understanding has
reached a stage where we can meaningfully ask how the AHS might be deployed. (We are
concerned with deployment in an engineering sense, not with the institutional and public
policy prerequisites to deployment.)

AHS entrances are the narrow veins that feed the wide arteries of the automated lanes. If
those veins get constricted, the arteries will be starved and the AHS capacity will remain
underutilized. The stream of vehicles leaving the automated lanes debouch into narrow AHS
exits. If those exits are blocked, traffic can spill back into the automated lanes, disrupting
traffic. The design of AHS entry and exit, the management of the processes by which
vehicles negotiate their passage through them, and the coordination of that passage with
the stream on the automated lanes thus have a determining effect on the achievable traffic
flows of the AHS.

Thus key issues relating to deployment concern the AHS/UA interface. Those issues are the
subject of this report. The work presented here was funded in part by Catrans under MOU
134; greater support came from the Federal Highway Administration Precursor Analysis
Program and from the National Science Foundation.

Those key issues were formulated in MOU 134 as four tasks:

1. Specify physical arrangement, operational procedures for entry/exit;
2. Conceptuaize functions of transfer zone between the AHS and UA,;
3. Characterize interaction between AHS and UA;

4. Propose ways of controlling the interaction.

This report documents how these tasks were carried out. The work strongly supports the
conclusion that the key issues of AHS/UA interface can be satisfactorily resolved, athough
for some configurations, the interaction must be controlled in a sophisticated manner to
ensure smooth and safe entry and exit.

We now summarize our findings for each task.
Task 1

We propose five different physical configurations for entry and exit. The configurations differ
in terms of the physical layout of the “transition zone” between AHS and UA, the relative



cost, and the amount of land that is taken up by the transition zone. The operational
procedures concern the coordination between roadside infrastructure and vehicle controller,
the treatment of check-in and check-out, the role of barriers between automated and manua
lanes. (Our study does not concern check-in and check-out mechanisms.)

Task 2

The transfer zone acts as a buffer between the AHS and the UA, provides for check-in
and check-out, controls the flow from UA into the AHS (similar to “ramp-metering”), and
contains the infrastructure (sensors and communication devices) needed for the coordination
of entry and exit.

These configurations and the operational procedures are reported in P. Varaiya, Precursor
Systems Analysis of Automated Highway Systems Activity Area J-Entry/Exit Implementa-
tion Final Report, also available as a PATH Report. A revised version of the configurations
appears in S. Sachs and P. Varalya, Formal Specification and Verification of the Entry and
Exit Maneuvers, included herein. The operational procedures are also described in that
report.

Task 3

The interface between AHS and UA can be measured in terms of the queues that develop
in the transfer zone and the disruption that entering vehicles inflict upon AHS traffic. A
queuing model is proposed in Precursor Systems . . . . A more elaborate study is conducted
in M. Broucke and P. Varaiya, “A theory of traffic flow in automated highway systems”
Seventy-Fifth Annual Meeting of the Transportation Research Board, Washington, D.C.
January 7-11, 1996. These studies provide a quantitative measure of the disruption.

Task 4

The interaction between AHS and UA vehicles is determined by two sets of controllers
located in the coordination and regulation layers of the AHS architecture that PATH has
developed. (See, P. Varaiya, “Smart cars on smart roads,” IEEE Trans. Auto.Contr., vol.
38(2), 195-207, Feb. 1993.) The coordination layer controller synchronizes the movement
of the vehicles entering the AHS from the transfer zone with the vehicles on the AHS in a
way that minimizes disruption of the AHS flow. It also is used to permit safe exit from the
AHS into the transition zone. The regulation layer controller determines the feedback laws
on-board the vehicles that calculate the throttle, braking and steering inputs which govern
the trgjectory of the vehicle.

The coordination layer design is specified in S. Sachs and P. Varaiya, op cit. That report
also provides a limited verification of correctness of the design. The verification is conducted
using Cospan. It is limited because the continuous behavior is abstracted away.

The design of the feedback control laws is presented in Chapter 6 of D. Godbole, Hierarchi-
cal Hybrid Control of Automated Highway Systems, PhD Thesis, Department of Electrical
Engineering and Computer Science, U.C., Berkeley. Simulations of those procedures are
summarized in D.N. Godbole, F. Eskafi, E. Singh and P. Varaiya, “Design of entry and exit
maneuvers of IVHS,” Proc. American Control Conference, June 1994, pp. 3566-3570.
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1 Entry and Exit maneuvers

Entry and exit maneuvers depend on the physical configuration of automated highways. Five
configurations were studied in [1]. They are illustrated in Figures 1, 2, 3, 4, and 5. An
automated lane (AL) is a lane of the highway where vehicles are under automatic control.” A
transition lane (TL) is a lane where vehicles make the transition from manual control to full
automated control. The other lanes are called manual lanes (ML). The “stop sign” in these
Figures refers to a location where entering or exiting vehicles must stop. They proceed only after
permission is received from the roadside controller.

For the different configurations, different entry/exit maneuvers may need to be designed. For the
arrangement shown in Figure 1, for example, there may be multiple gates between the TL and
the AL. In order to take advantage of this, multiple entry and exit opportunities may be offered
to vehicles in the TL. In the configuration shown in figure 2, the entry/exit maneuver does not
require any processing a the coordination layer because the AL, which follows the TL, does not
have vehicles other than the ones arriving from the TL (i.e., there is no conflict between vehicles
aready in the AL and vehicles arriving from the TL). In the configuration shown in Figure 3,
only a single entry/exit gate may exist. Notice that in this configuration, the TL leads only to an
AL, and thus a failed entry maneuver requires that vehicles, which do not enter the AL, stop at
the gate. This is different from the arrangement shown in Figure 1 with one entry gate, because
there a vehicle that fails is not required to stop; it simply proceeds along the TL until a new
entrance is encountered. The configuration shown in Figure 4 is very similar to the arrangement
in Figure 1. The differences are that, in the former, there may be fewer entry/exit gates (since
they all have to fit within a distance of approximately one mile), and vehicles which fail entry
must exit the automated highway system.

‘The TL may be an entire lane alongside the AL, as in Figure 1; it may also be a very short stretch as in
Figures2-5.
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The configuration of Figure 1 is likely to require the least additional construction costs. A
vehicle will enter this highway in the rightmost ML using a currently available entrance ramp.
It will continue its journey on the fast (leftmost) manual lane. At the beginning of the highway
section named Manual-to-Automated Section (MAS), it will change to TL manually. After passing
through a check-in point, the control of the vehicle will be given to the automated control system.
All vehicles at the beginning of the highway section named Entry Maneuver Section (EMS) will be
automatically controlled. On the EMS, the vehicles will accelerate to match the speed of the AL,
and eventualy change lanes onto the AL. Those vehicles which fail to enter the AL will be sowed
down in the highway section named Automated-to-Manual Section (AMS), and their drivers will
be asked to resume manua control.

Exiting vehicles will change lanes from AL onto TL at the Exit Maneuver Section (XMS). They
will be dowed down and control will be transferred to manua drivers on the AMS. These manualy
driven vehicles will have to change lane from TL to the leftmost (fast) ML. Exit from the highway
is via the rightmost ML using the current exit ramp.

We have modeled the arrangement in Figure 1, assuming one entry and multiple exit gates, as
was suggested in [2]. The system considered in [2] does not include a stop sign, where the vehicles
stop before entering the automated section of the transition lane (EMS). However, for reasons
explained in [1], a complete stop before entering the EMS section of the TL is preferable, since it
reduces the length of the EMS section.

1.1 Entry Maneuver System

Figure 6 illustrates the system components of the entry maneuver for the configuration in Figure
1.

A closely spaced train of vehicles in the transition lane is called a pre-platoon. Vehicle X, is the
leader of a pre-platoon in the TL. Such a pre-platoon may be formed as vehicles enter the TL. A
pre-platoon with only one vehicle is caled a free agent. Vehicle X; represents any vehicle in the
TL which becomes a follower within a pre-platoon. The leader vehicle X, communicates directly



'LAL: Leader Vehiclein AL CP: Check-Point
Xp: Leader Vehiclein TL SL: Stop Light
X;: Follower Vehiclein TL ES: Sensor

Figure 6: Entry maneuver: system’s components

with each vehicle X;, and thus it can be seen as playing the role of the “hub” of a star network.
Vehicle LAL is the leader of a platoon in the AL, which communicates with the entering pre-
platoon. The check-point component CI’ executes the “ check-in” procedure: it inquires whether
a vehicle entering the transition lane is properly equipped, and either alows or stops its entry
into the automated highway system. The stop light component SL wakes up a roadside sensor,
and becomes “ green” when the sensor indicates that there is space in the AL for the maneuver.
The sensor determines when there is an inter-platoon gap in the AL which is at least as large as
the minimum space required for the entry maneuver. If a platoon is in the AL within the sensor’s
range, then the sensor communicates with it, requesting its identification number. Having sensed
a space in the AL for the maneuver, the sensor communicates this fact to the stop light. In
addition, the sensor communicates with the X, vehicle, indicating that space was found, the size
of the space, and the identification number of the leader in the AL, if one was identified. The
sensor aso gives information to the entering vehicles about the distance to the turn markers at
the gate.

The logical steps needed for the entry maneuver are given in Figures 7 and 8. These figures show
under which conditions vehicle X, forms a pre-platoon, and under which conditions Xg’s pre-
platoon enters or fails to enter the automated lane. They also show the communication among
the platoon leader (in the AL), the pre-platoon leader (in the TL), the check post, the stop light,
and the sensor components.

One of our goals is to prove that the entry maneuver satisfies the following properties with respect
to system behavior:

o A vehicle which requires entry into the automated highway, eventualy enters;

« Entering vehicles do not collide with vehicles already in the AL.

5
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Figure 9: Modd of the entry maneuver system

To that end, we have represented this system within the L-automata/L-processes framework (see
Chapter 2 of [3]). Figure 9 shows the model of the described system. Multiple layers of control
have been proposed for the automatic control of vehicles. The performance of a maneuver involves
only the first two layers-namely, the coordination and regulation layers. At the coordination
layer of control, we have specified the following L-processes. vehicles Xo, X;, and LAL, the stop
light SL, the check-post CP, and the entry sensor ES. Components are shown to communicate
as required by the entry maneuver. The regulation layer of control is modeled via the following
L -processes.

LS : lateral sensor response of vehicles in TL. Every 0.1 seconds this sensor updates the sensed
distance and velocity of the leader in the AL with which the maneuver is being coordinated.
It also senses when the vehicle is at the stop light, and when it reaches a turn marker.
The model of the lateral sensor for the followers (LS;,i =1, .., N) is dlightly different
from that of the leader(LSy) to represent the fact that a follower can only sense an object
on the highway after al vehicles in the platoon ahead of it have aready done so.

Vr : velocity response of the vehicles in TL. Similarly, the model of the velocity response for the
followers (Vr;,i=1,.-., N) is different from that of the leader(Vrg). The modeling of
events indicating that a follower approached or reached a stop light, achieved full velocity,
started or completed the change lane maneuver depends on the modeing of these events
for the leader and for all followers ahead of it.

Note that this is a closed system modd because every component requires only those inputs which
are produced by another component within the system.



1.2 Formal Specification and Verification of the Entry System

The forma specification of these components in the L-automata framework is given in Appendix
A. The desirable behavior of this system is modeled by two L-automata: no-collision and even-
tually_enters, also detailed in Appendix A. Verification that the specified system presents the
desirable behavior represented by both no-collision and eventually-enters was successful.

One source of error in protocol design is improper termination of functions. When a distributed
function, executed by asynchronous components, is not properly terminated, the distributed com-
ponents may lose “function synchrony” ;i.e., while one component exchanges messages required
by the execution of a function f;, other coordinating components may be exchanging messages
required by the execution of a function f;, f; # f;. This lack of synchrony at the function level
leads to very complex sequences of events, eventualy resulting in deadlocks. A common mistake
is to design a protocol such that only one component checks for the proper termination of a
function.

In the process of verifying this protocol, several deadlocks were found. The error traces produced
by the unsuccessful attempts, which preceded the final successful attempt, were very useful in
determining how to modify the entry protocol. Some of the detected deadlocks were the conse-
guence of a very complex sequencing of events, which could be missed in a design that was tested
only by simulation.

