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Abstract 
 A spatially distributed wireless-sensor network, installed across the 2154 km2 portion of the 5311 km2 
American River basin above 1500 m elevation, provided spatial measurements of temperature, relative 
humidity and snow depth in the Sierra Nevada, California. The network consisted of 10 sensor clusters, 
each with 10 measurement nodes, distributed to capture the variability in topography and vegetation cover.  
The sensor network captured significant spatial heterogeneity in rain versus snow precipitation for water 
year 2014, variability that was not apparent in the more-limited operational data. Using daily dew-point 
temperature to track temporal elevational changes in the rain-snow transition, the amount of snow 
accumulation at each node was used to estimate the fraction of rain versus snow. This resulted in an 
underestimate of total precipitation below the 0 oC dew-point elevation, which averaged 1730 m across 10 
precipitation events, indicating that measuring snow does not capture total precipitation . We suggest 
blending lower-elevation rain-gauge data with higher-elevation sensor-node data for each event to estimate 
total precipitation. Blended estimates were on average 15-30% higher than using either set of measurements 
alone. Using data from the current operational snow-pillow sites gives even lower estimates of basin-wide 
precipitation. Given the increasing importance of liquid precipitation in a warming climate, a strategy that 
blends distributed measurements of both liquid and solid precipitation will provide more accurate basin-
wide precipitation estimates, plus spatial and temporal patters of snow accumulation and melt in a basin. 

Index Terms and Keywords: Wireless-sensor network, rain-snow transition, mountain precipitation, 
mountain snow  

1. Introduction 
At the basin scale, measurements of mountain 
water cycles currently are limited in both spatial 
coverage and temporal resolution, with data largely 
provided by a few operational precipitation, 
snowpack, climate and stream-gauging stations 
[Bales et al., 2006; Dozier, 2011]. In the Sierra 
Nevada, measurement sites tend to be limited to 
middle and lower elevations and flat terrain in 
forest clearings [Molotch and Bales, 2005]. 
Research networks include a few selected 
headwater basins where a more complete set of 
meteorological and hydrologic attributes are 
accurately measured [Kerkez et al., 2012]. While 

these catchments offer some detailed information 
on mountain hydrology, they provide a limited 
understanding of the hydrology of larger mountain 
river basins that can be characterized by steep 
gradients in temperature, precipitation, and rain 
versus snow fraction. In mountainous 
environments, the interaction between soil, 
vegetation, and existing snowpack and 
precipitation depends strongly on the precipitation 
phase [Kormos et al., 2014]. One of the common 
ways to determine the phase of precipitation is 
through a calibrated model of air temperature. 
However, the precipitation phase and air 
temperature relationship is higher variable across 
different seasons, sites, and storm tracks, while 

Key Points: 
– Distributed sensor data captures spatial heterogeneity in rain versus snow precipitation that is not 

apparent in more limited operational data 
– Distributed dew-point temperature measurements provide accurate estimates of snow-rain transition 

elevation during storms 
– Distributed, representative measurements can improve operational estimates of snowpack water 

storage and melt across the basin 

http://publications.agu.org/author-resource-center/text-requirements/#indexterms
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dew-point temperature shows a strong relationship 
to precipitation phase [Marks et al., 2013]. 

Operational forecasts of runoff are sensitive to 
estimation of rain versus snow, as illustrated by a 
tripling of storm runoff for a 600-m change in the 
estimated melting-level elevation in one simulated 
24-hour precipitation event in the American River 
basin [White et al., 2002]. Rain-snow transition 
elevation, or freezing levels, are of particular 
interest for warm events, and it has been observed 
that forecast biases associated with freezing levels 
above 2300 m in the basin have been 
underestimated by as much as 900 m [White et al., 
2010]. It has been noted that the rain–snow 
transition region is of great scientific as well as 
practical interest, affecting both current forecasting 
and potential improvements in predictive tools 
[Ralph et al., 2005].  

Mesoscale differences between the 
atmospheric 0o C elevation and the mountainside 
snow line in the Sierra Nevada make both 
characterizing and predicting the snow line 
particularly challenging. Data from three years of 
storms show that the mesoscale lowering of the 
snow line is a feature common to nearly all major 
storms, with an average snow-line drop of 170 m 
[Minder and Kingsmill, 2012]. While radar can be 
an effective tool for detecting rain versus snow, and 
other attributes of a precipitation event, its use is 
limited in the complex topography of the upper 
American River basin [Matrosov et al., 2007].  

Combining dew-point temperature with air 
temperature has previously been shown to provide 
a reliable estimate of the timing and phase of 
precipitation [Marks et al., 2013]. Precipitation 
occurs when temperature approximately equals 
dew-point temperature, indicating saturation of an 
air parcel. The critical temperature range of 
separating solid versus liquid is usually wider and 
more variable for a method based on air 
temperature compared to one based on dew-point 
temperature. Therefore, using a dew-point 
temperature-based method to determine the phase 
of precipitation is generally less geographically 
dependent [Ye et al., 2013]. It has also been 
observed that using ground-based dew-point 
temperatures to determine the phase of 
precipitation is potentially more accurate than 
radar-based methods due to reduction of error 
associate to interpreting the radar measurement 
[Lundquist et al., 2008]. 

Recently developed and deployed wireless 
sensor network (WSN) clusters in the American 
River basin provide a rich dataset with significantly 
denser spatial sampling than operational stations. 
This richer dataset allows us to understand and 
characterize the critical gradients in temperature, 
humidity, and precipitation that help define the 
dynamics of mountain water balance. It can enable 
use of new classes of spatially explicit hydrologic-
modeling tools to produce quantitative 
assessments, influence hydrologic forecasting, 
probe system response to climate and land-cover 
perturbations, increase process understanding of 
basin-scale water cycles, and provide defensible 
scenarios for infrastructure planning over a scale 
currently not possible. These WSN clusters 
complement deployments by others to monitor 
extreme weather events for flood forecasting 
[White et al., 2013]. 

The specific aims of the research reported in 
this paper are to assess how spatially distributed 
sensor-network data can improve estimates of: i) 
the basin’s average rain-snow transition elevation 
during precipitation events, ii) the amount of rain 
versus snow during mixed-precipitation events 
across the basin, and iii) the amount and timing of 
snowmelt across the basin. Together, these affect 
the soil-moisture and runoff patterns across a basin. 

2. Methods 
Data from 80 wireless-sensor nodes distributed in 
10 strategically chosen networks in the American 
River basin were used together with operational 
data to estimate precipitation as rain versus snow, 
snow ablation, and melt, across the upper part of 
the basin for the 2014 water year. Although a 
drought year, there were 11 events with measurable 
precipitation, 10 of which were used in the current 
analysis. The sensor-network nodes provided 
temperature, relative humidity and snow-depth 
data across the range of topographic and vegetation 
characteristics in the portion of the basin where 
snow is currently an important part of the water 
balance.  

2.1 Study area 
The study area was the American River Hydrologic 
Observatory, a spatially distributed water-balance 
WSN in the upper, snow-dominated part of the 
American River basin on the western slope of the 
Sierra Nevada in California (36.069 N, -120.583 
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W). The basin is incised with steep river canyons 
and comprises three sub-basins: the North, Middle, 
and South forks, which combine to form a drainage 
basin of 5311 km2. Basin elevations range from 200 
m at Folsom Reservoir to 3100 m at the Sierra crest, 
with precipitation transitioning from rain to snow 
at about 1400-1600 m [Raleigh and Lundquist, 
2012; Klos et al., 2014]. Sixty percent or about 
2154 km2 of the basin is above 1500 m, the location 
of the WSNs. The basin supports diverse 
vegetation types ranging from grasslands, oak 
woodland, chaparral, and oak savannas at the lower 
elevations, mixed conifers and montane hardwoods 
at the mid to upper elevations, and above the 
montane forest is the sub-alpine, alpine meadows, 
and shrub land [Van Wagtendonk and Fites-
Kaufman, 1997]. The canopy structure exhibits 
high heterogeneity in both percent coverage and 
vegetation type, as indicated by National Land 
Cover Database [Jin et al., 2013]. The forest 
landscape is subjected to land-cover perturbations 
such as forest thinning and fire. 

