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ABSTRACT OF THE DISSERTATION

Variability-aware System-level Design and Analysis

by

Saumya Chandra

Doctor of Philosophy in Electrical Engineering (Computer Engineering)

University of California San Diego, 2009

Professor Sujit Dey, Chair

Continued technology scaling has enabled the tremendous growth that semi-

conductor industry has witnessed in the last half century. However, as the technology

scales in into the deep submicron era, variability in device parameters and operating

conditions is emerging as a major threat to this growth. In the face of increasing vari-

ability, traditional design approaches that use typical or worst-case values can lead to

yield loss or increased cost and time to market, causing significant revenue loss in ei-

ther case. State-of-the-art system-level analysis and design methodologies do not take

the impact of variability into account and hence it is natural to question their effective-

ness in the presence of variability. We believe that it is imperative that the impact of

variability be considered during system level design. Analysis and design techniques

that are cognizant of variability can help provide designers valuable feedback about

the impact of variations early on in the design cycle and hence, facilitate better design

decisions at the system-level while preventing expensive design re-spins.

The specific contributions on this thesis include: (i) system-level variability-

aware power analysis methodology while considering the impact of manufacturing-

induced variations in effective channel length and operation-induced variations in on-

chip temperature, (ii) variation-aware system-level shutdown based power manage-

ment techniques, (iii) variability-aware voltage level selection to improve the number

of chips meeting power and performance targets, and (iv) a methodology for system-
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level performance analysis under variability, and various architecture level and appli-

cation level techniques to enable performance recovery in systems affected by varia-

tions.

Experiments conducted on various Systems-on-chip designs demonstrate that

variation-aware design techniques enable significant improvements in overall energy

dissipation and performance characteristics. In particular, the resulting distributions

are more favorable in terms of reducing the revenue loss due to variations. We believe

that the approaches outlined in this thesis are useful with the existing design flow

with the current technologies as well as in future systems by facilitating research and

development in variation-aware application-level and architecture level techniques.
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Chapter 1

Introduction

Integrated circuits (ICs) have evolved remarkably in their capabilities since

their inception about half a century ago. IC development started with discoveries il-

lustrating that semiconductors can be used to perform the functionality of vacuum

tubes and its application to practice was made possible by technological advances in

semiconductor device fabrication. Today integrated circuits have truly become ubiqui-

tous and serve as the brains of almost any imaginable system, from modern household

appliances to computing and communication devices, to the most sophisticated trans-

port, automotive, industrial manufacturing, and intelligent security systems. Such

tremendous adoption of ICs has been achieved as a result of our ability to consistently

incorporate increasing number of functionalities (applications) on a chip while being

able to reduce/maintain the cost and the device footprint. This, in large part, can be

attributed to the continued shrinking feature size which enabled exponential growth

in the number of transistors that could be integrated on a single die (hence, meeting

the predictions made by Intel’s co-founder Gorden E. Moore in 1965). According to

International Technology Roadmap for Semiconductors (ITRS) 2007 edition [2], this

exponential growth is expected to continue for atleast another two decades as illus-

trated in Figure 1.1. However, continuation of this growth is challenged by variability

that has emerged as an artifact of technology scaling in deep sub-micron technolo-

gies. In this thesis, we present analysis and design techniques to address this problem

during system design.

1
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Figure 1.1: 2007 ITRS Product Technology Trends: Product Functions/Chip and In-
dustry Average “Moore’s Law” Trends

The process of semiconductor device fabrication has always been suscepti-

ble to some variability. However, with scaling of the CMOS technology, precisely

controlling the fabrication process is becoming even more difficult and as a result,

most of the variability mechanisms are no longer in the “negligible” regime. For ex-

ample, starting with the 180 nm process node, the ultraviolet (UV) wavelength used

for lithography (which is one of the major sources of variability), has become larger

than the critical feature size on the die. This gap is steadily increasing with each new

process generation, as shown in Figure 1.2 (taken from [3]), further compromising

the precision of parameter control. Furthermore, at deep sub-micron technologies,

both the impact of the parameter variations as well as some of the variability mech-

anisms themselves are intensified due to variations in the environmental factors such

as circuit’s operating temperature.

Variations in process parameters such as channel length and operational pa-

rameters such as temperature manifest as variations in the power and performance
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Figure 1.2: Critical dimension (CD) versus lithographic UV wavelength at each tech-
nology node

characteristics of gates, register-transfer-level (RTL) components, architectural blocks,

and full systems, both spatially (within a die, WID and die-to-die, D2D) and tempo-

rally over time. Since manufactured device parameters and operating conditions differ

from those considered during design time, systems designed while ignoring the im-

pact of such variations may exhibit suboptimal, and more importantly, unpredictable

performance after fabrication. Traditional approaches to design that use typical or

worst-case values to model systems might lead to over-design with increased design

effort and hence, increased cost and time to market or under-design leading to inabil-

ity to meet design targets and hence, yield loss; causing significant revenue loss in

either case. Moreover, the impact of variations worsens with each successive process

generation. It is argued that increasing variations may even cause loss of performance

gains of an entire process generation [4].

Recognizing these challenges, various techniques at different stages of the de-

sign flow have been developed to aid in variation-aware IC design. Until recently,

most of the efforts in this area have focused on addressing the problem at later stages

of the design flow, namely at the mask, transistor, and logic levels [5, 6, 7]. While

these techniques have shown promise, and some are already being incorporated into
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commercial IC design flows, they do not completely address the problem, especially

in the face of continually increasing variations. It is important to introduce variation-

awareness early on in the design flow, i.e., at the system or the architectural level.

System-level design for variations can take advantage of information that is not easily

available at the lower levels of abstraction. Analysis and design techniques that are

cognizant of variability can help provide designers valuable feedback about the impact

of variations early on in the design cycle and hence, facilitate better design decisions

at the system-level. Therefore, variation-aware system-level analysis and design tech-

niques can not only improve parametric yield but also prevent cost-prohibitive design

re-spins.

This thesis focuses on addressing the impact of variations on System-on-

chip (SoC) designs. We have developed efficient techniques to incorporate the im-

pact of process variations during system-level power analysis, and during the de-

sign of shutdown-based power management policies. We also present techniques for

variation-aware selection of supply voltage levels and illustrate that it leads to signif-

icant improvements in the number of instances meeting power and performance tar-

gets. Furthermore, we have developed techniques to analyze the impact of variations

on the overall system performance while accounting for application and architecture

interaction and the communication architecture used. We also present architecture

level design techniques and show that they can enable significant recovery in perfor-

mance loss due to variations. In this thesis, we focus on innovative techniques that

can address variations without disrupting the existing design flow. As such the tech-

niques developed in this thesis can be incorporated in present day SoCs with little or

no overhead.

In this chapter, we first present a background on process variations. We then

describe various modeling and optimization techniques that have been developed to

analyze and mitigate the impact of variations at different levels of design abstraction.

Finally, we conclude this chapter with a brief discussion on the contributions of this

thesis and an overview of the remaining chapters.
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1.1 Background on variations

In this section, we present a brief background on variations and also develop

an understanding of their root causes. We also discuss the impact of variations on

power and performance characteristics at various levels of design abstraction.

1.1.1 Sources of variations

There are two broad sources of variations - namely, the manufacturing pro-

cess causing manufacturing-induced variations and the circuit’s operation leading to

operation-induced variations. Variations can be spatial or temporal in nature. Spatial

variations in the circuit characteristics occur between different parts of a die, across

dies, across wafers, or across lots. Temporal variations, on the other hand, refer to

variations in circuit characteristics over time. Spatial and temporal variations often

interact with each other, thereby exacerbating the overall impact. It should be noted

that like manufacturing-induced variations, operation-induced variations have also be-

come a critical challenge with shrinking feature size, and increasing pattern density

and design complexity.

Manufacturing-induced variations arise due to the inability of the fabrication

process to precisely control device and interconnect parameters, especially, in the sub-

90 nm regime. Manufacturing mechanisms contributing to these variations are lithog-

raphy, chemical-mechanical polish (CMP), etch, and aberrations introduced by lens

steppers. These can be further classified as random and systematic variations. Ran-

dom variations (also known to arise from intrinsic sources of variations) are caused

by atomic level differences in the device characteristics. Examples are variations in

dopant profiles, film thickness, gate-oxide thickness and line edge roughness (LER).

Random dopant fluctuation (RDF) arises from the inability of the manufacturing pro-

cess to precisely control the number and location of dopant atoms in a channel. The

number of dopant atoms in a transistor channel are steadily decreasing with each

technology node and is already down to tens in sub-45 nm technologies. This leads

to increased statistical fluctuations in the number of dopant atoms, and contributes to

variations in the threshold voltage (Vth). Line edge roughness is caused due to vari-
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ations in the incident photon count, the absorption rate, chemical reactivity, and the

photoresist composition during lithography. Oxide thickness is down to 1nm range

i.e., approximately 5 inter-atomic spacings and is shown to vary randomly by a cou-

ple of atomic spacings. It leads to variations in oxide tunneling current. Both LER

and oxide thickness variations contribute to variations in the threshold voltage. As the

technology scales and the feature size further reduces, such variations will become

more pronounced. Unlike random variations, systematic variations (also known to

arise from extrinsic factors) are caused due to spatial fluctuations in the fabrication

process parameters, and hence, exhibit a fairly well understood correlation between

the device placement and the extent of variations in the device parameters. Some of

the factors leading to systematic variations are temperature gradients across a wafer

caused during rapid thermal annealing, change in focus when a mask is stepped across

the wafer etc. These factors can lead to variations in the device parameters across

lots, across wafers, across dies, and also within a die. Examples of systematic vari-

ations include variations in effective channel length Leff , chemical-mechanical pol-

ishing (CMP) induced variations in metal thickness, and pattern dependent (layout

feature density) variations. Variations in effective channel length further contribute to

the threshold voltage (Vth) variability.

Operation-induced variations arise due to circuit’s operation over time and

variations in the usage pattern. There are several mechanisms that contribute to

the temporal variability, and the associated variation time constants can range from

nanoseconds to years [8]. On-chip operating temperature can vary spatially and tem-

porally depending upon the workload characteristics as well as the inherent spatial

leakage characteristics of an IC. Negative-bias temperature instability (NBTI) leads

to increased threshold voltage of PMOS devices, causing decreased mobility, and

thereby, reducing performance. A similar effect is induced by hot-electron effect in

NMOS devices. Time dependent dielectric breakdown (TDDB) can lead to variations

in leakage current or Vth due to degradation of conductive paths in the dielectric ma-

terial. Electromigation (EM) is the gradual transport of metal atoms caused in regions

with high current density. It can cause metal to thin down in certain locations leading

to increased resistance and eventual failure due to open circuit as the thinning con-
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tinues. It can also cause short circuits if the displaced metal forms a bridge. Lastly,

aging-induced variability due to the wear out factors also reduces circuit performance.

Therefore, large variations can sometimes lead to loss of reliability.

Research efforts are being made to develop new transistor structures and ma-

terials that can be adopted by future technologies. In these new technologies, some

of the current sources of variations might be eliminated. However, these technologies

might be susceptible to other sources of variations [8]. For example, in new structures

based on fully depleted (FD) channels (or FDFETS), random dopant fluctuations will

cease to be a problem. But such devices are expected to be more sensitive to variations

in the body thickness. Changes in body thickness can result in changes in the channel

potential and hence, Vth. Therefore, a careful analysis is required before incorporation

of these technological advances in new materials and new structures in order to make

sure that inherent advantages are not offset by the added sources of variability.

1.1.2 Impact of variations

In this section, we briefly discuss the impact of manufacturing-induced and

operation-induced variations on power and performance characteristics of circuits and

systems.

Figure 1.3 illustrates the leakage current variations in N-type and P-type tran-

sistors as a function of channel length variations (Source: [1]). It shows that the

mean leakage current can be much larger than the nominal leakage current (upto 30%

for PMOS). This is because of the exponential dependence of leakage on the channel

length. The figure also shows that the PMOS leakage current degrades much faster

than the NMOS leakage current. This is because the effect of drain-induced barrier

lowering (DIBL) is greater on the PMOS than on the NMOS.

Figure 1.4 illustrates the impact of manufacturing-induced variations on the

off-current (leakage) and on-current (drive strength) of a transistors. The data demon-

strates that the spread in leakage is two orders of magnitude, while the spread in

on-current is a factor of two. The large impact of variations on the leakage current

is compounded by the increasing contribution of leakage to total power dissipation.
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Figure 1.3: Dependence of µ and σ of leakage current on 3σ variation in channel
length(Source: [1])

Furthermore, as we show in Chapter 2, the extent by which variations impact differ-

ent components of a system also strongly depends on their workload profiles. For

a component that is mostly idle, the leakage power comprises a larger fraction of

the total power and hence, the component exhibits larger variations in its total power

characteristics.

Figure 1.4: Variation in ION and IOFF of transistors (Source: Intel)

The impact of variations varies with different micro-architectural designs. As

the number of critical paths on a die increases (e.g., due to increased parallelism),
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within-die variations among critical paths cause both the mean (µ) and the standard

deviation (σ) of the die frequency to reduce. This is because the probability that

atleast one of the paths is slower, increases. Note that, although the spread reduces,

the distribution mean also reduces which means that a larger number of chips would

exhibit lower performance. This has been shown to be true both with statistical sim-

ulations in [4] and testchip measurements in [7]. Similarly, micro-architectures with

fewer logic stages experience larger variability since within-die variations do not suf-

ficiently average out. To enable higher clock rates, the number of independent critical

paths has been increasing and the logic depth has been decreasing, especially for high

performance microprocessors. Such design practices will only worsen the impact of

WID process variations [9].

Figure 1.5 shows the frequency and leakage values measured for an Intel mi-

croprocessor in 180 nm technology. It shows that process variations can cause upto

20X variation in chip leakage and about 30% variation in chip frequency. The spread

increases with further technology scaling. This data also illustrates that a strongly

negative correlation exists between power and performance; that is, instances with

high performance exhibit poor power characteristics and vice-versa. Therefore, de-

sign approaches are required that perform joint optimizations instead of neglecting

any one parameter.

In summary, systems manufactured in nanometer process technologies are

highly susceptible to process variations. Overall power and performance of such

systems exhibit statistical properties. Chip instances with low performance (slow

maximum frequency of operation) are either discarded or sold at a much lower price.

Chip instances with very high leakage power dissipation are discarded (even though

most of the times these chips are capable of high performance) [9]. Therefore, the

extent to which variations impact the overall power and performance spread of a sys-

tem directly impacts yield, and hence, revenue. Worst-case design practices can lead

to increased design efforts, time to market, and hence, reduced profit margins and

revenue. In the next section, we provide a brief overview of the approaches that are

being investigated at various levels of design abstraction to address this issue.
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Figure 1.5: Spread in clock frequency and leakage power across 1000 die samples
(Source: Intel, DAC’03)

1.2 Related work

There is a tremendous increase in the research efforts aimed towards modeling

and addressing the effects of process variations for sub-90 nm technologies at all

levels of design abstraction. We first provide an overview of the works that focus on

modeling techniques, and then discuss techniques to mitigate the impact of variations.

A number of modeling approaches have been proposed to analyze the impact

of process variations on the power and performance characteristics at various levels

of abstraction. A number of techniques aimed towards modeling leakage power at

the circuit and logic levels have been proposed in [1, 10, 11, 12, 13]. In Chapter 2,

we present a methodology to analyze the impact of variations at the system level. In

[14], statistical analysis based on principal component analysis is used to decompose

process variability using measurements from manufacturing inline benchmarking cir-

cuits. A methodology for modeling the impact of within-die interconnect and device

parameter variations on circuit performance is presented in [15]. At the logic level,

statistical timing analysis, which models gate delays as distributions and uses them

to compute the delay distribution of a given circuit, has received great interest [16].

Statistical models to incorporate the impact of variations on microprocessor perfor-
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mance and power consumption are proposed in [17]. Tradeoffs between throughput,

power, and area in parallel architectures under process variations are studied in [18].

In [19], a statistical simulator is presented that obtains throughput and maximum

clock frequency distributions by performing Monte Carlo simulations on an analytical

throughput model.

Design techniques have been proposed at many levels of design abstraction to

reduce the impact of variations and improve yield. At the mask level, common tech-

niques to compensate for variations arising due to lithographic effects include, optical

proximity correction (OPC) [20] and phase shift masking (PSM). A large body of

work focuses on addressing variations at the circuit and logic levels. Some of the

proposed techniques include adaptive body bias control and adaptive supply voltage

scaling [21, 6], dual threshold voltage based design [22, 23], gate sizing [24], repeater

insertion [25], clock tuning [26], dynamic error correction [27], and variation-tolerant

dynamic logic [28]. The use of transistor sizing and cell design to address line-width

variations due to defocus is proposed in [29]. In the recent years, there has been an

increasing interest towards addressing variations at earlier stages of the design cy-

cle, i.e., at the architecture and system levels. Some of the research efforts at these

levels include, exploiting parallelism [18], and using optimal number of cores [30],

to improve power efficiency. The impact of process variations on embedded SRAM

memory architectures are studied in [31]. The authors propose use of configurable

buffers together with suitable run-time re-configuration to optimize power and per-

formance. Marculescu et. al. have shown that GALS design paradigm can result in

significant performance improvements over single island designs [32, 33]. In [34, 35],

techniques to determine the optimal body bias for each processing engine of an SoC

are developed to meet performance and clock frequency targets. In [36], the authors

show that the micro-architectural techniques such as cycle stealing and introducing

donor stages in processor pipeline can be utilized to regain performance loss due to

variations.
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1.3 Thesis overview and contributions

This thesis introduces the need to bring variation-awareness early on in the

design cycle. Industry trends have shown that process variations are one of the most

critical design challenges facing the semiconductor industry today. This thesis estab-

lishes the need to consider variability during system-level analysis and optimization.

In particular, variability-aware system-level design can be broadly divided into fol-

lowing sub-problems: (a) variability-aware power and performance estimation tech-

niques, and (b) variability-aware power and performance optimization techniques.

An important requirement to develop any optimization technique is the avail-

ability of effective methodologies and techniques to analyze the impact of variations

on the overall performance and power characteristics. We have developed an efficient

and accurate variability-aware system level power analysis methodology based on

efficient trace-based Monte Carlo analysis. Our proposed methodology takes into ac-

count both manufacturing-induced (D2D and spatially correlated WID) variations and

operation-induced on-chip temperature variations. We have also developed a method-

ology to effectively compute the impact of variations on the SoC performance while

taking into account the application and architectural interactions.

At system level, shutdown-based power management is one of the main tech-

niques available to minimize overall energy dissipation. We study the impact of pro-

cess variations on the effectiveness of shutdown-based power management in the con-

text of an ideal Oracle-based power management policy as well as a realistic timeout-

based power management policy. We show that computing policy parameters with-

out accounting for variations can lead to sub-optimal energy characteristics. We also

present two approaches, namely, chip-specific approach and design-specific approach,

to determine optimal policy parameter values in the presence of variations.

The supply voltage, Vdd, has a profound impact on the operating clock fre-

quency and energy consumption of an integrated circuit. In particular, systems that

can support multiple voltage levels exhibit improved power and performance charac-

teristics. However, we argue that in the presence of variations, determining voltage

levels based on nominal or worst-case characteristics can be ineffective. We therefore
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present a methodology to determine voltage levels at design-time or post-fabrication

in a variation-aware manner. Our experiments indicate that using variation-aware

voltage levels determined using the proposed methodology leads to significant im-

provements in the number of chip instances meeting power and performance targets

as compared to using voltage levels computed using deterministic characteristics.

The remainder of this thesis is organized as follows:

• In Chapter 2, we present a methodology for system-level power analysis while

considering the effects of die-to-die variations, spatially correlated within-die

variations, and operation-induced temperature variations.

• In Chapter 3, we present techniques to determine variation-aware policy param-

eters during system-level shutdown based power management (dynamic power

management). The techniques are presented in the context of an ideal Oracle-

based framework and a more realistic timeout-based framework. In this chapter,

we also introduce metrics that are more meaningful under variability to quantify

the effectiveness of various power-management policies.

• In Chapter 4, we present a methodology for variation-aware voltage selection.

We also discuss approaches at design-time and post-fabrication to estimate the

frequency-voltage characteristics of a sample set of SoC instance.

• In Chapter 5, we present a system-level performance analysis methodology that

takes into account the application characteristics, the architecture characteristics

and the specific mapping of the application to the given architecture. We also

present design techniques that can be used to recover the performance loss due

to variations.

• In Chapter 6, we conclude with a description of future possibilities for variation-

aware design.



Chapter 2

Variation-aware System Level Power

Analysis

2.1 Introduction

It has been established that the impact of variations on leakage power is very

pronounced, more so compared to the impact on maximum frequency of operation.

[7, 37, 38]. While this has led a number of researchers to consider variability during

power analysis and optimization, most of the efforts are focused on later stages of the

design flow, namely at the mask [5], transistor [7, 6] and logic levels [16, 1, 13], as is

mentioned in Chapter 1. These methods, although important, are not sufficient to han-

dle the problem because the impact of variations intensifies with each generation of

process technology. In this chapter, we propose techniques to systematically analyze

the impact of leakage power variations during system-level power analysis. Proposed

techniques are based on effective Monte Carlo analysis achieved by combining fast

trace analysis with power-state based leakage modeling and thermal modeling. In the

past, many techniques have been presented for system-level power estimation [39, 40]

and some use instruction-level trace-based methods [41]. However, to our knowledge,

none of the previous works propose methods for system-level power analysis under

process variations while accounting for manufacturing and operation-induced varia-

tions.

14
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2.1.1 Chapter Contributions and Overview

In this chapter, we address the problem of incorporating the impact of manu-

facturing and operation-induced variations into system-level power analysis. In partic-

ular, we focus on the impact the variations in device-level parameters and temperature

have on SoC power consumption. We consider both inter-die and spatially correlated

intra-die variations in device-level parameters. These variations are static, i.e, their

values do not change post-fabrication for a given instance, but may vary from one die

instance to another and between devices located at different locations on the same die.

These device-level parameter variations result in die-to-die and within-die variations

in leakage power consumption. However, leakage power also happens to be a strong

function of the operating environment, namely, the computational workload and die

temperature. Temperature in turn also varies spatially across the die, as well as tempo-

rally depending on the workload. Carefully accounting for the dependencies between

device-level parameters, leakage power, temperature and workload characteristics is

a major challenge during system-level power analysis. Furthermore, for system-level

power analysis techniques to be useful in exploring architectural trade offs, they need

to be highly efficient, while maintaining acceptable accuracy. The focus of our work

lies in developing techniques to meet these goals. In particular, we make the following

contributions in this chapter:

• We highlight the need for considering parameter variations during system-level

power analysis by analyzing the extent of power variations in an example SoC.

• We demonstrate how simple extensions of conventional approaches to system-

level power analysis either fail to provide acceptable analysis efficiency, or fail

to properly capture the interdependence between different factors that influence

SoC power variations.

• We describe a new analysis methodology that efficiently and accurately gener-

ates SoC power distributions under variations. Our main contribution is to prop-

erly account for critical dependencies between the various factors mentioned

above, while maintaining high analysis efficiency. We describe the different
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components of the methodology in detail, including techniques for variation-

aware system-level leakage modeling, thermal analysis, and fast Monte-Carlo

based trace processing, and demonstrate their integration with state-of-the-art,

simulation-based system-level power analysis tools.