In order to guarantee that the specification of the entry maneuver is amenable to anaysis, verifi-
cation of the above-mentioned properties were restricted to the following:

o The number of follower vehicles is a parameter N of the specification (specified at run
time). The verification was done with N = 2.

o The sensor may find that there is space for 0, 1, 2, or 3 vehicles to enter. The size of
the space is not a parameter because it is not possible to assign an arbitrary range to a
variable in the tool used for forma verification (Cospan).

By using the tool Cospan, we have verified that the specified system presents the desirable be-
havior. Documentation of this verification is aso found in Appendix A.

1.3 Induction Proof for the Entry System

The formal verification of the entry maneuver was successful, as shown in Appendix A. However,
because of the simplifications made to the specification, the correctness proof was limited to a
pre-platoon of at most three vehicles-i.e., one leader and N = 2 follower vehicles. We would like
to extend the proof to an arbitrary number of follower vehicles. Induction methods (4] can be
applied to extend the proof in question.

The induction method proposed in [4] consists of finding a reduction for the system representation
which can be used in its place, for an arbitrary number of components. Such a reduction is referred
to as an invariant because it preserves the structure of the system’s representation. A system



with N coordinating processes is represented by the composition of its processes. The composition
of L-automata/L-process P, P, . .. Py, denoted by ®X., P, is explained in Chapter 2 of [3]. A
system S :®Z-ILP,- can be shown to perform a property T by applying induction methods, aso
explained in Chapter 2 of [3].

Applying induction methods to the system in question, we have to show that the entry maneuver
with an arbitrary number of followers performs the same tasks as the one with only two followers.

The entry system, parametrized by N, the number of followers in the transition lane, is given by:

N
S(N) = R P),
Po = XoQRQLALQRYLSe(R)Vro(RQCPRES)SL,

P, = Xi®LSi®VT'i,’L' > 0.

We now briefly describe the induction method we will use. Let a parametrized system of L-
Processes S(N) ={Fo,..., Py} be given. The output of an L-Process P; may be input to one or
more L-Processes P;,j# 4,5=1,---,N. A “variable’ of a L-Process can be its output or input.
An L-Process may use both input and output variables in order to determine its “next” state,
and consequently, its output at the next state.

Definition 1.1 [5] A variable x is of bounded computation if the number of variables upon which
its computation depends, is bounded. In particular, a variable of bounded computation cannot have
dependencies upon the number of processes in asystem with unbounded number of components.

Definition 1.2 [5] Let D denote the domain of the variables of L-Processes P,. .., P,. A func-
tion f : D™ — D is associative if there exists f;: D?*— D, for i=1,-..,n —1, such that for
zi = fi(®iy ziy1), (2n = Tn), f(2) = 1.

Definition 1.3 Let aparametrized system of L-Processes S(N) = {Fb, -+, Py} be given. If there
exists a number C such that for any finite N, the number of variables associated with S(N) is
bounded by C, then we say that the number of variables in the system is of order one, denoted
by O(1). We also say that the number of variables in the system is bounded. If the number of
variables in the system is bounded by C x N, then we say that the number of variables in S(N)
is of _order N, denoted by O(N).

A result from [5] is mentioned here without proof:
Theorem 1.1 A parametrized system of processes S(N) = {FPy,-.-,Pn} is linearizable if:

(a,) For all i > 0, every variable of F;is of bounded computation, and the number of variables of
P is 0(1),‘

(b) The number of variables of Fy is O(N);
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(c) Every variable of Fy is either of bounded computation, or is associative;

(d) The number of variables of Py not of bounded computation, is bounded.

A discussion of these conditions, an algorithm for the linearization of a system, and the proof
that a system which satisfies (a) — (d)above is linearizable is given in [5]. The reader will aso
find in [5] a detailed example of the use of this theorem in the context of distributed fault-tolerant
memory systems.

1.3.1 Linearization of the Entry System
The entry system is linearizable because:

(a) the variables of P;, for i > 0 are of bounded computation(i.e., the variables of the L-Processes
X;,LS;,V,,,i> 0 do not depend on the number of processes in the system), and the
number of variables of FP;, for ¢ > 0isof O(1), because no variable of F; is a vector which
depends upon the number of follower vehicles N in the system, thus the bound to the
number of variables of P; is given by the number of local scaar variables of F;;

(b) the number of variables of P, depends upon the number N of follower vehicles in the system,
hence of O(N);

(c) the variables of P, are either of bounded computation (i.e., they are independent of the
number of followers N), or associative, i.e, each variable z of Py can be “ distributed”
into variables zq,---, 2, of P,---, Py, by redefining the assignment of z; at F;, and by
associating to each P;a new internal variable z;, fori =0,.- ., n, caled “ propagation”
variable, such that z, = z,, z; = fi(zi, zi31), and zo = f1 (o, 21) assigns the same value to
x as the original Py does. An example of associative variable is the output “no_space.now”
generated by the leader Xo. This output is generated when an entry sensor indicates the
amount of space available in the automated lane. The leader checks the number of followers
ready to join a transition lane pre-platoon. If there is space for m vehicles, and £ > m
followers are ready, than the leader sends “ no-space-now” to followers m+1, ..., k. This
output is associative because it can be distributed among the followers by alowing the
first follower to read the entry sensor, decide if there is space for it, decrement the sensor
information if space was found, and “propagate” the updated information to the next
follower. When a follower reads the propagated sensor information and finds it to be zero,
it knows that there is no space for entry;

(d) the number of variables in Fy, which depend upon the number of follower vehicles in the
system is bounded.

By applying the construction suggested in the proof of [5, Theorem 3.11, we have that the linearized
entry system is given by

N
S(N) — P, ®((§) P).

1



The process Py has a modified leader, X, as follows:

o The variable invitation indicates to each follower whether they have been invited to join
the entering pre-platoon. In the linear case, this variable models a broadcast message
to al followers, without the value “nospace_now”. In the non-linear case, we had instead
an array invitation[N] that models point-to-point messages between the leader and each
follower;

o The variable ppsize indicates the size of the entering pre-platoon. In the linear system,
this variable is equal to a new internal variable of F,, denoted by number-of-acks. This
variable is is recursively assigned to the number of processes in the range 1, . . -, ¢, which
responds with “ack_come_with_me”;

o Every transition predicate which in Fy depends upon a range of processes, is modified
in By to depend upon new internal variables of £,, which are recursively assigned. The
new internal variables of P;, forx =1,..-, N, are. number-of-aborts, number-entered-AL,
number-entry-compl ete.

The process P, has a modified follower Xi, as follows:

o The new internal variables mentioned above are assigned in the following way:

number-ofacks = (X;;;.number_of_acks + 1) if output of X; is come-withme,
else is X4 .number_of_acks.
(Xi+1.number-of-aborts + 1) if output of X; is abort,
elseis X1 .number-of-aborts.
number-entered41l = (X;4;.number_entered AL+ 1) if output of X; is entered-AL,
elseis X;;; .number-of-aborts.
number-entered-AL = (X;yi.number_entered_AL + 1) if output of X; is entered-AL,
else is X4 .numberof_aborts.
(Xip1-number_entry_complete + 1) if output of X; is entry-complete,

number-of-aborts

number-entry-complete
elseis X;+1 .number-entry-complete.

o The predicate of the state transition at-stop-light — go-withleader is modified to:

(Xo.invitation = come-with-me) # (¢ < F'S.how_much_space)

o The predicate of the state transition at-stop-light — entry-complete is modified to:

(Xo.invitation = come-withme) * =x > ES.how_much_space) + (Xo.invitation = too-late-to-join)

o The predicate of the state transition entry-complete — idle is modified to:

(Xo.# = entry-complete) * (X;41.number-entry-complete = N —(7 + 1))

12



o Any dependence on X;_; is modified to a dependence upon X;y1;

e Any comparison i = 0 is changed to i = N, and ¢ > 0to: < N.

We anticipate that an induction invariant ¢; might be made of i system processes, such that P,
always communicates with the end of a string (or cascade) of processes, i.e, for a system with N
processes, P, communicates with Py. We thus view the leader in the transition lane followed by
the vehicle which has the highest index. The tail of the pre-platoon is the vehicle with the lowest
index i > 0.

The “next” operator for By is given by ¢(Py)=Fo, and for B;, i > 0, is as follows:

d(Xi) = Xiga,
¢(L‘S’l) = LSi+17
(]S(VT'Z) = V?'H_l .

We propose the following invariant:
Qi = QP QP-1, where
pi—l = FREE(XZ'__1)®LS,'_1 ®V7‘i_1.
Recall that the operation FREE applied to an L-process gives its trivial homomorphic reduction.
The idea behind the invariant is that all the possible behaviors of a pre-platoon with N > 2
followers is representable by a pre-platoon with only two followers. For our induction base we

choose i = 2. We thus have as our induction base a system with one leader and two followers. In
order to satisfy the induction base, we need to verify that

(P0®P2®P1)CEQ2 (P0®P2®P1)

The language containment of the induction base is trivialy satisfied because the language of B
is larger than the language of P;.

The “next” operator for P; is given by: ¢(P;)=P,1;. We thus have that the induction step is
given by

L(ARPERQAHRP) CL@Q)=L(BRAEQRP).

Although one may want to submit the induction step to verification by the tool Cospan, it is
clearly sdatisfied because:
1. The language of P, is larger than the language of Py;

2. The other processes in the right hand side of the equation are the same as the ones in
the left hand side. The additional process in the left hand side can only constrain the
language of the product in the left hand side.
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With the induction step satisfied, we can conclude that, for an arbitrary number of followers
iv Z 27

E(Po® (% ) CL@Qn).

Appendix A documents the verification that (2, performs the task T defined in section 1.2. For
any i > 2, Q; performs the task T because the processes of (); are the same as the processes of
Q2, i.e, P; is equal to P, of Qy, Pi_1 is equal to Py of 2, and both share Fy. Thus we may
conclude that the entry maneuver is correct for any number of follower vehicles, i.e,

c (P0®(®E)) CL(T),V2< k<N,
1=k

1.3.2 Timed Formal Specification and Verification

Many details were abstracted in the untimed system specification via non-deterministic outputs
or delays. Because lower and upper bounds of these delays are known, we can make use of timed
specification and verification to achieve a more detailed and accurate model. In [1], we find a
lower bound of 16.1 seconds for the time a vehicle takes to accelerate from a stopped position to a
speed compatible with the platoon in the AL at the first gate. There, we also find a lower bound
of 19.1 seconds for the time a stopped vehicle takes to accelerate to the second gate. While the
upper bounds of acceleration remain to be estimated, the wait at a stop sign is estimated to vary
in the interval [0, 10] seconds. Other timing information concerns lower and upper bounds for:

e The time a leader takes to reach the turn marker;

o The ddlay of vehicles arriving at the stop light after passing the check-in point;

o The delay of vehicles arriving at the check-in point (this needs to reflect some choice of
interarrival  distribution for the vehicles);

o The delay between vehicles in the entering pre-platoon:

— How long after vehicle x achieves a correct velocity for entry, should vehicle i+ 1
achieve the same velocity;

— How long after vehicle i sees a turn marker, should vehicle i + 1 see the turn marker;

— How long after vehicle i completes a lane change, should vehicle i + 1 complete its
change lane maneuver.

o Changing lanes;
o Reaching the next EMS;

o Timeouts for the reception of responses.
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'LAL: Leader Vehicle in AL A: Vehide in TL
| X;: First Follower Vehicle in AL

Figure 10: Exit maneuver system

Let S be a given system of L-processes. In order to add timing information to a system, one may
construct an automaton Sp, which removes the timing inconsistent sequences from the language
of the system S5, i.e, the system given by S & St is timing consistent. Such an approach is taken,
for instance, in [6]. Because timing information constrains the behavior of a system, the same
properties verified for the untimed situation hold for the timed system.

The desirable behavior of the timed system can be modified to incorporate bounds on delays. For
example, one desirable behavior is that a vehicle in the TL must either enter the AL within one
minute, or proceed in the TL in search of a new entry section. Ancther desirable behavior is that
a vehicle admitted to the automated highway system must enter the automated lane within k
minutes, or it must exit the system. The new desirable behavior needs to be properly expressed
as timed L-automata, and the timed system verified against them.

At the time of this writing, many of these delays are not yet known, thus the specification of the
entry maneuver with timing information will be the subject of further research.

1.4 Exit Maneuver System

Figure 10 shows the exit maneuver system with multiple gates.

In the automated lane, vehicle LAL is the platoon leader; vehicles Xy, ..., X, are the followers.
They al may request exit. In the transition lane, vehicle A represents a free agent that missed
its entry in the previous entry maneuver section (EMS), or a vehicle which exited recently and
which failed to leave the TL.