Locations for both the ten sensor network 
clusters, with each cluster distributed over 
approximately 1.5-km2 area and up to ten sensor 
nodes within each cluster, were placed in 
physiographically representative regions to capture 
the variability of the upper basin (Figure 1). Each 
sensor node is equipped with an ultrasonic snow-
depth sensor (Judd Communication Depth Sensor) 
and a temperature/relative humidity sensor 
(Sensirion SHT-15). See Table 1 for locations and 
other information on the ten clusters of nodes used. 

2.2. Data  
Data were from two sources, WSNs and 
operational stations. Time-series data were taken 
from 80 sensor nodes of the sensor-network 
clusters for the first eight months (Oct-May) of the 
2014 water year (WY). Nodes in each of the 10 
clusters were placed within a 1-km2 area to capture 
the variability in vegetation cover, aspect and 
slope.  Each node was sampled at 15-minute 
intervals for snow depth, temperature and relative 
humidity. Hourly and daily products for each 
attribute were developed by averaging the 15-
minute data. Precipitation, temperature, snow 
depth and snow water equivalent (SWE) from 
across the basin were acquired from operational 
stations. All data were subjected to quality control 
to remove noise, following the protocols described 

in Daly et al. [2008]. Hourly and daily products 
were developed for periods where no less than 75% 
of data were valid within the averaging window. 
Precipitation data were not adjusted for gauge 
undercatch, which should be relatively small in 
these densely forested areas. 

In order to estimate SWE from sensor-network 
measurements of snow depth, we used a basin-
averaged snow density derived from ten snow-
telemetry sites where snow depth and SWE were 
both measured. The sites range in elevation from 
1901 to 2546 m, similar to the 1518-2673 m 
elevation range of our WSNs (see Table S1). 
Because 2014 was a drought year, there was 
insufficient snow to measure density over the 
season below 1900 m elevation. A density time 
series was developed using the ratio of daily SWE 
and snow depth (See Figure S1). Density values 
from all sites were averaged, and this mean-density 
time series used for SWE calculations at all sensor-
network nodes, with mean values ranged from 
about 130 kg m-3 in January to 420 kg m-3 in May 
At the beginning of the season when the snow 
pillow may have been only partially covered, 
density was assumed to be 330 kg m-3, the seasonal 
average. Near the end of the season, the last valid 
snow-density value from each site was extrapolated 
to calculate basin-average snow density. . There 
was no apparent elevation pattern to the density 
record, which is consistent with our past analyses 
[Kirchner et al., 2014]. 

2.3. Precipitation phase and rain-snow 
transition elevation 
The total amount of precipitation for each of the 10 
main precipitation events was estimated for each 
sensor-network node using the changes in 
accumulated snow and dew-point temperature. 
One event, in early May, was not included owing 
to the very small amount of precipitation. Solid 
precipitation at each node was computed as the sum 
of the daily increase in snow depth over the 
duration of the storm event, times the daily density 
value. Dew-point temperatures were calculated at 
each node based on an empirical formula 
[Lawrence, 2005], using air temperature and 
relative humidity. The duration of each 
precipitation event was defined as the period when 
hourly air and dew-point temperatures were within 
1o C. For each day with solid precipitation, the 
mean daily dew-point temperatures were used to 
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determine the precipitation phase. The proportion 
of liquid and solid precipitation was computed 
from the daily dew-point temperature. For 
temperatures between +1o C, the proportion of 
snow and rain was assumed to vary linearly from 0 
to 100%. Above +1o C and below -1o C 
precipitation was assumed to be 100% rain (liquid) 
or snow (solid). We refer to this as the dual-
temperature method. We thus defined the 
rain/snow transition zone as the band of elevations 
between +1o C dew-point temperature. 
Precipitation results from the WSNs were 
evaluated using measurements of SWE from snow 
pillows and precipitation from rain gauges at two 
sites (ALP and ECP). While a non-linear 
relationship between monthly air temperature and 
fraction rain or snow in precipitation has been 
developed and used with rain-gauge data, we did 
not have sufficient data to develop that sort of 
relationship here [Ohmura et al., 1999; Bales et al., 
2009].  

2.4. Basin mean SWE and melt 
The amount of accumulated snow and melt-out 
dates provide an additional check on the 
partitioning of rain versus snow precipitation. 
Spatially averaged sensor-network SWE estimates 
were compared to operational snow data to assess 
differences in melt patterns and melt-out dates 
across elevation. The portion of the basin above 
1500 m was divided to three elevation zones of 
equal area, with cutoff elevations at 1752 m and 
2041 m. The basin’s area/elevation relationship 
was derived from a 30-m DEM. SWE estimates 
from sensor nodes in each zone were averaged to 
zone and basin means. The snow-disappearance 
day for each node was determined as the day snow 
depth fell below 1 cm.  

3 Results 

3.1 Temperature, humidity and precipitation 
Data from the 80 measurement nodes illustrate 
both within-cluster heterogeneity and average 
patterns across different elevations within the 
basin. For example, within a cluster the daily cycle 
of air temperature for the 10 nodes at ALP (Figure 
2a), over a typical 14-day period, showed a 5-10o C 
difference between hourly maximum and 
minimum values on a given day, with temperatures 
below 0o C during snow accumulation (Figure 2c). 
The smallest snow accumulation during the event 

on water-year day (WYD) 207 was 22 cm for a 
node in a heavily forested location, with two other 
nodes (in the forest clearing) receiving 31 cm of 
snow. Relative humidity peaked at 100% from 
WYD 206 to 208 (Figure 2b), and showed little 
variability across the site. Most of the snow 
disappeared within three days after the event due to 
warm temperatures.  

Across the basin, eight of the 10 clusters of 
nodes were co-located with a met station (Table 1), 
and Figure 3 provides a comparison between the 
sensor-network spatial mean versus single met-
station temperature. At four of these, the met-
station average temperature was within 1o C of the 
10-node average. Over an 8 month-period, at four 
of the clusters (BTP, VVL, CAP, ECP) the average 
daily sensor-network temperature was 1.5, 1.1, 1.1 
and 1.8o C, respectively, below that for the nearby 
operational station (see Figure 3). For these sites, 
80%, 2%, 58% and 77%, respectively, of days had 
a difference greater than 1o C between the network 
mean and the station.. Four of the ten sites also 
have an operational station with a shielded rain 
gauge to measure precipitation, plotted as daily 
values on Figure 3. Note that precipitation was 
recorded for most, but not all events at these sites. 

3.2. Rain-snow transition zone 
The rain-snow transition zone falls within the 
elevation range of our sensor network for nine out 
of 10 precipitation events (Table 2), ranging in 
elevation from 1463 to 2011 m. The exception was 
a cold event on WYD 67 (Event E3), with an 
average daily dew-point temperature of -13.5o C, 
and maximum of -9.1o C. During this event, the 
rain-snow transition was at 627-m elevation, well 
below all of our sensors. The rest of the events all 
had 0o C dew-point temperature elevations between 
the highest and lowest of our sensors (Figures 4 and 
S2.1a-S2.9a). Placement of WSNs above 1518 m 
was sufficient to define the rain-snow transition for 
most events. 