The rest of this chapter is organized as follows. In the next section, we present

a brief background on process and temperature variations. In Section 2.3, we analyze

power variations in an example SoC. We discuss basic extensions of existing anal-

ysis techniques in Section 2.4. We describe the proposed methodology in detail in

Section 2.5 and Section 2.6. In Section 2.7, we present the experimental results, and

conclude in Section 2.8.

2.2 Background - Process and Temperature Variations

As mentioned in Chapter 1, in sub-90 nm technologies variations in process

parameters such as channel length, gate oxide thickness and doping concentration are

induced during fabrication and manufacturing. This results in process parameters to

vary not only from one chip to another (inter-die variations) but also within a chip

(intra-die variations). Once fabricated the process parameters of a given chip instance

do not change i.e., the process variations are static in nature and cause overall power

characteristics of IC circuits to vary inter (or intra) chip. However, the power dis-

sipation is also a strong function of the ICs operating conditions such as workload

characteristics and on-chip temperature. The on-chip temperature in turn depends on

the power densities and hence, exhibits strong dependence on the local on-chip ac-

tivity profile and power characteristics. As a result, on-chip temperature, and hence

power dissipation characteristics, vary dynamically as well during the life time of a

chip instance.

The dynamic nature of temperature leakage inter-dependency complicates the

task of accurately and efficiently estimating system-level power under process vari-

ations. In the next section, we illustrate the challenges involved and motivate the

problem through experimental studies conducted on an example SoC.
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2.3 Impact of Variations on SoC Power

In this section, we study the impact of variations on system-level power con-

sumption using an example System-on-Chip. First, we analyze the extent of variations

in SoC power consumption arising due to manufacturing-induced variations in device

parameters. Next, we evaluate the effect of dynamic variations in die temperature

on system-level power consumption. Through these studies we motivate the need for

incorporating variation-awareness during system-level power estimation, and develop

insights into the key factors that need to be considered by such analysis frameworks.

2.3.1 Impact of Channel Length Variations

In the following example, we focus on inter-die variations in the effective

channel length (Leff ), since channel length variations have a strong impact on leakage

power [1].

Figure 2.1: Example System-on-Chip design for an image processing application.

Example: Consider the SoC platform illustrated in Figure 2.1. SoC contains an

ARM946 processor [42] that executes an image processing application, and a ded-

icated hardware (Filter_HW) that accelerates image filtering operations. Other SoC

components are an on-chip bus (AHB) [43], a memory controller (MEMC), a DMA

controller (DMAC) and an interrupt controller (INTC). The SoC is implemented us-

ing a commercial, 90 nm standard cell library [44] and is operated at a frequency of

206 MHz and a voltage of 1 V . The SoC is modeled using an instruction-set sim-
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Figure 2.2: Variations in total power consumption of individual components of an
example SoC implemented using a 90 nm process.

ulator for the ARM core and SystemC-based cycle-accurate models for rest of the

components. An in-house, cycle-accurate, simulation-based system-level power anal-

ysis tool [45] is used to calculate the average power consumption (including both

dynamic and leakage power) for each component while executing a given test-bench.

We used conventional Monte-Carlo techniques (described in Section 2.4) to estimate

the impact of chip-to-chip variations in effective channel length (Leff ) on the average

power consumption, assuming nominal die temperature. For this study, we assumed

that Leff follows a normal distribution with µ = 90 nm and 3σ = 30% µ.

The power variations across a sample size of 10,000 chips are captured using

the box-and-whisker representation of Figure 2.2. The lower and upper extremities of

each box represent the 25th and 75th percentiles of a component’s average power con-

sumption. The whiskers denote minimum and maximum values. We notice that the

inter-quartile range (the box height) for the ARM core is 25% of its average power,

suggesting that variations significantly impact its overall power characteristics. On the

other hand, for AHB, the inter-quartile range is only 8% of its average power. The ap-

parent discrepancy is explained as follows. While leakage power is highly sensitive to
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channel length variations, dynamic power is relatively immune. Hence, components

for which leakage accounts for a greater portion of their power consumption display

larger power variations. The relative contribution of leakage and dynamic power for

a particular component in turn depends on how much time it spends in its different

power-states (active, idle, sleep, deep-sleep, etc.), while processing a given workload.

In the presented study, the ARM core spends a significant amount of time in the idle

power-state, during which its power consumption is almost entirely due to leakage

currents. Hence, the average power characteristics of the ARM core are significantly

affected by variations. On the other hand, in this study, the AHB is almost always

active, serving requests from either the ARM core or other masters. Its average power

consumption is largely determined by dynamic power, and hence, is less susceptible

to variations.

This example suggests that the extent to which variations affect individual

component power characteristics depends critically on a component’s power-state

profiles over time, and the ratio of dynamic and leakage power consumptions. Ac-

counting for this dependence is a key objective of the proposed methodology. We

next examine how manufacturing-induced power variations interact with variations in

die temperature.

2.3.2 Impact of Temperature Variations

Example: We continue with the SoC described in the previous example. In this ex-

periment, we illustrate the impact of taking thermal variations and spatially correlated

intra-die variations into account. We integrated the in-house system-level simulation-

based power analysis tool with floor-planning [46] and thermal modeling tools [47],

in order to accurately capture the interdependence between die temperature and total

power consumption. Using Monte-Carlo simulations (described in Section 2.4), we

obtain the average power distributions of the SoC under three scenarios: (a) consid-

ering inter-die variations only (D0), (b) considering inter-die variations and thermal

variations (D1), and (c) considering inter-die and spatially correlated intra-die vari-

ations and thermal variations (D2). We assume that the effective standard deviation
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Figure 2.3: Impact of temperature variations and spatial correlations on the average
power distribution

(
√

(σinter + σintra) in Leff in case (c) is same as the standard deviation σinter used

in cases (a) and (b). We compare the power distributions for all three scenarios in

Figure 2.3. Note that distribution D1 has a high variance due to a long tail, which

has been truncated in Figure 2.3 for clear illustration. First, we note that including

thermal effects increases the mean and standard deviation of the power distribution

significantly. Comparing D0 and D2, the estimated mean of the power distribution

increases by 32.5% and the standard deviation increases by 55%. The large increase

in the standard deviation can be explained as follows. The chip instances with large

leakage currents (due to manufacturing-induced variations) generate higher die tem-

peratures that cause further increase in the leakage power dissipation. On the other

hand, for chip instances with lower leakage currents, die temperatures are less af-

fected by leakage and hence, the feedback is weaker. This results in the increased

spread. Secondly, we note that ignoring intra-die spatial variations leads to a highly

pessimistic estimate of the spread of the power distribution. In this example, ignoring

intra-die spatial variations leads to 43% increase in µ and 219% increase in the σ of

the estimated power distribution (D0 Vs D1).
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To evaluate the extent to which a design is affected by variations we use the

following metric. We define the power yield of a design at a level X to be the fraction

of die samples that consume on average, no more that X Watts while executing a

specific workload. In the above example, we observe that, if die temperature and

spatially correlated intra-die variations are ignored (D0), the power yield at a 70 mW

level is estimated to be 98%. Including die temperature in the analysis (D1) results in

a pessimistic estimate of 88% yield while including both die-temperature and spatially

correlated intra variations (D2) lead to an estimate of 90%.

The above studies highlight the need for tools to consider both manufacturing

and temperature-induced variations during system-level power analysis. They also

demonstrate the importance of properly incorporating the interdependences between

manufacturing-induced variations, power-state profiles, leakage power, and die tem-

peratures. For driving the design of variation-aware systems, it is imperative that such

tools estimate the system-level power distribution accurately. In addition, at the sys-

tem level, the design space is large. Hence, in the interest of effective exploration,

efficient analysis techniques are required. In the next section, we examine simple

extensions of conventional techniques and study their ability to meet the above re-

quirements.

2.4 Techniques

In this section, we consider two approaches for system-level power estimation:

(i) simulation-based power analysis, and (ii) spreadsheet-based analysis. We consider

simple extensions of these approaches to consider the impact of parameter variations,

and evaluate their merits and drawbacks. These methods also serve as the base cases

against which we compare our proposed method (described in the next section).

2.4.1 Direct Monte Carlo Approach

A direct Monte Carlo based power estimation method that incorporates both

device-level parameter and temperature variations is illustrated in Figure 2.4. In this
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method, full-system simulation, power estimation and thermal analysis are iteratively

performed in order to generate a distribution for average power consumption of the

system. For each simulation, Monte Carlo sampling is performed to generate a ran-

dom sample point from a pre-defined distribution of device-level parameters (e.g.,

transistor channel length). In order to include intra-die variations, spatial correla-

tions and a system-level floorplan are also required while generating a Monte Carlo

sample. This is discussed in detail in Section 2.6. Now, given variations in device pa-

rameters, corresponding leakage power for each SoC component can be determined

using appropriate leakage power models. For each sample point, a complete func-

tional model of the SoC is simulated along with integrated power models to generate

the overall power consumption characteristics. In this work, we use an in-house cycle-

accurate system simulator [45] with integrated power models to obtain dynamic and

leakage power traces for each SoC component. The total power trace hence obtained

is analyzed by a thermal analysis tool [47]. The thermal analysis tool also takes the

system-level floor-plan as input, and generates component-level temperature traces.

Since leakage power is temperature-dependent, power analysis and thermal analy-

sis are iteratively performed until convergence is reached. The inner-loop terminates

with the estimate of the average power consumption of the given sample point (chip

instance), under the given test-bench with proper inclusion of the effect of temperature

variations. The outer loop is executed for each point in the manufacturing parameter

sample space to obtain a power distribution for the SoC. The larger the sample size

(more outer-loop iterations), the higher the degree of confidence that can be associated

with the results regarding the mean and the standard deviation of the final distribution.

Given that system simulation, power analysis and thermal simulation are all computa-

tionally intensive processes, this method is prohibitively inefficient. It may take up to

several days (depending on the length of the simulation trace) to generate the power

distribution.

In summary, direct Monte Carlo based techniques while potentially very ac-

curate, are too time consuming for architectural exploration.
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Figure 2.4: Variation-aware power estimation based on direct Monte Carlo system
simulation
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2.4.2 Spreadsheet-Based Approach

In this method, simple calculations are performed to obtain the average power

distribution based on design and process data such as the gate count, activity profile,

distribution of process parameters and typical operating temperatures.

Example: Consider the example SoC of Figure 2.1, implemented using a 90 nm pro-

cess technology. Let us suppose that based on design datasheets, it is known that the

active power under a set of benchmarks is 28.5 mW and the total leakage at nominal

temperature is 7.4 mW . Let us assume that it is known from the process characteris-

tics that for σinter = 8% µ and σintra = 6% µ variations in channel length, the leak-

age power variations follow a log-normal distribution with σ = 174% µ. Based on

the above information, we predict the average power distribution at a typical operating

temperature of 60Casfollows.UsingBSIM3equations, weestimatethatat60C, to-

tal leakage increases to 24 mW . Assuming that the σ/µ ratio for leakage power

remains unchanged with temperature, leakage power at 60 follows a log-normal dis-

tribution with µ = 24 mW , and σ = 42 mW . We therefore conclude that total

power also follows a log-normal distribution, with µ = 24 + 28.5 = 52.5 mW, and

σ = 42 mW.

Figure 2.5 compares the distribution obtained through such spreadsheet-based

analysis to one obtained via direct Monte Carlo simulations. Clearly, there is a no-

table discrepancy between the two distributions. First, for a specific workload, the

spreadsheet-based approach fails to consider the extent to which different system

components contribute to power variations. For example, components with long idle

periods may power down, and may contribute only slightly to leakage power varia-

tions. Also, for components that are mostly active, the larger contribution of dynamic

power may overwhelm the variations in leakage power. Second, operating temper-

atures vary spatially across a chip, according to the relative power density of each

component, and dynamically, as the workload varies for a given component. The

simplistic assumption of a constant operating temperature leads to inaccurate leakage

power estimates. Hence, the spreadsheet-based approach fails to accurately capture

the dependence between workload characteristics, component power-states, tempera-
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Figure 2.5: Comparing power distributions obtained using direct Monte Carlo simu-
lations and spreadsheet-based analysis

ture, and leakage power. As illustrated earlier, these factors significantly influence the

impact of variations on power.

In summary, the above discussion shows that the spreadsheet-based approach

while efficient, does not yield results accurate enough to drive architectural explo-

ration. On the other hand, direct Monte Carlo based methods are accurate, but too

inefficient. In the next section, we describe our methodology for system-level power

estimation that addresses these deficiencies.

2.5 Proposed Analysis Methodology

In this section, we describe a methodology for system-level power analysis

that incorporates the impact of both manufacturing-induced inter and intra-die varia-

tions and operation-induced variations. We focus on channel length and temperature

variations, but the approach is general, and can be extended to consider other vari-

able parameters as well. For the discussion in this section, we assume that a sample

set of the SoC instances is available. A sample is a leakage vector comprising of
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leakage power of each component in all of its power states and characterizes a chip

instance. The framework and methodology used to obtain the sample set is described

in Section 2.6.

The key attribute of our approach is that speedup is achieved by performing

both system simulation based dynamic power analysis and thermal analysis outside

the Monte Carlo loop without compromising significantly on accuracy. To achieve

this, we use a three-phase methodology. For clarity of explanation, we first give a

brief overview of the methodology as shown in Figure 2.6 and then discuss it in detail.

Figure 2.6: Methodology for system-level power analysis considering process and
temperature variations
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Figure 2.7: Methodology for system-level power analysis considering process and
temperature variations

• In Phase 1, system simulation is performed just once to capture necessary infor-

mation in the form of component-level dynamic power and power-state traces.

• In Phase 2, a small number (Ncalib) of chip instances are ’selected’ and a corre-

sponding database of temperature traces is obtained as follows. For each chip

instance, the power-state traces are used to compute component-level leakage

traces using the leakage vector corresponding to the chip instance. These leak-

age traces are combined with dynamic power traces to perform thermal analysis.

Leakage and thermal analysis are performed iteratively until convergence. This

compute-intensive iterative analysis is limited to a small number (Ncalib) of chip

instances.

• In Phase 3, Monte-Carlo analysis is performed using the entire sample set. For
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each sample, we find the ’selected’ chip instance in Phase 2 that is ‘closest’ to it,

and its leakage power is obtained using the corresponding pre-computed tem-

perature trace in the database. The rationale behind this approximation is that

temperature does not vary significantly for small variations in power and hence,

this ‘quantization’ does not impact accuracy of the overall power distribution

significantly as is shown quantitatively in Section 2.7.

We now describe all the phases of the methodology in detail. Details of each

phase are illustrated in Figure 2.7.

Phase 1 (System simulation and power analysis): The inputs to this phase are a

functional model of the target system, a system-level test-bench that models typical

operating conditions, and a set of power models that track component-level dynamic

power consumption [48, 49, 50]. Cycle-accurate system-level functional simulation

is performed with concurrent dynamic power estimation to obtain a set of cycle-level

traces for dynamic power consumption over time for each component. In addition,

the functional model of each component is instrumented to generate a time trace of its

power-state. The rationale behind capturing the power-state trace is; (a) a component

can have distinctly different leakage characteristics in different states since the number

of transistors that are powered on (and hence, leaking) depends on the power-state, and

(b) for a given workload the component-level, power-state traces are same for all chip

instances irrespective of leakage power variations. These component-level dynamic

power and power-state traces contain all the necessary information for subsequent

power analysis.

Phase 2 (Temperature Calibration): The inputs to this phase are:

1. Power-state and dynamic power traces from Phase 1.

2. Leakage power sample set 1: each sample point in the set defines the leakage

characteristics of a chip instance. It comprise of a vector of N-type and P-

type leakage power values for all power-states of each SoC component. N-type

1The framework used to obtain the sample set is described in Section 2.6.
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and P-type leakage currents vary differently with temperature and hence are

computed separately. For simplicity, the N-type and the P-type leakage powers

are collectively referred to by the single term, ‘leakage power’, even though the

separate power values are combined only at the end when the total power is

computed.

3. Temperature-based leakage model: the model is used to determine leakage

power at a desired temperature given the leakage power at a nominal tempera-

ture. The model is discussed in Section 2.5.2 and the derivation and verification

details are provided in Appendix B.

4. System-level floor-plan, obtained using fast floor-planning tools.

This phase results in a database of component-level temperature traces corre-

sponding to a pre-defined number, Ncalib, of ‘selected’ chip instances. There are four

main steps to this phase (Figure 2.7).

In Step 1, fixed point sampling, Ncalib representative points that are used to

determine the database of temperature traces are ’selected’ from the sample set. The

points are selected using the leakage power sample of the component having poten-

tially the largest impact on the temperature. Therefore, the component with highest

leakage power dissipation, calculated as the weighted-average across power-states, is

chosen. Ncalib equi-spaced points are determined from the leakage power distribution

corresponding to this component. Subsequently, the entire sample set is divided into

Ncalib bins according to these fixed sample points.

In Step 2, leakage estimation for a given workload is performed. For each

fixed sample point generated in the previous step, leakage power traces are computed

using the leakage vector of the sample point and the power-state traces obtained in

Phase 1. These are component-level leakage power traces at nominal temperature.

In Step 3, thermal analysis is performed. The thermal analysis tool takes a

component-level system floor-plan and component-level power traces (leakage + dy-

namic) as inputs. The thermal analysis tool uses power values averaged over a speci-

fied sampling interval. The output of this step is a set of component-level temperature

traces for the given sample point.
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In Step 4, thermal correction is performed. In this step, the leakage power

traces are updated to consider the impact of temperature variability. We use the

temperature-based leakage power models (described in Section 2.5.2) to obtain the

leakage power traces corresponding to the temperature traces.

Due to the interdependence between temperature and leakage power, Steps 3

and 4 may have to be iteratively performed until convergence is reached. Steps 2,

3 and 4 are repeated for all the Ncalib points to generate a coarse-grained database

of temperature traces. The rational behind generating temperature traces for only a

selected set of samples is that temperature variations are not significant for small vari-

ations in power. In other words, chips with leakage characteristics close to the leakage

characteristics of a selected chip, will exhibit very similar temperature characteristics.

Phase 3 (Monte Carlo trace analysis): The inputs to this phase are power-state and

dynamic power traces from Phase 1, the leakage power sample set and temperature-

based leakage models, and the database of temperature traces obtained in Phase 2.

The output of this phase is a system-level power distribution and a power variability

profile over time. Optionally, trace compaction can be performed on the power-state,

dynamic power and temperature traces before beginning Phase 3 for more efficient

analysis at the expense of some accuracy. Trace compaction techniques are described

in the next sub-section. Now for each Monte Carlo sample point, following three steps

are performed.

In Step 1, leakage estimation is performed to compute the leakage power

traces using the power-state traces and the leakage vector corresponding to the sample

point.

In Step 2, thermal correction is applied to the leakage power traces obtained in

the previous step to compute the leakage values at the estimated on-chip temperatures.

For a given sample point, temperature trace for the corresponding bin is used for the

thermal correction. The bins are determined according to the fixed sample points as is

already described in Phase 2.

In Step 3, total power estimation is performed. The leakage power and the

dynamic power traces are combined, in a single pass, to compute the total power dis-
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sipation for each component. In addition, a running average of the power dissipation

for each component and the entire system for the given Monte Carlo sample point is

obtained.

The total energy distribution of a System-on-Chip under a given test-bench is

obtained by repeating Phase 3 for each sample point. The number of samples to be

analyzed depends on the desired error and confidence levels in estimating the system-

level power distribution. The larger the sample size, the lower is the sampling error.

Note that, unlike the direct Monte Carlo approach described earlier (Section 2.4.1),

time consuming functional, power, and thermal simulations are not part of the Monte

Carlo analysis loop in the proposed methodology. Therefore, the methodology per-

mits efficient construction of distributions with large sample sizes to obtain a distribu-

tion of system-level power, and optionally, profiles of power variability versus time.

In the following subsections, we describe details of the trace compaction step and our

method for temperature-based leakage modeling.

2.5.1 Trace Compaction

The cycle-level trace generated in Phase 1 contains fields for the cycle num-

ber, dynamic power, and the power-state for each component. Analyzing this trace

in Phase 3 can provide high cycle-level profiling accuracy. However, analysis effi-

ciency can be substantially improved using simple trace compaction techniques, with

little impact on accuracy. Three levels of trace compaction that we considered are

described.

Level 1: At the first level2, consecutive cycles in which a component’s power state

do not change are collapsed into a single entry in the trace as long as the power state

does not span multiple thermal sampling intervals (which is the granularity at which

the temperature traces are stored). If a power-state spans a thermal interval, as many

entries as the number of thermal intervals spanned are created. The resulting trace

contains the number of collapsed cycles, average dynamic power for those cycles, the

power-state, and the associated temperature. This level preserves temporal accuracy

2This is also the base level of power analysis in our methodology
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at the granularity of the thermal sampling interval.

Level 2: At the second level, consecutive cycles in which the power-state is constant

are collapsed into a single entry, even if they span multiple thermal sampling inter-

vals. Each trace entry is then associated with the average temperature of the thermal

intervals that it spans. Dynamic power values are also averaged for each entry. Here

too, temporal ordering of power-states, dynamic power and temperature values is pre-

served, albeit at a coarser granularity. Hence using these traces, profiles of power vs

time and power variability vs time can still be generated.

Level 3: At the third level, all temporal information is sacrificed and the trace is re-

duced to a distribution of power-states (the amount of time spent by each component

in each power-state), and the corresponding dynamic power estimates that are aver-

aged over all occurrences of each power-state. Similarly, the database of temperature

traces is also reduced to an average temperature estimate for each power-state of each

component. Using this compact representation (essentially a lookup-table indexed by

the component name and power state), Phase 3 Monte Carlo analysis is extremely fast

but is incapable of estimating temporal profiles of power, or power variability.

2.5.2 Temperature Based Leakage Power Model

We now describe the temperature based leakage power model that is used to

compute the leakage power during the thermal correction step. In majority of the

models proposed in the past for leakage current estimation under temperature varia-

tions [51] [52], leakage at temperature T is modeled as I(T ) = I(T0)∗f(T, T0), where

T0 is the nominal temperature and f is a non-linear function in T and T0. However, for

our purpose we found these models to be inappropriate since the coefficients describ-

ing f typically depend on device parameters such as channel length. In our case we

desire a model that depends only on leakage power of a sample at nominal tempera-

ture T0 and target temperature T . Dependence of leakage power on device parameters

is taken into account while obtaining the leakage power sample set as described in

Section 2.6. We hence propose the following model (derivation and verification are

provided in Appendix B) to compute leakage at a given temperature:
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I(T )

I0

= (
T

T0

)µte+2 ∗ e
A(I0)∗(T−T0)

T∗T0 (2.1)

Here, I(T ) is the leakage current at the desired temperature T , I0 is the leakage

power at the nominal temperature T0 and µte is the mobility temperature coefficient.

A(I0) is a temperature independent term and depends only on the leakage power at

the nominal temperature. In the proposed model (details in Appendix B), A(I0) is

modeled as a second order polynomial in ln(I0) as follows,

A(I0) = C1 ∗ (ln(I0)
2) + C2 ∗ ln(I0) + C3 (2.2)

where, C1, C2, C3 are the fitting coefficients. These are obtained separately for the

N and P type devices using BSIM3 simulations, and depend only on the technology

node.