As the vehicles LAL, X4,. .-, X,, exit, their order in the transition lane is not necessarily the same
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as in the automated lane. Both the leader in the automated lane and the leader in the transition
lane need to maintain information about the vehicles participating in the exit maneuver. Any
vehicle in the automated lane, which is not a leader, may become one if a vehicle ahead of it
exits. Also, a follower in the automated lane may become a leader in the transition lane, if no
other vehicle of its platoon exits before it does, or if it is required to exit in front of a vehicle (or
platoon).

Different exiting configurations are possible. Consider, for instance, a system with three poten-
tially exiting vehicles, LAL, X1, and X,. The possible configurations for exit are: (i) only LAL
wants to exit, (ii) LAL and X; want to exit, (iii) LAL and X, want to exit, (iv) LAL, X; and
X, want to exit, (v) only X; wants to exit, (vi) only X, wants to exit, (vii) X; and X, want to
exit, (viii) none want to exit.

The logical steps needed for this maneuver are shown in Figure 11.

One of our goals is to prove that the exit maneuver is correct with respect to the following
properties:

e At most M out of N > M vehicles take an exit with M gates;

e Non-requesting vehicles do not exit;

Intra-platoon spacing in the automated lane is closed up after a vehicle exits;

The exit maneuver completes for al participating vehicles;

A vehicle which requests exit does eventualy exit;

Only one vehicle exits via an exit gate at one time.

In order to prove these properties, we have modeled the system in the L-automata framework as
shown in Figure 13. At the coordination layer of control, we have specified identica L-processes
for the vehicles LAL, Xg,::-, X,. In order to model the fact that any vehicle can be a leader, we
have created an L-process which performs al the required data base update functions (shown in
Figure 13 as DB), and which is dynamicaly associated with the leader vehicles on the AL and
the TL.

The regulation layer of control is modeled via the following L-processes:

Vr : vehicle velocity response for exit. The model of the velocity response for the followers (Vr;)
is different from that of the leader (Vry), because the response of each follower has to be
consistent with the response of the leader, and of al followers ahead of it.

Sr : vehicle lateral sensor response. The model of the lateral sensor for the followers (Sr;) is
different from that of the leader (Srg), because it is necessary to represent the fact that
each follower can only sense an object on the highway after a leader, and all followers
ahead of it have aready sensed it.
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follower is exiting &

vehicle is leader follower is not exiting + gate assigned

no gate assigned
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are in TL /
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) .. vehicles are in TL

@ Leader was reasigned gate and =~ """
3 Tsnext to exit

Figure 11: Logical steps for exit maneuver
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all exiting
vehicles
are in TL

Leader orders Leader requests Followerlis
close up in AL that follower take next to exit
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completed
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Figure 12: Logica steps for the exit maneuver (continuation)
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Vg,: Virtual Lateral Sensor

1: First Follower Vehiclein AL Sr;: Lateral Sensor of vehiclei
Xn: N Follower Vehiclein AL Vr;: Velocity Response of vehiclei
Rr;: Range Sensor of vehiclei
DB: Leader Data Base

<

X

Figure 13: Exit maneuver: system model

Vs, @ “virtua” lateral sensor response. This component is used to maintain a constant leader
sensing component in the AL, even though platoon leadership may dynamically change.

Rr : vehicle range sensor response. This component senses whether an exiting vehicle is a leader
in the TL. The range sensors of the various vehicles also need to be modeled in a way that
no two vehicle responses are contradictory.

In the transition lane, vehicles whose distance to the gate might interfere with the exit maneuver
are modeled as a variable within the latera sensor response of the exiting vehicles. This variable
is non-deterministically chosen to be “vehicle too closg’” or “vehicle OK distance’.

1.5 Formal Specification and Verification of the Exit System

The untimed formal specification of the modified system is given in Appendix B. The desirable
behavior of this system (without timing constraints) is modeled by the L-automaton Tusk A,
which checks for the behaviors 1 through 4 listed above.

In order to guarantee that this system’s specification is amenable to analysis, we have made the
following simplifications:

o Only three vehicles are modeled on the AL, and

o only four gates at most are modeled.
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1.6 Induction Proof for the Exit System

Similar to the entry maneuver, we will prove that the exit maneuver presents the desirable prop-
erties listed in section 1.4. In order to extend the proof to an arbitrary number of X, vehicles,
once again we apply induction methods explained in section 1.3. In order to proceed with the
induction proof, we fix the number of gates to three.

The exit system, parametrized by the number of follower vehicles N, is given by:

N
S(N) = P0®(@P¢),

By = DBRVs,,

P, = XiQSriRQVri(Q) Rri,i> 0.

The processes of the exit system, interconnected in a star topology, communicate with the hub of
the star, the L-process DB. Similar to the entry system, the hub of the star has variables which
depend upon a parametrized number of processes N. Because the number of processes grow
without bound, and because a hub of a star accumulates information from other N components
in the system, it is possible that no invariant independent of N exists. In order to apply induction
methods to the exit system, one needs first to determine whether this system is linearizable.

1.6.1 Linearization of the EXxit System

By inspection, one can see that the exit system is linearizable because:

(a) the variables of P;, for i > 0, are of bounded computation, and the number of variables
does not depend upon the number of follower vehicles N in the system, hence of O(1) as
required by theorem 1 .1;

(b) the number of variables of £, depends upon the number N of follower vehicles in the system,
hence of O(N);

(c) the variables of P, are either of bounded computation, or associative. One example of an
associative variable is the output “exit-info”, which the leader LAL maintains in order to
know whether the followers have requested exit. This variable is associative, because the
number of vehicles which request exit can be computed recursively in the following way.
Each follower vehicle maintains its own information about exit request. The last follower
propagates its exit request information to the vehicle ahead of it, which propagates this
information, plus its own exit request information, to the next vehicle. The propagated
number of exit requests that reaches the leader LAL is precisely the same number that
the leader would be able to determine;

(d) the number of variables in P, that depend upon the number of follower vehicles in the system
is bounded.
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By applying the construction suggested in the proof of [5, Theorem 3.11, we have that the linearized
exit system is given by:

The process 150 has a modified DB process, as follows:

o All variables which were arrays in Fy are changed into a scalar variable. These new
variables are assigned the value of the variable with the same name in Py, which is the
propagated value in range N, ..., 1.

e The array msg_from X[cars] needs to be split into several variables. To each value in the
domain of this array corresponds a variable which represent the number of vehicles in the
range that have sent a message with the same value. These variables are assigned to the
propagated value of Pu;

o The variables msg-to-X, toX, gate-DB, assign-DB are removed, because the vehicles P
assign themselves to the gates.

o Variable msg-to-C is removed, because vehicles request the neighbor downstream to close
up in AL or in TL, or to take over leadership.

o The variable exiting-cars is removed, because it becomes redundant (with exit-DB) in the
linearized system;

o The variables 1_.AL and L.TL are changed to leader-index41 and leader-index-TL, and as-
signed to the value of the variables of same name in Py.

Each process P;, i > 0, has several new state and selection variables:

e A new dtate variable exitinfo that remembers whether this vehicle has sdected itself for
exit, and a new selection variable exit-DB that copies the values of the new state. Also,
another new variable is used to propagate the number of vehicles intherange N, ... ,i + 1
that have sdlected themselves for exit.

o New propagation variables:

— waiting-exit, which adds to the propagated value from the i + 1** vehicle, whether the
ith vehicle is waiting exit;

— index_in_TL, which discovers the most recent vehicle that exited to the TL;

— index-abort, which discovers the index of the vehicle that aborted last;
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— index-next-vehicle, which discovers the index of the vehicle next to exit.

o A new loca variable gate-assignment that assigns a gate based on the assignment of the
previous vehicle.

o A new local variable msg-to.C that indicates to vehicle P,—; when it needs to close up in
AL, or in TL, or to take over leadership in AL. Note that if vehicle P;,_; is not in the
same lane as F;, F;_, is required to propagate this request downstream.

e A new loca variable msgfrom.C, that indicates that vehicle P;_; did complete the action
requested via msg_to.C.

We have made the assumption that Fy always communicates with the end of a string of processes,
i.e, for a system with N processes, it always communicates with PN. We thus view the leader in
the automated lane followed by the vehicle which has the highest index. The tail of the platoon
is the vehicle with the lowest index.

The “next’ operator applied to the new components in P;, and P, is defined as follows:

oK) = Xy,
#(DB) = DB,

We propose an invariant given by:
Qi = 130®15i®15i—1 ®f’i_2, where
Py = FREE(X; 3)Q)Sri_a@QVri_a(Q) Rri_a.

The idea behind the invariant is that all the possible behaviors of a platoon with N > 3 vehicles,
for a fixed number of gates, is representable by a platoon with three vehicles, the N,N — 1, and
N — 2 vehicles.

The induction base is given by:
L(BRERQAERQE) cL(ARQARRQERRQH).

The language containment of the induction base is trivialy satisfied because the language of Py
is larger than the language of F;.

The “next” operator for R is given by: ¢(151-) = 15i+1~ We thus have that the inductive step is
given by:

L(ARAERERERM) cL(ARQARQAERR).

Although one may submit the inductive step to verification by the tool Cospan, it is clearly
satisfied because:
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« the language of P, is larger than the language of Py;

« the other processes in the right hand side of the equation are the same as the ones in
the left hand side. The additional process in the left hand side can only constrain the
language of the left hand side, thus guaranteeing language containment.

With the induction step satisfied, we can conclude that, for an arbitrary N > 3:

N
c (@a) c L(Q).

1=0

Appendix B documents the verification that )3 performs the task T defined in section 1.4. for
any : > 3, Q; performs the task T because the processes of (); are the same as the processes of
Qs, i.e, P, is equa to P5 of Qs, P, is equa to P, of Q3, Pi_s is equal to P, of Qs, and both
share P. Thus we may conclude that the exit maneuver is correct for any number of follower
vehicles, i.e,

k
L (@15,-) C L(T),V3<k< N.
=0

1.6.2 Timed Formal Specification and Verification

Timing information for the exit maneuver includes lower and upper bounds for:

o the time interval for the change lane maneuver;

o the time interval for acceleration or deceleration of exiting vehicles;

o the time interval for the leader to reach each turn marker;

o the time interval for followers to reach the turn markers;

« the time interval for the close-up after a vehicle leaves,

o the ime interval for vehicles to reach the next XML.
Similar to the timed specification of the entry maneuver, the desirable behavior of the timed exit
maneuver system can be modified to incorporate bounds on delays. At the time of this writing,

timing constraints were largely unknown, and thus the specification of the exit maneuver with
timing information will be the subject of future research.
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2 Appendix A

This appendix contains the latest run of the verification tests for the entry maneuver, and the
COSPAN code of the Entry Maneuver discussed in Section 1.2. Please refer to Figures 6, 7, 8,
and 9.

Tue Sep 13 18:32:27 PDT 1994
moonlight [Sun0S 4.1. 1 sun4c] : /tmp_mnt/net/automount/surO/varaiya/ssachs/private/research.
cpn : cospan -DN=2 -DOP=1 -DTeventually entrylast.sr

cospan: Version 8.8.2 (AT&T-BL) 22 Apr 1994

+ sr -DN=2 -DOP=1 -DTeventually entrylast.sr ~o entrylast.c
entrylast.sr: Tue Sep 13 18:31:59 1994

./1.h: Sun Sep 4 14:50:17 1994

27 selection/local variables

26 bounded state variables: 8.84el18 states

0 unbounded state variables

0 boolean cysets

2 free selection/local variables: 6 selections/state

8 pausing processes

4 non-deterministic (non-free) selection/local variables
16 selections/state (maximum)

96 total selections/state (maximum)

sr: 8 pausing processes

+ cc -o entrylast.an -I/home/surO/varaiya/kurshan/include entrylast.c /home/sur0O/varaiya/ku
+ ./entrylast.an

./entrylast.an: Synchronous model
entrylast.an: Initialization complete.

1 initial state.

entrylast.an: Search complete.

47323 states reached.

47323 states searched.

4281 DFS trees generated.

4528 nontrivial SCC’s generated.

133944 edges transversed:

10766 plus, 43042 tree, 1014 self, 58 forward,
3739 back, 1785 cross-intra, 73540 cross-inter.
778602 resolutions made.

2+12 boundary frames allocated.