The event E6, one of the largest multi-day 
snow events in water-year 2014, is used as an 
illustration of our analysis. The +1o C and 0o C dew-
point temperatures, presented by Figure 4a, show 
that the average lower boundary of the rain-snow 
transition zone (Td   = 1o C ) for the five-day period 
of event E6 was 1681 m. During this event, the 
rain/snow transition zone gradually moved up in 
elevation. The hourly dew-point lapse rates (Figure 
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4b) during precipitation were relatively stable 
(mean -5.0o C km-1) compared to pre-and post-
event values, with R2 values (Figure 4c) 
significantly higher and RMSE (Figure 4d) lower 
during precipitation. Early in the event, snow 
depths recorded at all clusters tracked each other, 
with a divergence of trends observed on WYD 131, 
when only the half of the clusters at higher 
elevation recorded increases in snow depth (Figure 
4e). For comparison, at operational station FRN 
(2269 m elevation) the precipitation gauge 
recorded 5 cm on WYD 130, with no SWE increase 
recorded on the snow pillow (Figure 4f). 
Concomitantly, operational station ECP, roughly 
200 m higher in elevation, recorded a 15-cm 
increase in SWE and 13-cm increase in 
precipitation during the same day (Figure 4f). Both 
sites received solid precipitation on WYD 132 as 
the storm intensified. 

The basin-wide upslope migration of the 
rain/snow transition during event E6 was observed 
in the daily increase of snow-depth measurements. 
The lower-elevation nodes gradually lost 
recordable snow starting from WYD 130 (Figure 
4g). Migration of the snow line coincided with the 
upward movement of the zero dew-point 
temperature (Figure 4a). The mean hourly 
difference between air temperature and dew-point 
temperature was 0.4o C during the four-day event 
(Figure 4h). The air remained relatively saturated 
across elevations and time span of the entire event.  

Similar records for other events are shown in 
supplemental Figures S2.1 to S2.9. The mean R2 of 
the dew-point-temperature lapse rate for all 10 
events was 0.78 and the RMSE was 149 m, 
indicating an overall good fit of the dew-point data 
during the precipitation events. 

The amount of solid and total precipitation by 
event is shown in Figure 5a for each node and in 
Table 3 for the basin average above 1500 m. The 
rain fraction was higher at lower elevations, with 
considerable variability across the nodes of each 
local cluster owing to local differences in dew-
point temperature. A precipitation lapse rate for 
each event was calculated as the slope of the linear 
best-fit line. The values for solid precipitation lapse 
rate varied from 1-3 cm km-1 in events E3, E4 and 
E10, all relatively small events compared to over 
30 cm km-1 in the largest event E6 (Table S2). All 
slopes in Figure 5a were statistically significant (p 
< 0.05), except total precipitation for event E8 

(p=0.27). For binned data, events E3 and E8 had p 
> 0.05 (0.08, 0.11, respectively), with the other 
eight events having statistically significant fitted 
lines. Solid precipitation lapse rates for the binned 
data were on average about 0.6 cm km-1 higher than 
for all-node data. The analysis shown on Figure 5b 
uses 11 bins of 100-m in elevation; results were 
essentially the same for fewer bins (data not 
shown). Doing the same analysis of total and liquid 
precipitation using snow-pillow data, together with 
dew-point temperature from the wireless-sensor 
nodes (Figure 5b), gives lapse rates that are about 
2.3 cm km-1 lower than those for the binned node 
data, and on average differ from the slopes for the 
node data by about 25%. Differences between 
binned-node and snow-pillow data were all 
relatively large for the two events with the steepest 
precipitation lapse rates, events E6 and E7. Using 
rain-gauge data gave precipitation lapse rates that 
were near zero, and in some cases negative for the 
10 events (Table S2). Only one event (E5) had a 
statistically significant trend. The relatively small 
number of well-maintained, representative sites 
limits use of rain-gauge data, especially at higher 
elevations.     

Normalizing precipitation lapse rates by the 
mean precipitation amounts in Table S2 gives 
values of about 2.4 + 1.8 km-1 (mean + standard 
deviation) for all nodes, versus 2.2 + 1.0 km-1 for 
binned data, and 2.0 + 1.3 km-1 for the snow-pillow 
data. On average, normalized precipitation lapse 
rates for each event differed by about +33% for the 
sensor-node versus snow-pillow data. Normalized 
total precipitation lapse-rate values for sensor-node 
data range from 0.3-0.8 for E1, E3, E8 and E9 to 
2.5-3.2 for E4, E6 and E7 to 3.7-5.1 for E2, E5 and 
E10.  

The contribution of liquid precipitation for 
mixed rain-snow events can be significant. For 
example, during event E6 2.8 cm of liquid 
precipitation, averaged across elevations, was 
recorded, with 9.3 cm solid precipitation by the 
nodes (Table 3). Using the node data, it is estimated 
that across the 10 events, about 11% of the 
estimated total 62 cm of precipitation above 
elevation 1500 m fell as liquid. However, this 
likely underestimates the rain contribution to total 
precipitation at some of the lower sensors owing to 
the small amount and high variability of solid 
precipitation. Rain-gauge data, averaged over the 
basin and summed for all 10 events, give 79 cm 
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total. Using binned node data gives only 57 cm 
total precipitation (11% liquid), and snow-pillow 
data give 52 cm total (15% liquid).  

Overall results for the 10 events shown on 
Figure 5 show similar patterns for WSN versus 
snow-pillow estimates of solid precipitation for 
some events; for other events the snow-pillow data 
fail to show the consistent elevation trend seen in 
the WSN data. For total precipitation, the WSN and 
rain gauges show different elevation patterns 
(Figure 5c); and a blended product would combine 
lower-elevation rain-gauge data with higher-
elevation snow data to provide the most accurate 
elevational estimate of total precipitation. 

3.3. SWE and snowmelt 
SWE data show a clear elevation trend, with 
variability increasing with elevation (Figure 6). 
Maximum SWE occurred around April 1. During 
the warm and dry 2014 snow season, snow cover 
accumulated mainly at elevations above 2100 m. 
At elevations below that, snow melted soon after a 
precipitation event. At peak accumulation, average 
SWE measured by the WSN for the 2154 km2 
above 1500 m was 24.7 cm. Thus the estimated 
water stored in the snowpack at the American River 
basin above 1500 m was 532 million m3 (0.43 
million acre feet), or 10 cm averaged across the 
5311 km2 basin. The averages of snow-pillow SWE 
values showed positive biases when compared to 
the WSN. However, basin-mean SWE on April 1st 
from snow courses was 15 cm lower than sensor-
network average SWE.  

Sites at higher elevations generally had more 
accumulation and thus a longer melt season 
compared to lower elevations. For sensor-network 
sites above 2000 m, snow melt out progressed 
upslope an average of 13 m day-1 (R2 = 0.68) 
(Figure 7). This is comparable to the 14 m day-1 
observed by Rice et al. [2011] for a dry year (2004) 
using satellite snow-cover data. The mean melt-out 
progressed upslope about 25 m day-1 (R2 = 0.67) if 
lower-elevation sites were considered. The entire 
melt season lasted roughly 65 days after April 1 
(WYD 183), indicated by the first node at BTP to 
melt out versus the last node at ECP. The error bars 
in Figure 7 indicate a 3-22 day variability in the 
progress of snowmelt among nodes within each 
cluster. ECP experienced the longest period (61 
days) between the first and the last nodes to melt 
out. The progression of snowmelt within each site 

was also recorded. Differences in the timing of 
melt-out between the sensor-network nodes vs. 
snow pillows were also apparent (Figure 7). Snow-
pillow data show an earlier melt out as compared 
to the cluster means, with 18-, 22- and 30-day 
differences at VVL, ALP and ECP, respectively. 

Related to snowmelt timing, there were 
significant differences in cumulative temperature 
(sum of degree days) between sensor-network 
nodes and met-station sensors, reflecting the 
placement of WSN sensors capturing the 
heterogeneity of the landscape, versus placement 
of the single operational station in a clearing (See 
Figure S3 for data). For the main snowmelt season, 
April 4 to June 27, the differences between sensor-
network nodes and operational station cumulative 
values were +24 oC-day at VVL, and -68 oC-day at 
ECP. Using an average degree-day factor of 0.4 cm 
per oC-1day-1 [Shamir and Georgakakos, 2006], the 
resulting difference in potential snowmelt would 
amount to about +9.70 cm at VVL and -28 cm 
SWE at ECP. In contrast, temperature data between 
the sensor nodes and met-stations from SCN and 
ALP showed much less difference, +9.7o C-day and 
+4.5o C-day (Figure S3). The differences in 
potential snowmelt (snowmelt if snow was present) 
would be +3.9 and +1.8 cm of SWE for SCN and 
ALP. Further discussion of temperature differences 
between WSN, operational sensors and model 
products are in Zhang et al. [2017]. 