2.6 Obtaining sample set under parameter variations

We now describe our approach to obtain the leakage power sample set under

inter and intra-die variations. We first present the framework used to model inter-die

and spatially correlated intra-die variations in device parameters, and then describe

our method to obtain power-state based component-level leakage power for the sam-

ple set.

2.6.1 Modeling Parameter Variations

Under inter and intra-die variations, the parameter value (say, effective channel

length) of a given device j of a chip instance i is given by,

Li,j = LNOM + δLinter
i + δLintra

j

Here, LNOM is the nominal effective channel length. δLinter
i is the contribution of

inter-die variations and is assumed to follow a Gaussian distribution N(0, σinter). It

introduces identical parameter variation in all devices of a given chip instance. δLintra
j

is the contribution of intra-die variations. To account for spatial correlations, intra-die
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variation across devices is assumed to be a correlated multivariate normal distribu-

tion N(0, COV ). δLintra
j for j ∈ {1, N} is a normal RV with variance σ2

intra and

COV is an N x N matrix that specifies the covariance between different RVs. To re-

duce the number of spatially correlated random variables, we use a framework similar

to [13] in which a chip is divided into N (Nrows X Ncols) grid cells. Grid size depends

on the process technology considered. Devices in the same grid cell are assumed be

identically impacted by intra-die variations and represented by one RV, δLintra
j . We

assume that the correlation coefficient between RVs in two grid cells is a function of

inverse of the normalized distance between the grid cells.

For each sample point (chip instance), Linter is obtained by Monte Carlo sam-

pling of N(LNOM , σinter) and is added to δLintra. δLintra is a vector of length N

consisting of correlated intra variation in L corresponding to each grid cell of the

chip. It is obtained using following equations.

δLintra = A ∗ δLintra
UnCor, where,

A = P ∗ sqrt(D)

Here, δLintra
UnCor, is a vector of uncorrelated values obtained by sampling the normal

distributions independently. D is a diagonal matrix containing eigenvalues of COV

and P is a matrix containing eigenvectors of COV.

We model leakage currents in N-type and P-type transistors, as functions of

channel length. These models are used to obtain transistor-level leakage currents, in

and ip, corresponding to the sample set obtained above. The models are described in

Appendix A of this thesis.

2.6.2 Power-state based Component-level Leakage Power Model-

ing

In this subsection, we describe a procedure for obtaining the power-state based

component-level leakage power sample set, used in our methodology. Different steps

of the procedure are described below:
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• Step 1a: For each component, a set of power-states (e.g., active, idle, sleep,

deep-sleep, etc.) is obtained from a design datasheet. The rationale for iden-

tifying power-states is that under different states, component leakage power is

distinctly different, depending on the number of transistors that are powered on

(and hence, leaking) in a particular power-state.

• Step 1b: Mapping of the components to the grid cells is determined using sys-

tem level floorplan as shown in Figure 2.8. In this step, we determine the device

count corresponding to each component comp in each grid j, Ncnt(comp, j).

Figure 2.8: Component to grid mapping

• Step 2: For each power-state of each component, the total active device width

associated with N-type and P-type devices (Kn, Kp respectively) is estimated.

Typically at this stage of design, detailed information of the physical imple-

mentation is not available. Therefore, we determine Kn and Kp based on two

assumptions, (a) for each power state of a component, the active device width

is uniformly divided amongst the constituent grids of the component. (b) the

circuit can be modeled as sea of identical inverters. We then use approximate

gate-counts to estimate Kn and Kp. Similar approaches have been used for

high-level leakage estimation [53].

However, our methodology allows more accurate estimation if the design con-

tains hard macros for which detailed layout information is available. For those

components, factors Kn and Kp can be determined using the layout informa-
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tion available. For rest of the components, the approach discussed above can be

used.

• Step 3: Total N-type and P-type leakage currents corresponding to a given

power-state of a given component are computed as follows,

In,tot =
N∑

grid,j=1

In,tot(j) =
N∑

grid,j=1

Kn,tot(j) ∗ in(j)

Ip,tot =
N∑

grid,j=1

Ip,tot(j) =
N∑

grid,j=1

Kp,tot(j) ∗ ip(j)

Here, Kn,tot(j) and Kp,tot(j) (identified in Step 2) represent the effective N-

type and P-type leakage width associated with a given power-state of a given

component in grid j. Similarly, in(j) and ip(j) represent the leakage current of

unit width N-type and P-type devices, respectively, in grid j and are obtained

using leakage models described in Appendix A.

This is done for the entire sample set to obtain component-level leakage power sam-

ples, which is used as input to our methodology described in Section 2.5.

2.7 Experimental Results

In this section, we describe our experimental set up, present results that eval-

uate the accuracy and efficiency of the proposed method, and compare it with the

simple extensions of existing techniques described in Section 2.4. Finally, we illus-

trate the application of the proposed analysis methodology towards developing new,

variation-aware strategies for power management.

2.7.1 Experimental Setup

For our experiments, we use the System-on-Chip design described in Sec-

tion 2.3. The system is modeled using the cycle-accurate models described in Sys-

temC [54] for all the hardware components, an instruction-set simulator for the ARM
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core, and transaction-level models for the AHB on-chip bus. All the components are

enhanced with corresponding power models that track dynamic power consumption

over time [45]. Power-state based leakage power distributions for the SoC compo-

nents are generated using the procedure described in Section 2.6.2. Characterization

data for calibrating the statistical leakage power model and the temperature based

leakage power model is obtained via HSPICE simulation of the Berkeley Predictive

Technology 90 nm BSIM3 model card [55]. Total active device width for different

power states is estimated using high-level techniques as described in Section 2.6.2.

Thermal analysis is performed using HotSpot [47]. The system-level floor-plan is

generated using the U.C. Santa Cruz floor-planning tool [46]. The methodology is

integrated using MATLAB [56]. Distribution sampling, leakage estimation, thermal

correction, and trace-analysis methods are implemented using MATLAB’s C-MEX

utility.

2.7.2 Accuracy Comparison

First, we present results that compare the accuracy of our approach with di-

rect Monte Carlo simulation and spreadsheet-based analysis. For this experiment, we

consider a workload of length 500 ms, with 50% system activity. We use Ncalib = 10

in Phase 2 of the methodology. Figure 2.9 illustrates the average power distribution

of the SoC, as predicted using the proposed methodology and direct Monte Carlo

simulations (presented in Section 2.4 A). We observe that the distribution obtained

using our approach (µ = 52.3 mW , σ = 35.3 mW ) matches closely with the one

obtained using direct Monte Carlo simulations (µ = 52.7 mW , σ = 36.4 mW ), with

relative error less than 0.5%. The slight disparity in the distributions arises because

in the proposed methodology, the temperature trace corresponding to a sample point

is approximated with that of the nearest fixed sample point as opposed to the direct

Monte Carlo simulations in which the temperature trace is individually obtained for

each Monte Carlo sample point. One of the reasons for the proposed method to result

in such close accuracy is that in the calibration phase we create bins based on leakage

distribution of the component with highest contribution of leakage power. The error
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is further reduced if a larger value of Ncalib is used.

Figure 2.9: Accuracy Comparison with Monte Carlo

Table 2.1 compares the ‘power yield’, i.e., the fraction of manufactured chips

that meet a specified power constraint during normal operation, as predicted by the

proposed trace-based analysis with that predicted by direct Monte Carlo simulations

and spreadsheet-based analysis. The table contains results for four power constraints.

We observe that our approach results in negligible accuracy loss with respect to direct

Monte Carlo simulations (rows 3-5). We also note that there is no accuracy loss when

trace compaction techniques are employed. This is because temperature variations

within power-state phases are not significant enough to introduce error in leakage

power estimation due to averaging of temperature values. Rows 6 and 7 present the

power yield estimates obtained using spreadsheet-based analysis. In the pessimistic

approach (row 6), all the devices are assumed to be leaking all the time. Therefore,

the SoC leakage distribution (µ = 7.4 mW , σ = 12.8 mW ), is re-estimated at the

typical operating temperatures and is directly added to the dynamic power estimate.

In the optimistic approach (row 7) the idle components are assumed to be in deep-

sleep state, thereby consuming negligible leakage power in those periods. It can be
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seen that the spreadsheet-based analysis can only provide loose bounds on the actual

power yield. The proposed methodology accurately captures not only the times spent

by each SoC component in each of its power-states, but also the die temperatures of

each component, hence, enabling a more accurate consideration of their contributions

to the total system power.

Table 2.1: Accuracy comparison

Power Variability Profile: Figure 2.10 shows the temporal variation in the system-

level power dissipation and its spread due to process variations, as generated by our

methodology. The bottom and top waveforms represent the 25th and 75th percentiles

of the power distribution, respectively, while the waveform in the middle represents

the median. The difference between the top and bottom waveforms represents the

inter-quartile range of power dissipation (a measure of spread). This information can

be used to identify intervals during which the system’s power variations are high, and

the corresponding power-state combinations of SoC components. Such information

could be used to modify the system architecture, or to design appropriate power man-

agement schemes.

2.7.3 Efficiency Comparison

We now present results to evaluate the efficiency of our proposed methodol-

ogy. It takes 6.4 hrs to generate 500 ms long dynamic power and power-state traces

during Phase 1 (system simulation and power analysis). Phase 2 takes 560s to process
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Figure 2.10: Output of the analysis tool: power variability profile over time

this trace, when a sampling interval of 1 ms is employed by the thermal analysis tool

for 10 equi-spaced points (Ncalib=10). Phase 3 execution times for a sample size of

500 points are presented in Table 2.2 (col 3-5). We estimated that direct Monte Carlo

simulations will take about 68 days to finish this 500 point simulation. Therefore, in

this table, we compare the execution time of Phase 3 of the proposed methodology

with an optimized version of direct Monte Carlo simulations3, in which power-state

based leakage modeling and trace analysis is used while performing thermal modeling

within the Monte Carlo loop (see Section 2.4.1). We observe that with proposed tech-

niques, efficiency gains of 3-4 orders of magnitude can be achieved over the optimized

direct Monte Carlo simulations.

In Figure 2.11, we compare the execution time taken to generate the total

power distributions using the optimized direct Monte Carlo simulations and the pro-

posed methodology as trace length increases. It can be seen that the time taken by

optimized direct Monte Carlo simulations grows very fast and the method soon be-

3We refer to it as ‘optimized direct Monte Carlo simulations’.
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Table 2.2: Efficiency comparison

comes computationally infeasible. On the other hand, our methodology exhibits much

slower growth in execution time, enabling analysis of very long traces.

Figure 2.11: Execution time vs. trace length

In Figure 2.12, we present execution times for the two methodologies with

increasing number of sample points. It can be seen that, the execution time for op-

timized direct Monte Carlo simulations increases linearly with a large slope as the

number of sample points increase. On the other hand, the execution time for our

methodology does not increase as fast. This is because in the proposed methodology,

time consuming steps are not part of the Monte Carlo simulation phase (Phase 3). Our



42

methodology enables analysis over a large sample space and hence, a more accurate

estimation of the power distribution.

Figure 2.12: Execution time vs. sample size

2.7.4 Impact of Ncalib on accuracy and efficiency

We now present results to study the impact of number of fixed sample points,

Ncalib, ‘selected’ in Phase 2 of the methodology on accuracy and efficiency. For these

experiments, we again consider a workload of 500 ms, with 50% system activity and

a sample size of 500 points. Ncalib is varied between 2 and 20. We plot the accuracy

in terms of relative error (compared to direct Monte Carlo simulations) and efficiency

in terms of the computational time for Phase 2, in Figure 2.13. Note that Ncalib does

not impact the computational time for Phase 1 and Phase 3 of the methodology. From

the figure, we see that high accuracy can be achieved with relatively small number

of bins. For example, relative error of less than 1% can be achieved with as low as

6 bins whereas relative error of less than 0.5% can be achieved with 10 bins. For

these experiments we have used σinter = 8% and σintra = 6% in Leff . For larger
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variation in process parameters, more number of bins will be required to achieve a

given accuracy target. In terms of efficiency, Phase 2 computational time varies almost

linearly with Ncalib but remains with-in an order of few minutes. Therefore, using our

methodology Ncalib can be used as a parameter that can be easily configured according

to how quickly the designer aims to generate the power distribution.

Figure 2.13: Effect of Ncalib accuracy and Phase 2 computational time

2.8 Conclusions

In summary, we described techniques for systematically taking manufacturing

and operation-induced variations into account during system level power analysis. In

our work, we found that a three phase approach, based on fast trace analysis, power-

state based leakage power modeling, and off-line temperature calibration, provides an

efficient and accurate means of analyzing the impact of parameter variations on power

consumption at the system level.

The text of this chapter, in part, is based on material that has been published in

the Proceedings of ACM/IEEE International Symposium On Low Power Electronics

and Design, 2006 (S. Chandra, K. Lahiri, A. Raghunathan, and S. Dey, Considering
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Process Variations During System-Level Power Analysis, Proc. International Sympo-

sium on Low Power Design, pp. 342 345, Oct 2006) and accepted for publication in

the IEEE Transactions on VLSI Systems (S. Chandra, K. Lahiri, A. Raghunathan, and

S. Dey, Variation-aware System-level Power Analysis, IEEE Trans. VLSI Systems).

The dissertation author was the primary researcher and author, and the coauthors listed

in these publications collaborated on, or supervised the research that forms the basis

for this chapter.



Chapter 3

Variation-Tolerant Dynamic Power

Management at the System-Level

3.1 Introduction

As discussed earlier in this thesis, the impact of variations on leakage power

is very pronounced (as has been reported widely in the literature [7, 37, 38]), making

it imperative to consider variations during power analysis and optimization. In this

chapter, we consider the impact of process variations on shutdown-based power man-

agement, which is one of the most commonly used power optimization techniques. In

shutdown-based power management, a component is put into low power states dur-

ing periods of inactivity. Examples of shutdown-based power management include

timeout-based policies, history-based policies and stochastic policies, [57, 58, 59, 60].

Current approaches for designing power management schemes assume that compo-

nents have deterministic power characteristics (e.g., power consumption in each power

state, transition overheads between states, etc.). These assumptions break down in the

presence of variations and hence it is natural to question the effectiveness of power

management schemes designed on their basis.

45
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3.1.1 Chapter Overview and Contributions

In this chapter, we make the following contributions.

• We study the impact of variations on power management, and show that con-

ventional approaches, which do not consider variations, can result in significant

sub-optimality and energy wastage.

• We show that in the presence of variations conventional metrics such as mean

energy dissipation are not sufficient to measure the effectiveness of a power

management policy. We suggest alternative metrics such as µ + σ, or the N th

percentile of the overall energy distribution across chips, that may be better

from the perspective of variation-aware power optimization.

• We propose two strategies to design effective, variation-aware aware power

management schemes, namely, design-specific and chip-specific approaches. In

the design-specific approach, the set of parameter values that is fixed across all

fabricated instances of the chip is derived with a goal of optimizing a specific

distribution metric whereas in the chip-specific approach, parameters values are

uniquely determined for each chip instance based on its individual power char-

acteristics. These strategies are applicable to other known power management

policies such as timeout-based, predictive and stochastic, by adapting the ap-

propriate policy parameters in each case. Note that, our objective in this work

is not to propose new power management policies; rather, we wish to examine

how existing policies can be adapted considering the effects of variations.

• We present these approaches in the context of an ideal oracle-based prediction

framework in order to study the impact of variations independent of the problem

of idle time prediction. We then perform additional analysis to study the impact

of variations on timeout-based policies which are perhaps the most widely used

in practice.

We evaluate the proposed approaches to variation-aware power management of SoCs,

using a cycle-level power and performance model of an ARM946 processor core for a
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range of workloads. The proposed approaches result in large improvements in metrics

such as µ + σ and Nth percentile over conventional policies. For example, improve-

ments of up to 59% for the oracle-based framework and up to 43% for the timeout-

based framework are obtained for metric µ + σ.

3.1.2 Related Work

A significant body of research over the past few years has focused on devel-

oping techniques to estimate and to reduce the impact of variations on the leakage

power. Some of the estimation techniques are presented in [1, 11, 12, 13]. Tech-

niques to reduce the impact of variations on leakage power include adaptive body

biasing (ABB), gate sizing, dual threshold voltage-based design and repeater inser-

tion [7, 22, 25, 24, 21, 23, 6]. These techniques are shown to be promising but do

not completely address the problem since they introduce variation-awareness at later

stages in the design cycle. Moreover, techniques such as ABB to reduce leakage vari-

ations are likely to be less effective with technology scaling [61, 62]. Some of the re-

cent research in this area addresses the problem at the architectural and system levels.

In [17, 32], analytical models are developed to study the impact of variations on over-

all performance and power consumption for different micro-architectural choices and

single and multiple voltage-frequency systems. The effects of variations on system-

level behavior of SRAM memories are studied in [31]. In [63], trace-based analysis

techniques are proposed for efficient variation-aware system-level power estimation.

Efforts at architectural and system-level to improve power efficiency in the presence of

variations include exploiting parallelism [18] and using optimal number of cores [30].

While these works clearly demonstrate a move to consider variations at higher levels

of abstraction, the impact on the commonly used technique of shutdown-based power

management has not been studied to date.
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Figure 3.1: Power state machine and power management policy

3.2 Preliminaries

In this section, we describe the conceptual framework around which the dis-

cussion in rest of this chapter is based. We model an SoC as a collection of power

manageable components (PMCs). During system execution, each component exists

in one of several power states each with differing power consumption characteristics.

A power management policy specifies the conditions for the component to transition

between power states with an objective of minimizing the total energy consumption.

Power management policies are usually designed based on the nature of the compo-

nent’s workload as well as its power characteristics.

3.2.1 Power Manageable Component

Power state machine of a PMC under an oracle-based framework is shown in

Figure 3.1. The PMC can be in the Active state or it can be in one of the n low-

power states from S1 to Sn. Examples of low-power states in practice are Doze,

Sleep, Hibernate, Deep-sleep, etc. While in the Active state, if the component is

not performing any useful operation it is said to be Idle. When Idle, a component

consumes lower dynamic power compared to when it is actively operating. Transition

to a low-power state can be made during these idle time periods to avoid unnecessary

power dissipation. A component can transition between low power states as well,

for example from Sleep to Deep-sleep. However, under the assumption of oracle

prediction of idle periods, the length of the idle period, Tidle, is known apriori to the
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power manager. Hence, it is possible to calculate the optimal low-power state and

directly transition to it from the Active state at the beginning of the idle period itself,

thereby eliminating any possibility of transition between lower power states. In the

power state machine of Figure 3.1, only the transitions used under an oracle-based

policy are shown.

The power dissipation of the component in the low-power state Sj is de-

noted by PSj
, consisting of the dynamic power dissipation PD,Sj

and the leakage

power dissipation, PL,Sj
. Transition between Active and Sj is associated with a

power overhead denoted by Ptr,Sj
and a delay overhead denoted by Ttr,Sj

. We use

the vector P̄ to represent the power dissipation characteristics of the component i.e.,

P̄ = {PA, PS1 , . . . , PSn , Ptr,S1 , ..., Ptr,Sn}. For a given Tidle, the PMC transitions to

a unique low-power state such that the total energy dissipation during Tidle is mini-

mized.

3.2.2 Power Management Policy

The corresponding power management policy is completely specified if the

idle time ranges for which the component should transition into each of the low-power

states from the active state are determined. These ranges can be represented as a set

of threshold values, denoted by Tth,Sj
. If Tidle ∈ [Tth,Sj

, Tth,Sj+1
), the optimal target

state is Sj and so on. For each possible value of Tidle there is exactly one low-power

state which minimizes the energy dissipation. Typically, in-state power consumption

PSj
gets smaller with lower power states, from S1 to Sn, i.e., PA ≥ PS1 ...≥ PSn and

transition overheads increase with lower power states, i.e, Ptr,S1 ≤ ... ≤ Ptr,Sn ,

and, Ttr,S1 ≤ ... ≤ Ttr,Sn . Therefore, it is beneficial to transition to lower power

states only if the idle period length is long enough i.e., Tth,S1 < Tth,S2 < ... <

Tth,Sn . In other words, lower power states become optimum with increasing idle time.

The oracle-based policy is optimum under the above described power management

framework. Energy dissipation is minimized for each Tidle by transitioning to the

most appropriate state and therefore, total energy consumption under any workload,

W = {TA,Tidle,Nidle} is minimized. Here, TA is the total active time, Nidle ∈ Nidle
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Figure 3.2: Energy dissipation in a given state as a function of Tidle

represents the number of times, idle duration of Tidle ∈ Tidle occurs in the workload.

Now we describe the derivation of the optimal parameter values, i.e., Tth,S1 . . . Tth,Sn .

Total energy dissipation of a PMC, transitioned to a low-power state Sj during an idle

time period Tidle(> Ttr,Sj
), consists of energy dissipation during transition and in the

low-power state Sj , i.e.,:

E(P̄ , Sj, Tidle) = Ptr,Sj
Ttr,Sj

+ PSj
(Tidle − Ttr,Sj

)

= (Ptr,Sj
− PSj

)Ttr,Sj
+ PSj

Tidle (3.1)

Therefore, for each state Sj , E is a linear function of Tidle, as shown in Figure 3.2 for

three example states.

Figure 3.2 shows that state S1 has the least energy dissipation for all idle pe-

riods such that Tidle ∈ [Tth,S1 , Tth,S2). Similarly, state S2 has least energy dissipation

for all Tidle ≥ Tth,S2 . In other words, the threshold times Tth,S1 and Tth,S2 are

determined by the intersection of lines corresponding to Active and S1, and S1 and

S2, respectively. In general, for a given Tidle,low-power state Sj+1 is favorable over

low-power state Sj , if E(P̄ , Sj+1, Tidle) < E(P̄ , Sj, Tidle). We compute the thresh-

old Tth,Sj+1
as the break-even point in the trade-off between states Sj and Sj+1, i.e., it

is the value of Tidle that satisfies the equation E(P̄ , Sj+1, Tidle) = E(P̄ , Sj, Tidle).

Using Eq. 3.1, the break-even time for a target low-power state Sj+1 is given by:

Tth,Sj+1
=

(Ptr,Sj+1
− PSj+1

)Ttr,Sj+1
− (Ptr,Sj

− PSj
)Ttr,Sj

PSj
− PSj+1

(3.2)
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In the next section, we examine the impact of leakage power variations in the

context of the above framework.

3.3 Impact of Variations

In this section, we examine the impact of leakage power variations on the

effectiveness of power management under the oracle-based framework described in

the previous section. In the presence of leakage power variations, power consumption

in a given state, PSj
, and during transitions, Ptr,Sj

is a random variable rather than

one deterministic value. In such a scenario, one could use either the worst-case or

mean power consumption values to calculate the policy parameters, Tth. In this work,

we assume that using mean of the power distribution to calculate policy parameters

is a reasonable baseline case and refer to it as a conventional policy or a mean-based

policy. We analyze the effectiveness of such a policy under variations, using ARM946

processor core [42] as the example component. In particular, we consider three of the

ARM946 core power states, namely, Active, Sleep and Deep-sleep.

Active: In this state, the component is powered on, and performs useful operations.

The dynamic power consumption (PD,A) is large due to high switching activity in this

state. When the component is not performing any useful operations and not transi-

tioned to a low-power state, it is said to be Idle and the PD,A is much smaller. Also,

since most of the component is powered on, active leakage (PL,A) is a key contributor

to the total power consumption, PA.