290.133 cpu seconds

entrylast.an: Task performed!
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Cp.sr Cp.sr

proctype Check-post (LTL, X:proc) /* check postmachine®*/ Check_post()

import LTL, X

selvar #:(see_vehicle, see-no-vehicle, arc_you_auto, allow-entry,
stop_entry)

stvar $:(idle, active, allow-entry)

cyset {idle}

it idle

trans

idle {see_vehicle, see no_vchicle}
->active . # = sce_vehicle
->$ s else;

/* All vehicles which are to enter will sec at thesame
time themessage ’are you auta’*/
active {are_you_auto}
->allow_entry : (LTL.#=yes_auto)+((++[i i n 0..range](
1?2 X[i].#£=yes_auto| 0))>0)

->8 s else;

allow-entry {alow-entry)
->idle :LTL.#=idle
->$ s dse

end /*Check-post?*/

Mon Sep 12 11:54:50 1994 Page 1ofcp st
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€8.8T C8.8T

proctype Sensor (LAL, SL, LTL:proc) /* Entry sensor*/ Sensor()

import LAL, SL, LTL

selvar #:(no_space, space, |-found-space, what_is_your id)

stvar $:(idle, no-space, space, found-space)

stvar L id 2 (nul, id, no-id)

asgn  Lid > id 7 (LAL.#=id)|
no_id ? (LAL.#=cmpty_space) |
nul - ? ($=idle) |
L id

selvar leader_id: (nul, id, no-i-d)

asgn leader_id:= L_id

selvar x:(0..2)

asgn  x:={0,1,2}

stvar space-size: (0..3)

asgn  space-size -> 1 ? (x=0)*(#=spacc) |
2 ? (x=1)*(#=space) |
3 ? (x=2)*(#=space) |
0 ?  (3=no_spacc) |
space-size

selvar how-much-space: (0..3)

asgn how-much-space:= space-size

cyset {no_space}

init L id:=nul, space size:=0

init  idle

trans

idle { no-space}
->no_space : SL.# = wake-up-sensor
->% else;

no-space {no-space, space)
->space T #=space
->$ cdse

space {what-is-your-id)
->found_space : (LAL.#=id) + (LAL.#=empty_space)
->$ s else

found-space {1-found-space)
->idle :LTL.#=idle
->8 Telse;

end /* Entry Sensor*/

MonSep 1211:55:21 1994 Page 1 of es.sr
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sl.sr sl.sr

proctype Light (LTL, ES:proc) /* light stop machine*/ Light()

import LTL, ES

selvar #:(red, green, wake-up-sensor)

stvar $:(red, active, green)

stvar leader id: (nul, id, no_id)

asgn leader_id-> ES.leader_id ?(ES.#=I_found_space)*(leader id = nul)
| nul ?($=red)
| leader-id

selvar how-much-space: (0..3)

asgn how-much-space:= ES. how_much_space

init leader_id:=nul

init  red

trans

red {red}
->active : LTL.# =1 _am_here
->$ else;

active { wake-up-sensor)
->green :ES.#t=I_found_space
->$ else;

green {green}
->red . LTL.#=accelerate to cnter
->$ cedse

end /* Light*/

MonSep 12 11:55:08 1994 Page 1 of sl.sr

29



Isl.se Isl.sr

proctype Leader-Lateral-Sensor(LTL, LAL, Vr:proc) Leader_Lateral_Sensor()
/* leader’s lateral sensor machine: itsensesvelocity
of. theplatoon in ALwhith which it is coordinating the
entry maneunver,and the turn markers*/
import LTL, LAL, Vr
selvar # (%, turn-marker, nothing)
selvar  velocity-comparison:  (velocity-correct.
velocity-notcorrcct)
asgn  velocity _comparison:=
velocity-correct 7 (Vr.g=full_vclocity)|
velocity-not-correct

stvar $: (idle, in_eml, turn)
cyset {in_eml@}

init idle

trans

idle {%}
->in_eml : (LTL.#=accelerate to cnter)
->$ : else:

in_eml {%: turn-marker}
->turn : (# = turn-marker)
->$ : else:

turn {turn-marker}
->idle :(LTL.#=idle)
->8 cdsg

end /* Leader Lateral Sensor’/

.MonSep1211:55:4319914 Page 1 of.lsl.st

30



Isx.sr

proctype Follower Lateral Sensor(i: integer; LTL, X, Xs:proc)

Isx.st

Follower_Lateral_Sensor()

/* followers lateral sensor machinc: it senses
only the turn markers. Velocity of followers asthey

approach the turn marker is assumed to be correct

because their regulationlaycr issimply performing

follower law */
import i, LTL, X, Xs
selvar # (%, turn_marker, nothing)
stvar $: (idle, turn)
cyset {turn@}

init idle
trans
ide 1%}

->turn : (Xs[i].#=ack_come_with_me)*
((i=0)*(LTL.#=rcach_gate)) +
((i>0)*(X[i-1].#=rcach_gate)) +
((i>0)*(Xi-1]-#=abort)) )

->$ s else

turn {%: turn-marker}
->idle s (X[i].#=idle)
->8 else;

end /* Follower Lateral Sensor*/

MonSep.1211:56:03 1994
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vrl.sr

proctypc

import LTL

L eader-Velocity-Rasponsc(L TL :proc)

vrl.sr

L eader-V & city-Response0

selvar #:(%, cruise, closing, closed-up, approaching,

reached-stop-light,

accelerating,

full-velocity,

changing, change lane complete, abort)
stvar $:(cruising, close_up_in_AL, approach-light, waiting,
accelerate, ready, change, abort)
cyset {close_up_in_AL@}, {approach-light@}, {accelerate@),

(change@}
init  cruising
trans

cruising

->approach_light
->close_up_in_AL

->$

closeup in AL
->cruising
->$

approach-light
->waiting
->$

waiting
->accelerate
->8

accelerate
->ready
~->abort
->8

ready
->change
->abort
->$

change
->cruising
->8

abort
->cruising

{cruise}

: LTL.# = approach stop-light
: LTL.# = close-up-in AL

tesg

{closing: closed up}

: (##=closed_up)

s else:

{ approaching:

reached-stop-light)

: (#=reached_stop_light)

: else:

{ reached-stop-light}
: LTL.## = accelerate_to_enter

tesg

{ accelerating:

full-velocity)

: (#=Mull_velocity)*(LTL.#=/abort)

: (LTL.#=abort}
tesg

{%}

: (LTL.#=0k_to_change)

: (LTL.#=abort)
 else;

{changing: change_lane_complete}
. # = change-lane-complete

tesg

{abort)
: true

end /* Leader Velocity Response*/

Mon _gep 12 11:56:29 1994

Pagel of vrl.sr
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VIX.ST VIX.ST

proctype Follower Velocity Response

(i: integer; X,Vr, Vr_X:proc)
import i, X, Vr,Vr_ X
selvar #:(%, cruise, approaching, reached stop_light,

following_lcader, changing, change_lane complete, abort)

stvar $:(cruising, approach-light, get_there, waiting,
follow-leader, change, abort)

cyset {change@), {get-there@}

init  cruising

trans
cruising {cruise}
->approach_light . X[i].# =approach_stop_light
->$ else;
approach-light {approaching }
->get there H((i>0)*
(Vr_X[i-1).#=reached_stop_light})
+((i>0)*
(X[i-1].#=entry_complete))
+((i=0)*
(Vr.##=reached_stop_light))
->$ : else;
gel-there {approaching: reached-stoplight}
->waiting : (##=reached_stop_light)
->8 : else:
waiting {reached_stop_light}
->follow_leader ¢ (X[i].# = follow_lcader)
~>cruising ¢ (X[i] .# = entry_complete)
->$ tese;
follow_|eader {following_leader}
->change ¢ (X[i}. #£=0k_to_changc)
->abort : (X[i].#£=abort)
->8 tese;
change {changing: change lane_complete}
->cruising :# = change-lane_complete
->8 tese;
abort {abort}
->cruising 1 true;

end * Follower Velocity Response *
y p

e Dec 12 13:53:16 1995 Page 1 of vrx.st
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lal.sr lal.sr

proctype Leader-in-AL(LTL, ES:proc) Leader_in_AL()
import LTL, ES
selvar AL-option: (platoon, space)
asgn AL-option:= platoon 7 (option = 1) |space

/* update the platoon sizeafterreccivingentry complete message
from_the Teader inthe T L ¥/

stvar nps:(0..2*N+1)

asgn nps-> pps + LTL.new_size ? (LTL.#=entry_complete) |

pps

selvar #: (%, id, empty-space, ack_entry,nack _cntry, entry-complete)
stvar$: (idle, send-id, empty-space, check-busy,
wait-complete,  entry-complete)
cyset {check-busy}
init nps:=pps

init idle

trans

ide {%}
->send_id : (ES.#=what_is_your_id)*(AL_option=platoon)
->empty_space @ (ES.#=what_is your id)*(AL_option=space)
->8$ Dese

send_id {id}
->check_busy : LTL.#=are_you_busy
->$ cese

empty-space {empty space}
->idle : true;

/* non-deterministically it decides that it is busy or not */

check-busy {ackentry, nack_entry}
->wait_complete : #=ack_cntry
->$ Dese

wait_complete {%}

->entry_complete : LTL.#=entry_complete

->$ else;

entry-complete { entry-compl ete)

->idle 1 true;

end /* Leader in AL */

MonSep 1211:57:48 1994 Page 1 of lal.sr
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proctype Leader_in_TL(CP, Vr, ES, SL, LAL, LSr, X, Xs, Y:proc) Leader_in_TL()

import CP, Vr, ES, SL, LAL, LSr, X, Xs, Y
/*1f a follower isstopped atthe stop light, then it
will respond with an_ack tothe’come with merequest’.
If it_didn’treach thestop light when therequest
was issued, then norespense will .be praduced*/
selvar invitation[N]:(come with_me, no-space-now, too_late_to_join, %)
asgn [i in 0.range]{invitation[i]:=
come-with-me ? ((($=check_busy)*(LAL.#=ack_entry)) +
($=entering) )
*(i< ES.how_much_space}) |
no-space-now ? (($=check_busy)*(LAL.#=ack_cntry))
*(i> ES.how_much_space) |
too_late to_join ? ($=enter AL)-+($=check followers)+
($=check_adjustment)+
($=adjust space)+($=entry complete)]

%}

stvar ppsize: (0 cars)
asgn  ppsize ->
ppsize + (+[iin 0..range](
1 ? Xs[i].#=ack_comec_with_me|
0))
?($=check_busy)*(LAL.#=ack_entry)*
((+[i in 0..range}(
1 ? Xs[i].#£=ack_come_with_me|
0)n>0 |
ppsize
selvar new-size: (0 .. cars)
asgn new_size:= ppsize

stvar gate-sensor: (space-still-available, no-space-available, %)
asgn  gate-sensor->
space_still_available ? (Y.position=0K_distance)*
($=cntering)*
(LSr.#=turn_marker) |
no-space-available ?(Y.position=too_close}*
($=entering)*
(LSr.#t=turn_marker) |
gate-sensor
selvar # (%, idle, yes-auto, approach-stop-light, I_am_here,
are_you_busy, accelerate to_enter,
reach-gate, ok_to .change, abort,
closeup.in _AL, entry-complete)
stvar §: (idle, check-auto, active, at-stop-light. check busy,
entering, proceed, reach-gate, enter AL, check_followers,
check-adjustment, adjust-space, abort, wait-completion,
entry-compl ete)

cyset {check-auto}

recur rcach_gate->abort
init  ppsize:=0, gate-sensor:=%

ThuSep 1510:13:07 1994 Page 1 of 1tl1.sr
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init idle

trans

idle (idie}
->check_auto : CP.#=arc_you_aulo
->$ else;

/* The possibility thatthe checkreturns a no_auta is

not modeled although possible. Inthe real system, a
vehicle checking no-auto will not be allowed in the TL */

check auto {%, yes_auto}
->active : #=ycs_auto
->$ : elsc;

/¥ Commands regulation layer (velocityresponse)to

approach the stop light */

active { approach-stop-light)
->at_stop_light . Vi.#t=reached_stop_light
->8 selsg

/* Sends the messaegél amhere’ tothe Stop Light*/

at-stoplight {I_am_here}
->check_busy : (ES.#=I_found_space)*
(ES.leader_id=id)
->entering . (ES.#=I lound space)*
(ES.lcader_id=no_id)
->$ cdse
check-busy {are_you_busy}
->entering :LAL.#=ack_entry
->$ s elsc;