4 Discussion 

4.1 Dew-point temperature and rain-snow 
transition 
Precipitation data from the nearby rain gauges at 
ALP and EP5 showed that the dual-temperature 
method reliably mapped the timing of precipitation 
(Figure 4g-h). The better characterization of the 
timing of an event provided by the sensor network 
helps to estimate event-based indexes such as lapse 
rate and RMSE more accurately. Reduction of 
uncertainty in temperature and humidity elevation 
patterns improves determination of the elevation 
range associated with the rain-snow transition. 

Due to limited relative-humidity 
measurements at operational stations in the basin, 
dew-point temperature is not routinely available 
[Raleigh et al., 2013]. Previous work in the 
American River basin demonstrated the inaccuracy 
of estimating daily dew-point temperature patterns 
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using empirical method-based spatial-projections 
algorithms, radiosonde data, or PRISM lapse rates 
[Feld et al., 2013]. They also suggest that dense 
field measurements or down-scaled atmosphere-
model data are two viable solutions to more-
accurately estimate daily dew point. Our 
telemetered sensor-network data are of the density 
and quality that can support the dual-temperature 
method.  

The bottom of the rain/snow transition 
elevation, represented as 1o C dew-point 
temperature, ranged from 627 to 2011 m for the ten 
events (Table 2). Although the 627-m value was 
early in the winter, and the 2011 m elevation was 
later in spring, other values failed to show a 
consistent increase in elevation from winter to 
spring. Our range of rain-snow transition 
elevations was wider than observed at Reynolds 
Creek, Idaho [Nayak et al., 2010]. Marks et al. 
[2013] did a detailed analysis of the rain-snow 
transition by putting in place a transect of seven 
measurement stations providing temperature, 
humidity and snow depth every 50 m, including 
precipitation and wind at the bottom (1500 m), top 
(1800 m) of the catchment, and in a sheltered site 
just below the top (1750 m) in a 1.8 km2 sub-
drainage within the Reynolds Creek Experimental 
Watershed. Their work showed that the rain-snow 
transition is very dynamic moving up and down 
during mountain storms, and that rain-snow 
transition level can be reliably determined from site 
humidity and temperature. However, in the absence 
of such an extensive measurement network, 
methods to reliably estimate the rain-snow 
transition, also referred to as melting level, are still 
an open question in mountain hydrology 
[Lundquist et al., 2008]. Widely used snow models 
such as SNOW-17 are very sensitive to the 
melting-level parameter input [Maurer and Mass, 
2006]. A melting-level error of 500 m can result in 
a 200% difference in peak flow prediction [White 
et al., 2002]. Previous studies interpolated ground 
melting elevation from atmosphere hydrometeor 
measurements using Doppler-profiling radar 
[Lundquist et al., 2008; Minder and Kingsmill, 
2012]. However, the uncertainty in estimates made 
from these methods were at best about 300 m in the 
American River basin. The root mean square error 
of estimating dew-point temperature was about 150 
m using our WSNs (Table 2). 

Rain-snow partitioning results are sensitive to 
the choice of the dew-point temperature thresholds. 
Marks et al., [2013] proposed a 1o C window, +0.5 
o C, as the boundary of the transition zone. While 
they used hourly data for calculation, our study 
used daily averaged dew-point temperature and 
SWE in order to mitigate noise in snow depth, 
possible lags in density data, and the limited 
availability of hourly precipitation-gauge data. We 
also use wider bounds, +1o C, to accommodate 
uncertainties from measurements and method. The 
wider bounds allow inclusion of more daily events 
in the rain/snow transition zone. Specifically, the 
100% widening of bounds resulted in an increase 
in the mean predicted liquid precipitation from 6.2% 
to 9.9% seasonally and from 14.2% to 21.1% for 
event E6.   

4.2 Partitioning rain and snow 
The ability to estimate liquid-precipitation amounts 
from solid precipitation could substantially extend 
the current capability of precipitation observations. 
Those observations are important, as they are the 
basis of interpolation for some gridded-
precipitation products such as PRISM, WorldClim, 
and Climate Research Unit CL 2.0 [New et al., 
2002; Res et al., 2002; Hijmans et al., 2005]. In a 
study by Lundquist et al. [2015], above 2500 m 
elevation total ground precipitation was assumed to 
be given by the increase in SWE. Seasonally, the 
assumption holds for American River site for WY 
2014. However, the rain/snow transition zone can 
reach elevations above 2500 m for warmer event 
such as E6 (Figure 5). To extent the analysis to 
lower elevation and higher temporal resolution, 
accurate temperature or dew-point temperature 
data are needed to help reduce the uncertainty in 
predicting the phase of the precipitation.  

Besides local spatial variability of dew-point 
temperature, the temporal variability of dew-point 
temperature can also produce suitable temperature 
conditions for snowfall. Event E6 surrounding 
WYD 131 was an example of such event (Figure 
4). On WYD 131, 7 cm of precipitation was 
recorded at the BTP rain gauge (Figure 3). With a 
daily averaged dew-point temperature at 3.1oC 
(Figure 4a), almost all of the precipitation was rain. 
There was little to no SWE recorded by the five 
lower WSN clusters (Figure 4e).  At higher 
elevation clusters, almost all of the precipitation 
was snow. Despite the high mean daily dew-point 
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temperature, there was still a small but measurable 
amount of snow deposited at BTP during the event. 
This was likely due to both the temporal and spatial 
variability of dew-point temperature, which is not 
completely captured by a daily, cluster-averaged 
lapse rate and temperature. An hourly analysis of 
dew point and precipitation as rain versus snow is 
feasible using sensor-node data, and there is 
evidence that use of a finer time step can increase 
accuracy of phase separation [Harder and 
Pomeroy, 2013], e.g., melting during the warm part 
of the day versus freezing at night 

On average, the data indicate that up to 89% of 
the WY 2014 precipitation in these 10 events fell 
as snow at some of the sensor nodes. The 
challenges in predicting the amount of liquid 
precipitation was smaller compared to previous 
work [Marks et al., 2013]. This is due to the 
relatively larger elevation differences among 
sensor nodes, where some higher-elevation nodes 
receive mostly solid precipitation from all events. 
Due to lack of solid precipitation in some events at 
lower elevation, this method could result in under 
estimating total precipitation and overestimating 
the precipitation lapse rate.  

The general trend of increasing precipitation 
with elevation followed a less-steep precipitation 
lapse rate during some events such as events E1, 
E3, E8 and E9, i.e. higher elevations generally 
received similar amount of precipitation compared 
to lower elevations. During those events, elevations 
account for no more than 27% of the variance in 
snow deposition.  

Four events were associated with atmospheric 
rivers that made landfall (M. Dettinger 2016, 
personal communication). Of these, events E2, E6 
and E7 had relatively steep precipitation lapse 
rates. Events E1, E3, E4 and E9 showed no effect 
of atmospheric river moisture. The outliers are E8, 
the largest event of the season, which had a weak 
precipitation lapse rate but was weakly associated 
with atmospheric-river transport. Smaller events 
E5 and E10 had steeper lapse rates, but were not 
associated with land-falling atmospheric rivers. 

For 1998-2010, the overall contribution of 
atmospheric rivers to Sierra Nevada SWE was 
about 35%, with the rest contributed by less-intense 
but more frequent precipitation events [Guan et al., 
2012]. Eight of the 10 events that we analyzed had 
ΔSWE in the range of 0.5-4.5 cm day-1, consistent 
with the observation that 80% of the total SWE for 

1998-2010 was contributed by days with ΔSWE in 
that range [Guan et al., 2010].  