Sleep: In this low-power state, clock gating is employed to largely eliminate dynamic

power. However, since the component remains powered on, device leakage currents

are unaffected. Hence, power consumption in this state (PS) is dominated by leakage

power (PL,S). Transition from the Active state incurs delay and power costs of Ttr,S

and Ptr,S , respectively.

Deep-sleep: In this low-power state, power-supply gating is used to power-down as

much of the component as possible (barring circuits required for state restoration).

Hence, the power consumed in this state (PDs) is negligible with significantly re-
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(a) Chip P i
L > µ[PL] (b) Chip P i

L < µ[PL]

Figure 3.3: Illustrating energy wastage under a PM policy that uses parameters based-
on conventional break-even analysis

duced dynamic and leakage components. However, the associated transition over-

heads (Ptr,Ds, Ttr,Ds) are significantly higher than those associated with the Sleep

state.

For this study, we assume that the ARM946 core is implemented in a 90nm

process technology known to exhibit 3σ = 30%µ variations in the channel length.

We use the leakage power model presented in [63] to determine the leakage power

distribution of the component in each of its power-states. Leakage power in the Active

and Sleep states are random variables represented by PL,A and PL,S
1, respectively.

In this example, we assume that the leakage power is same in the Active and Sleep

states and denote it by random variable PL. For the example component ARM946

core, 3σ = 30%µ Leff variation results in a log-normal distribution for PL with

parameters µ = 4 mW, σ = 7.5 mW . We use this data to obtain the threshold values

associated with the Deep-sleep and Sleep states by using PSj
= PD,Sj

+ µ(PL,Sj
)

in Eq. 3.2. We obtained Tth,S = 0.1 ms and Tth,Ds = 20.2 ms. Note that Tth,S

is independent of leakage characteristics, since leakage in the Active and Sleep states

cancels out when using Eq. 3.2. Therefore, in the following discussion, for brevity, we

use Tth to refer to Tth,Ds. We now consider two die samples with contrasting leakage

characteristics, P 1
L and P 2

L, and analyze the effectiveness of the policy with threshold
1We use calligraphic capital letters such as P and E to represent random variables.
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value for the Deep-sleep state as calculated above.

Die 1 — P 1
L > µ[PL]: This case represents a chip with higher than average leakage.

Figure 3.3(a) depicts variation of energy dissipation with the idle period length. The

bold line corresponds to the policy based on a Tth of 20.2 ms. The dotted line corre-

sponds to a policy based on a Tth′ of 8.5 ms, obtained by using P 1
L rather than µ[PL]

in Eq. 3.2. Note that, Tth′ is the ideal threshold value for the given instance of the

chip since is it based on the chip’s very own power characteristics. From the figure,

we observe that the deviation of leakage from the mean leakage has effectively forced

Tth′ towards smaller values. This is because for this sample, higher leakage implies

that it is more attractive to pay the transition penalty and exploit the Deep-sleep state

even for certain idle periods that are smaller than the conventionally chosen value of

Tth.

Die 2 — P 2
L < µ[PL]: This case represents a chip with lower than average leakage.

The results of similar studies for this case are presented in Figure 3.3(b). In this case,

the sample is less leaky than expected, which forces Tth′ towards higher values. This

is because for certain idle periods that are longer than the conventional Tth, it remains

preferable to avoid the penalty of state transition to the Deep-sleep state.

It can be observed from the above example that for idle periods lying between

the conventional and ideal Tth values, the conventional policy results in higher en-

ergy dissipation. This study highlights the fact that leakage power variations cause

power state characteristics, and hence the effectiveness of power management poli-

cies, to vary from one chip to another. Therefore, we conclude that, under variations,

power management policies can potentially perform quite sub-optimally for certain

chip instances and the extent of sub-optimality depends upon the individual power

characteristics of a chip and the idle period distribution in the workload.

3.4 Metrics of Optimization

In the presence of process variations, total energy dissipation differs from one

chip to another under a given policy for a given workload and hence, is a distribution
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Figure 3.4: Desirable metrics for power management policy evaluation

across chips. Therefore, the effectiveness of power management must be evaluated in

the context of an energy distribution rather than a deterministic measure of the energy

consumption. One possible metric is the mean of the energy distribution. However,

other metrics may be more desirable in certain cases. We argue that traditionally used

metric i.e., mean of the distribution does not provide a sufficient measure. To see that,

consider two distributions as shown in Figure 3.4(a). The distribution with solid enve-

lope has a lower mean compared to the distribution with dashed envelope. However,

the dashed distribution might be more desirable since it provides a better guarantee in

terms of the number of chips meeting a certain energy constraint. Therefore, higher

moments of the energy distribution should be taken into account to quantify it. For

example a simple metric can be a function of µ and σ, such as µ + σ. Another good

metric is the N th percentile of the distribution. Similarly, in Figure 3.4(b), it can be

seen that the dashed cumulative distribution (CDF) is more desirable since it has a

lower value of the given percentile and hence, corresponds to larger number of chips

with better energy characteristics. This is analogous to the frequency binning moti-

vation in which semiconductor engineers want to increase the number of chips in the

highest frequency bin since that earns the highest revenue. In the rest of this chapter,

we focus on three metrics to compare distributions under different policies, namely,

µ, µ + σ and the N th percentile.

We now present two approaches to variation-aware power management, namely
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the design-specific approach and the chip-specific approach.

3.5 Design-Specific Approach

In the design-specific approach, policy parameters are fixed for all fabricated

chip instances of a design. These parameters are selected to optimize the overall en-

ergy distribution under a given workload with respect to a chosen metric. For this

discussion, we denote a conventionally configured policy (based on mean leakage

characteristics) by POM and the corresponding parameter set by TM
th

2. The optimized

variation-aware design-specific policies are denoted as POV A−DS and the correspond-

ing parameter set as T V A−DS
th . In this section, we first derive the policy parameters

that minimize the mean of the energy distribution and then present a general method

to derive parameters that optimize other metrics of interest.

3.5.1 Minimizing Mean Energy : Mean-based policy is optimal

We claim that, in order to minimize the mean of the energy distribution, the

policy parameters derived assuming mean leakage characteristics are in fact opti-

mal, i.e., T V A−DS
th = TM

th . Let us denote the policy corresponding to TM
th as POM

and the one corresponding to T V A−DS
th as POV A−DS . Consider the power-state ma-

chine of Figure 3.1 and the example PMC of Section 3.3. As mentioned earlier,

threshold time to Sleep, Tth,S is independent of leakage characteristics, and hence

can be chosen conventionally. Here we focus on how to select Tth,Ds. Under POM ,

the threshold value associated with the Deep-sleep state is determined by solving

E( ¯µ[P ], Ds, Tidle) = E( ¯µ[P ], S, Tidle). Therefore, for Tidle < TM
th , Sleep is more

favorable than Deep-sleep and vice-versa, i.e.,

E(µ[P ], S, Tidle) < E(µ[P ], Ds, Tidle), for Tidle < TM
th (3.3a)

E(µ[P ], Ds, Tidle) < E(µ[P ], S, Tidle), for Tidle > TM
th (3.3b)

2Note that, the conventional policy is same as the µ-based design-specific policy
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Now, the two policies behave identically for idle time periods either less or greater

than both thresholds. For Tidle < min(T V A−DS
th , TM

th ), all the chips transition to Sleep

under both the policies. Similarly, for Tidle > max(T V A−DS
th , TM

th ), all the chips tran-

sition to the Deep-sleep state. For remaining idle times, the policies behave differently

as described in the following two cases.

Case A: TDS
th ≤ Tidle < TM

th — In this case, the chips transition to Sleep under POM

and to Deep-sleep under POV A−DS . Let, EPO
Tidle

represent the energy random variable

for Tidle under the policy PO. Using Eq. 3.1 it can be seen that the mean of the energy

random variable is same as the energy dissipation of a sample with mean leakage

energy, i.e.,

POM : µ[EM
Tidle

] = µ[E(P̄ , S, Tidle)] = E(µ[P̄ ], S, Tidle)

POV A−DS : µ[EV A−DS
Tidle

] = µ[E(P̄ , Ds, Tidle)] = E(µ[P̄ ], Ds, Tidle)

From Eq. 3.3a, we know that if Tidle<TM
th , then E(µ[P ], s, Tidle)<E(µ[P ], Ds, Tidle),

therefore µ[EM
Tidle

] ≤ µ[EDS
Tidle

]. For the given Tidle, mean of the energy distribution

under POM is smaller than the mean of the distribution under POV A−DS .

Case B: TM
th ≤ Tidle < TDS

th — In this case all the chips transition to Deep-sleep

under POM and to Sleep under PODS . From analysis similar to that in case A and

Eq. 3.3b we again get µ[EM
Tidle

] ≤ µ[EDS
Tidle

].

This shows that for any given Tidle, mean energy is minimized under POM i.e.,

µ[EM
Tidle

] ≤ µ[EDS
Tidle

]. Therefore, for any given workload (W = {TA,Tidle,Nidle}),

mean of the total energy, µ[ETOT ], is minimized under POM as shown below,

µ[ETOT ] = µ[EA+
∑
Tidle

Nidle ∗ EM
Tidle

] = µ[EA] +
∑
Tidle

Nidle ∗ µ[EM
Tidle

]

Therefore, to minimize the mean energy, TDS
th = TM

th . This result holds for a generic

system with n(> 2) low-power states.
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3.5.2 Optimizing Other Distribution Metrics

In this section, we first show that distribution metrics such as (µ + σ) or the

percentile values introduced in section 3.4 are not optimized under a µ-based con-

ventional policy (POM ) . We, then present an analytical method to obtain policy

parameters to optimize the desirable distribution metric.

Distribution metrics under POM :

In Figure 3.5(a) we plot the variation of (µ+σ) of the total energy distribution under a

certain workload for different configurations of the policy parameter Tth. The dotted

vertical line indicates conventional policy with Tth = TM
th . The figure shows that the

metric (µ + σ) is highly sensitive to the value of the policy parameter. In particular,

policies with Tth < 20 ms are able to achieve 59% reduction in (µ + σ), over the

conventional mean-based policy. The CDF of the total energy distribution obtained

under a policy PODS (TDS
th = 17 ms) is compared with POM (TM

th = 20.2 ms) in

Figure 3.5(b). It is clearly seen that the variation-aware design-specific policy (Tth =

17 ms) provides a superior energy distribution as compared to the mean-based policy.

Similar conclusions can be drawn for other metrics, such as percentiles, energy yield,

etc.

Deriving T V A−DS
th to optimize other distribution metrics :

Now we present an analytical technique to derive optimized policy parameters for

metrics such as (µ + σ) and N th percentile. We first show that if a given met-

ricMet satisfies the linearity property then the optimized parameters can be obtained

by simple break-even analysis. Then we show that the property holds for the met-

rics (µ + σ) and the N th percentile.

Consider the power state machine of Figure 3.1. The number of times a low power

state occurs in a workload depends on the idle time distribution and the policy parame-

ter Tth = {Tth,S1 , Tth,S2 , ..., Tth,Sn} that determines the target power state for each idle

period length. The total energy dissipation under a workload W is the sum of the en-

ergy dissipation for each idle period length weighted by the frequency of occurrence

of the idle period length. From the discussion in Section 3.2, the threshold times to

enter a state increase from states S1 to Sn, i.e., Tth,S1 < Tth,S2 < ... < Tth,Sn . Hence,
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(a)

(b)

Figure 3.5: (a) Effectiveness of different design-specific policies for the µ + σ metric
and, (b) the energy CDFs
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total energy dissipation can be decomposed in the constituent states as follows:

ETOT =PA ∗ TA +
∑
Tidle

Nidle ∗ Eidle

=PA ∗ TA +

Tth,S2∑
Tidle=Tth,S1

Nidle ∗ E(P , S1, Tidle)+

... +
∞∑

Tidle=Tth,Sn

Nidle ∗ E(P , Sn, Tidle)

(3.4)

We want to calculate the policy parameter Tth = {Tth,S1 , Tth,S2 , ..., Tth,Sn}
such that the desirable metric of total energy distribution Met[ETOT ] is optimized.

We show that if theMet of the distribution is linear i.e., satisfies property 1, then the

optimum parameter set can be obtained using a simple break-even analysis.

Property 1: MetricMet is linear i.e., it holds true for a linear combination of random

variables. Using Eq. 4.2,

Met[ETOT ]=Met[PA∗TA]+
n∑

Sj=1

Tth,Sj+1∑
Tth,Sj

Nidle∗Met[E(P , Sj, Tidle)] (3.5)

Each term in the double summation isMet of the energy dissipation in state Sj during

Tidle. Eq. 3.5 shows that Met of the total energy distribution can be represented as

the sum of the Met of the energy distribution in each idle period weighted by the

frequency of occurrence of that idle period. Therefore, if the metric is optimized

within each of these terms then the linear combination thereof will be optimized for

all workloads W as Nidle ≥ 0. Therefore, for each Tidle, if the states are chosen such

that the metric is optimized in each of these terms, then the total energy distribution is

optimized with respect toMet. This problem is similar to the original problem of Tth

calculation to minimize total energy of a given chip instance, presented in Section 3.2

of this chapter. Therefore, a similar break-even analysis but for Met[E(P̄ , Sj, Tidle)]

(instead of E(P̄ , Sj, Tidle)) can be employed to calculate the optimum set of Tth values

under the specified metric Met. Following this approach we write Eq. 3.2 as,

Tth,Sj+1
=

(Met[Ptr,Sj+1
]−Met[PSj+1

])Ttr,Sj+1
−(Met[Ptr,Sj

]−Met[PSj
])Ttr,Sj

Met[PSj
]−Met[PSj+1

]
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Next, we analyze the above property for a few desirable metrics introduced

earlier in this chapter. Before we present analysis for the individual metrics, we make

an important observation that allows us to reduce the number of random variables

from the number of terms in the double summation (Eq. 3.5) to 1. Note that, leakage

power in given power state or state transition is a fraction (α) of the total leakage

power of the chip depending on the number of leaky transistors in that state or state

transition. Let the vector ᾱ = {αA, αS1, . . . , αSn, αtr,S1, ..., αtr,Sn}, represent the

leakage of the component in each of its power states and state transitions relative

to the total component leakage. The dynamic power dissipation and ᾱ is constant

across various chip instances. Therefore, power consumption vector can be written

as P̄ = P̄D + ᾱPL. Here, only the PL term is a random variable. Therefore, using

Eq. 3.1, the energy dissipation of the PMC in state Sj for an idle period of length Tidle

can be decomposed into a constant dynamic dissipation term and a random leakage

dissipation term as shown in the following equation.

E(P̄ , Sj, Tidle) = E(P̄D, Sj, Tidle) + PL ∗ TE(ᾱ, Sj, Tidle) (3.6)

Here, E(P̄D, Sj, Tidle) is the dynamic energy dissipation in state for a given Tidle and

TE(ᾱ, Sj, Tidle) is the total equivalent time of the leakage contribution of the energy

dissipation. From Eq. 3.6 it can be seen that the energy dissipation in a given power

state for a given Tidle is a random variable that follows same distribution as the leakage

power with µ and σ given by,

µ[E(P̄ , Sj, Tidle)] = E(P̄D, Sj, Tidle) + µ[PL] ∗ TE(ᾱ, Sj, Tidle)

σ[E(P̄ , Sj, Tidle)] = σ[PL] ∗ TE(ᾱ, Sj, Tidle) (3.7)

We use Eq. 3.6 to show that the metrics (µ + σ) and the N th percentile of the

total energy distribution satisfy property 1.

1. µ + σ: Let us decompose Eq. 4.2 into the into dynamic and leakage energy terms
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using Eq. 3.6 and re-write it as follows,

ETOT =PA ∗ TA +
n∑

Sj=1

Tth,Sj+1∑
Tidle=Tth,Sj

Nidle ∗ E(P̄D, Sj, Tidle)+

PL ∗ {αA ∗ TA +
n∑

Sj=1

Tth,Sj+1∑
Tidle=Tth,Sj

Nidle ∗ TE(ᾱ, Sj, Tidle)}

(3.8)

Therefore, the standard deviation of ETOT is,

σ[ETOT ] =σ[PL] ∗ {
n∑

Sj=1

Tth,Sj+1∑
Tidle=Tth,Sj

Nidle ∗ TE(ᾱ, Sj, Tidle)}

=
n∑

Sj=1

Tth,Sj+1∑
Tidle=Tth,Sj

Nidle ∗ σ[PL ∗ TE(ᾱ, Sj, Tidle)]

(3.9)

Using Eq. 3.9 and the fact that µ is linear, it can be seen that µ + σ satisfies Property

1 and is minimized under a parameter set (Tth) obtained through a simple break-even

analysis using µ + σ of the energy dissipation E(P̄ , Sj, Tidle) in Eq. 3.1.

2. N th Percentile : We use ΠN to denote the N th percentile of a distribution. From

Eq. 3.6 we also observe that for given Tidle and Sj , the energy dissipation of a chip

instance is a non-decreasing linear function of chip leakage. Hence, if N% chips

exhibit leakage of PLN
or less, the same N% chips will exhibit energy dissipation of

E(P̄D, Sj, Tidle) + PLN
∗ TE(ᾱ, Sj, Tidle) or less. Similar arguments can be made for

ETOT given by Eq. 3.8. The N th percentile of ETOT is same as the N th percentile

of PL multiplied by the term in the braces and incremented by first term. Since the

underlying random variable is same, the following holds (take PL inside the double

summation),

ΠN [ETOT ] = ΠN [ETOT (P̄,A,TA
)]+

n∑
Sj=1

Tth,Sj+1∑
Tidle=Tth,Sj

Nidle ∗ ΠN [E(P̄ , Sj, Tidle)]

Therefore, Property 1 holds and Tth to optimize a given N is obtained by using

ΠN [E(P̄ , Sj, Tidle)] in Eq. 3.1.
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3.6 Chip-Specific Approach

In the chip-specific approach, the power management policy parameters of

each fabricated SoC instance are configured according to its specific leakage charac-

teristics. Since we are considering each chip individually, the metric of optimization

can be local, i.e., to minimize total energy of the specific chip under the given work-

load. If the total energy consumption of each chip is minimized, desired properties

of the energy distribution across chips (such as the ones discussed in the previous

section) are automatically optimized. To appropriately configure policy parameters,

each chip needs to be calibrated, to determine its leakage characteristics. Calibration

requires the use of appropriate measurement equipment, and may also require suit-

able design of the on-chip power supply network and the use of on-chip measurement

circuitry [64], the details of which are beyond the scope of this work. In this sec-

tion, we discuss three calibration methods, which vary in the calibration effort and

consequently, optimality of the power management policy parameters derived.

3.6.1 Full Calibration

In this method, the calibration phase explicitly measures the power consump-

tion of each power manageable component in the SoC for each of its power states.

At the end of the calibration phase, chip-specific parameters (Tth values) for each

component are computed and programmed into the power management control unit,

resulting in a SoC-level policy that minimizes the energy consumption of the chip.

The advantage of this approach can be explained as follows. In any design-specific

solution, under a given workload, all the chips exhibit the identical sequence of power

states, as defined by the fixed set of policy parameters. Since the leakage characteris-

tics of each chip is different, it is likely that for many chips, transitions are executed

that are sub-optimal for their individual power characteristics. In the chip-specific

solution, each chip makes state transition decisions independent of others, preventing

sub-optimal transitions and power wastage. However, the disadvantage is that full

calibration requires substantial hardware support and calibration effort that may not

be realizable for many cost-sensitive SoCs.
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3.6.2 Approximate Calibration

For this method, we exploit the observations that (i) performance and leakage

are positively correlated, and (ii) speed-binning is a common post-fabrication step

used to partition manufactured samples into bins with distinct performance charac-

teristics. In this method, we assume that each chip instance is aware of the precise

frequency bin to which it has been allocated. Based on the frequency bin, the chip

uses frequency-leakage correlation data for the target process to calculate a corre-

sponding leakage bin. In the calibration phase, each chip samples the leakage power

bin to “guess” its leakage characteristics. Values of leakage power thus obtained are

then used to compute the policy parameters using break-even analysis, and config-

ure the power management policies, as in the full calibration method. Knowledge of

leakage correlation between different components of the SoC can be utilized to deter-

mine individual component leakage from the estimated chip leakage. More advanced

approximate methods could be conceived, where performance and coarse-grained cur-

rent measurements are used in conjunction to estimate leakage characteristics.

3.6.3 Random Calibration

In this method, the distribution of the break-even times, Tth, is determined

from the leakage power distribution of the target SoC. In the calibration phase, each

chip randomly picks a value from this break-even time distribution and uses it to cali-

brate the power management policies. The leakage power distribution can be obtained

pre-fabrication using variation-aware leakage analysis tools, or sampling a subset of

manufactured instances for leakage measurement.

In the next section, we study the impact of leakage variations on the effective-

ness of a widely used power management policy namely, the timeout policy.

3.7 Optimizing Timeout-Based Policies for Variations

By assuming Oracle prediction of idle periods during analysis and optimiza-

tion of power management policies in the presence of leakage variations, we have



64

Figure 3.6: Timeout policy: Power state machine and power management policy

eliminated the effect of workload variations. However, in practice power manage-

ment policies are challenged by workload variations and uncertainty in idle period

prediction. Therefore, it is important that we study the applicability of the tech-

niques presented in this chapter in the context of practical power management poli-

cies. In particular, we use timeout-based policies that have widespread application

today due to ease of implementation and substantial energy savings. In timeout-based

power management, the system waits for a pre-specified timeout (Tto) to expire be-

fore it transitions into a low-power state. In this section, we discuss the timeout-based

power management framework, study the impact of leakage variations and then pro-

pose methods to derive variation-aware timeout parameter (Tto) values to optimize the

specified metrics of the overall energy distributions.
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3.7.1 Preliminaries

Figure 3.6 shows the power state machine of our example PMC, ARM946

core, under timeout-based power management framework. When the PMC is Idle,

it first waits in the Active state for time Tto,S before transitioning to the Sleep state

where it remains until a second timeout (Tto,Ds) expires before transitioning to the

Deep-sleep state. It transitions back to the Active state as soon as a service request is

encountered. In this work, we assume that transition overheads are primarily due to

state restoration to resume activity in the Active state and hence are associated with

transitions from a lower power state to the Active state. Transition to a lower power

state is assumed to be instantaneous with negligible energy dissipation. Note that, this

is only a convenient model that can be used to represent the actual transition overheads

that may be associated with transition to and from low power states. Even if transition

overheads to a lower power state are significant, that can be lumped with the overheads

of transitioning back to the Active state. Therefore, energy dissipation of thePMC,

ARM core, with power characteristics P̄ = {PA, Pidle, PS, PDs, Ptr,S, Ptr,Ds}, for

a given Tidle is given by Eq. 3.10. Note that, if the component transitions to a Deep-

sleep state then it incurs only the transition penalty of transitioning back from the

Deep-sleep to the Active state. In this work we are only concerned with the energy

overheads of state transitions and not the latency introduced due to state transition.