/* Sommandsthere sdguigmdm cryaxaccelerate forentry*/

entering { accelerate-to-enter)
->reach_gate : LSr.# = turn-marker
->8 else;
reach_gate {reach-gate}
->enter_AL . (gate-sensor =space_ still-available)
*(LSr.velocity_comparison=velocily_correct)
->abort . (gate-sensor =no_space_available)
+(LSr.velocity_comparison=velocity_not_correct)
->$ else;
abort {abort)
->entry_complete 2 (+[iin 0..range)
(17 Xs[i).#=abort | 0))
=N
->% rese
ThuSep 1510:12:011994 Page 1 of 1t]12.st

36



1t13.sr 1L13.sr

/* Commandsthererplatiomlayer.t

chanrgéane*/

enter AL {ok_to_changc}
->check_followers - Vr.#t=change_lanc_complete
->$ tesg;

check-followers {%}
->check_adjustment : (+[i in 0..range]

(1 ? (Xdi]# = cntered_AL)+
(Xd[i].# = abort) | 0)
N

->$ else;
check-adjustment {%}

->adjust_space :ES.Jeader_id=id

->wait_completion tese

* Commandsregulatiomnalyacr toccloscwp just entered
Lomn Tegul rt up Jusl en
platoon with the platoon in AL, if any*/

adjust-space {close_up_in_AL}

->wait_completion : Vr.#= closed-up

->$ else;

wait-completion {%}
->entry_complete (+{t in 0..range]

(1 ? (Xsli].#=entered_AL)+
(Xs{i].#=abort}|0))

=N
->8 relse:
entry-complete {entry_complete}
->idle : (+[i in 0..range]
(1 ? (X[i).#£=entry_complete)|0)) = N
->$ selse;
end /* Leader in TL */
ThuSepl1510:12:14 1994 Pagel o fltl3.sr
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proctype Follower-in-TL(i: integer; LTL, CP,X,Vr_X,LSr_X, Y:proc)
import i, LTL, CP, X, Vr_X,LSr_X, Y
stvar gate-sensor: (space_still_available, no_space_available, %)
asgn  gate_sensor->
space-still-available ? (Y .position=0K_distance)*
($=go_with_leader)*
(LSr_X([i]. #=turn_marker) |
no-space_available ? (Y.position=too_close)*
($=go_with_lcader)*
(LSr_X[i]. #=turn_marker) |
gate-sensor
selvar #: (%, idle, yes-auto, approach-slop-light. at_stop_light,
follow_leader, abort., reach gate,
ok to change, entry complete)
stvar $:(idle, check_auto, active, at-stop-light., go_with_leader,
abort, reach-gate, enter AL, cntry_complete)
cyset {check_auto@}
recur reach_gate->abort
init  gate-sensor:=%

it idle

trans

idle {idle}
->check_auto : CP.#t=are_you_auto
->8 telse

Follower_in TL()

/* The possibility thatthe.check returns_a no_auto is

not modeled,although possible. Inthe real

system, a

vehicle checking no-auto will not, be allowe

d in_the TL */

check_auto {%: yes-auto}
->active . (#=yes_auto) +
((1=0)*(LTL.#=yes_auto)) +
((i>0)*(X[i-1]. #=yes_auto))
->$ : else;

/¥ Commands regulation lageer velocity response) to

approach thestop light */

active {approach_stop light}
->at_stop_light s Vr_X{i].#=reachcd stop light,
->$ telse

SN Apr -2313:16:48 1995
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Thu_

t12.sr

/* The foIIower is prevented fromecntryat thesame
time that a |leader_ in two cases:

1. 0tis at thesto_p lightbut it does nat.receive an

Tnvitation to_enter with t theleader far. lack of

spacein in the AL (given by the’ES how much.space’);
2 It is not at thestop light when the Leader is
entering the Eniry .Maneuver Section.
The first follower which isprevented entry becomes
a leader of a new_.round. In_this mnde| we view this
vehicle as_a new roundof the process’LTL’, thus
is is possible to ‘finish’ thisprocess under these
two conditions. */

at_stop hght {at_stop_light}
->go_with_leader :(LTL.invitation[i}=come_with_me)
->entry_complete : (LTL.invitation[i]=no_space_now)
+ (LTL.invitation[i]=too_latc_to_join)
->8 celsg

/* Commands regulation layper(velocity response) to
follow "the Teader as it accelcrates to enter */

go_with_leader {follow-leader}
->abort : (LTL.#=abort)
~>reach_gate : (LTL.#tfabort)*
(LSr_X([i}.# = torn-marker)
->$ celsg
abort (abort)
->entry_complete T true;
reach_gate {rcach_gate}
->enter_AL . (gate-sensor = space-still_available)
->abort . (gate_sensor = no_space_available)
->$ tesg

/* Commandstheregmiation ibycr tochange bame */

enter AL - { ok-to-change)
->entry_complete : Vi_X[i].#=change_lanc_complete
>3 s else;

entry-complete {entry_complete}
~>idle : (LTL.#=entry_complcte)*

((+{k in 0..range]
(1 ? X[k].#=entry_complete | 0})=N)
->8 Celse;

end /* Follower in TL*/

Sep -1510Q:17:19.1994 Page 1 of ftl2.sr
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proctype status(i: integer; Vr_X, X, LTL:proc)

import i, Vr_X, X, LTL

status.

ST

status()

stvar $:(no_response, at-stop-light, ack_come_with me, abort,

entered_AL)

selvar #:(no_response, at-stop-light, ack_come_with_me, abort,

entered-AL)
init no-response
trans
no-response {no-response)
->at_stop_light : (Vr_X[i].##=reached_stop_light)
->abort s (X[i].#t=abort)
->8 :esg
at-stop-light (at-stop-light}

->ack_come_with_me

: (LTL.invitation{i]=come_with_me)
->no_response : (X[i].#=idle)
->8 cesg

ack come-with-me
->entered_AL

{ack_come_with_me}
o (X[i]. #=o0k_to change)

->abort 2 (X[i). #=abort)
->$ tesg

abort {abort}
->no_response : (X[i].#=idle)
->$ tesg

entered-AL {entered_AL}
->no_response : (X[ij #=idle}
->$ s dsg

end /* status () ¥/

ManSep 1211:57:17 1994
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/*Entry sensor machine*/

proc ES Sensor (LAL, SL, LTL)

/* Check post machine */

proc CP: Check _post (LTL, X)
/*Stop Light mach.inec?/
proc SL: Light (LTL, ES)

/* TL Leader lateral sensor forentry*/

proc LSr: Leader_Lateral_Sensor(LTL, LAL, Vr)

/* TL Leader velocity responseforcotry*/

proc Vr: Leader-Velocity-Response(LTL)

/* TL Followers lateral sensor for entry*/

proc LSr_X[i<N]: Follower_Lateral_Sensor(i, LTL, X, Xs)

/* TL Followers velocity responsc foreptry*/

proc Vr_X[i<N]: Follower_Velocity Response(i, X, Vr, Vr_X)

/* TL Leader protocol machine */

proc LTL: Leader_in_TL (CP, Vr, ES, S, LAL, LSr, X, Xs, Y)

/* AL Leader protocol machine */

proc LAL: Leader-in-AL (LTL, ES)

/* AL random vehicle protocol machine */

proc Y: Vehicle in AL (LSr, Vr, LSr X, Vr_X,LTL)

/* TL Followers (X[i])_protocol machincs*/
proc X[i<N]: Follower in TL(i, LTL, CI', X, Vr_X,LSr_X, Y)

proc Xs{i<N]:status(i,Vr_X, X, LTL)

4]

ES

CP

SL

LSr

LTL

LAL

XS
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#if Teventually monitor eventually-enter
import §_LTL, SLAL, S-X
stvar$: (zero, one, two, three)
cyset {zero}, {zero, one, two, three}
init zero
trans
Zero

->one : (S_LTL.#=approach_stop_light)

->8 dse

one
->two : (S_LTL.#=entry_complete)
>$  dse

two
->three : (+[i in 0..range]

(1 7S_X[i].#=entry_complete| 0))

=N
->$ 1 clse
three
->zero : (S_LAL.#=entry_complcte)
>§ sy

end /* eventually enter */#endif

monitor collision: STOP({{(S_LTL.$=enter_AL)*

monitors.sr

eventually-enter

collision

(S_LTL.gate_sensor=no_space_availablc))+

((+[i in 0..range]

(1 ? (S_X[i] $=cnter_AL)*

(S_X[i].sate_scnsor=no_spacc_available)

[0)) >0) )

Mon Sep 1211:58:47.1994
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3 Appendix B

This appendix contains the latest verification run for the exit maneuver, and the COSPAN code
of the Exit Maneuver discussed in section 1.4. Refer to figures 10, 11, 12, and 13.

/* This run specifies that all followers request exit */
/* Runtime parameter x=3 */

Fri Aug 19 01:07:46 PDT 1994
moonlight [Sun0S 4.1.1 sund4c]: /tmp_mnt/net/automount/surO/varaiya/ssachs/private/research.
cpn : cospan -Dfollowers=2 -Dgates=2 -Dx=3 exit8.sr

cospan: Version 8.8.2 (AT&T-BL) 22 Apr 1994

+ sr -Dfollowers=2 -Dgates=2 -Dx=3 exit8.sr -o exit8.c
exit8.sr: Fri Aug 19 01:07:21 1994

./1.h: Thu Aug 4 15:19:31 1994

64 selection/local variables

45 bounded state variables: 6.54e28 states

unbounded state variables

boolean cysets

free selection/local variables: 8 selections/state
pausing processes

non-deterministic (non-free) selection/local variables
selections/state (maximum)

total selections/state (maximum)

W~ O d WO o

Sr: 4 pausing processes

+ cc -o exit8.an -I/home/surQ/varaiya/kurshan/include exit8.c /home/surO/varaiya/kurshan/1i
+ ./exit8.an

./exit8.an: Synchronous model
exit8.an: Initialization complete.

1 initial state.

exit8.an: Deadlock at 37(26).

exit8.an: Search complete.

194 states reached.

194 states searched.

2 deadlock states reached.

10 DFS trees generated.

19 nontrivial SCC’s generated.

348 edges transversed:

9 plus, 184 tree, 26 self, 8 forward,

7 back, O cross-intra, 114 cross-inter.
2112 resolutions made.

1+1 boundary frames allocated.

1.23333 cpu seconds

43



exit8.an: Task performed!

/* This run specifies that only the first follower requests exit */
/* Runtime parameter x=2 */

Fri Aug 19 00:53:19 PDT 1994
moonlight [SunOS 4.1.1 sun4c]: /tmp_mnt/net/automount/sur0O/varaiya/ssachs/private/research.
cpn : cospan -d -Dfollowers=2 -Dgates=2 -Dx=2 exit7.sr

cospan: Version 8.8.2 (AT&T-BL) 22 Apr 1994

+ sr -Dfollowers=2 -Dgates=2 -Dx=2 exit7.sr -o exit7.c
exit7.sr: Fri Aug 19 00:53:10 1994

./1.h: Thu Aug 4 15:19:31 1994

64 selection/local variables

45 bounded state variables: 6.54e28 states

0 unbounded state variables

0 boolean cysets

3 free selection/local variables: 8 selections/state

4 pausing processes

0 non-deterministic (non-free) selection/local variables
1 selections/state (maximum)

8 total selections/state (maximum)

sr: 4 pausing processes

+ cc -0 exit7.an -I/home/sur0O/varaiya/kurshan/include exit7.c¢ /home/sur0/varaiya/kurshan/1i
+ ./exit7.an -d

./exit7.an: Synchronous model

exit7.an: Initialization complete.

1 initial state.

exit7.an: Search complete.

489 states reached.

489 states searched.

27 DFS trees generated.

29 nontrivial SCC’s generated.

859 edges transversed:

34 plus, 462 tree, 37 self, 8 forward,
16 back, 8 cross-intra, 294 cross-inter.
5368 resolutions made.

1+1 boundary frames allocated.

3.03333 cpu seconds

exit7.an: Task performed!