4.3 Comparison of basin-wide precipitation 
estimates 
The rain-from-snow reconstruction result was 
compared to measurements of two co-located sites 
at EPC and ALP. Both sites simultaneously 
recorded SWE on a snow pillow and precipitation 
by a rain gauge. Seasonally, most of the 
precipitation was estimated as solid at EP5 (co-
located with ECP) from the sensor-network data 
(Figure 8a). Good agreements were observed 
between the WSN and operational data. At ALP, 
there were larger uncertainties associated with 
estimated liquid water content in snow.  The snow 
pillow and precipitation gauge at ALP measured 
about 25% liquid precipitation versus 12-42% 
liquid estimated for the sensor-network nodes 
(Figure 8b). Compared to ECP, ALP is more 
susceptive to the effects of rain/snow transition due 
to its lower elevation. Besides the natural 
heterogeneity, canopy interception and wind 
redistribution of snowfall to the wireless-sensor 
nodes at ALP could add sources of uncertainties in 
predicting liquid water content. These uncertainties 
may be resolved using subsequent-year data from 
the WSN, binned and then evaluated using the 
spatial snow measurements.  

Comparing precipitation estimates from 
operational versus sensor-node data across the 
basin above 1500 m elevation, it is apparent from 
comparing Figure 5a and 5b that the 80 sensor 
nodes capture landscape variability that is not 
apparent in snow-pillow data. The two data sets 
give broadly similar precipitation lapse rates (see 
table S2), the WSN data potentially offer four types 
of added value. First, the WSN data better capture 
spatial variability, and thus should give improved 
estimates of gridded SWE, essential for spatially 
explicit modeling and forecasting tools. Second, 
compared to snow-pillow data, the WSN provides 
redundancy in measurements that can bridge data 
gaps and uncertainties in snow-pillow 
measurements. Third, compared to snow-course 
data, the WSN provides temporally continuous 
data over the same or larger spatial domain. This is 
especially important given the shifting rain-snow 
mix and earlier peak in SWE at snow courses as 
climate warms. Fourth, these differences together 
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reduce uncertainty in precipitation, snowpack 
storage and snowmelt.  

It is apparent from Figure 5c that total 
precipitation estimated using snow depth, and dew-
point temperature from the WSN show spatial and 
temporal differences in precipitation across 
elevation and other landscape attributes that are not 
captured by the rain-gauge data. The relationship 
between precipitation estimates from the two data 
sets differs for warmer versus colder events. For 
the colder events E1, E3, E8 and E9, total 
precipitation estimated by the WSN is higher than 
that measured in the precipitation gauges. For these 
four events the rain-snow transition elevation was 
at or near the 1500-m lower limit of the WSN, and 
liquid precipitation contributed to the total. For the 
other six events, the 0o C dew-point elevation was 
well above 1500 m, and liquid precipitation was 
more important. A potential limitation of this 
method is the lack of a verified relationship 
between fraction rain versus snow and dew-point 
temperature.  A second estimate of total event 
precipitation comes from combining the two types 
of measurements, i.e. using precipitation-gauge 
data at lower elevations and WSN data at higher 
elevations. Given the few precipitation gauges 
available in the basin, we used an average value for 
lower elevations, combining that with WSN data 
for elevations above that value. The result is higher 
precipitation estimates for the mixed rain-snow 
events (Table 3). Over all 10 events, this results in 
a season total of 90 cm, versus 79 cm for gauges 
alone and 62 cm for WSN alone. These represent 
respective total precipitation amounts of 1.9, 1.7 
and 1.3 billion cubic meters (1.6, 1.4, 1.1 million 
acre-ft). A potential value added from this 
combined estimate is to provide a more accurate 
elevation dependence of precipitation. 

An additional comparison comes from 
summing precipitation by elevation across all 
events. Here, we compare two estimates (Figure 9). 
Note the strong elevation dependence of the WSN 
estimates versus PRISM data, which is gridded 
based on operational data. PRISM reflects the 
mean of precipitation-gauge data in the basin. 
Here, the point of intersection is about 2400 m, 
which is still in the snow-dominated part of the 
basin. Rain-gauge data are shown for reference, 
and represent part of the data used in the PRISM 
interpolation. Going forward, improvements in 
precipitation estimates across the basin should 

focus more on snow in this region, and rain below. 
In the mixed rain-snow zone, blending the two 
should be pursued. 

It is acknowledged that the use of a uniform 
density over the portion of the basin with the WSNs 
does introduce uncertainty into the estimation of 
SWE at individual WSN nodes. However, because 
the snow-pillow sites provide the only reasonable 
estimate of daily snow density, and the topographic 
and vegetation structure at those sites do not match 
those at the WSNs, an effective spatially 
distributed scheme for distributing snow density 
from those sites to the WSN’s was not feasible. The 
coefficient of variation for the density values used 
in this analysis was about 0.20-0.30 early in the 
season, decreasing to about 0.15 later in the season 
(Figure S1). These relatively high values are 
expected for a drought year, when accumulation on 
snow pillows, where estimates are made, is 
relatively low. The values are somewhat higher 
than the average coefficient of variation of 
0.08+0.02 found for April 1 density measurements 
across 14 snow courses in the Merced and 
Tuolumne basins, over a 60-year period (Figure 
S4). These same snow courses had an average 
coefficient of variation of April 1 density of about 
0.05+0.02 for the ten measurements within each 
snow course. Also, over the 60 years analyzed, 
there was no consistent pattern of density change 
with elevation, with some years showing a 
decrease, and very few years having a statistically 
significant linear trend. While variability in density 
introduces uncertainty into SWE estimates for 
individual nodes in the present study, the aggregate 
uncertainty across the full network is less.  

4.4. Basin SWE and snow melt 
Similar to prior work, the variability in SWE 
increases with elevation, but the coefficient of 
variation showed no distinct trend in elevation at 
the spatial scale of the WSNs  [Perry et al., 2010]. 
Seasonally, the coefficient of variation for the 
lower one third of the basin is 1.04, similar to the 
upper one third at 1.05 (Table 4). The differences 
in variability at similar elevations can in large part 
be accounted for by differences in forest canopy 
coverage [Clark et al., 2011]. At a few higher-
elevation sites (e.g. ECP and MTL), the high 
variability in SWE was caused by high SWE values 
recorded by a small subset of nodes. The generally 
lower SWE compared to WSN at co-located snow 
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pillows reflects sampling bias in snow pillows, 
versus the more spatially representative sampling 
of the WSNs [Zhang et al.,2017]. 

The study characterized the basin’s mean SWE 
by three zones similar to Welch et al., [2013], 
which showed that strategically placed sensors in 
three to eight ‘clusters’ could efficiently 
characterize SWE in the basin. They recommended 
measurements taken from clusters with strong 
elevation differences. Our SWE measurements 
followed this approach, aimed at producing a 
representative basin-wide SWE. Continuous 
measurements at daily temporal resolution can aid 
in accurately monitoring a basin’s hydrologic 
condition. The combination of dry and warm 
conditions during WY 2014 places it within the 
most severe drought periods (WY2012–2014) in 
the last 1200 years [Griffin and Anchukaitis, 2014]. 
There were no large storms, and of the few events 
that occurred, only five deposited snow at all ten 
sensor-network cluster sites. Snow deposited at 
lower elevations started to melt as soon as the 
precipitation event ended. Monthly snow courses at 
lower elevations missed the timing of those small 
‘peaks’ in SWE for the season (Figure 6).  

Reconstruction of SWE backwards from the 
last day of snow towards the peak accumulation 
using energy-based methods is of interest to 
hydrologists for its higher accuracy and robustness 
to climate change [Guan et al., 2013]. One of the 
major uncertainties affecting the performance of 
the method is the knowledge of the snow-
disappearance date [Raleigh and Lundquist, 2012]. 
To determine snow cover, satellite remote-sensing 
observes snow-covered area, however obstruction 
of view by cloud cover and canopy are significant 
challenges for this method. Ground-based sensors 
can measure snow-covered versus snow-free 
conditions without that uncertainty. On-the-ground 
snow and rain measurements can also be used to 
verify satellite and LiDAR remote-sensing 
datasets, and account for their limited under-
canopy measurements. 