E(P̄ , Tidle)=



PidleTidle, for Tidle ∈ {0, Tto,S}

PidleTto,S +PS(Tidle − Tto,S) + Ptr,STtr,S,

for Tidle ∈ {Tto,S, Tto,S + Tto,Ds}

PidleTto,Ds +PSTto,Ds + PDs(Tidle − Tto,Ds − Tto,Ds)

+Ptr,DsTtr,Ds, for Tidle ∈ {Tto,S + Tto,Ds,∞}

(3.10)

The graphical representation of the energy dissipation vs. Tidle as given by Eq. 3.10

is shown in Figure 3.7. The steep jump in the energy dissipation characteristics at

times Tto,S and Tto,S + Tto,Ds, is due to overhead incurred in transition to a low-

power state as the timeout expires. The energy dissipation during a given idle period
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Figure 3.7: Variation of energy dissipation for a given idle time period

depends strongly on the choice of the timeout parameter. The timeout parameter,

Tto = (Tto,S, Tto,Ds) characterizes a timeout policy.

Now, the total energy dissipation under a workload W = {TA,Tidle,Nidle} is ob-

tained by the sum of the energy dissipation in each idle period weighted by the fre-

quency of the idle period as shown by Eq. 3.11. Note that, we have dropped the term

involving PDs because power dissipation in the Deep-sleep state is negligible.

ETOT =EA +
∞∑

Tidle=0

E(Tidle)Nidle

=PATA +

Tto,S∑
Tidle=0

PidleTidleNidle +

Tto,S+Tto,Ds∑
Tidle=Tto,S

(PidleTto,S + Ptr,STtr,S + PS(Tidle − Tto,S))Nidle +

∞∑
Tidle=Tto,S+Tto,Ds

(PidleTto,S + PSTto,Ds + Ptr,DsTtr,Ds)Nidle (3.11)

The choice of the timeout parameters is crucial to the performance of the timeout pol-

icy and depends closely on both the workload characteristics and the power charac-

teristics of the given PMC. Ideally, the Tto should be set such that ETOT is minimized

under any given workload. However, in general, ETOT as expressed by Eq. 3.11 can-

not be reduced to a simple (or even convex) function of Tto and a timeout value that is
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optimum under a general workload cannot be obtained using analytical optimization

techniques. Researchers have proposed various methods including stochastic time-

out power management to obtain optimum Tto for workloads with certain inter-arrival

time distributions [60]. However, such methods remain hard to implement. In prac-

tice, simple timeout values are used. One of the most common methods is to set

the Tto equal to the threshold time Tth. This policy works well in general and in the

worst-case when all the idle time periods are of length equal to the timeout values, it

consumes at-most twice the energy consumed by using the oracle-based policy [59].

For this work, we focus on this simple timeout policy and observe its behavior under

variations.

3.7.2 Impact of process variations

To study the performance of a conventionally designed timeout policy as de-

scribed above in the presence of leakage variations, the timeout value is set equal to

the threshold times calculated using mean leakage characteristics. Using calculations

of Section 3.3, we get Tto,S = 0.1 ms and Tto,Ds = 20.1 ms. We compare the to-

tal energy distribution obtained under this conventional timeout policy with timeout

policies that are obtained by systematically varying Tto,Ds values 3. We find that there

exists a value T ′to,Ds = 5.9 ms, that results in 27% lower µ + σ compared to the con-

ventional policy (Tto,Ds = 20.1 ms). Since T ′to,Ds is obtained by exhaustive search, the

improvement could be a manifestation of taking workload variations into account. To

ensure it is indeed a result of taking leakage variations into account we obtain best of-

fline timeout value by another exhaustive search assuming there are no variations and

all chip instances consume mean leakage power. The timeout value hence obtained

is Tto,Ds = 20.9ms. We compare total energy distributions under this best offline

timeout policy and variation-aware timeout policy. The variation-aware timeout pol-

icy out-performs the best offline policy by 28% in terms of the µ + σ metric and by

32% in terms of the 95th percentile. This clearly indicates that by designing variation-

aware timeout policies significant improvement in overall energy distribution can be

3As shown earlier, Tth,S and hence Tto,S is independent of the leakage power characteristics.
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obtained.

3.7.3 Methodologies to obtain variation-aware timeout parameter

We now present three methods to derive variation-aware timeout parameters

with varying degree of efficiency.

To re-iterate the problem statement - we are interested in finding out the time-

out parameter value Tto such that the metric of interest of the total energy distribution

ETOT is minimized for the workload W . The total energy dissipation of one instance

of the PMC with power characteristics P̄ under a timeout policy for a given work-

load is given by Eq. 3.11. Under variations each term becomes a random variable

with a certain distribution. As mentioned earlier it is not possible to express ETOT

or ETOT (under variations) as a simple function of Tto and solve it using analytical

optimization techniques. Similar to the case of oracle-based power management, we

can employ design-specific and chip-specific approaches to determine the optimum

parameter values.

In the design-specific approach, policy parameters are fixed for a design across

all fabricated chip instances and are selected such that system-level energy distribution

under a given workload is optimized with respect to a specified metric. We present

three search based methods to obtain timeout parameter values optimum under the

specified metric.

Method 1:

A straight-forward method to obtain variation-aware timeout that optimizes the spec-

ified metric is outlined below. This method is based on exhaustive search and Monte

Carlo sampling.

1. Define a search space for the value of the timeout parameter. Also define the

granularity of search.

2. For each possible value of the timeout parameter

• Monte Carlo sampling: Sample the chip population (leakage power distri-

bution) to obtain the power characteristic of the given chip instance



69

• Compute the total energy dissipation of this chip instance for the current

timeout parameter value using Eq. 3.11

• Perform the above two steps for a large sample to obtain the total energy

distribution under the current timeout parameter value

• Compute the metrics of interest such as µ, σ, µ+σ, Nth percentile

3. Select the values of the timeout parameters that optimizes the metric of interest

Combination of exhaustive search in the timeout parameter space and Monte Carlo

sampling for each possible parameter value makes this method highly computation-

ally intensive and hence impractical except with very coarse granularity.

Method 2:

We present analysis similar to the one presented in the case of the oracle policy to

separate out the dynamic and leakage power terms in order to eliminate the iterative

Monte Carlo sampling step in the above method.

Let α represent the fraction of the chip that is subject to leakage in each

state and state transition. Let ᾱ = {αA, αIdle, αS1, . . . , αSn, αtr,S1, ..., αtr,Sn}, then

P̄ i = P̄D + ᾱ P̄ i
L. Note that, the dynamic power dissipation and ᾱ are roughly con-

stant across various chip instances. Using this in Eq. 3.11 and then separating out

terms corresponding to dynamic energy and leakage we get,

ETOT (P̄ ,W , Tto)=E(P̄D,W , Tto) + PL ∗ TE(ᾱ,W , Tto)

Here, TE represents an equivalent time for which the chip can be considered to be
leaking in order to calculate the energy dissipation. Therefore, the parameters of the

total energy distribution can be obtained as follows,

µ[ETOT (P̄,W , Tto)]=E(P̄D,W , Tto) + µ[PL] TE(ᾱ,W , Tto)

σ[ETOT (P̄,W , Tto)]=σ[PL] TE(ᾱ,W , Tto)

ΠN [ETOT (P̄,W , Tto)]=E(P̄d,W , Tto) + ΠN [PL] TE(ᾱ,W , Tto)

Therefore, in method 2 the inner iterative loop of method 1 is efficiently re-

placed by the above analysis to calculate distribution characteristics for each possible

timeout candidate.
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Method 3:

The exhaustive search presented in the above two methods is limited by the specified

granularity of search both in terms of efficiency and accuracy. We propose use of the

Nelder Mead direct search algorithm which is a widely used method for non-linear

unconstrained optimization [65] and therefore, is well suited to the problem at hand.

The algorithm essentially evaluates the function value with k variables at k+1 points

forming the vertices of a k-dimensional simplex. The simplex is updated in each

iteration by discarding the point that results in the largest value and replacing it with

a point having a lower function value.

In the chip-specific approach, the parameter values are obtained such that total

energy dissipation is optimized for each individual chip instance. If the power char-

acteristic of each chip is known either an exhaustive search or Nelder-mead search,

as outlined above, can be employed to determine the timeout value for each chip

instance. Power characteristics of each chip can be obtained by using one of the cal-

ibration methods as outlined in Section 3.6 for the oracle-based power management

policy framework.

3.8 Experimental Results

In this section, we describe our experimental methodology, and present results

that compare the effectiveness of the proposed variation-aware power management

policies.

3.8.1 Methodology

For our experiments, we use an ARM946 processor core [42] described in

Section 3.3 as the PMC. Dynamic power estimates are obtained using an in-house

simulation-based power estimation framework [45] that uses instruction-based power

models. Leakage power estimates for different power states are obtained using ap-

proximate gate-counts and high-level techniques similar to [53]. We use statistical

leakage power models described in [63] to obtain leakage power distributions for all
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Figure 3.8: Oracle-based power management framework, variation in µ + σ with
increasing system activity

the power-states, assuming inter-die variations in channel length with 3σ = 30% µ.

Characterization data for calibrating the statistical leakage power models is obtained

via HSPICE simulation of the Berkeley Predictive Technology Model’s 90 nm BSIM3

model card [55]. We implemented a 5-stage ring-oscillator in HSPICE to generate

frequency-leakage correlation data used for the approximate leakage power calibra-

tion of chips. The methods for obtaining and evaluating optimum design-specific and

chip-specific parameters are implemented in MATLAB [56]. In the following sub-

sections, we first present results to compare the proposed methods under the ideal

oracle-based power management framework and then we present results to compare

different methods under the timeout-based framework.

3.8.2 Results – oracle-based power management

We compare the proposed approaches in terms of their effectiveness in opti-

mizing µ+σ and 95th percentile of the energy distribution in Figure 3.8 and Figure 3.9,

respectively. The x-axis represents the percentage of active time in a given workload.
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Figure 3.9: Oracle-based power management framework, variation in 95th percentile
with increasing system activity

The y-axis represents µ + σ (or 95th percentile) of the total energy distribution nor-

malized with respect to the conventional µ-based policy. From Figure 3.8, we observe

that the chip-specific policy with full calibration outperforms all the other policies

in terms of minimizing µ + σ. As system activity increases from ∼ 0%4 to 75%,

the chip-specific policy achieves 59% to 5% gains over the conventional policy. The

chip-specific policy with approximate calibration has the next best performance with

44% to 4% gains. The design-specific policy optimized for µ+σ is able to achieve an

improvement of 42% to 5%.We also implemented an exhaustive search of the param-

eter space to obtain the optimum design-specific parameter set to compare with our

analytical derivation. As expected, both the analytical and exhaustive design-specific

policies exhibit identical behavior.

From Figure 3.9, we observe that for the given workloads, both the chip-

specific policy with full calibration and the design-specific policy optimized for the

4Note that if there is no activity in the workload i.e., 0% activty, then all the power management
policies will behave identically, and will transition the component to the Deep-sleep state. A near
(∼)0% activity means that the idle time periods are interspersed with some activity which is negligible
compared to the total idle time in the trace.
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Figure 3.10: Oracle-based power management framework, CDFs obtained under var-
ious proposed policies

specified percentile value results in 55% to 5% improvement over the conventional

policy. The chip-specific policy with approximate calibration is able to achieve sim-

ilar gains, while the one with random calibration is only able to achieve 12% to 2%

improvement. Note that, even though the design-specific policy matches the chip-

specific policy for the percentile metric, in general, the chip-specific policy will result

in a superior energy distribution, as illustrated by the CDFs presented in Figure 3.10.

3.8.3 Results – timeout-based power management

To compare the effectiveness of the proposed approaches under the timeout-

based framework, we conducted experiments for three different idle time distribu-

tions (workloads 1, 2 and 3). For workload 1, the idle time distribution is randomly

generated and for workload 2 it is obtained experimentally through system simula-

tions. For workload 3, we use a family of Pareto distributed idle times. For the

design-specific approach we have implemented the three methods outlined in Sec-

tion 3.7, namely, exhaustive search with Monte Carlo simulations (Method I), effi-
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cient exhaustive search (Method II) and Nelder-Mead direct search (Method III). For

the chip-specific approach, we have implemented the exhaustive search (Method I),

an adaptive search (Method II) and the Nelder-Mead search (Method III) for each

chip instance, assuming full calibration for each method. In the adaptive search, first

a course-grained search is performed and the granularity of search subsequently gets

finer in the regions of interest. We have also implemented exhaustive search of time-

out values with approximate calibration.

Workload 1 - Randomly generated

The idle time distribution is shown in Figure 3.11 and is generated by assign-

ing frequency of each Tidle (at the granularity of 1 ms ) as a product of two uni-

formly distributed random variables, rounded to the nearest integer. These random

variables are weighted heavily for Tidle ≤ 10 ms and lightly for Tidle ≥ 30 ms. For

Tidle ≥ 100 ms, we assign zero weight. Separate weighing in different regions is to

make sure that best timeout values for this distribution do not tend towards zero.

Figure 3.11: Idle time distribution for workload 1

In Figure 3.12, we plot the normalized µ + σ metric obtained under different
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timeout policies as the percent activity in the workload varies from ∼0% to 75%. We

observe that the design-specific timeout policies with exhaustive search result in 27%

to 2% improvements. The design-specific policy with Nelder-Mead search performs

marginally better with improvements ranging from 27.5% to 2%. Chip-specific poli-

cies with either exhaustive or adaptive search results in 43% to 3% improvements.

The chip-specific policy with Nelder-Mead search yields 41% to 2% improvements,

whereas exhaustive search with approximated calibration yields improvements from

29% to 2%. Similar results are obtained for the 95th percentile metric as well. We

find that, the design-specific policies with exhaustive search and the chip-specific poli-

cies with exhaustive and adaptive searches yield up to 36% to 2% improvements. The

chip-specific policy with Nelder-Mead search results in 35% to 3% gains. The design-

specific policy with Nelder-Mead search and the chip-specific policy with exhaustive

search assuming approximate calibration yield 32% to 2% improvements.

Figure 3.12: µ + σ variation with increasing system activity, for a timeout-based PM
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Table 3.1: Comparing various policies in terms of µ + σ, and different percentile
values, under various different workloads

(a) Design-specific

(b) Chip-specific

Workload 2 - Derived from system simulation

We obtain the idle time characteristics for workload 2 using the SoC shown

in Figure 3.13(a). It implements 802.11b wireless LAN MAC layer protocol. For

each MAC frame, first the cyclic redundancy checksum (CRC) and the encrypted

frame is computed, and then the CRC of the encrypted frame with the first CRC ap-

pended is computed. The CRC computation is done in software and is mapped to the

ARM946 processor. The compute-intensive WEP encryption is implemented using

custom hardware that interrupts the processor after encrypting each frame. We pro-

cess 200 frames of varying sizes and note the resulting idle times. The corresponding

idle time distribution is shown in Figure 3.13(b). We obtain improvements ranging
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from 7% to 1% for both the metrics under various timeout policies as workload activ-

ity varies from ∼0% to 75%.

(a) (b)

Figure 3.13: (a) The wep-encryption SoC, (b) Idle time distribution during processing
of 200 frames with varying sizes

We compare the percent improvement in different distribution metrics for

workloads 1 and 2 under design-specific and chip-specific policies in Table 3.1(a)

and Table 3.1(b), respectively. As observed before, we see that for various metrics

the chip-specific policies in general yields larger gains as compared to the design-

specific policies and the extent of improvement reduces with increased workload ac-

tivity. Moreover, we note that improvements for workload 1 are significantly higher

than those for workload 2. This shows that the improvement strongly depends not only

on the idle time contribution but also on the idle time distribution characteristics of the

workload. We also note that larger improvements are seen for the higher percentile

metrics. For example, for workload 1, both the design-specific and chip-specific poli-

cies result in improvements ranging from 23% to 55% as the metric changes from

90th percentile to 99th percentile. Note that the Nelder-Mead search, although more

efficient than exhaustive search methods described in Section 3.7, does not guarantee

better results or results consistent with other methods. This is because in this case the

Nelder-Mead search is performed over a 1-dimensional simplex that is modified in a

heuristic manner and hence, can sometimes converge to a local minima.
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Workload 3 - Pareto Distributed

For our final experiment, we assume that the idle times follow Pareto distribu-

tion. The probability density function of a Pareto distribution is given by f(x; k,Xm) =
k Xk

m

xk+1 , for x ≥ Xm, where k and Xm are distribution parameters. We systematically

vary Xm and k to obtain a family of idle time distributions as shown in Figure 3.14.

For a given Xm, peak of the distribution increases with k. The distributions shift

to the right as Xm increases. We obtain the total energy distributions for workloads

with Tidle distributions of Figure 3.14, each with varying workload activity. For these

experiments, we use exhaustive design-specific and exhaustive chip-specific policies

since we want to show the effect of systematically varying Tidle distributions on the

extent of energy savings and not compare policies. Furthermore, previous two ex-

periments show that although improvements achieved from design-specific and chip-

specific policies differ significantly, there is no significant difference in the improve-

ments obtained under their respective variants.

Figure 3.14: Family of idle time distributions following Pareto PDFs for various k
and Xm values
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(a) (b)

Figure 3.15: µ+σ variation with varying Tidle distributions for 0% workload activity
under timeout-based PM (a) variation with k (b) variation with Xm

(a) (b)

Figure 3.16: µ+σ variation with varying Tidle distributions for 10% workload activity
under timeout-based PM (a) variation with k (b) variation with Xm
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In Figure 3.15, we plot the µ+σ metric obtained for various Tidle distributions5

for workloads with near zero (∼0%) activity, under different timeout policies. The X-

axis represents the Tidle distribution index number. In Figure 3.15 (a), variation in

µ + σ is shown as k increases for various values of Xm, while in Figure 3.15 (b)

µ + σ variation is shown as Xm increases for various values of k. We observe that

for ∼0% activity in workloads, µ + σ increases as k increases for a given Xm. For

example, for Xm = 5, improvement in µ + σ ranges from 59% to 28% for design-

specific and from 61% to 47% for chip-specific policies, as k varies from 0.25 to

1.25. However, µ + σ decreases as Xm increases for a given k (Figure 3.15 (b)). For

k = 0.25, improvements ranging from 45% to 71% for the design-specific and from

53% to 71% for the chip-specific policies are obtained. In Figure 3.16, we show the

µ + σ variation with varying Tidle distributions for workloads having 10% activity.

We observe that, unlike Figure 3.15, µ + σ decreases as k increases for Xm ≥ 5

for design-specific policy and Xm ≥ 10 for chip-specific policies. We believe that

this reversal is because of reduction in variance of the resulting distributions due to

increased contribution of dynamic power. Total improvements ranging from 37% to

3% are obtained in this case. We found that, as workload activity increases from∼0%

to 75% the improvement in µ + σ metric averaged across all the Tidle distributions

range from 63% to 2% for the chip-specific policy and from 60% to 2% for the design-

specific policy.

3.9 Conclusions

In this chapter, we studied the impact of process variations on power man-

agement, and showed that conventional approaches lead to sub-optimality and energy

wastage. We presented two approaches to design optimum power management poli-

cies under process variations, namely design-specific and chip-specific approaches.

We also study the effectiveness of these approaches under oracle-based and timeout-

based power management frameworks. Experimental results show that the power

5The distributions (Figure 3.14) are indexed from 1 − 40, with first order variation in Xm. For
example, for distributions indexed from 1− 5, Xm = 1 and k varies from 0.25− 1.25 and so on.
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management policies with parameters optimized for the presence of variations can

significantly out-perform policies designed without considering the effect of varia-

tions.

The text of this chapter, in part, is based on material that has been pub-

lished in the Proceedings of IEEE Design Automation Conference, 2007 ( S. Chandra,

K. Lahiri, A. Raghunathan, and S. Dey, System-on-Chip Power Management Con-

sidering Leakage Power Variations, Proc. Design Automation Conf., pp. 877 882,

June 2007) and accepted for publication in the IEEE Transactions on VLSI Systems

(S. Chandra, K. Lahiri, A. Raghunathan, and S. Dey, Variation-Tolerant Dynamic

Power Management at the System-Level, IEEE Trans. VLSI Systems ) The disserta-

tion author was the primary researcher and author, and the coauthors listed in these

publications collaborated on, or supervised the research that forms the basis for this

chapter.



Chapter 4

Variation-aware Voltage level

Selection

4.1 Introduction

In the last chapter, we showed that variation-aware determination of shutdown-

based power management policy parameters can result in significant improvements

in the overall energy distribution. In this chapter, we present a methodology for

variation-aware voltage level selection aimed at maximizing the number of SoC in-

stances with improved power and performance characteristics.

The supply voltage, Vdd, has a profound impact on the operating clock fre-

quency and energy consumption of an integrated circuit. Typically, logic delay in-

creases with reduction in the supply voltage, and both switching and leakage compo-

nents of the power consumption have a superlinear relationship with the supply volt-

age. In the context of addressing variations, inherently slow parts can be operated at

a higher voltage to meet frequency targets while inherently fast parts can be operated

at a lower voltage to enable energy savings. However, it is extremely hard to design

systems such that each instance can be operated at its ideal voltage, and in general,

all instances need to use a pre-determined set of voltage levels. In this chapter, we

show that determining the set of voltage levels in variation-unaware manner can lead

to highly unfavorable power/performance characteristics, and present a methodology

82
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to determine a set of variation-aware voltage levels.

Traditionally, different supply voltages have been used for different work-

load scenarios in conjunction with frequency scaling to enable power savings in sys-

tems (popularly known as dynamic voltage and frequency scaling or DVFS). More re-

cently, multi-frequency, multi-voltage SoC design style has caught attention of many

researchers [66]. These systems allow different parts of a chip, sometimes known as

voltage islands (VIs) or voltage domains, to be operated at different voltage and fre-

quency settings. Originally developed as an effective architecture to meet power and

performance goals, the multi-frequency, multi-voltage systems are also inherently ro-

bust to variations, as is shown in [67]. In most of the prior work involving supply volt-

age based techniques to meet power or performance targets, the set of voltage values

is either assumed to be uniformly spaced or is chosen apriori based on the determin-

istic (nominal or worst-case) frequency-voltage characteristics of the SoC. However,

in the presence of variations, frequency-voltage characteristics of an IC vary from

one chip instance to another, making it imperative to re-evaluate the effectiveness of

conventional voltage selection schemes. In this chapter, we demonstrate that deter-

mining suitable variation-aware voltage levels is critical in systems that are impacted

by process variations. Moreover, techniques presented in this chapter are applicable to

single or multiple voltage island based designs (both application-specific and general

purpose processing SoCs).

4.1.1 Chapter overview and contributions

In this chapter, we make the following contributions.

• We motivate the need for selecting voltage levels in a variation-aware manner.

We use an ARM processor core as an example, and (a) quantitatively illustrate

that different instances (or voltage islands in multi-voltage island systems) have

different frequency-voltage characteristics, each having an optimal operating

point that meets performance targets with minimal energy dissipation, (b) using

voltage levels that are chosen without consideration for variations result in a

suboptimal energy distribution.
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• We present a methodology to determine voltage levels in a variation-aware man-

ner. In the proposed methodology, an ideal voltage distribution corresponding

to each voltage island is generated based on the frequency-voltage characteris-

tics of instances in a sample set. The problem of voltage level selection is then

formulated as quantization of the ideal voltage distribution.

• We present approaches at design-time and post-fabrication for estimating the

frequency-voltage characteristics of a sample set of SoC instances. To drive the

design-time approach, we have developed high-level voltage-delay and leakage-

voltage models under channel length variations. We use these models, along

with Monte Carlo sampling of process parameters to design and evaluate vari-

ous voltage selection schemes.