/* This run specifies that the leader and the second follower request exit #*/
/* Runtime parameter x=1 */
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Thu Aug 18 19:09:43 PDT 1994
moonlight [Sun0S 4.1.1 sun4c]: /tmp_mnt/net/automount/surO/varaiya/ssachs/private/research.
cpn : cospan -Dfollowers=2 -Dgates=2 -Dx=1 exit6.sr

cospan: Version 8.8.2 (AT&T-BL) 22 Apr 1994

+ sr -Dfollowers=2 -Dgates=2 -~Dx=1 exit6.sr -o exité.c
exit6.sr: Thu Aug 18 19:09:10 1994

./1.h: Thu Aug 4 15:19:31 1994

63 selection/local variables

45 bounded state variables: 6.54e28 states

unbounded state variables

boolean cysets

free selection/local variables: 8 selections/state
pausing processes

non~deterministic (non-free) selection/local variables
selections/state (maximum)

total selections/state (maximum)

0 = O & WO O

sr: 4 pausing processes

+ cc ~o exit6.an -I/home/surO/varaiya/kurshan/include exit6.c /home/sur0O/varaiya/kurshan/1i
+ ./exit6.an

./exit6.an: Synchronous model
exit6.an: Initialization complete.

1 initial state.

exit6.an: Search complete.

281 states reached.

281 states searched.

16 DFS trees generated.

20 nontrivial SCC’s generated.

504 edges transversed:

15 plus, 265 tree, 28 self, 6 forward,
8 back, O cross-intra, 182 cross-inter.
3128 resolutions made.

1+1 boundary frames allocated.

1.91667 cpu seconds

exit6.an: Task performed!



VI.ST vr.sr

proctype Vr (i:integer; V: proc) /*velocityresponse machine for exitVi{)

import i, V
selvar #:(%, changing, CL-complete, CL-abort, accclerate, decelerate,
gap-closed, aligned-with-b-minus-I, aligned_with_b_plus_1)
stvar $:(cruising, close-up, check-conditions. change,
abort, align-with_b_minus-I,
align_with_b_plus_1)
selvar monitor TL: (vehicle-too-close, vehicle OK_distance)
asgn  monitor TL:= {vchicle_too_close, vchicle OK_distancc}

init  cruising
cyset {close-up@), {change@},{align with_b_minus_1},
{align-with-b-plus-I)

trans

cruising {%}
->close_up : (V. ##=close_up)
->check_conditions : (V.#=ok_to_change)

->align with_b_minus 1 :(V.#=align_with b minus 1)
->align_with_b_plus 1 : (V.#=align_with_b_plus 1}

->$ :_else,
close_up {accelerate: gap_closed}
->cruising : (#=gap_closed)
->8$ : clse;
check-conditions {%}
->change . (monitor_TL = vehicle OK_distance)
->abort : (monitor_TL=vehicle-too-close);
change (changing: CL_ complctc)
->cruising . # = CL_complete
->8 else;
abort {CL_ abort}
->cruising I true;
align-with_b minus-I {decelerate: aligned_with_b_minus_1}
->cruising : (# = aligned_with_b_minus 1)
->8 s else:
align_with_b_plus_1 {accelerate: aligned_with_b plus-1}
->cruising 1t (#=aligned-with-b-plus-I)
->8 else:
end /¥ Vr*/
Wed Sep 14 13:17:49 1994 Page 1 of vr.sr
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proctype Sr_X(i:integer) Sr_X(0)
/* X’s lateral sensor machinec: it senses when a X vehicle
reaches the gatemarker.Sensing for X[1] depends on sensing

import i, Virtual-Sr, XSr, X, Info, ME

selvar # (%, gate-marker, first-turn-marker, second-turn-marker)
stvar  $: (nothing, see-gate, wait_gatc, gate)

cyset {gate@)

recur gate->nothing

init nothing

trans

/* Onlyexgctsto sense agatealter Llhcear in fromtalready
sensed it */

nothing {%}

->see_gate : (Virtual _Sr.#=see_gate)
->8$ Dese

see-gate {%}

->wait_gate

((Virtual Sr.#=gate_marker)*(i=0)) 4
((XSr[0].#:=gate_marker)*(i=1)) +
((XSr[1].#:=gatc_marker)*(i=2))

->8 Telse;

/* Gate cannot besensed before X[i] is ready to see it */
wait_gate {%}

->gate : ((X[i]. #=wait_GM)*(Info.next_to_exit=i)) +
(Info.msg_to_X[ij=no_exit_gatc) +
((Info.assign_DB[i]=exit_assigned)*

(Info.next to_exit+))

->8 . dsg

gate {gate-marker}

->see_gate . (Virtual_Sr.#t=see_gate)*(ME.#=/cxit_complete)
->nothing : (ME.#t=exit_complete)

->$ cedse

end  /* S X¥/

WedSep 1413:20:04 1994 Page 1 of Isv.sr
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ls.sr

proctype Sr()/* Virtual lateral _sensor machine: it, scnses when a _vehicle

reaches the XMS section and the gate markers */
import Info, XSr, ME
selvar #: (%, see_gate, gate marker, XMS_section _reached)
stvar  $: (nothing, wait_exit_initiate, wait_gatc, gate,
wait-completion)
selvar gates-seen: (0..4)
asgn  gates-seen:= seen

stvar seen: (0..4)

asgn  seen-> (seen + 1) ? ($=wait_gale)*(#=sec_gate)|
0 ? (3=nothing) |
seen

cyset {nothing@}, {wait_gate@}

recur wait-completion ->nothing,galc->nothing,
wait_gate->nothing

init seen:=0

init nothing

trans

nothing {%: XMS_section_reached}
->wait_exit_initiate : (#= XMS_section_reached)
->8 s else:

wait_exit_initiate  {%}

->wait_gate : (ME.#=exit_initiate)

->% else;

wait_gate {%:see_gate}

->nothing : (ME.#=cxit_completc)

->gate : (# = see_gate)*(ME.#=/cxit_complete)
->$ : else:

/* it _can only see another gate marker, if the last, vehicle
apas already seen thisong and.if.there_is_another gate*/
{gate_marker}

->wait_gate
(XSr([2].#=gate_marker)*
(number_gates > gates-seen)*
(ME.#/exit_complete)

->wait_completion . (gates_seen = number_gates)*

(ME.#=/exit_completc)

->nothing : (ME.#=exit_complete)

->8$ cedse

wait, completion {gate-marker}

->nothing - (ME.#=exit_complete)

->$ s clse;

end /* S/

Sun Apr 23 13:06:52 1995 Page 1 of Is,st

Figure 14: Exit Maneuver: Lateral Sensor of the Vehicles
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IT.sT IT.SI

proctype Rr(i: integer) /* Range sensor responseintheTL*/ Rr()
import i, Info, ME
selvar sensing:(car_ahead, no-car-ahead, nothing)

stvar  $:(0)
asgn  sensing:= /* NTM: this will do for now, but it is not correct*/
car-ahead ?
(Info.msg_from_X[i]=I_am_in_TL)*
((+[k in 0..N]

(1?(Info.msg_from_X[kj=I_am_in_TL){0)) > 1) |
no_car-ahead 7

(Info.msg_from_X[t]=I_am_in_TL)*

/*is the only vehicleinthe T L*/

(((+[k in 0..N]

(1 ? Info.msg_from_X[kj=I_am_in_TL| 0)) = 1) +

/*orit exited through gate 1%/

(Info.msg_to_X[i]=exit_gatc_1) +

/¥or it exited through gate 2 but no one exited

through gate 1%/

((Info.msg_to_XI[ij=exit_gate_2)*

((+]k in 0.N]

(1 ? (Info.msg_from X[k]=I_am_in_TL)*

(Info.msg_to_X[k]=exit_gate_1)| 0)) = 0)) +

through gate 1 or 2%/

((Info.msg_to_X[i}=exit_gate_3)*

((+[k in O..N]

(1 ?(Info.msg_from_X[k]=I_am_in_TL)*

(Info.msg_to_X[k]=cxit_gate_1)| 0)) = 0 )*

((+[k in 0..N]

(1 ?(Info.msg_from_X[k]=I_am_in_TL)*

(Info.msg_to_X[k]=cxit_gate_2)| 0)) = 0)) +

((Info.msg_to_X[{]=exit_gate_4)*

((+[k in 0..N]

(1 ?(Info.msg_from_X[k]=I_am_in_TL)*

(Info.msg_to_X[k]=cxit_gate 1)| 0)) = 0 )*

((+[k in 0..N}

(1 ? (Info.msg_from _X[k]=I_am_in_TL)*

(Info.msg_to_X[k]=exit_gate_2)| 0)) = 0 )*

((+[k in O.N]

(1 ?(Info.msg from_X[k]=I_am_in_TL)*

(Info.msg_to_X[k]=exit_gate_3)| 0)) = 0 )) )|
nothing

init 0

trans

0

->$ : dsg;
end /* Rr*/
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proctype Vehicle(i: integer) Vehicle()
import i, Info, X, XVr,XRr, XSr, Virtual-Sr, ME

selvar #: (%, idle, wait assignment, wait_GM, ok-to-change, close-up,
align-with-b-&us-I, align_with_b_plus_1, exit-complete)

stvar §: (idle, wait-assignment, wait-gate-marker, in-AL,
monitor-followers-in-TL, monitor_followers_in_AL,
transfer-leadership, take-over, close up_in_AL,
return-lead, authorize-CL, abort,
wait-reassignment, in_TL,leader TL, follower_TL,
wait-completion, command-close-up, update fail,
closeup in TL, align-with b plus-l, align_with_b_minus_],
exit_complete)

/* A platoon has always a leader (¥chicle X[0]) and two followers
X[1], X[2), which may request exit. As_the exit maneuverproceeds,
afallowerin AL may become alcader in AL, and the leaderin AL
may become a follower in TL.

By induction we can show that whatever is true for this platoon is
true for a platoon of anarbjtrary number_af X vehi

vehicles,
*/
selvar next to exit (-1, 0,1, 2
asgn  next-to-exit:= Info.next_to_exit
selvar msg_from X :(I_am_in_TL, abort,
nothing,
wait-assignment,  wail-reassignment,
I-am-next)
asgn  msg_from _X:= from_X
stvar from_x (I_am_in_TL, abort,

nothing, wait-assignment,
wait-reassignment, I_am_next)
asgn from_x ->

[ am_in TL ?($=in_TL)

abort ? ($=abort)

nothing ? (8=idle) |
wait-assignment ? (3=wait_assignment) |
wait-reassignment ? ($=wait_reassignment)
I-am-next ?

((from_X = wait_assignment)+
(from_X = wait-reassignment)) *
(((Virtual_Sr.gates_scen=1)*
(Info.msg_to_X[i]=exit_gate_1)) +
((Virtual Sr.gates seen=2)*
(Info.msg_to_X[i]=exit_gate_2)) +
((Virtual_Sr.gates_seen=3)*
(Info.msg_to_X[ij=exit_gatc_3)) +
((Virtual Sr.gates seen=4)*
(Info.msg_to_X[i|=cxit_gate_4)))|
from_X
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stvar to_Cl[cars] :(close_up_in_AL, close_up_in_TL, takeover,
take-back-leadership,  nothing)
asgn [k in 0..N]{to_C[k}->
/* The leader in AL requestsvchicles behind
the exitingone in AL Joclose up*/
close_up in AL ?
($=monitor _followers in AL)*
(k=/i)*(k>0)*
(Info.msg_from_X[k-1]=I_am_in_TL) |
/* Theleaderin TL requests exiling vehicles
to close up */
close-up in TL ?
($=close_up_in TL)*(k=next to exit)*
(Info.msg_from_X[k]=I_am_in_TL) |

needs to search k>=i+1 until find_one k
which can take ovet leadersbip*/
take-over ?
($=transfer_leadership)*(k=i+1)*
(Info.msg_from X[k}=I_am_in_TL)
take-back-leadership ?
($=return_lead)*
(k=Info.leader_in AL) |
nothing ? ($=idle) |
to_Cli} }

selvar msg_to_Cfcars}:(close_up_in_AL, closc_up_in_TL, take-over,
take-back-leadership,  nothing)
asgn [k in 0..N]{msg_to_C[k]:=to_Clk]}

stvar from_C ‘(closed_up_in_AL,closed_up_in_TL, took-over, nothing)
asgn from-C-> closed-up _in_AL ?