5. Conclusions 
A spatially distributed wireless-sensor network, 
installed across the 2154 km2 portion of the 
American River basin above 1500 m elevation, 
reliably provided spatial measurements of 
temperature, relative humidity and snow depth. 
This leads to three main conclusions regarding the 

improvements in accuracy that can be achieved 
with the network. First, distributed dew-point 
temperature measurements provided estimates of 
ground melting levels that were consistent with 
distributed observations of snow accumulation. 
These detailed estimates of the elevation of the 
rain-snow transition are not feasible with current 
operational sensors; and offer a logistically simpler 
approach, with lower uncertainty, than prior 
estimates from deployment of radar in this complex 
terrain. Second, mixed rain/snow events were 
common at elevations below 2100 m; and 
distributed-sensor data showed significant 
heterogeneity in rain versus snow precipitation that 
was not apparent in more limited operational data. 
Using daily dew-point temperature and the amount 
of snow accumulation at each node to estimate the 
fraction of rain versus snow resulted in an 
underestimate of total precipitation below the 0o C 
dew-point elevation, which averaged 1730 m 
across 10 precipitation events, but was as high as 
2170 m during one warm event. Rain-gauge 
measurements failed to capture the elevation and 
other topographic variability of precipitation. 
However, blending data from a representative, 
well-maintained lower-elevation rain gauge with 
higher-elevation sensor-node data for each event 
provided precipitation estimates that were on 
average 15-30% higher than using either set of 
measurements alone. Given the increasing 
importance of liquid precipitation in a warming 
climate, a strategy that blends distributed 
measurements of both liquid and solid precipitation 
may provide the most-accurate basin-wide 
precipitation estimates. Blending data from the 
current operational rain-gauge and snow-pillow 
measurements underestimates basin-wide 
precipitation and snowpack storage. Improving the 
relationship between dew-point temperature and 
fraction rain versus snow should also be 
investigated. Third, distributed, representative 
measurements also improve upon operational 
estimates of snowpack water storage and snowmelt 
amount and snowmelt timing across the basin. 
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Table 1. list of WSN sites and existing co-located instruments in the American River basin 

WSN site name Abbr. 
Co-located oper. site 

abbr. on CDEC Elev., m Lat, Lon 
# sensor nodes  with  

data in WY 2014a 
Schneiders SCN SCNb 2673 38.745, -120.067 8 
Echo Peak ECP EP5b,c,d , ECSe 2478 38.848, -120.079 7 
Mt. Lincoln MTL   2477 39.287, -120.328 8 
Caples Lake CAP CAPb,c,d,e 2437 38.711, -120.042 9 
Alpha ALP FRNd, APHb,c,d,e 2269 38.804, -120.216 10 
Duncan Peak DUN   2097 39.154, -120.510 6 
Van Vleck VVL VVLb,d 2069 38.944, -120.306 6 
Onion Creek ONN ONNe 1891 39.274, -120.356 10 
Robbs Saddle RBB RBBb,d, RBVe 1812 38.912, -120.379 9 
Bear Trap BTP BTPb,c 1518 39.095, -120.577 8 
aOut of 10 nodes installed at each local cluster 
bRain gauge. Note that SCN an VVL did not have data in WY 2014 
cSnow depth 
dSnow pillow. CAP had no data in WY 2014 
eSnow course 
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Table 2. Rain/snow transition characteristics of the ten precipitation eventsa 
 

 

Event Duration, WYD 
Mean elev. of 1 oC 

Td, m 
Δ elevation to -1 oC 

Td, m 
Mean Td lapse 
r ate,oC km-1 

Mean 
RMSE, m 

E1 27-29 1463 328 -5.4 114 
E2 49-52 1721 328 -4.7 163 
E3 67-69 627 217 -6.5 177 
E4 102-103 1691 336 -4.7 160 
E5 121-122 1720 242 -4.8 196 
E6 128-132 1681 343 -5.0 135 
E7 148-157 1889 298 -5.7 146 
E8 176-183 1485 298 -5.9 126 
E9 206-208 1509 301 -5.7 137 
E10 231-232 2011 330 -5.1 137 
Mean - 1580 302 -5.0 149 
St.Dev - 376 42 0.6 25 

aValues are averages of hourly data over the entire event   

 

 

Table 3. Partitioning of rain and snow, and area-weighted means, of ten precipitation events (cm)a 

Event 

WSN, All 80 nodes WSN, 11 bins Snow pillow Rain gauge 

ΔSWE Total  

Mean 
daily 

ΔSWE ΔSWE Total  

Mean 
daily 

ΔSWE ΔSWE Total  
Gauge 
only 

Blended 
with  
WSN 

E1 4.0 4.2 2.0 3.8 4.1 1.9 2.2 2.7 2.2 4.2 
E2 1.9 2.1 0.6 1.9 2.1 0.6 1.5 1.6 3.5 3.6 
E3 3.5 3.5 1.8 3.3 3.3 1.6 4.0 4.0 3.2 3.5 
E4 0.4 0.4 0.4 0.6 0.6 0.6 0.9 0.9 0.8 0.8 
E5 1.4 1.5 1.4 1.4 1.4 1.4 2.2 2.2 6.5 7.5 
E6 9.3 12.1 2.3 9.0 11.9 2.3 11.5 15.3 24.5 25.3 
E7 7.2 8.4 0.8 6.8 7.9 0.8 6.5 8.6 15.7 14.7 
E8 17.9 19.1 2.6 16.1 17.0 2.3 10.0 11.0 15.4 19.1 
E9 9.1 9.3 4.5 8.0 8.5 4.0 4.6 5.1 5.7 9.3 
E10 0.5 0.8 0.5 0.4 0.7 0.4 0.4 0.8 1.7 2.2 
Mean 5.5 6.2 1.7 5.1 5.7 1.6 4.4 5.2 7.9 9.0 
St.Dev 5.5 5.7 1.2 4.9 5.2 1.0 3.8 4.9 7.9 8.6 

aSee Table S2 for statistics 

Table 4. Daily average of µ, σ and coefficient of variation (CV) of elevation segments 

  
Lower 1/3   Middle 1/3 Upper 1/3 Basin >1500 m 

WSN Pillow WSN Pillow WSN Pillow WSN Pillow 
Ave. daily SWE, cm  0.53 1.03 0.9 3.05 9.15 12.89 3.5 5.7 
Ave. daily sigma, cm  0.49 0.64 0.78 2.14 8.61 10.64 3.3 4.5 
Ave. daily CV 1.04 0.8 0.92 0.66 1.05 0.99 1.0 0.8 
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Figure 1. Location of American River basin and the 10 
sensor clusters used in this analysis.  

 
Figure 2.  Measurements from the 10 nodes at ALP over 2 
weeks: a) hourly and daily mean air temperature b) relative 
humidity, and c) snow depth. Shaded bands indicate rain 
(WYD 206-207) or snow (WYD 207-208) events. 
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Figure 3.  Daily mean air temperature (Ta), and dew-point (Td) from sensor nodes at each WSN cluster, along with 
temperature and precipitation data from nearby operational met stations.  Shaded areas represent periods of 
precipitation. See Table 2 for rain-snow transition characteristics of the ten events analyzed (E1-E10), as labeled on the 
bottom panel. 
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Figure 4.  Characteristics of event 6: a) elevation of 0oC and 
±1 oC window (shaded) of dew-point temperature, b) dew-
point temperature lapse rate, based on Td values form 
Figure 3, c) R2 value of the lapse-rate fit, d) RMSE of the fit, 
e) daily average snow depth from the 10 WSN clusters 
(solid lines are for the five highest-elevation sites and 
dashed lines the lower five sites), f) snow-pillow and 
precipitation-gauge data from co-located operational sites, 
g) daily solid precipitation captured by WSN sensor nodes, 
and h) hourly differences between air and dew-point 
temperature. 
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Figure 5. Comparison of SWE and total precipitation estimates as a function of elevation: a) for 80 sensor nodes within 
the 10 clusters, b) binned sensor nodes and snow pillows, and c) 80 sensor nodes and rain gauges. The solid and dashed 
lines are the best linear fit of the data. See Table S2 for statistics and slopes of lines. See Table S3 and Table S4 for a list 
of snow pillows and rain gauges in the American River. 
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Figure 8. Cumulative solid (dashed lines) and total 
precipitation (solid lines) from the sensor-network nodes 
at  ALP and ECP compared to co-located snow-pillow and 
precipitation-gauge data, For clarity, data from only five 
nodes are shown. 