• To evaluate the concepts presented in this chapter, we use an SoC implementa-

tion of the 802.11 MAC protocol tasks and an ARM processor core model. We

show that with variation-aware voltage level selection, the number of chip in-

stances with improved power-performance characteristics is significantly higher

as compared to voltage level selection based on either the worst-case or the

nominal characteristics.

This chapter is organized as follows. In the next subsection, we present the

related work and distinguish our work. In Section 4.2, we introduce the framework

used in this work. In Section 4.3, we illustrate quantitatively how customizing supply

voltage for each SoC instance can be used to meet performance targets and minimize

energy dissipation under process variations, and discuss the implications on practical

systems with only a few available levels. In Section 4.4, we present a methodology

to determine a set of variation-aware voltage levels. We present experimental results

in Section 4.5, and conclude in Section 4.6. The leakage and delay models under

channel length and voltage variations are presented in Appendix B of the thesis.
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4.1.2 Related work

Recognizing the profound impact that supply voltage has on the overall power

and performance characteristics of circuits and systems, a large number of researchers

have investigated and developed voltage scaling based techniques to meet power and

performance targets. In this section, we will first present an overview of the works that

employ voltage scaling for energy reduction without considering the impact of vari-

ations. Then, we present works that use supply voltage based techniques specifically

targeted towards mitigating the impact of process variations.

The concept of varying supply voltage originally emerged to enable energy

savings during times when a system is not required to operate at the maximum fre-

quency. A number of researchers exploited this concept, and a number of design time

and runtime policies have been proposed to enable reducing energy consumption, an

exhaustive description of which is far beyond the scope of this work [68, 69, 70, 71].

In [68], a survey of power-aware and battery-aware scheduling algorithms for DVFS

in uniprocessor and distributed systems is presented. Researchers have proposed

DVFS based techniques assuming the availability of both continuous and discrete

voltage levels. While the assumption of continuous voltage and frequency levels is

useful in determining the upper bound on total energy savings, it is not practical to

implement. In [72], the authors show that if only a few discrete levels are available,

at most two voltage levels are required to minimize the dynamic energy consumption.

Some of the recent works such as [73] and [74] account for leakage power during

DVFS, and show that in nanoscale technologies, there exists a lower limit on the sup-

ply voltage beyond which voltage scaling might result in increased energy consump-

tion. In [75], the authors propose a combination of dynamic voltage scaling (DVS) and

adaptive body biasing (ABB) to maximize the energy savings. Recently, researchers

have proposed temperature-aware DVFS algorithms for energy optimization [76].

A number of researchers have investigated the effectiveness of using sup-

ply voltage to mitigate the power and performance impact of process variations at

various levels of abstraction. In [21], the authors use test chip measurements to

show that using adaptive voltage scaling (AVS) in conjunction with adaptive-body
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bias (ABB) leads to increase in the number of dies meeting power and performance

targets. In [77], the authors present an approach to select Vdd, Vth and Tox values for

devices in a given path in order to minimize total power dissipation. In [27, 78], on-

chip circuitry for error detection and correction is presented that is aimed at allowing

supply voltages to scale down until the point of functional breakdown. ARM’s Intel-

ligent Energy Manager (IEM) [79] makes use of National’s PowerWise technology

to implement adaptive voltage scaling to control voltage using on-chip regulators in

a closed-loop manner [80, 81]. Techniques using on-chip voltage regulators are also

investigated in [82]. These works facilitate fine grained control of the supply volt-

age levels in a closed loop manner using on-chip voltage regulators. Designing cheap

on-chip voltage regulators that can reliability power large circuits is still a challenge

in digital CMOS technologies [83]. Therefore, implementation of such techniques is

associated with high design overhead and cost, and hence, these techniques are not

readily accepted in the main stream. The techniques presented in our work do not

require the presence of on-chip voltage regulators.

Multiple voltage island (VI) design style inherently allows improved power-

performance characteristics by isolating the impact of variations within an island as

is shown by [67, 84, 85]. In [86], the authors propose variability-aware DVFS algo-

rithms in multi-core systems while accounting for core-to-core variations. In [87],

algorithms for variation-aware application scheduling are presented in the context of

chip multiprocessors. The authors also present algorithms to select voltage and fre-

quency levels for each core such that average throughput is maximized. However, in

most of the above mentioned works, it is assumed that the discrete voltage levels are

computed based on deterministic characteristics. Some of the works assume that dis-

crete voltage levels are present in a range separated by uniform values. In most of the

commercial designs, these levels are determined based on the worst-case frequency-

voltage characteristics (slow-slow corner). In our work, we show that choosing the

voltage levels while accounting for variations can lead to significant improvements in

the design objectives, especially, when the system can support only a small number

of voltage levels. Unlike most of the existing work in the literature, we do not focus

on determining optimal task and voltage schedules, but focus on the orthogonal prob-
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lem of determining the set of voltage levels such that the voltage scaling schemes are

more effective in the presence of process variations. As such, the systematic method-

ology presented in this chapter is generic and complements the already existing work.

Moreover, the proposed methodology incurs no hardware overheads and requires no

changes in the design flow unlike [79, 27, 82].

4.2 Preliminaries and assumptions

In this section, we introduce the SoC design framework used in this chapter

and state the associated assumptions. In this work, we assume that an SoC can be

partitioned into various frequency-voltage islands and is capable of operating in a

number of performance states.

Multiple voltage island design style is inherently robust to variations since

it enables isolating the impact of variations on different parts of the SoC. However,

overheads introduced by designing interfaces between islands operating at different

frequency and voltage levels puts a limit to the number of frequency-voltage islands

that can be supported in a system. In this work, we assume that the SoC has already

been partitioned into appropriate frequency-voltage islands while taking into account

such overheads. Each voltage domain is associated with an independent voltage reg-

ulator and a clock generator. Voltage regulators are assumed to be adjustable, and

can be on-chip or off-chip. Most of the commercial systems today utilize off-chip

regulators since designing cheap and reliable on-chip voltage regulators is still a chal-

lenge. Now, each island j, can be designed to operate at multiple frequency levels,

Fj = {F j
1 , . . . , F j

m} and multiple voltage levels Vj = {V j
1 , .., V j

n }. Note that, while

m is determined by the possible workloads in each island, n is limited by the capabili-

ties of the voltage regulator. Therefore, in general, systems can have different number

of frequency and voltage levels (i.e., m 6= n should be possible). An example SoC

implemented in a multi-voltage island design style is shown in Fig. 4.9. The figure

shows our implementation of a 802.11 MAC protocol processing system. It is divided

into two islands, and is described in detail in Section 4.5.

Most power efficient systems today support a number of performance states (P-
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states in Intel terminology) [88]. A performance state can be defined by the minimum

performance that is guaranteed in that state. For example, the MAC layer process-

ing SoC (Fig. 4.9) may be guaranteed to generate processed frames at a data rate of

1.5 Mbps in the highest performance state, and at the data rates of 1.2Mbps, 1Mbps

and 0.5Mbps in the subsequent states. The frequency setting for each state is assumed

to be determined during design time analysis based on the performance targets guar-

anteed for the applications in each state. Conventionally, each performance state is

associated with a frequency/voltage pair (i.e., m = n). At runtime, systems can dy-

namically switch between different states depending upon the workload. Frequency

and voltage settings remain constant in a given state. In the next section, we will show

that in the presence of variations it is beneficial to decouple this frequency-voltage as-

sociation and customize the voltage setting for each chip instance according to its

individual frequency-voltage characteristics.

In most of the SoCs employing multiple frequency/voltage settings (or perfor-

mance states) for each island, only a small number of voltage levels are supported.

This is because of the high cost and complexity involved in designing systems with

multiple voltage levels. In the past, voltage levels used were typically limited to

ones for which standard cell libraries were characterized, and the designers strove

to achieve timing closure for the targeted frequencies at each of these voltage levels.

However, such timing closure for multiple voltage levels is extremely difficult, es-

pecially, in the presence of variations. In the absence of mature tools for integrated

statistical design flow, many ASIC design manufacturers still rely heavily on worst-

case design in which the libraries are characterized at the slow-slow process corner.

This causes increased design effort, and often leads to power inefficient designs. For

sub-90 nm technologies additional post-fabrication characterization is required. Be-

cause of the high costs associated with the post-fabrication infrastructure, chip in-

stances can be characterized for only a small number of voltage levels. The primary

contribution of our work is to illustrate that by determining the set of voltage levels

in a variation-aware manner, significant improvements are possible in the number of

instances meeting power-performance targets, while working under the limitations of

the current design flow.
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4.3 Variation-aware voltage selection

In this section, we first illustrate quantitatively how customizing supply volt-

age for each SoC instance can be used to reduce energy dissipation and meet perfor-

mance targets in the presence of variations. To introduce the concept we assume that

continuous voltage setting is possible. Although impractical to implement, a contin-

uous voltage scheme serves as a lower bound to compare the effectiveness of various

voltage selection schemes. We then discuss how the concept of customizing voltage

levels for each instance can be applied in practical systems that can support only a

small number of discrete voltage levels, and contrast its effectiveness with ‘conven-

tional’ schemes that use fixed frequency-voltage pairing for each instance.

Example study: For this study, we use an ARM processor core as an example uni-

processor system that is implemented in a 90nm process technology known to exhibit

σ = 10%µ variations in the channel length. It is capable of operating at nominal

a frequency of Fnom = 206 MHz, at a nominal voltage of Vnom=1V. Suppose, for

a certain workload this system is required to operate at a minimum frequency of

Freq = 133.3 Mhz in order to meet the required performance. For the ARM946

processor, we computed that Freq = 133MHz can be achieved at 0.82 V for a nom-

inal instance that is not affected by the process variations. However, in the presence

of process variations different chip instances have different frequency-voltage (F-V)

characteristics and hence, can operate at Freq at different voltage levels. In Figure 4.1,

we show the F-V characteristics of three instances under variations. Here, instance0

corresponds to the nominal instance that is not affected by variations. The figure

shows that instance1 requires a supply voltage of 0.96 V to meet the performance

target of Freq = 133MHz whereas instance2 can achieve this target even at 0.72 V.

This difference arises because instance1 (with Leff > Lnom) is inherently slower

while instance2 (with Leff < Lnom) is inherently faster. Therefore, setting the volt-

age to 0.82 V for all the instances can be very ineffective. It can result in instance1

not meeting the setup time constraint for the target Freq, and can cause instance2

to dissipate more energy than required to perform the given operation. On the other

hand, if the worst-case characteristics are used to select the voltage levels most of



90

Figure 4.1: Impact of variations

the instances will dissipate significantly higher energy than required. To illustrate the

effectiveness of customizing operating voltage according to individual chip instances,

we present the overall energy distributions while using (i) chip-specific voltage set-

ting that is aware of the F-V characteristics of the individual chip instances, and (ii)

deterministic voltage setting based on the nominal characteristics, in Figure 4.2. The

figure shows that using chip-specific voltage setting results in a far superior energy

distribution compared to using deterministic voltage setting. It leads to more than

74% improvement in terms of the 90th percentile of the energy distribution. More-

over, we estimated that the percentage of instances meeting the performance target in

the variation-aware chip-specific case is 99% compared to 53% for the deterministic

nominal case. This shows that voltage scaling when customized to each chip instance

can enable power savings in inherently leaky dies and help meet required performance

targets for naturally slow dies.

As mentioned earlier, continuous frequency and voltage levels are not prac-

tical to implement because of the complications involved in system design including

designing the voltage regulator circuitry and the phase-locked loop (PLL) circuitry. In
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Figure 4.2: Cumulative energy distributions obtained using deterministic and ideal
chip-specific approaches (continuous voltage levels)

practice, most of the systems can support only a small number of discrete levels (that

remain same for all the instances). In the conventional systems, for the ease of imple-

mentation, discrete frequency-voltage pairs for different performance states are fixed

during design time. Therefore, each performance state k has an associated operating

point fixed at {F j
k , V j

k }, for each island j 1. We refer to this scheme as ‘conventional’.

However, in the presence of variations, frequency-voltage characteristics vary across

chip instances (and voltage domains), and hence, such fixed pairing can be extremely

inefficient. In our work, we assume that frequency and voltage levels can be decou-

pled. Therefore, it is possible that different instances operating at same frequency

have different voltage settings. Moreover, as mentioned in the previous section, the

number of frequency (m) and voltage (n) levels can differ. This allows different in-

stances of systems with even single specified performance state to operate at different

voltages. We call this scheme as the ‘variation-aware’ (VA) scheme. Therefore, in

the variation-aware scheme, for island j of chip instance i, the operating voltage is

1Note that all these values need not be unique, i.e.,, some of the islands may have same {F,V}
operating point in more than one performance state of the system.
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selected as follows,

V i,j
k = min[Vj > V i,j

k (req)]

(4.1)

Here, V i,j
k (req) is the ideal voltage required by island j of instance i to operate at

F j
k , and is obtained using its individual frequency-voltage characteristics. Vj is the

set of available voltage levels for island j. We now compare the energy distributions

under the ‘conventional’ and the ‘variation-aware’ discrete voltage schemes. For both

the schemes, the set of available voltage levels is same and is generated using the

nominal characteristics. The found that the variation-aware scheme can lead to signif-

icant improvements in the overall energy distribution. In terms of the 99th percentile,

an improvement of up to 65% is observed. Additionally, the percentage of instances

that can operate at the target frequencies is 81% in the variation-aware case as com-

pared to 50% in the ‘conventional’ case in which the voltage levels are determined

using the nominal characteristics. This shows that utilizing the voltage levels in the

variation-aware manner, by customizing it for each instance can lead to significant

improvements in the overall power and performance characteristics, even if only a

small number of levels can be supported by the system.

In the next section, we describe the proposed methodology to determine a

set of variation-aware voltage levels such that the performance yield is maximized

without incurring severe penalty in the energy consumption.

4.4 Proposed methodology

In this section, we first describe the intuitive concept behind selecting the set

of voltage levels in a variation-aware manner, and then, present our methodology for

the same. We also present design-time and post-fabrication techniques to obtain the

F-V characteristics of various instances, which are used by the proposed methodology.
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4.4.1 Motivation

As illustrated in Section 4.3, for a given Freq, each instancei has a different

ideal voltage of operation, say, V i
req. This ideal voltage taken across all the perfor-

mance states and all the SoC instances results in a required voltage distribution (Vreq),

for each island of the SoC, as shown in Figure 4.3. The resulting Vreq distribution de-

pends on the process, circuit, as well as the workload characteristics (e.g., the weights

of different performance states). However, since only a few discrete levels can be

supported, an instance is often operated at the minimum available voltage level that is

greater than V i
req. This leads to dissipation of more energy than required. To obtain the

optimal power and performance characteristics, each instance should be set to a volt-

age value as close as possible to the ideal voltage (V i
req). This cannot be guaranteed

if the voltage levels are determined on the basis of deterministic frequency-voltage

characteristics (either the nominal or the worst-case) or chosen uniformly. In Fig-

ure 4.3 (a), we show the voltage levels selected based on deterministic worst-case

characteristics for an island supporting five frequency levels. It shows that the voltage

levels thus selected, are not conducive in the context of the given required voltage

distribution, since for most of the instances the operating voltage used will be much

higher than required. On the other hand, Figure 4.3 (b), shows a case in which the

selected voltage levels are conducive for the given distribution since more levels are

present in the voltage range with higher distribution density. This is the main intuition

behind why determining the set of voltage levels based on the ideal voltage distribu-

tion can lead to improvements in the overall power-performance characteristics.

4.4.2 Workload model

We assume that the frequency levels associated with each performance state

k, k ∈ {1, ..., K}, have already been determined for all the islands using extensive

design time analysis. Furthermore, we assume that the percentage of time the SoC

is likely to spend in each state has also been determined 2. This workload model al-

lows decoupling the impact of workload variations (and hence, the specific voltage

2Note that in each state different islands can operate at different frequencies.
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(a)

(b)

Figure 4.3: Variation-aware voltage levels
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scheduling scheme employed) from the effectiveness of choosing the set of voltage

levels. We assume that there is a maximum voltage allowed, Vmax that is also spec-

ified based on the design considerations. In this work, we evaluate the effectiveness

of the proposed methodology under two scenarios. In the first scenario, the mix of

the performance states is maintained for each chip instance and the goal is to opti-

mize the overall energy distribution. Therefore, all the chip instances are required

to exhibit same performance characteristics. Instances that cannot meet the required

performance mix are discarded. In the second scenario, the goal is to improve the

performance distribution. Therefore, in this case, instances that are unable to meet

the required frequency targets even at Vmax are allowed to execute at highest available

frequency level possible at Vmax. In both the scenarios, we show that the number of

chip instances meeting specified power and performance targets significantly improve

using variation-aware voltage selection.

4.4.3 Objective

The objective is to find a set of voltage levels for each SoC island such that

the distribution of the total energy consumption is optimized with respect to a certain

distribution metric in the presence of variations. In other words, find (V) such that

metric Met of the total energy distribution ETot is optimized. Met can be any prop-

erty of interest such as mean, mean+sigma, yield for a given energy constraint or N th

percentile of the total energy distribution. The total energy random variable is given

by ETot = ETot
dyn + ETot

leak. Here, ETot
dyn and ETot

leak represent the total dynamic and leakage

energy dissipation, respectively. Now, the total energy dissipation of island j of a chip

instance i is given by,

Ei,j
Tot =

Nstates∑
k=1

Ei,j
dyn,k + Ei,j

leak,k (4.2)

where,

Ei,j
dyn,k=Edyn,nom ∗ (

V i,j
k

Vnom

)2 ∗ nCCj,k (4.3)

Ei,j
leak,k=I i,j

leak ∗ (V i,j
k ) ∗ V i,j

k ∗ ti,jk (4.4)
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In equation 4.2, the summation is over all the possible performance states of

the given SoC. V i,j
k = min(Vj > V i,j

req,k) is the minimum of the available voltage

levels that is greater than the ideal voltage required by the given island j within the

given chip instance i. nCCj,k is the total number of cycles spent in the kth state by

island j and ti,jk is the total time spent in state k.

4.4.4 Overall methodology

Each term of ETot is a random variable. In general, Met(ETot) (or even Ei
Tot)

cannot be expressed as an analytical (or closed form) function of the set (V), and

hence, the optimal (V) cannot be obtained by analytical optimization techniques. In

this work, we present a three step methodology to determine a set of variation-aware

voltage levels, as shown in Figure 4.4. We now discuss each of the steps in detail.

Step 1: Obtain a sample set of chip instances by Monte Carlo sampling of the process

parameter space. Each instance in the sample set is associated with the frequency-

voltage (F-V) characteristics and the leakage-voltage characteristics corresponding to

each SoC island. We generate the sample set while accounting for inter-die varia-

tions and spatially correlated intra-die variations in effective channel length using the

framework presented in Section 2.6. Leakage power for each island is obtained using

the high-level modeling approach presented in [63]. We use ring oscillators of equiv-

alent logic depth for each island in order to obtain the delay (frequency) characteris-

tics of the island. We discuss the delay and leakage models that we have developed

to compute the leakage-voltage and delay-voltage characteristics under variations in

Appendix B of the thesis.

Step 2: For each island j of instance i in the sample set, compute the minimum

voltage, V i,j
req,k required to meet the target frequency of operation in each state. If

the required voltage is greater than the maximum allowed voltage Vmax, then either

discard the instance (scenario 1) or determine the maximum available frequency level

that can be supported at Vmax (scenario 2).

Step 3: Quantize the ideal voltage distribution obtained in Step 2 such that the quan-

tization error is minimized.
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Figure 4.4: Methodology for variation-aware voltage level selection

In the rest of this section, we discuss the generation of the sample set, the

quantization of the ideal voltage distribution, and the proposed approaches for esti-

mating frequency-voltage characteristics of the instances.

4.4.5 Sample set generation

As previously mentioned, we use the framework presented in Section 2.6 to

generate a sample set of instances. Here, we briefly discuss how it is used in the con-

text of the work presented in this chapter. In this work, we obtain delay and leakage

characteristics at the island level. We use a system-level floorplan to determine the

mapping of the components, (and hence, the voltage islands) to the grids, as shown
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in Fig. 4.5. This mapping determines the device count corresponding to each com-

ponent/island in each grid. This is used by the high-level leakage models presented

in [63], that we use to compute the leakage dissipation of the SoC components. These

models use the transistor (N-type and P-type) level leakage currents as inputs. The

transistor level leakage current models are developed as a function of channel length

and voltage variations (Appendix B), based on the data obtained using SPICE simu-

lations. To obtain the delay characteristics, we assume that the delay of each island

can be correlated with the ring oscillator (RO) of the same logic depth as the island.

We assume that for each instance, the transistors of such an RO can be characterized

with the mean channel length of the devices in that island. Considering that at the

granularity of an island, impact of intra-die variations is more likely to average out,

we believe this assumption is quite reasonable in the context of our work.

Figure 4.5: Component to grid mapping

4.4.6 Voltage level quantization

Given the V j
req distribution for each island j, we want to select a set of nj

voltage levels (Vj) such that the overall error resulting from mapping the ideal voltage

for each instance (V i,j
req,k) to the next available level in the set is minimized. This is

similar to the scalar quantization problem. In this work, we propose to solve it using

Lloyds-Max algorithm [89]. In the Lloyds’s-Max algorithm, for a given data set X, a

k-level partition D = (d0, d1, . . . , dk) and a reference value for each partition R =
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(r1, r2....rk) is obtained such that the mean square error (MSE) arising from mapping

xi ∈ X to rj if xi ∈ [dj−1, dj) is minimized. The algorithm iteratively computes rj

(as the centroid of the jth partition) and di as the mean of adjacent reference points

until the MSE is within a specified tolerance. We use the required voltage distribution

obtained in step 2 of the methodology as the data set, and obtain the discrete voltage

levels as the reference points 3. This method ensures improvement in the overall

energy distribution, but does not ensure optimality.

4.4.7 Determining the frequency-voltage characteristics

As mentioned earlier in this section, to generate the ideal voltage distribution

we need to be able to compute the frequency-voltage characteristics of SoC islands

for each sample instance. Since process variations is a post-fabrication phenomenon,

post-fabrication characterization at island-level granularity is likely to generate the

most accurate frequency-voltage characteristics, and hence, the most accurate volt-

age distribution. In this approach, the frequency-voltage characteristics of each island

of all the instances can be determined by finding the maximum frequency that can

be supported at each voltage level. This requires sweeping through both the volt-

age levels and the frequency levels at a pre-determined granularity, testing the island

for correct operation at each step. However, this method is prohibitively time con-

suming, and expensive considering the costs associated with the currently available

post-fabrication testing equipment. We present three alternative approaches that can

be used instead to determine the frequency-voltage characteristics, and hence, gener-

ate the distribution of ideal voltage levels:

• Approach 1: In this approach, we generate a sample set of SoC instances and

determine the frequency-voltage characteristics of the sample set using design-

time analysis. Most of the time, information about process variations can be

obtained from the foundries. Therefore, it is possible to generate a sample set

based on the available information and component-level layout of the SoC. We

3Note that there is additional error introduced here since the algorithm computes ri as the centroid
of the partition but we want the voltage value to round up for each partition.
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describe generation of the sample set in Section 2.6 of the thesis. We have

developed high-level SPICE models to determine the leakage-voltage and the

frequency-voltage characteristics as described in Appendix B. It is generally

not possible to simulate the SPICE netlist of the entire SoC. Therefore, we use

a ring oscillator (RO) of the equivalent logic depth as each of the islands to

simulate the delay-voltage (and hence, the frequency-voltage) characteristics.