($=close_up_in_ALY¥(XVr[i]. #=gap_closed)|

closed-up in _TL 7

($=close_up_in_TL)*(XVr[i]. #=gap_closed)|

took _ over 7

($=take_over) |

nothing

($=idle) |

from_C

selvar msg_from_C ‘(closed_up_in_AL, closed_up_in_TL,
took-over, nothing)
asgn msg_from_C:= from C

init to_C[0]:=nothing, to_C[1]):=nothing, to_C[2]:=nothing,
from_C:=nothing, from_X:=nothing
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init idle
trans

ide {idig]
->wait_assignment : (ME.#=cxit_initiate)
->% tese;

wait_assignment {wait_assignment}
->wait_gate_marker : (i/Info.leader in AL)*
(Info.msg_to_X[i]=/nothing)*
(Info.msg_to_X[iJ=/no_exit_gate)
->in_AL : (i=/Info.lcader_in AL)*
((Info.msg_to_X[ij=no_exit_gate) +
(Info.exit_DB[i]=no_exit)) *
/* assignment completed */

((+[k in 0..N]
(17 Info.msg_to_X[k]=/nothing| 0))
=cars)

->monitor_followers_in_AL : (i=Info.leader_in_AL)

->$ tese

wait-gate-marker {wait_GM}

->authorize CL : (XSr[i]. #=gale_marker)*
(Info.msg_from_X[i]=I_am_next)

->$% tese

authorize CL { ok-to-change)

->in_TL : XVr[i] #=CL_complete

->abort : XVri).#=CL_abort

->8 cedse

abort {%}

->wait_reassignment : number_gates > Info.exiting_cars

->monitor_followers_in AL . (number_gates <_Info.exiting_cars)*
(i=Info.leader in_AL)

->in_AL . (number_gates < Info.exiting_cars)*

(izfInfo. leader_in AL);

wait _ reassignment {%)

->wait_gate_marker : (i/Info.leader in AL)*
(Info.msg_to_X[i]=/nothing)*
(Info.msg_to Xfi]5/no_exit_gate)

->in AL : (i5fInfo.leader_in_AL)*
(Info.msg_to_X[i]=no_exit_gate)
->monitor_followers_in_AL : (i=Info.lcader_in_AL)*

(Info.msg_to_X[i}5/nothing)*
(Info.msg_to_X[i]=/no_exit_gate)

->$ rdse
in AL {%}
Thu Sep 15 10:32:07 1994 Page 1l of v3.sr
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in AL {%}

->close_up in AL :(Info.msg_to_Cfi]=closc_up_in_AL)*
(from_C=/closed_up in AL)

->take over : (Info.msg_to_C[i]=take_over)*
(from_C=/took_over)

->exit_complete - Info.waiting_exit=0

->8$ else

close_up_in_AL {closc_up}

->in_AL (X Vr[i]. #=gap_closed)*
(Info.msg_to_X[iJ=no_exit_gate)

->walt_gate marker C(XVrfi] . #=gap_closed)*

(Info.msg_to_X[i]=/no_exit_gate)*
(Info.msg_to_X[i]=/nothing)

->8 s elsc;

take over {%}

->monitor_followers_in AL :((i=1)*(Info.msg _from X[0]=I_am_in_TL)) +
((i=2)*(Info.msg_from_X[1]=I_am in TL))

->return_lead ((i=1)*(Info.msg_from_X[0}]=abort)) +
((i=2)*(Info.msg_{rom_X[1]=abort))

->$ else

return-lead {%}

->in_AL : (izInfo.lcader_in_AL)*
(Info.msg_to_X[i]=no_exit_gate)

->wait_assignment : (ifInfo.leader_in_AL)*

(Info.msg_to_X[i]=/no_exit_gate)*
(Info.msg_to_X[i]=/nothing)

->8 else
monitorfollowers in AL {%}
->transfer_leadership : (Info.msg_[rom_X[i]=I_am_next)

/¥next to exit is actually last
to exit atthis point,since
there was notimec toupdate it
yet. Saving on variables..*/

->command_close_up : (Info.msg_from_X[next_to_exit}=
l-am_in TL)*

(truc ?

((next-to-exit < cars-)*

(Info.msg_from_Clnext_to_exit+1]=

closed_up_in_AL)) | lalse}

->exit_completc : (Inifo. waiting_cxit = 0)
->$ : else:
ThuSep 1514:23:46 1994 Page 1 of v4.sr
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Thu

update-fail {%}
->wait_reassignment : number_gates > N
->monitor_followers in AL elsg

/* This commands thefollowersin AL _locloscup gap*/

command-close-up {%}

->monitor_followers_in_AL : (Info.msg_[rom_Clnext_to_exit+1]=
closed_up_in_AL)

->8 s else;

transfer _leadership {wait_GM}

->authorize CL . (XSr[i].#: = gatcmarker)

->$ else

in_TL {%}

->leader_TL : (XRer[i].sensing= no-car-ahead)

->follower_TL : (XRer[i].sensing= car-ahead)

->$ relse:

/¥ 1f it is a follower in.T| .itarderstheregulation |layer to
close-up with the vehicle in front. */

follower_TL {close_up}
->wait_completion (X Vrfi). #=gap_closed)
->8 rese;

wait_completion {%}

->exit_complete : (Info.waiting_exit=0)
->$ else

leader_TL {%}

->&t-complete : (Info.waiting_cxit = 0)

/* align with the vehicle in front if (i=0) and (i=2) is the next
exiting vehicle*/

->align_with BTnﬁx?_l : (i=0)*(Info.msg_{rom_X[2]=I_am_next)
/¥ If (i=2) and either (i=0) or (i=1) arencxt to exit, then
the next one toexit is a_vehicle which was_in_front of this

one in AL.Alignwiththe vehicle behind the next one exiting */

—>allgn with b_plus_1 ((i=2)F
((Info.msg_from_X[0]=I_am_next)+
(Info.msg_from_X[1]=I_am_next))
/* With only two followerswecannotmodel
1. cases which requires decelerationbecause the next one to
exit is further than 2vehicles behindit
2. cases w_}ic_hE_guue alignmentwith b-2 because the next one
to exit is a vehicle which. was behind thisonein AL */
->monitor_followers_in_TL Telse
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align_with_b_minus_1 (align-with-b-minus-I)
->monitor_followersin T L s (XVr[i] #=aligned_with_b_minus 1)
->$ celsg

align_with_b_plus_1 (align-withb-plus-I)
->monitor_followers in TL (X Vr[i].#=aligned_with_b_plus_1}
->$ : clse;

exit-complete {exit_complete}

~->idle : (ME.#=exit_complecte)

->8$ celsg

monitor-followers _in _TL {%1

/* Only the following configurations are possible:
(210),(021),(012),(10),0D.2 002,21,
(1 2),(0),(1),(2). Each triple(x y z) indicates the ¢
exiting in the order: firstx, theny,thenz.*/

->align_with_b_plus_1 : ((i=1)*(Info.msg_{rom_X[2]=abort)*

(Info.msg_from_X[0]=]_am_next))+
((i=2)*(Info.msg_from_X[1]=abort)*
(Info.msg_from_X[0]=I_am_next))

/* all other combinations of aborted maneuversand assignment leads to

no action by the leader in TL*/

Ar number

/* Request a close-up to the new vehiclein TL if this vehicle

continues to_be thelcader_in_TL */

->close up_in_TL - (next_to_exit=2)*
(Info.msg_from_X[next_to_cxit]=I_am_in_TL)*
(Info.msg_from_Clnext_to_exit]=/

closed-up-in-TL)
/* checks if it_became a follower */

->wail_completion- - : (XRer[i].sensing=car_ahead)

->exit_complete . (Info.waiting_cxit = 0)

->$ Telse

close-up_in_TL {%}

->monitor_followers in TL : (Info.msg_from_C[next_to_exit]=
closed-up-in-TL)

->$ :dsc;

end /* Vehicle */

ThuSepl514:25:141994 Page 1l of v6.s1
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proctype Leader_info() Leader_info()
import X, XSr, XRr, Virtual Sr, M E
stvar $: (idle, exiting, exit_complete)

/* Thefollowing information is maintained by the leader in the
AL and communicated to the leader in the TL._ Since leadership

on both lanes may dynamically change, but a proctype cannot be
dynamically assigned to a precess,we_model_this infoas part of
aproctype which is seen by _all vehicles, but only used by the
curtent_leaders of AL and TL */

/* Vehicles which entered.theautomatedhighway were assigned an
exit numberby theNetworkLayer. As avehicle pass a Link Layer
section, it. asks the Link Layer:

" What is the XMS number of this section mycxit?". Obtaining
the response from thq_Link Layer, they compare it with their
assigned exit number. If it matches, then the vehicle informs its
platoon leader that itrequiresexitinthe next XMS.

We model this processbhy a vehicle data base which is
non-deterministically set by the Link Layer, and which is seen by
the platoon leader and the vehicles themselves. */

stvar exit_infolcars]: (yes-exit, no-exit, nothing)
selvar exit_DBJcars]: (ycsexit, no-exit, nothing)
asgn [i in 0..N]{exit_info[i]->
yes_exit 2 (i=0)*(arbiter=1)*(exit_info[i]=nothing) +
(i=1)*(arbiter=2)*(exit info[i]=nothing) +
(i=2)*(arbiter=1)*(exit_info[i]=nothing) |
no-exit ? (i=0)*(arbiter=2)*(exit_info[i]=nothing) +
(i=1)*(arbiter=1)*(exit_info[i]=nothing) +
(1=2)*(arbiter=2)*(exit_info[i]=nothing) |
exit_infofi] }
asgn [i in 0..N]{exit DB[i]:=exit info[i]}

selvar waiting-exit: (0..1)
asgn  waiting-exit:=
02(+[i in O.N] (1 ?
(exit_DB[i]=no_cxit) +
(((msg_from_X[i]=wait_assignment)+
(msg_from_X[i]=wait_reassignment)+
(msg_from_X[i]=abort))*
(to_X[i]=no_exit_gate)) +
((assign_DB[i]=exit_assigned) *
(msg_from_X[i]=I_am in TL) *
(true ? (I < carsl) *
(msg_from_C[i+1]=closed_up_in AL)) +
(i > carsl) | false)) |0))
= cas|
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selvar exiting-cars: (0..3)

asgn  exiting-cars:=
0 ? (+[i in 0..N](1 ? exit_DB[i}=yes_exit|0))= 0|
1 ? (+[i in 0..N](1? exit_DBlij=yes_exit | 0))= 1|
2 2 (+[i in 0.N](17 exit_DB[i]=yes_exit|0))= 2|
3

/* When a gate marke

one to exit */
selvar next_to_exit :(0, 1, 2)
asgn  next-to-exit:=  next-exiting

isseen, we know which one is the nex

I

stvar next-exiting :(0, 1, 2)
asgn  next-exiting-> 0 7 (Virtual_Sr.#=gate_marker)*
(msg_from_X[0]=[_am_ next) |
1 ? (Virtual Sr.#=gate_marker)*
(msg_from_X[1]=1_am_next) |
2 ? (Virtual Sr.#=gatc_marker)*
(msg_from_X[2]=I_am next) |
next-exiting

/¥ Themessagasfrom all vehicles is_recorded here*/

selvar msg_from_X[cars]:(I_am_in_TL, abort,
nothing, wait_assignment,
wait-reassignment, I_am_next)

asgn [i in 0..N]{msg_from_X[i]:= X[i].msg_from_X}

/* The leader also maintains a data base about the gate assignment
to himself and to_the followers. */

selvar assign-DB[cars]: (exit-assigned, exit_not_assigned)
asgn  [iin 0..N] {assign-DB][i]:=
exit-assigned ?
(to_X[i]=exit_gate 1) + (to_X[i}=exit_gate_2) +
(to_X[i]=exit_gate_3) + (to_X[i]=exit_gate_4) |
exit-not-assigned }
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/* This keeps track of thevehicle assigned towhich gate*/

selvar gate DB[5]:(-1, 0, 1, 2)
asgn [i in0.4]
{ gate_DB[i]:= 0 ?
({to_X[0]=exit_gate_1)*(i=1) +
(to_X[0]=exit_gate_2)*(i=2) +
(to_X[0}=exit_gate 3)*(i=3) +
(to_X[0}=exit_gate_4)*(i=4)} |
17
((to_X[1]=exit_gate 1)*(i=1) +
(to_X[1)=exit_gate_2)*(i=2) +
(to_X[1]=exit_gate 3)*(i=3) +
(to_X[1]=exit_gate_4)*(i=4)) |
27