 
Figure 9. Seasonal total comparison of precipitation 
estimates, calculated as sum of all 10 events analyzed. 
PRISM data from http://prism.oregonstate.edu/.  
 

 
Figure 6. Basin mean SWE estimated by averaging SWE 
from equal-area segments above 1500 m. The shaded area 
represents the standard deviation of SWE estimated by 
WSN nodes. Also shown are basin mean SWE values 
calculated by snow-pillow and snow-course data, using the 
same method (dashed lines).  See Table S5 for a list of snow 
courses in the American River.  

 
Figure 7. Snow melt-out day by elevation. The mean 
(scattered black circles) and standard deviation (horizontal 
bars) of the snowmelt progression for sensor nodes of each 
cluster vs. elevation. Lines are linear models for all nodes 
and for nodes above 2100 m elevation. Snow-pillow data 
also shown. 
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Supporting Information  

 

Introduction 
This document includes supporting tables and figures referenced in the main text. 

 
Table S1. list of WSN sites and existing co-located instruments in the American River basin 

WSN site name Abbr. 
Co-located oper. site 

abbr. on CDEC Elev., m Lat,Lon 
# sensor nodes  with  

data in WY 2014a 
Schneiders SCN SCNb 2673 38.745, -120.067 8 
Echo Peak ECP EP5b,c,d , ECSe 2478 38.848, -120.079 7 
Mt. Lincoln MTL   2477 39.287, -120.328 8 
Caples Lake CAP CAPb,c,d,e 2437 38.711, -120.042 9 
Alpha ALP FRNd, APHb,c,d,e 2269 38.804, -120.216 10 
Duncan Peak DUN   2097 39.154, -120.510 6 
Van Vleck VVL VVLb,d 2069 38.944, -120.306 6 
Onion Creek ONN ONNe 1891 39.274, -120.356 10 
Robbs Saddle RBB RBBb,d, RBVe 1812 38.912, -120.379 9 
Bear Trap BTP BTPb,c 1518 39.095, -120.577 8 
aOut of 10 nodes installed at each local cluster 
bRain gauge. Note that SCN an VVL did not have data in WY 2014 
cSnow depth 
dSnow pillow. CAP had no data in WY 2014 
eSnow course 

 
Table S2. SNOTEL sites used in deriving snow 
density  
Site name Elevation, m 
Fallen Leaf 1901 
Truckee #2 1984 
Ward Creek #3 2028 
CSS Lab 2089 
Echo Peak 2338 
Rubicon #2 2344 
Forestdale Creek 2444 
Squaw Valley G.C. 2447 
Independence Lake 2546 
Carson Pass 2546 
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Table S3. Statistical results from fitting SWE and  
precipitation data (main text, Figure 5) 

  WSN all nodes 11 bins WSN Pillow Gauge 
Event ΔSWE Total ΔSWE Total ΔSWE precip. 

 P-value     
E1 0.00 0.00 0.01 0.05 0.01 0.80 
E2 0.00 0.00 0.00 0.00 0.00 0.72 
E3 0.00 0.00 0.08 0.08 0.24 1.00 
E4 0.00 0.00 0.00 0.00 0.07 0.49 
E5 0.00 0.00 0.00 0.00 0.00 0.00 
E6 0.00 0.00 0.00 0.00 0.00 0.95 
E7 0.00 0.00 0.00 0.00 0.00 0.30 
E8 0.05 0.27 0.11 0.19 0.24 0.35 
E9 0.00 0.00 0.02 0.04 0.08 0.74 

E10 0.00 0.00 0.01 0.01 0.01 0.16 

 R2      
E1 0.18 0.15 0.45 0.31 0.52 0.01 
E2 0.56 0.54 0.72 0.71 0.76 0.02 
E3 0.10 0.10 0.25 0.25 0.13 0.00 
E4 0.27 0.27 0.78 0.78 0.28 0.08 
E5 0.56 0.52 0.72 0.67 0.63 0.76 
E6 0.77 0.70 0.79 0.77 0.70 0.00 
E7 0.56 0.48 0.77 0.76 0.82 0.18 
E8 0.05 0.02 0.22 0.15 0.13 0.15 
E9 0.12 0.10 0.42 0.34 0.28 0.02 

E10 0.32 0.35 0.49 0.53 0.49 0.30 

 Slope, cm km-1     
E1 3.16 2.79 4.90 3.89 3.61 0.43 
E2 7.18 7.09 5.79 6.34 5.27 -0.99 
E3 1.20 1.20 2.60 2.60 2.49 0.00 
E4 1.09 1.08 1.61 1.59 1.50 -0.30 
E5 6.71 7.06 4.33 4.40 8.90 3.29 
E6 30.01 30.84 25.77 30.71 22.07 0.93 
E7 19.23 18.23 18.04 20.31 13.47 -5.39 
E8 5.65 3.17 12.99 10.89 3.44 -5.96 
E9 4.86 4.37 10.43 8.99 2.68 -0.63 

E10 2.50 4.05 1.16 2.31 1.54 1.32 
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Table S3. (cont.) 
  WSN all nodes 11 bins WSN Pillow Gauge 
Event ΔSWE Total ΔSWE Total ΔSWE precip. 

 Normalized slope, km-1   
E1 0.79 0.67 1.28 0.96 1.61 0.19 
E2 3.71 3.36 3.12 3.02 3.50 -0.29 
E3 0.34 0.34 0.79 0.79 0.62 0.00 
E4 2.53 2.47 2.66 2.58 1.66 -0.35 
E5 4.64 4.64 3.19 3.06 4.00 0.50 
E6 3.24 2.55 2.86 2.58 1.92 0.04 
E7 2.68 2.17 2.64 2.57 2.06 -0.34 
E8 0.31 0.17 0.81 0.64 0.34 -0.39 
E9 0.53 0.47 1.31 1.06 0.58 -0.11 

E10 5.13 4.83 3.06 3.28 3.67 0.79 
 RMSE, cm km-1   

E1 2.26 2.26 1.77 1.89 1.40 1.52 
E2 2.15 2.19 1.18 1.31 1.21 2.53 
E3 1.22 1.22 1.47 1.47 2.58 1.47 
E4 0.60 0.60 0.28 0.27 0.97 0.39 
E5 1.98 2.28 0.87 1.00 2.77 0.72 
E6 5.59 6.81 4.28 5.49 5.89 14.21 
E7 5.69 6.43 3.19 3.72 2.54 4.60 
E8 8.37 8.46 8.00 8.37 3.58 5.68 
E9 4.51 4.45 3.99 4.05 1.77 1.76 

E10 1.23 1.86 0.38 0.71 0.64 0.80 

Table S5. Precipitation gauges in the American 
River basin above 1500 m 

Site name Abbrev. Elevation, m 
Schneidersa SCN 2667 
Caples Lake CAP 2438 
Caples (Twin) Lakea CPT 2438 
Forni Ridge FRN 2316 
Alpha (SMUD) a ALP 2316 
Silver Lake SIL 2164 
Van Vlecka VVL 2042 
Huysink HYS 2012 
Loon lake (SMUD) LON 1954 
Robbs Saddlea RBB 1798 
Greek Store GKS 1707 
Blue Canyon #2 (ETI) a BL2 1609 
 Blue Canyon (DWR-2) BYM 1609 
Blue Canyon BLC 1609 
Robbs Powerhousea RBP 1570 
aInsufficient data for WY 2014 