Using these models, we can compute the ideal voltage required by an instance

for a given delay (frequency) using the delay information of the instance at a

known voltage. As shown in Figure 4.6, our models provides an accurate fit for

the experimental data with mean relative error less than 1%. Details of these

models are presented in Appendix B. The advantage of this approach is that the

F-V characteristics and hence, the set of voltage levels can be determined at

the design time. This would help in generating the initial power-performance

specifications of the SoC at the design time and thereby, can efficiently drive

design iterations.

Figure 4.6: Voltage as a function of circuit delay for different chip instances
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• Approach 2: In the second approach, we propose using design time analysis

as well as post-fabrication on-chip measurements to obtained the frequency-

voltage characteristics for a given population of instances. We assume that most

circuits follow delay-voltage model of the form presented in Appendix B of this

chapter. We used ring-oscillators of different sizes and a 16x16 multiplier cir-

cuit to verify that the delay-voltage models follow the same form (Appendix B).

For the multiplier circuit, we found that the fitted model closely followed the ex-

perimental data obtained through simulations using NANOSIM [90] and SPICE,

as is shown in Figure 4.7. The mean relative error is less than 2%.

Now, assuming most of the circuits follow the same form of the delay-voltage

models, we propose that the models are calibrated post-fabrication using on-

chip measurements. The primary advantage of this approach is that only a few

measurements are required to completely calibrate the models since the model

form is known apriori. For example, the delay model presented in this chapter

can be calibrated using a total of 12 measurements across 3 instances. This

approach will provide more accurate estimate of the ideal voltage distribution.

It can either be used by itself or along with Approach 1 to refine the voltage

values after fabrication.

• Approach 3: In this approach, we propose using only the data obtained using

post-fabrication on-chip measurements. We propose that using post-fabrication

measurements delay-voltage characteristics of a small sample set of chip in-

stances can be obtained. These characteristics can then be used to develop the

delay-voltage best-fit models which may differ from one circuit to another (or

can be of the same form as proposed in this chapter, Appendix B). Now, for

a given instance, the delay information measured at a known voltage (usually,

Vmax) can be used to determine its the frequency-voltage characteristics. This

approach is more accurate, and is likely to be useful in cases where process in-

formation is not available apriori, such as first spin of a particular chip in a new

process. However, with this approach it is not possible to provide any design

time estimates. To verify the effectiveness of this approach we use the follow-
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Figure 4.7: Delay-voltage characteristics for a 16x16 multiplier circuit

ing method. We developed the delay-voltage models using a small number of

instances, and then, used the hence derived models to compute the required

voltage levels for various delay values for a large number of instances of the

16x16 multiplier circuit. In Figure 4.8, we plot the accuracy of the model ob-

tained as a function of number of sample points used to create the model. We

see that accuracy of almost 2% can be obtained by characterizing as few as 500

sample points.

At runtime: As is shown in Appendix B, the proposed delay-voltage models

use the delay information of a given instance at a known voltage (Vmax) to compute

the ideal voltage (V i,j
k (req)) required by the instance to meet the target frequency

(F j
k (req)). In the current design flow, this delay (at Vmax) is determined during post-

fabrication testing and binning process. Therefore, for each island of each instance

a look-up table can be determined in which maximum frequency level possible for

the given instance can be computed and stored for the selected set of voltage levels.

These frequency values can be computed using the models proposed in this work.

Alternatively, a more accurate look up table can be computed by measuring the delay
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Figure 4.8: Model accuracy in as a function of number of sample points used to create
the model

only at the selected voltage levels. This look up table can be easily used at runtime

to determine the frequency-voltage setting for each performance state, customized to

the F-V characteristics of the given instance.

As mentioned previously, though Approach 1 is likely to introduce some errors

it will be crucial in making design iterations and providing initial estimates. Then,

based on the design, approach 2 or 3 can be used at post-fabrication time to compute

more accurate voltage levels. In the next section, we present the experimental results

and show that the proposed methodology although not claimed to be optimal, leads to

significant improvements in the overall power-performance characteristics.

4.5 Experimental results

In this section, we first describe our experimental methodology, and then

present results to establish the effectiveness of variation-aware voltage level selec-

tion.
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4.5.1 Methodology

For our experiments, we consider an ARM946 processor [42] based system

which is described in the next sub-section. An in-house simulation-based power esti-

mation framework [45] that uses instruction-based power models is used for dynamic

power estimation. Leakage power estimates at the nominal frequency and voltage

levels are obtained using approximate gate-counts and high-level techniques similar

to [53]. For our studies, we assume inter-die variations of σ = 8% µ and spatially

correlated intra-die variations of σ = 6% µ in effective channel length. Data for

calibrating the leakage power models is obtained via transistor-level HSPICE simula-

tions. We use the Berkeley Predictive Technology 90 nm BSIM3 model card [55] for

the simulations. We implemented an 11-stage ring-oscillator in HSPICE to generate

the frequency-voltage characteristics of the system under consideration. The methods

for obtaining and evaluating various voltage sets are implemented in MATLAB [56].

4.5.2 System Description

We consider an SoC implementation of the 802.11 protocol’s Media Access

Control (MAC). Various tasks of the 802.11 MAC sub-system are shown in Fig-

ure 4.9(a). First, the LLC task (or link layer control) writes incoming frame bits to

the MAC memory. Then, Integrity Checksum Value (ICV) of the frame is computed

in parallel with Wired Equivalent Privacy (WEP) encryption of the same frame. WEP

encryption consists of two main tasks, namely, WEP_INIT and WEP_ENCRYPT.

In WEP_INIT, a 256 byte S-box is initialized, while in WEP_ENCRYPT, the in-

coming frame is encrypted and the ciphertext is generated. Task HDR generates

the frame header, and assembles it with the ciphertext and the ICV. Then, Frame

Check Sequence (FCS) is computed over the assembled frame. The entire frame

(with header, ICV and FCS) is then sent to the physical layer (PLI) for transmission.

MAC CTRL implements the channel access algorithm (CSMA/CA). Figure 4.9(b) il-

lustrates a multi-voltage SoC implementation of the MAC layer operations discussed

above. LLC is the hardware implementation of the link layer control. It receives

frames from the link layer, writes them in the memory MEM_1 and enqueues frame
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addresses in Queue1. These addresses are read from the queue by (i) WEP, a HW

co-processor implementing the entire Wired Equivalent Privacy (WEP) task, and (ii)

ARM_1, which computes the ICV for each frame. The ICV and WEP tasks pro-

ceed in parallel. The encrypted frames are written in MEM_2, and the frame ad-

dresses are written in Queue2. The embedded CPU, ARM_2 implements the HDR

and the MAC_CTRL tasks. After processing is done, a HW implementation of the

Physical Layer Interface (PLI) dequeues the frame addresses from Queue3, retrieves

the encrypted frames from MEM_2, and passes them to the physical layer hardware.

Communication between various components is implemented using two AMBA bus

segments, AHB_1 and AHB_2 that communicate though the BRIDGE component.

Table 4.1: Different performance states of the system

4.5.3 Results

Experiment 1: For the first set of experiments we assume that the SoC is capable of op-

erating in 4 performance states, as shown in Table 4.1. The table also lists their proba-

bility of occurrence that is chosen arbitrarily for these experiments. Also, we assume

that chip instances, for which it is not possible to meet the target frequency settings

corresponding to each of the performance states, are discarded. In Figure 4.10, we il-

lustrate the energy-performance characteristics for various voltage selection schemes

described in this chapter. The x-axis represents the energy dissipation whereas the y-

axis represents the percentage of chip instances that can meet performance targets for

different values of energy dissipation. Therefore, the area under the curve corresponds

to the number of chips that satisfy performance targets.

We see that using the worst-case characteristics, a large number of instances

can meet the performance targets but at a very high energy cost. With the proposed
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(a)

(b)

Figure 4.9: (a) Tasks involved in the IEEE 802.11 MAC protocol (b) 802.11 MAC
processor architecture with two voltage/frequency islands
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Figure 4.10: Energy distribution of SoC instances

variation-aware voltage selection methodology, number of chips meeting performance

requirements with energy dissipation of less than 90mJ, is 68% higher as compared to

the conventional scheme with nominal voltage selection and 48% higher as compared

to the variation-aware scheme with nominal voltage selection. We present the energy

scatter plot for different voltage selection schemes in Figure 4.11. It can be seen

that with the proposed voltage-selection scheme, energy dissipation of a given chip

instance is closer to the Ideal (Continuous) case.

Experiment 2: The second set of experiments is conducted under scenario2. For

these experiments we assume that the required data rate is 1.2Mbps. For the given

SoC it can be achieved by setting the operating frequency of Island 1 to 300Mhz and

that of Island 2 to 200 Mhz. We present the data rates for 10000 SoC instances in

Figure 4.12. For comparison purposes we plot the data rates obtained using the con-

ventional scheme in which only a single level is supported for each frequency, as well

the ideal case in which continuous levels can be supported. Our experiments indicate

that with the proposed techniques, significant improvement in the number of instances

meeting performance targets can be obtained. In particular, 77% of the instances meet
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Figure 4.11: Energy dissipation for 10000 instances of the 802.11 MAC processor

Figure 4.12: Data rates for chip instances
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targets as opposed to 48% with the conventional or 54.8% with deterministically de-

termined levels.

4.6 Conclusion

In this chapter, we studied the impact of process variations on the effective-

ness of deterministic voltage selection schemes for SoCs using multiple-voltage levels

to enable energy reduction. We show that conventional approaches that assume de-

terministic frequency-voltage characteristics can cause significant sub-optimality and

energy wastage. We present techniques to enable selection of variation-aware discrete

voltage levels at either design time or post-fabrication. We also discuss how at run-

time, voltage levels can be chosen in a chip-specific manner. Experimental results

show that with voltage-levels selected using the proposed variation-aware methodol-

ogy, significant improvements in the number of instances that meet given power and

performance targets can be achieved as compared to schemes using voltage levels

selected based on the nominal or the worst case characteristics.

The text of this chapter, in part, is based on material that is under review in

the IEEE Transactions on VLSI Systems (S. Chandra, A. Raghunathan, and S. Dey,

Variation-aware Voltage Level Selection, IEEE Trans. VLSI Systems). The disserta-

tion author was the primary researcher and author, and the coauthors listed in these

publications collaborated on, or supervised the research that forms the basis for this

chapter.



Chapter 5

Variation-aware Analysis and Design

Techniques at the Architecture-level

5.1 Introduction

Until now we focused on system-level techniques for considering variations

during power analysis and optimization. In this chapter, we present techniques to

analyze the impact of architecture and application task graph interaction on the ex-

tent of impact of variations on the overall system performance. As mentioned ear-

lier, variations in the device parameters such as transistor lengths and interconnect

widths cause delay characteristics of devices and interconnects to deviate from the

nominal values. At system level, this is manifested as variations in the maximum

operating frequencies (FMAX) of components such as processors, DSPs and mem-

ories [4], and as variations in the latencies of global SoC paths. In such conditions,

multi-frequency, multi-voltage systems that are based on globally asynchronous lo-

cally synchronous (GALS) design paradigm are inherently more robust to variations

as is mentioned earlier in this thesis. In this chapter, we assume that the communi-

cation architecture interfaces are capable of supporting asynchronous communication

and discuss such an interface in detail later in the chapter. To decouple the impact of

supply voltage on performance, we assume that all components operate at the nominal

supply voltage.

110
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5.1.1 Overview of progress and future directions

In particular, the contributions of this work are as follows:

• We show how the extent of impact of process variations on the overall system

performance depends on the (a) application characteristics such as taskgraph

structure and input rate, (b) architectural characteristics such as communication

architecture and protocols such as maximum burst size and component priori-

ties, and (c) mapping of the tasks to the SoC components.

• We present an analysis methodology that captures these effects during system

level performance estimation while considering process variations. It allows

analysis of SoCs with components having independent operating frequencies

and can output various statistics such as overall performance distribution, crit-

ical path distribution and distribution of output rates of different tasks for a

system affected by inter- and intra-die variations. There are some examples of

variability analysis tools in the literature. In [19], a statistical simulator is pre-

sented that obtains throughput and maximum clock frequency distributions by

performing Monte Carlo simulations on an analytical throughput model. How-

ever, same operating frequency for all the cores is assumed. Marculescu et. al.

have shown that GALS design paradigm can result in significant performance

improvements over single island designs [32, 33]. However, their analysis as-

sumes point-to-point communication links and does not take into account the

effect of the underlying architecture on performance variability.

• We propose an application level technique and two architecture level techniques

that can be employed to recover the performance loss due to variations to a

significant extent. The architectural level techniques are based on selectively

changing communication protocols such as maximum burst size and compo-

nent priorities on the shared bus. The application level technique is based on

selecting appropriate task mapping.

• We illustrate the applicability of the proposed design techniques by presenting

the performance distributions for several systems, obtained using our analysis
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methodology. Our results show that improvement of up to 78% can be obtained

in the parametric yield of performance distributions by static design-time appli-

cation of these techniques.

The rest of this chapter is organized as follows. In Section 5.2, we introduce

terms and notations used in this chapter. In Section 5.3, we illustrate the effect of

the various application and architectural factors on the overall system performance in

the presence of process variations. In Section 5.4 we briefly describe the proposed

analysis methodology. In Section 5.5, we present design techniques to recover the

performance loss due to variations. We present experimental results in Section 5.6,

and conclude in Section 5.7.

5.2 Preliminaries

Consider the system shown in Figure 5.1(a). We call this system SYS1. It

consists of 2 processing elements, namely PE1 and PE2. The processing elements1

can be master elements such as general purpose processors, DSPs and custom hard-

ware accelerators or slave elements such as memories. In SYS1, the memory (PE3)

is shared by the two PEs and is accessed using a shared bus B1. In addition, the two

PEs can send synchronization (SYNC) signals to each other using dedicated channels

indicated by B2 and B3. Figure 5.1(b) shows the event set of SYS1. Events e3, e4 and

e7 represent the computation events on components PE1, PE2 and PE3, respectively.

Events e1 and e2 represent the communication events between the memory and PE1

and PE2, respectively. Events e5 and e6 represent the unidirectional synchronization

events (SYNC) from PE1 to PE2 and vice-versa. In Figure 5.1(c), an application task-

graph, referred to as Taskgraph 1, is shown. It consists of 4 tasks namely, T1, T2,

T3 and T4. The edges represent the precedence constraints. The figure also shows

an associated task mapping wherein, tasks T1 and T2 are mapped to PE1 while tasks

T3 and T4 are mapped to PE2. In Figure 5.1(d), events associated with each task of

Taskgraph 1 under Mapping 1 followed by their corresponding weights are shown.

1Here, we will use the terms processing elements and components interchangeably.
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(a) (b) (c)

(d) (e)

Figure 5.1: (a) System 1 , (b) Event set, (c) Taskgraph 1, with Mapping 1, (d) Task to
event mapping, (e) Execution traces

For computation events, weight is the number of clock cycles for a given computation

and for communication events weight is the number of data words being transferred.

For example, events associated with T1 are: 10 words read from memory, 10 compu-

tational cycles, 10 words write to memory and SYNC to PE2. The execution traces

for PE1 and PE2 are shown in Figure 5.1(e). C denotes a computation event whereas

M denotes a communication event. For simplicity of representation, timed execution

of handshake and SYNC events is not shown in these traces, but SYNC events are

indicated using arrows. Under process variations, all instances have same weight for

a given event but the execution time depends on their respective clock frequencies.

However, for the ease of calculations, we differentiate in terms of the event weights

represented in terms of time units (tu). For example, if PE1′ is an instance of PE1

that is 20% slow due to variations, then it takes 12.5 tu to execute an event of original

weight 10 tu.

5.3 Factors affecting impact of process variations

In this section, we illustrate how the impact of process variations on the overall

system performance is affected by factors such as application, architecture and map-
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ping characteristics. For simplicity of discussion, here we limit the effect of variation

to a single component. However, analysis techniques presented in Section 5.4 applies

to all components being randomly affected by variations.

5.3.1 Effect of application characteristics

We first illustrate the effect of taskgraph structure, and then we illustrate the

effect of arrival rate of inputs.

Effect of application taskgraph

Consider the taskgraph shown in Figure 5.2(a), executing on SYS1. Task map-

ping and the associated events are shown in the figure. Task T1 is mapped to PE2 and

T2 is mapped to PE1. First set of traces in Figure 5.2(b) illustrates the activity of the

two components when no variations are present. PE2 performs 10 tu of computation

followed by 10 tu of communication and then SYNC to PE1. PE1 performs 20 tu

of computation after receiving the SYNC. The system takes 40 tu to processes each

request and can process inputs arriving once every 20 tu. The second set of traces

in Figure 5.2(b) illustrate the system execution when PE2 slows down by 20% due

to variations. It can be seen that the performance of PE1 reduces to one computa-

tion every 25 tu as opposed to once every 20 tu, due to the synchronization waits.

This example shows that performance of not only the task mapped to the PE affected

by variations is impacted but also of a task mapped to an unaffected PE is impacted

because of the dependency introduced by the taskgraph. Due to the dependence PE

affected more by variations introduces slack in execution of a task on PE affected less.

Effect of input arrival rate

Now consider the operation of Taskgraph 1 (Figure 5.1(c)) under two scenar-

ios, (a) new input arriving every 75 tu and (b) new input arriving every 60 tu. Fig-

ure 5.3(a), (b) shows the execution traces for cases (a) and (b), respectively. In both

cases, first set of traces are for an instance with no variations and second set of traces

for an instance with PE1 20% slow due to variations. The input request is in the form
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of packets here. We see that in case (a), variations cause the processing of each packet

to delay by the same amount i.e., 12.5 tu. However, in case (b) processing of packet

1 gets delayed by 25, packet 2 by 27.5, packet 3 by 30 tu and so on2. In this case,

the delay introduced for one packet cascades for other packets, because of the lim-

ited slack presented by the application, and hence, overall performance gets severely

affected compared to case (a). This shows that applications that inherently present

lower slack due to tighter deadlines are more likely to be impacted by variations with

performance deterioration increasing with application running time.

These example illustrate that the extent of performance degradation due to

process variations depends strongly on the properties of the application running over

the affected hardware.

5.3.2 Effect of architectural characteristics

We first illustrate the effect of the underlying communication architecture and

then the effect of communication protocols on the extent of performance degradation

due to variations.

Effect of the communication architecture

Figure 5.4(a) shows Taskgraph 3 that has two independent tasks. The figure

also shows the task mapping (T1 − > PE1, T2 − > PE2) and events associated with

2Here PE1 has higher priority on the bus than PE2

(a) Taskgraph 2 (b) Execution traces

Figure 5.2: Impact of variations depends on the taskgraph
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(a) New packet arrives every 75 tu

(b) New packet arrives every 60 tu

Figure 5.3: Impact of the input arrival rate

each of the tasks. For T1, events associated are 10 tu of computation and 10 tu of

communication. For T2, events associated are 10 tu of communication and 10 tu of

computation. Execution traces for no variation case and for PE2 affected by variations

are shown in Figure 5.4(b). The shaded blocks in the second set of traces indicate bus

wait times that are introduced due to slowing of PE2. In this case, the time to process

10 packets of T1 increases from 220 tu3 to 252 tu and from 219 tu to 262.5 tu for

processing 10 packets of T2. On the other hand, consider a system with an architecture

similar to SYS1 but with a dual port memory that allows simultaneous access to both

the PEs. For such a system architecture, the degradation is limited to T2 only.

This shows that process variations can lead to performance degradation of not

only the component directly affected but but also of an component with independent

tasks, due to dependency introduced by shared resources. Accurate performance anal-

ysis of SoCs impacted with variations should take such indirect effects into account.

3The calculations incorporate time for handshake events.
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(a) Taskgraph 3 (b) Execution traces

Figure 5.4: Impact of variations depends on the communication architecture

(a) PE1>PE2

(b) PE1<PE2

Figure 5.5: Impact of variation depends upon the bus protocol

Effect of the communication protocols

Lets again consider Taskgraph 1 (Figure 5.1(c)) mapped to SYS1 and assume

input arrival of once every 60 tu. We show the operation of the system when PE1 slows

down by 20% due to variations, for two scenarios namely, (a) PE1 has higher priority

on the bus and (b) PE2 has higher priority on the bus. The two cases are illustrated

in Figure 5.5(a) and (b) respectively. In case (a) processed packets are generated at

every 62.5 tu as opposed to case (b) in which packets are generated at every 72.5 tu

but with slightly higher initial latency 95 tu as opposed to 82.5 tu in case(b). Hence,

for large number of packets (≥ 3) case(a) performs significantly better than case (b).

The above two examples illustrate that the extent of performance degradation

due to process variations depends strongly on the underlying communication archi-

tecture and protocols.
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5.3.3 Effect of task mapping

Task mapping determines how the tasks of an application interact when are

mapped to the given SoC architecture. Therefore, different task mappings introduce

different kind of dependencies and behave differently under process variations. To

show this, we again consider Taskgraph 1 under Mapping 1 as shown in Figure 5.1(c).

It takes 70 tu to process each packet. Now consider, an alternative mapping of the

same taskgraph on SYS1 as shown in Figure 5.6(a). Figure 5.6(b) shows the execution

traces when PE 1 slows down by 20% under the two mappings of the task graph on

SYS1. It can be seen that Mapping 2 is more robust to variations since PE1 and

PE2 are interrelated by one memory transfer as opposed to Mapping 1 wherein PE2’s

operation depends on two memory transfers for each packet. This example shows that

the extent of performance degradation is highly dependent on the task mapping since

that determines some of the operational dependencies.

(a) Mapping 2 (b) Execution traces

Figure 5.6: Impact of variation depends task mapping

These cases provide insight into how the performance degradation of a sys-

tem affected by process variations depends on the properties of the application, the

architecture and the mapping. These cases are presented in a simplified manner to

effectively illustrate propagation of various effects which otherwise is not possible for

more involved examples. System-level performance analysis considering variations

should take into account direct and indirect dependencies hence introduced. Next, we

show the effect of variations on the critical path.
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(a) Taskgraph 4 (b) Execution traces

Figure 5.7: Taskgraph to study impact of variations on critical path

5.3.4 Impact on the critical path

Consider Taskgraph 4, mapped to SYS1 as shown in Figure 5.7(a). Events

associated with each task are also shown in the figure and the resulting execution

traces for a single packet are shown in Figure 5.7(b). For inputs arriving at every 44 tu,

it takes 527 tu to process 10 such requests. The critical path is dominated by PE1 and

accounts for 91% of the total critical path timing. However, if PE2 slows down by

20%, total processing time increases to 607 tu.In the critical path timing, 84% of

the contribution now comes from PE2. This shows that not only critical path timing

increases as expected but also composition of the critical path completely changes.

A component having only 9% contribution in critical path contributes to 84% of the

total critcal path timing under variations. This illustrates that the critical path for a

given system depends on the variation characteristics of the particular instance and in

general cannot be determined from the properties of the application, the architecture

and the mapping.

5.4 Performance Variability Analysis

In this section, we present our methodology to analyze the system-level perfor-

mance in the presence of variations while accounting for the application-architecture

interaction as mentioned earlier. We first present an overview of the proposed method-

ology and then briefly discuss the critical phases.