((to_X[?]:exitb_gate *(i=1) +
(to_X[2]=exit_gate 2)*(i=2) +
(to_X[2]=exit_gate 3)*(i=3) +
(to__X[?]:exilt igate_4)*(i:4)) |
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/* the gate assignment is informed to vehicles via the array msg to X,
and remembered by using thestatc variable to X.*/

selvar msg_to_X[cars]: (exit-gate-I, cxit_gate_2, exil_gale 3,
exit-gate-4, no_exit_gatc, nothing)
asgn  [i in 0..N]{msg_to X[i}:= to X[i]}
stvar to_X[cars]: (exit-gate-|, cxit gate2. cxit_gate-3,
exit-gate-4, no_exit_gate, nothing)
asgn to_X[0]->
exit_gate-l  ? (exit DB[0]=yes_exit)*
(msg_from_X[0]=wait_assignment) |
exit_gate_2  ? (msg_{rom_X[0]=wait_rcassignment)*
(gate_DB[2]=-1)*(number_gates > 2 ) |
exit-gate-3  ? (msg_from_X[0]=wait_reassignment)*
(gate_DB[3]=-1)*(number_gates> 3) |
exit_gate_ 4 7 (msg_from_X[0]=wait_rcassignment)*
(sate_DB[4]=-1)*(number_gates = 4 ) |
no-exit-gate 7 (exit_DB[0]=no_exit) +
((msg_{rom_X[0]=abort)*
(number_gates < exiting cars)) |
nothing ? ($=idle) + ((msg_from_X[0]=abort)*
(number_gates>exiting_cars)) |
to_X{[0]

asgn to X[1}->
exit-gate-1 ? ((exit_DB[1]=ycs_cxit)*(exit_DB[0]=no_exit)*
(msg_from_X[1]=wait_assignment)) +
((msg_from_X[1]=wait_reassignment)*
(gate-DB[I]=-1)) !
exit_gate_2 ? (number_gates > 2)*
(((exit_DB[1]=yes_exit)*(exit_DB[0]=yes exit)*
(msg_from_X[1]=wait_assignment)) +
({(msg_from_X[1]=wait_reassignment)*
(gate_DB[2=-1))) |
exit_gate 37 (number-gates > 3)*
(msg_from_X[1]=wait_rcassignment)*
(gate_DB[3]=-1) |
exit_gate_4 ? (number_gates = 4)*
(msg_from_X{l]=wait_reassignment)*
(gatc_DB[4]=-1) |
no_exit_gate ? ((number-gates < 2)*
(exit_DB[1]=yes exit)*
(exit_DB[0]=yes _cxit)*
(msg_from_X[1]=wait_assignment)) +
({msg_from_X{1]=wait_rcassignment)*
((+[i in 1..4](17 gate-DBJi]j-1 | 0))
= number-gates)) +
((msg_from_X[1]=abort)*
(number_gates <_ exiting-cars)) +
(exit_DB[1]=no_exit) |
nothing ? ($=idle) + ((msg_from_X[1]=abort)*
(number_gates > exiting-cars)) |
to_X[1]
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/* the gate assignment isinformed lo vehicles via the array msg to X,
andremembered hy using the_state variabJe to. X. */

selvar msg_to_X][cars]: (exit_gate_1, exit-gate-2, exit_gate 3,
exit_gate 4, no-exit-gate, nothing)
asgn [i in 0..N]{msg_to X[i]:= to_X[i] }
stvar to_X[cars]: (exit-gate-l, exit gale-2, exit gate-3,
exit_gate_4,no_exit_gate, nothing)
asgn  to_X[0]->
exit-gate-l  ?(exit_DB[0]=yes_exit)*
(msg_from_X[0]=wait_assignment) |
exit-gate-2  ? (msg_from_X[0]=wait_reassignment)*
(gate_DB[2]=-1)*(number gates > 2 )|
exit-gate-3 ? (msg_from_X[0]=wait_reassignment)*
(gate_DB[3]=-1)*(number_gates> 3) |
exit_gate_ 4  ?(msg_from_X[0]=wait_reassignment)*
(gate_ DB[4]=-1)*(number_gates = 4 ) |
no-exit-gate ? (exit_DB[0]=no_exit) +
((msg_from_X[0]=abort)*
(number_gates (exiting_cars)) |
nothing ? (&idle) + ((msg_from_X[0]=abort)*
(number_gates>exiting_cars)) |
to_X[0]

asgn to-X[I]->
exit-gate-1 ? ((exit_DB[1]=yes_exit)*(exit_DB[0]=no_exit)*
(msg_from_X[1]=wail_assignment)) +
((msg_from_X[1]=wait_reassignment)*
(gate-DB[I]=-1)) |
exit_gate_2 ? (number_gates > 2)*
(((exit_DB[1]}=yes_exit)*(exit_DB[0]=yes_exit)*
(msg_from_X[1}=wait_assignment)) +
((msg_from_X[1]=wait_reassignment)*
(gate DBRI=1))) l
exit-gate-3 ? (number-gates > 3)*
(msg_from_X[1)=wait_rcassignment)*
(gate_DB[3]=-1) |
exit_gate 4 ? (nmumber_gates = 4)*
(msg_from_X[1]=wait_reassignment)*
(gate_DB[4]=-1) |
no_exit_gate ? ((number_gates < 2)*
(exit_DB[1]=yes exit)¥
(exit-DB[O]=yes-exit)*
(msg_from_X[1]=wait_assignment)) +
((msg_from_X[1]=wait_reassignment)*
((+[i in 1..4}(1 ? gate-DBJ[i]$-1 | 0))
= number-gates)) +
((msg_from_X[1]=abort)*
(number_gates < exiting-cars)) +
(exit_DB[1}=no_exit) |
nothing ? ($=idle) + ((msg_from_X[1]=abort)*
(number_gates > exiting-cars)) |
to_X[1]
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asgn  to_X[2}->

exit-gate-1 ? ( {exit DB[2}=yes exit)*(exit_DB[1]=no_exit)*
(exit_DB[0}=no_exit)*
(msg_from_X[2]=wait assignment) ) f

exit_gate 2 ? ((exit_DB[2]=yes_exit)*
((exit_DB[1]=yes_exil)+(exit_DB[0]=yes_exit))*
((exit_DB[1]=no_exit)+(exit_DB[0]=no_exit))*
(number_gates > 2)*
(msg_from_X[2]=wait_assignment)) +
((msg_from_X[2)=wait_reassignment)*
(gate_DB[2]=-1)*
(number_gates > 2)) |

exit gate 3 7 ((exit DB[2]=yes exit)*
(exit_DB[1]=yes_exit)*(exit DB[0]=yes_exit)*
(number-gates > 3)*
(msg_from_X[2)=wait_assignmcnl)) +
((msg_from_X[2]=wait_reassignment)*
(gate_DB[3]=-1)*
(number_gates> 3))

exit_gate_4 ? ((msg_from_X[2]=wait_reassignment)*
(gate_DB[4]=-1)*
(number-gates = 4)) |

no-exit-gate ? ((exit_DB[2]=yes_exil)*
(exit_DB[1]=yes_exit)*{exit_DB[0]=yes exit)*
(number-gates < 3)*
(msg_from_X[2]=wait_assignment)) +
((msg_from_X([2]=wait_reassignment)*
((+{i in1..4)(1 ? gate-DB[i]j-1 | 0))
= number-gates)) +
((msg_from_X[2]=abort)*
(number-gales < exiting_cars)) +
(exit_DB[2]=no_exit)

nothing ? ($=idle) + ((msg_from_X[2]=abort)*
(number_gates > exiting_cars)) |

to_X[2]

selvar msg_from_Clcars):(closed_up_in_AL, closed_up_in_TL,
took-over, nothing)
asgn  [i in 0.N]{msg_from_C[i]:= X[i].msg_{rom_C}

selvar msg_to_C[cars]:(close_up_in_AL, close-up-in-TL, takeover, nothing)
asgn [t in 0..N] {msg to Cl[i]:=
close-up_in AL ?
X[leader_in_AL}).msg_to_C[i)=close_up_in AL |
close-up_in_TL ?
X[leader_in_TL].msg to C[iJ=close up in TL |
teke _ over ?
X[lealer_in_AL].msg to (fi]=take_over |
nothing )
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selvar leader in_AL:(0,1,2)

asgn leader-in AL:=1_AL

stvar L AL :(0,1,2)

asgn | AL-> 0 ? (msg_from X[0}=/T_am_in_TL)
1 ? (msg_from X[0]=I am in_TL) |
2 ? (msg_from_X[0]=I_am _in_TL)*

(msg_from_X[1]=I am_in_TL)

AL

selvar | eader in_TL :(0,1,2)

asgn leader-in TL:=1_TL

stvar | TL :(0,1,2)

asgn 1 TL-> 0 ? XRr[0] sensing=no_car_ahead
1? XRr[l].sensing=no_car_ahcad
2 ? XRr([2].sensing=no_car_ahcad
1L TL

init to_X[0):=nothing, to_X[1}:=nothing, to_X[2]:=nothing,
1 AL:=0,1 TL:=0,
exit_info[0]:=nothing, exit_info[l]:=nothing,
exit_info[2]:=nothing, next_exiting:=0

recur exit_complete->idle

init idle

trans

idle

->exiting : ME.#=exit_initiate
->$ :esg

exiting

->exit_complete : ME.#=exit_complete
->$ s else

exit-complete
->idle : true
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proctype Monitors_Exit() Monitors Exit()
/* monitors the start and_campletion of the exit maneuver. It is a

exit, no leader in AL_remainsthelunctionis switched
to the leader in the TL. */

import X, Virtual Sr

selvar #:(%, e&initiate, exit_complete)

stvar $:(idle, monitoring, exit-complete)

recur exit-complete->idle

init idle

trans

idle {%}

->monitoring ¢ (Virtual-Sr.# =XMS_section_rcached)

->$ s dsg

monitoring {exit-initiate)

->exit_complete (4 in 0..N](17 X[i]. #=exit_complete | 0)) =N+1
->$ s

exit-complete { exitcomplcte}

->idlc : true

end /*Monitors Exit*/
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/* Thisis used to_order thesensipraffihe gates by the
vehicles, sinca it js_.not possible_to_dynamically .change

the association_af _sensars to vehicles (what would be
necessary if a follower becomes alcaderin AL */

proc Virtual-Sr: Sr() Virtual _Sr
/* Vehicles lateral sensar machine*/
proc XSrfi<cars]: Sr_X (i) XSr
/¥ removes from the betavior of_the lateral_sensor_machines

the possibility of foreversensing "vehicle too close” in
the transition_lane */

procSr_finally[i<cars]: FINALLY ((XVr[i].monitor TL=vehicle too_close)* Sr finally
(X[i].#=0k_to change))

/* vehicles velacity response */

proc XVrfi<cars]: Vr(i, X[i]) XVr
/* range sensors */
proc XRr[i<cars]: Rr(i) XRz

/* The leaders’ information data bases*/

proc Info: Leader_info() Info

/* vehicles’ protocel machine */

proc X[i<cars]: Vehicle (i) X
/* monitor exit */

proc ME: Monitors_Exit() ME
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/* Task A: at most N vehicles take an exit with M=N gates).*/

monitor Task-A: STOP( Task A
(+[i in 0..N](1? Info.msg_from_X[i}=I_am_in_TL} 0)) >
number_gates )

/* Task B: Non-requesting vehicles.donotexit. */

monitor Task-B: STOP( (+[i in 0..N](1 ? (Info.exit_DB[i]=no_cxit)* Task_B
(Info.msg_from X[i)J=I am_in_TL)| 0))
>0)/* Task C:Intcr-Plataon spacing is closed-up after a vehicle
exits. */

/* TaskD: Any vehicle whichrequestsexit, will. eventually exit */

#if  Leader monitor Task-DL Task-DL
import A
stvar $: (idle, request)
cyset {idle}, {idle, request}

init idle

trans

idle

->request : (A.Leader_exit_request = yes)
->$ else;

request

->idle : (A.$ = Acxitcompletc)

->$ cdse

end /* task DL */ #endif
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#i

f

F1 monitor Task_DF1
import X, A

stvar $: (idle, request)
cyset {idle), {idle, request)

init idle

trans

idle

->request S (X[0].# = exit-request)

->$ Jdse

request

->idle 1 (X[0].8 = exit-complete)*
(A.$ = exit-complete)

->8 cdse;

end /* task DF1*/ #endif

#i

f

F2 monitor Task_DF2
import X, A

stvar 8: (idle, request)
cyset {idle], {idle, request)

init idle

trans

idle

->request s (X[1).# = exit-request)

->$ s dse

request

->idle 1(X[1].8= exit-complete)*
(A.$ = exit-complete)

->$ cdse;

end /* task DF2 */ ftendif

I

h

U
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Task_DF1

Task-DF2
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