Table S4. Snow pillow sites in the American 
River basin 

Site name Abbrev. Elevation, m 

Schneiders SCN 2667 
Lake Lois LOS 2621 
Carson Pass CXS 2546 
Caples Lakea CAP 2438 
Alpha  ALP 2316 
Forni Ridge FRN 2316 
Silver Lake SIL 2164 
Van Vleck VVL 2042 
Huysink HYS 2012 
Robbs Saddle RBB 1798 
Greek Store GKS 1707 
Blue Canyon BLC 1609 
Robbs Powerhouse  RBP 1570 
aInsufficient data for WY 2014 

http://cdec.water.ca.gov/cgi-progs/queryDaily?SCN
http://cdec.water.ca.gov/cgi-progs/queryDaily?CAP
http://cdec.water.ca.gov/cgi-progs/queryDaily?CPT
http://cdec.water.ca.gov/cgi-progs/queryDaily?FRN
http://cdec.water.ca.gov/cgi-progs/queryDaily?ALP
http://cdec.water.ca.gov/cgi-progs/queryDaily?SIL
http://cdec.water.ca.gov/cgi-progs/queryDaily?VVL
http://cdec.water.ca.gov/cgi-progs/queryDaily?HYS
http://cdec.water.ca.gov/cgi-progs/queryDaily?LON
http://cdec.water.ca.gov/cgi-progs/queryDaily?RBB
http://cdec.water.ca.gov/cgi-progs/queryDaily?GKS
http://cdec.water.ca.gov/cgi-progs/queryDaily?BL2
http://cdec.water.ca.gov/cgi-progs/queryDaily?BYM
http://cdec.water.ca.gov/cgi-progs/queryDaily?RBP
http://cdec.water.ca.gov/cgi-progs/staMeta?station_id=SCN
http://cdec.water.ca.gov/cgi-progs/staMeta?station_id=LOS
http://cdec.water.ca.gov/cgi-progs/staMeta?station_id=CXS
http://cdec.water.ca.gov/cgi-progs/staMeta?station_id=CAP
http://cdec.water.ca.gov/cgi-progs/staMeta?station_id=ALP
http://cdec.water.ca.gov/cgi-progs/staMeta?station_id=SIL
http://cdec.water.ca.gov/cgi-progs/staMeta?station_id=VVL
http://cdec.water.ca.gov/cgi-progs/staMeta?station_id=RBB
http://cdec.water.ca.gov/cgi-progs/staMeta?station_id=BLC
http://cdec.water.ca.gov/cgi-progs/staMeta?station_id=RBP
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Table S6. List of snow course sites in the American River basin above 1500 m 
Snow course site ID Snow course site name Elev., m Survey date SWE, cm 

106 Upper Carson Pass 2591 25-Mar 17.5 
331 Lower Carson Pass 2560 25-Mar 17.0 
107 Caples Lake 2438 25-Mar 11.5 
365 Alpha 2316 2-Apr 13.5 
338 Lost Corner Mountain 2286 3-Apr 11.0 
108 Echo Summit 2271 28-Mar 12.0 
110 Lake Audrain 2225 28-Mar 12.0 
109 Silver Lake 2164 27-Mar 5.0 
316 Wrights Lake 2103 31-Mar 11.5 
113 Phillips 2073 1-Apr 8.0 
320 Lyons Creek 2042 2-Apr 10.5 
289 Tamarack Flat 1996 1-Apr 14.5 
114 Wabena Meadows 1920 28-Mar 6.5 
369 Miranda Cabin 1890 28-Mar 3.0 
120 Onion Creek 1859 26-Mar 1.0 
371 Diamond Crossing 1844 28-Mar 1.0 
122 Talbot Camp 1753 28-Mar 1.5 
322 Robbs Valley 1707 31-Mar 3.0 
127 Ice House 1615 31-Mar 1.5 

 

Figure S1.  Basin-wide daily mean (µ) and standard deviation (σ) of 
snow density calculated from 9 snow-pillow sites in and around the 
American River basin (Table S2). We used SNOTEL sites adjacent to the 
American R. basin for this analysis, as the snow-pillow data in the basin 
had significant gaps. Densities measured by four-snow courses sites 
within American River basin are shown as discrete points.   
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Figure S2.1-S2.9.  Characteristics of event 1 to 10: a) elevation of 0oC and ±1 oC window (shaded) of dew-point 
temperature, b) dew-point temperature lapse rate, c) R2 value of the lapse-rate fit, d) RMSE of the fit, e) daily 
average snow depth from the 10 WSN clusters (solid lines are for the 5 highest-elevation sites and dashed lines 
the lower five sites), f) snow-pillow and precipitation-gauge data from co-located operational sites, g) daily solid 
precipitation captured by WSN sensor nodes, and h) hourly differences between air and dew-point temperature. 

 
Figure S2.1 

 
Figure S2.2 
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Figure S2.3  

Figure S2.4 
 

Figure S2.1-S2.9.  Characteristics of event 1 to 10: a) elevation of 0oC and ±1 oC window (shaded) of dew-point 
temperature, b) dew-point temperature lapse rate, c) R2 value of the lapse-rate fit, d) RMSE of the fit, e) daily 
average snow depth from the 10 WSN clusters (solid lines are for the 5 highest-elevation sites and dashed lines 
the lower five sites), f) snow-pillow and precipitation-gauge data from co-located operational sites, g) daily solid 
precipitation captured by WSN sensor nodes, and h) hourly differences between air and dew-point temperature. 
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Figure S2.6 

Figure S2.1-S2.9.  Characteristics of event 1 to 10: a) elevation of 0oC and ±1 oC window (shaded) of dew-point 
temperature, b) dew-point temperature lapse rate, c) R2 value of the lapse-rate fit, d) RMSE of the fit, e) daily 
average snow depth from the 10 WSN clusters (solid lines are for the 5 highest-elevation sites and dashed lines 
the lower five sites), f) snow-pillow and precipitation-gauge data from co-located operational sites, g) daily solid 
precipitation captured by WSN sensor nodes, and h) hourly differences between air and dew-point temperature. 

 
Figure S2.5 
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Figure S2.8 

 
Figure S2.7 

Figure S2.1-S2.9.  Characteristics of event 1 to 10: a) elevation of 0oC and ±1 oC window (shaded) of dew-point 
temperature, b) dew-point temperature lapse rate, c) R2 value of the lapse-rate fit, d) RMSE of the fit, e) daily 
average snow depth from the 10 WSN clusters (solid lines are for the 5 highest-elevation sites and dashed lines 
the lower five sites), f) snow-pillow and precipitation-gauge data from co-located operational sites, g) daily solid 
precipitation captured by WSN sensor nodes, and h) hourly differences between air and dew-point temperature. 
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Figure S2.9 

Figure S2.1-S2.9.  Characteristics of event 1 to 10: a) elevation of 0oC and ±1 oC window (shaded) of dew-point 
temperature, b) dew-point temperature lapse rate, c) R2 value of the lapse-rate fit, d) RMSE of the fit, e) daily 
average snow depth from the 10 WSN clusters (solid lines are for the 5 highest-elevation sites and dashed lines 
the lower five sites), f) snow-pillow and precipitation-gauge data from co-located operational sites, g) daily solid 
precipitation captured by WSN sensor nodes, and h) hourly differences between air and dew-point temperature. 

 
Figure S3.  Cumulative degree day for WSN  and the 
operational network at five clusters.  The mean (µ) plus 
standard deviation (σ) are shown for the WSN sites. Data 
from operational-network sensors are shown in dashed 
lines. 
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