The overall methodology is shown in Figure 5.8. It has three main phases. In

the first phase, a representative sample set of SoC instances is generated using the fre-
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quency and path latency distribution information for the given process, wherein each

instance is associated with a set of event-delay characteristics. In the second phase,

necessary and sufficient information about the fully synchronous execution of system

components is obtained in the form of an symbolic representation called a Symbolic

Execution Graph (SEG). In the third phase, system-level performance estimation is

performed iteratively to obtain performance statistics for each SoC instance obtained

in Phase 1. We have modified the system-level performance estimator of [91] to ac-

count for variable frequencies of the SoC components and asynchronous communica-

tion between components. We now briefly discuss these phases.

5.4.1 Sample set generation

In Section 5.2, we associated a SoC with an event set (Figure 5.1(a),(b)). All

operations of the SoC components can be captured by using these events. Note that,

events are independent of the specific communication architecture. To take into ac-

count varying operating frequencies and path latencies, we augment each event with

a delay value. For example, events e3, e4 and e7 are associated with the time peri-

ods of the operating clock frequencies of the corresponding components. Similarly,

communication events are characterized by the latencies of their respective SoC-level

communication paths4. In this manner, each SoC instance is characterized by its own

set of event-delay characteristics. Component-level frequency distributions and path

latency distributions to generate the sample set can be obtained using statistical mod-

els [4, 15] that use variability information of process parameters or using data obtained

from process characterization. We leverage on the sample set generation framework

that can capture the inter-die and spatially correlated intra-die variations based on

system-level floorplan, presented earlier in this thesis.

4Note that the latencies depend upon various factors, including interconnect length and driver strength. These values are
typically not known at the system-level. However, for the purpose of high-level analysis we obtain interconnect latencies based
on the available process data. For a 90nm process, latency of 300ns/mm [92] is used assuming nominal length 10mm for all
SoC-level nets.
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5.4.2 Symbolic Execution Graph (SEG)

The SEG captures the activity of various system components and their com-

munications over time. It consists of the computation and communication events (data

transfer and SYNC events) executed by the SoC components during system simula-

tion. Each event in SEG is characterized by its event ID e.g., events e1 to e7 for

SYS1, starting time i.e., timestamp (TS) and its weight (Wt). The vertices of the SEG

represent these events while the edges between vertices represent the precedence con-

straints between the vertices. This can be extracted out from the detailed traces ob-

tained from HW/SW co-simulation or synthesized based on the application task graph

and input rate. The SEG captures all the temporal dependencies as it is unrolled in

time but is independent of the communication architecture.

5.4.3 System-level performance analysis

For system level performance analysis under process variations, we modified

the communication architecture performance estimator of [91, 93] to account for vari-

able component frequencies and asynchronous communication between components.

The inputs to the original tool are (a) communication architecture of the system, spec-

ified by its topology, channel parameters such as bus width, channel access proto-

cols and mapping of the communication events to channels, and (b) system execution

traces in form of SEG (Phase 2). The performance estimator generates the trans-

formed SEG that accounts for the effects of communication architecture such as ar-

bitration, split transfers, bus waits and synchronization waits. Implementation and

algorithmic details are given in [91].

The modified version of the estimator has a third input that is the event-delay

characteristics (Phase 1) of the given SoC instance. While traversing and manipulating

the SEG, timestamp of each event is computed. When execution of an event i is over,

the timestamps of each of the events j that has event i as their predecessor are updated.

In the modified version, timestamp of a computation event is updated as follows:

TSj = TSi + Wtj ∗ lTP/dTP (5.1)
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Figure 5.8: Overall performance analysis methodology

where, TSj and Wtj denotes TS and Wt of event j. lTP represents the time period of

components local clock and dTP is the time period corresponding to original design

frequency. The ensures that all the calculations are performed in timeunits of the

original design frequency. The time stamp update of the communication events is is

more complicated and is discussed as follows.

Asynchronous communication between modules We now discuss how the commu-

nication events between components operating at unrelated frequencies can be han-

dled in our performance analysis methodology. Our analysis is based on the asyn-

chronous multi-point communication architectures proposed in [94, 95]. The multi-

point architectures for GALS systems are based on self-timed wrappers for each lo-

cally synchronous (LS) component [96]. The wrapper implements clock pausing to

prevent metastability and enables asynchronous communication with other LS mod-

ules using using four phase bundled data handshake protocol. We show a typical

transfer between two LS modules in Figure 5.9. To transfer a new data item, re-

quest (Req+) is generated by the sender (Tx). On receiving Req+ the receiver (Rx)

stops the local clock, and sends acknowledge (Ack+) to the sender. Data is latched
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at Ack+. On receiving Ack+, Tx deasserts the request (Req-), receiving which the Rx

restarts the local clock and deasserts Ack. Tx can initiate next data transfer on receiv-

ing Ack-. Therefore, it takes 4 transfers to finish transfer of one data item. Consider-

ing that local control in the wrappers is fairly simple and path lengths much smaller

than their corresponding LS component, time for single data transfer (timeSingle) is

computed as:

timeSingle = b(4 ∗ PathLatency)/max(sTP, rTP )c+ 1 (5.2)

where, sTP and rTP denote the time period of the sender and receiver clocks, re-

spectively. Therefore, for a communication event j TS is updated as follows,

TSj = TSi + Wtj ∗ timeSingle ∗ max(sTP, rTP )/dTP (5.3)

where TSi is the TS of the predecessor event.

Figure 5.9: Data transfer between asynchronous blocks

5.5 Performance enhancement techniques

In this section, we present architecture-level and application level techniques

to recover the performance lost due to variations. These techniques exploit the effect

of the dependencies between the application task graph, architecture characteristics

as well as mapping of tasks to the SoC components.

5.5.1 Architectural design techniques

These techniques are based on modifying the communication architecture pro-

tocols, namely component priorities on the shared bus and maximum burst size, to



124

mitigate the impact of process variations on the performance.

Technique 1: Selecting component priorities To illustrate the effectiveness of mod-

ifying priorities on the shared bus we consider system (SYS2) as shown in Fig-

ure 5.10(a). Taskgraphs TG1 and TG2, shown in Figure 5.10(b) execute on this sys-

tem. TG1 maps to PE1 and PE2 and has an input request arriving every 60 tu. The

associated events are same as in Figure 5.1(d). TG2 consists of single task T5 that

maps to PE3, with a new input every 50 tu. The events associated are communication

event of weight 10 followed by a computation event of weight 10 (Figure 5.10(b)).

For SYS2, there are 6 possible configurations for setting relative priorities of

PE1, PE2 and PE3 on the shared bus and are enumerated in Figure 5.10(c). We sim-

ulate the system in all the configurations for four hypothetical chip instances, (1) not

affected by variations, (2) PE1 is 20% slow, (3) PE2 is 20% slow, and (4) PE3 is 20%

slow due to variations. Total execution time for each instance under all configurations

is shown in Figure 5.10(d). For chip instance 1 (not affected by variations), CON-

FIG 1 performs the best in terms of total execution time but for chip instance 3 (PE2

slows down) CONFIG 3 performs results in minimum total execution time and has

11% performance gain over CONFIG 1. Therefore, for chip instance 3, changing the

configuration from CONFIG 1 to CONFIG 3 enables performance recovery. For chip

instances 2 and 4, CONFIG 1 or 3 performs the best.

Technique 2: Maximum burst size Consider two independent tasks running on

SYS1 with associated events as shown in Figure 5.11(a). For a system with no vari-

ations and maximum burst size of 50 it takes about 203 tu to execute 1 packet. If

PE2 slows down by 20%, execution time increases to 246 tu, a degradation of 21%,

as shown in first set of traces in Figure 5.11(b). The dotted line represents the critical

path. The second set of traces in the figure illustrate the resulting system activity if the

first memory transfer on PE2 is allowed a burst of 100 bus words. The total execution

time in this case is 213 tu, i.e., performance loss of 5%. Here, 77% of the performance

loss is recovered. Note that, increasing the burst size indiscriminately will not work,

for instance, increasing the burst size to 75 from 50 will actually lead to further per-

formance degradation. Here we showed that selectively modifying maximum burst

size leads to significant performance recovery.
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(a) SYS2 (b) Taskgraph 5

(c) CONFIG table (d) Execution time for each instance under different CONFIGs

Figure 5.10: Selecting component priorities to enable performance recovery

5.5.2 Task Mapping

To show the effectiveness of modifying task mapping in presence of variations,

consider the taskgraph shown in Figure 5.12(a). It can be mapped to SYS1 in 8

possible ways, shown in Table 5.1. Table in Figure 5.12(b) shows the amount of time

taken by each task on each PE of SYS1. We simulate the system for 6 packets arriving

in an interval of 700 tu, for three chip instances (1) not affected by variations, (2) PE1

is 20% slow, and (3) PE2 is 20% slow due to variations. Total execution time under

different task mappings is shown in Figure 5.12(c). It can be seen that for chips with

different variation characteristics different mappings should be selected to achieve the

optimum performance. Mapping 3 performs the best for instances (1) and (3). But for
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(a) Taskgraph 6 (b) Execution traces

Figure 5.11: Selecting maximum burst size to enable performance recovery

instance (2) (PE1 slow) selecting Mapping 2 over Mapping 3 leads to 76% recovery

in performance lost due to variations.

Table 5.1: Possible task mappings of Taskgraph 7

5.6 Experimental results

In this section, we first describe our experimental methodology and then present

results that illustrate the applicability of the proposed analysis and design techniques.

5.6.1 Methodology

For our experiments, we considered shared bus SoCs, SYS1 and SYS2 pre-

sented earlier in this chapter. The applications are modeled using taskgraphs as ex-

plained in Section 5.2. For each case, the initial SEG that is independent of the effect

of the communication architecture and variations, is generated using a trace genera-

tor implemented in MATLAB [56]. The performance distributions are obtained using

the proposed variation-aware analysis methodology described in Section 5.4. For the

sample set generation, we assume random inter-die and intra-die variations in oper-

ating frequency of SoC components and global path latencies with 3σ = 30% µ.



127

Figure 5.12: Task mapping selection to enable performance recovery

We use nominal frequency of 1 Gz for 90 nm process. We assume that operating

frequency of components F is given by the minimum of their respective FMAX and

the nominal design time frequency as it may not be possible to run a component at a

higher frequency than that designed due to power constraints. For latencies, nominal

path length of 10 mm and nominal latency of 175 ns /mm [92] for 90 nm node is

used.

5.6.2 Performance variability

First, we use the proposed analysis methodology to compare performance un-

der different communication architectures. We simulate the performance of 10 inputs

of Taskgraph 4 (Figure 5.7)), for 2 architectures, (1) shared bus architecture (SYS 1)

and (2) dedicated bus architecture with a dual port memory. The performance distri-

butions under variations for these 2 cases are shown in Figure 5.13(a) while the cor-

responding critical path distributions are shown in Figure 5.13(b). The performance

distribution of the dedicated bus architecture achieves µ/σ that is 30% better com-

pared to that of the shared bus architecture. It is not only more robust to variations as

expected but also exhibits better critical path distribution with only 2 critical paths as
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opposed to 40 for the shared bus architecture. These results demonstrate the ability of

the proposed variation aware performance analysis technique to evaluate and compare

performance variability and critical path variability of different SoC architectures.

(a) Performance distribution (b) Critical Path distribution

Figure 5.13: Evaluating architectures

5.6.3 Effectiveness of the proposed design techniques

In this section, we evaluate the resulting performance distributions when pro-

posed design techniques are statically applied.

Architectural techniques We obtain the cumulative distributions for SYS2 with Task-

graph 5, (Figure 5.10) for all the 6 possible architectural configurations. Our results

indicate that no configuration significantly outperforms the other and total execution

time distributions are quite close to each other. However, when we look at average

time between generating consecutive processed packets there is a clear distinction in

the CDFs (Figure 5.14). This average time characterizes the request processing rate

and sometimes is a more important metric than total execution time, especially for

stream processing applications. The figure shows that CONFIG 2 has the best over-

all performance distribution and results in parametric yield of 98% for a constraint

of 85 tu (shown as vertical line in the figure) on the average time between output

packets. This is 78% better than the yield obtained under CONFIG 4 that is the best
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Figure 5.14: CDFs under architecture configurations with different relative priorities

CONFIG for no variation case (See Table 5.2). For this workload, chip-specific con-

figuration results in output rate distribution (leftmost CDF in the figure) with marginal

improvement over CONFIG 2.

Table 5.2: Average time between generating processed packets for different configu-
rations of SYS2 under no variations case

Similarly, significant performance gains are achieved by applying the tech-

nique of modifying the maximum burst sizes. For processing 5 requests arriving at

every 150 tu of T1 and 200 tu of T2 of Taskgraph 6 (refer to Figure 5.11), we ob-

tained that burst size of 100 leads to the best CDF under variations. It achieves 93%

parametric yield for a constraint of 3250tu on the total execution time. For burst size

of 50 that is the best for no variations case, the corresponding yield under variations

is only 81%.

Task mapping We show the cumulative distributions of total execution time for Task-
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Figure 5.15: CDFs under different task mappings

graph 7 ( Figure 5.12) for each of the 8 mappings in Figure 5.15. The number to the

right of the curve shows the mapping number. It can be seen from the figure that Map-

ping 2 is most robust to variations. In terms of 99th percentile Mapping 2 performs

20% better than Mapping 3 that is the best mapping for the no variations case (refer

to Figure 5.12(c)). For an execution time constraint of 5500 tu, Mapping 2 achieves

99% parametric yield which is 147% better than 40% yield achieved by Mapping 3.

For a constraint of 5800 tu, the improvement is 39%.

5.7 Conclusion

In summary, we illustrated that the degree of impact of process variations on

system level performance depends on the application, architecture and mapping char-

acteristics. We presented an effective analysis framework that is used to develop a

simulation based methodology to capture these effects. Furthermore, we proposed

application level and architecture level design techniques to recover the performance

loss due to variations and illustrated that these techniques can lead to significant per-
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formance gains. We believe that development of efficient algorithms to exploit these

techniques will be crucial to recover any performance loss to variability.



Chapter 6

Future Work

In this final chapter, we conclude by presenting our vision of the variation-

tolerant systems of the future and the implications of this research on such systems.

It is emphasized in this thesis that variability is a growing design challenge and its

impact intensifies with each technology generation. Use of new materials or new

transistor structures are likely to replace some of the current sources of variability

with some other sources. The net effect is variability in power and performance char-

acteristics of the overall system, as is shown in this thesis. We believe that in future

systems, variation-awareness needs to be built in at all stages of the design cycle and

especially, at higher levels of design abstraction. This is because (a) changes made

in the early design stages can have a larger impact on the variation-tolerance of the

overall system, and (b) high-level power-performance characteristics directly impacts

the end-user experience.

Towards that goal, variation-aware SoC architecture design and variation-aware

application design emerge as two natural areas that can benefit from the techniques

presented in this thesis. We believe that the variation-aware analysis and design tech-

niques presented in Chapter 5, integrated with power analysis and optimization tech-

niques presented in Chapters 2, 3 and 4, will go a long way to design Systems-on-

chips that are robust to the impact of variability. On the other hand, we believe that

variation-aware application design will be inevitable in future systems as it is unlikely

that the impact of variations can be completely contained by architectural approaches.

132



133

In the rest of this chapter, we elaborate on the concept of developing applications in a

variation-aware manner and present preliminary results of our findings.

6.1 Variation-aware application design

In the face of increasing variations, techniques at the architectural and system

levels will reduce but cannot completely eliminate the effect of variations. The net

residual effect of variations, in the form of unexpected behavior in the execution time

and energy consumption of various parts of the SoC, will have to be seen and absorbed

by the applications that execute on the SoC.

Let us consider real-time video encoding application as an example. A video

encoding application encodes a raw video stream of a given resolution at a specified

frame rate (FR) to produce an encoded bitstream of specified bitrate (say, BR0) with

a video quality (say, V Q0). When the underlying hardware is impacted by process

variations, the time to encode a video frame (T) may increase and the encoder may not

be able to sustain the specified frame rate, leading to inferior or unacceptable quality

of the resulting encoded stream. In the case of encoding of real-time video streams,

such as Live TV/events, inability of the encoder to process frames at the specified

rate will lead to the overflow of the encoder buffer, causing frames to be dropped, and

thereby, adversely impacting the smoothness of the encoded video stream.

To illustrate the impact of variations on video quality, we consider a specific

example. Depending upon the extent of spatial variations in a given chip instance and

the video encoder architecture, time to encode an I-frame (TI) and time to encode a

P-frame (TP ) may be impacted differently. Consider a case in which TI increases by

5 % and TP increases by 7 % due to variations. We estimated that in this case, video

quality will be degraded to 28 dB due to random frame dropping. On the other hand,

in a variation-aware video encoder, parameters such as group of pictures (GOP) 1

and quantization level can be adapted to reduce the computational requirements at the

expense of the compression efficiency. Such an adaptation can enable reduction in

1An encoded video stream typically consists of a repeating sequence of an I-frame followed by a
certain number of P-frames. GOP represents the size of this sequence.
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the number of frames dropped while maximizing the video quality. For TI variation

of 5 % and TP variation of 7 %, we estimated that a variation-aware video encoder

can result in a final video quality of 31 dB. In Figure 6.1, we show the estimated

video quality obtained with the variation-aware video encoder and the original video

encoder assuming that variations can cause up to 15 % deviation in TI and TP . Fig-

ure 6.1(a) shows the PSNR under different degrees of variation in TI and TP . Let us

consider a scenario in which the user specifies a limit of 29 dB for acceptable video

quality. Figure 6.1(b) shows the combinations of variation in TI and TP for which the

variation-aware video encoder and the original video encoder are able to meet the

user requirement (represented as regions that are shaded green). The results clearly

demonstrate the potential of the variation-aware encoding technique.

We believe that a large class of applications such as audio/image/video encod-

ing/decoding/transcoding, graphics processing, channel coding, and data compression

can benefit from variation-aware techniques similar to the one discussed above. This

is because of the following two properties shared by this class of applications. In these

applications (1) there exists a correlation between the amount of computation needed,

the bitrate (e.g., bitrate of the encoded video stream, bitrate of channel encoding),

size of the result (e.g., compressed data), and the quality of the result (e.g., visual

quality of the encoded video, error resilience of channel coded data), and (2) there is

an inherent tolerance to limited variation in both the desired bitrate/size of the result,

as well as the quality of the result. For example, in the case of audio/image/video

coding and graphics rendering, the resulting quality is often subjective, with some au-

dio/visual artifacts less perceivable than others. In the case of data compression, there

is some tolerance in the size of the result. These properties can be exploited to design

applications such that, if variations leads to performance degradation in the underly-

ing hardware, the application can adapt to execute without causing any perceivable

degradation in user experience.
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Figure 6.1: Video quality for variation aware and unaware video encoding
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6.2 Summary

In this thesis, we illustrated that variation-aware system-level design can lead

to significant improvements in the power and performance characteristics of SoCs

manufactured in sub-90 nm technologies. We presented (i) techniques for system-

level power and performance analysis under variations, (ii) variability-aware tech-

niques to determine optimal policy parameters for shutdown-based power manage-

ment policies, (iii) a methodology to determine variation-aware voltage levels, and

(iv) architecture and application level techniques to recover performance loss due to

variations. The techniques presented in this thesis focus on addressing variability

without disrupting the existing design flow and hence, can be easily incorporated in

current technologies. We believe that in the future, variation-aware applications in

conjunction with variation-aware system architectures, will play a crucial role in alle-

viating the impact of variability as experienced by the end user. The development of

integrated application and architectural techniques to address variations poses many

new challenges, making it a rich area for research and development. We believe that

the analysis and design techniques presented in this thesis are an important step to-

wards addressing many of these challenges.



Appendix A

A.0.1 Modeling Leakage Power

Here we describe the models that we have developed to determine leakage

currents of unit width N-type and P-type transistors for a given channel length. Many

empirical models of the form Ileakage = αef(L,Tox) have been proposed [10, 1, 11,

13] that analyze the leakage current of a single gate. Here, α depends on the gate

characteristics and is directly proportional to the device width. f is a polynomial

function of device parameters and hence, is a random variable under manufacturing

variations. Assuming that device parameters are normally distributed, the leakage

current of a gate is log-normally distributed and total circuit leakage distribution is

given by the sum of correlated log-normal distributions of its constituent gates, Ickt =∑
gatei

Ii =
∑
gatei

αie
Yi . Researchers have proposed various methods to accurately and

efficiently calculate this total leakage distribution.

However, in our methodology presented in Sections 2.5 and 2.6 of the thesis,

the total leakage of a component is calculated as a function of its power-state and its

thermal characteristics. Power-state determines the effective leaking width whereas

N-type and P-type leakages are effected differently by the thermal characteristics (that

depends on the system-level floorplan). We calculate the total leakage of a component

in a given power-state under a simplifying assumption (similar to the one in [53]) that

the component can be modeled as a sea of identical gates, since leakage character-

istics of all gates is not readily available during system-level design. Therefore, our

methodology only requires that a model to accurately and efficiently calculate leak-
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age currents of unit width N-type and P-type transistors for a given channel length

parameter be developed. Our experiments indicate that for effective channel length

following a Gaussian distribution at 90 nm technology node, transistor leakage can be

accurately modeled using models of the form Ileakage = α ∗ C1 ∗ LC2 . Here, C1 and

C2 are model parameters. We have used data obtained from HSPICE simulation of

the Berkeley Predictive Technology 90 nm BSIM3 model card [55] to calibrate these

models.

We compare our model to the leakage values obtained experimentally in Fig-

ure A.1. The figure shows that our model accurately tracks N-type and P-type leakage

currents. We obtain mean relative error of 3% for leakage of a N-type device and 15%

for leakage of a P-type device.

Note that, statistical leakage power modeling is not the main focus of this

work. Therefore, we have developed our models under simple assumptions as de-

scribed above. If detailed circuit-level information (such as precise estimates of active

device widths under different power states) are available, they can easily be integrated

within our methodology. Also, if the detail netlist is available, effects such as the

stacking effect can be incorporated.

A.0.2 Temperature-aware Leakage Power Model: Derivation and

Validation

We derive our model based on the BSIM3 model equations [97]. The sub-

threshold current is expressed as:

I(T ) = µ(T ) Cox
W

L
e1.8 (VT )2 e

(Vgs−Vth−V off)

nVT (A.1)

where µ(T ) is the carrier mobility, VT is the thermal voltage and Vth is the threshold

voltage of the device. The temperature dependency equations are given by:

µ(T ) = µ(T0)(
T

T0

)µte (A.2a)

VT =
KB T

q
(A.2b)
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Vth(T ) = Vth(T0) + (KT1 + KT2Vbseff + KT11/L)(
T

T0

− 1) (A.2c)

Here, µte is the mobility temperature coefficient and KT1, KT2, KT11, rep-

resent the temperature coefficient for threshold voltage, the body-bias coefficient of

Vth temperature effect and the channel length dependence of the temperature coeffi-

cient for threshold voltage, respectively. Substituting parameters from Equation A.2

in Equation A.1, we get,

I(T ) = (Constant) ∗ (
T

T0

)µte ∗ T 2 ∗ e
−A(L)

T
+

B(L)
T0 (A.3)

where,

A(L) =
Vth(T0)− (KT1 + KT2Vbseff + KT11/L)

KB/q
(A.4a)

B(L) =
(KT1 + KT2Vbseff + KT11/L)

KB/q
(A.4b)

Dividing Equation by leakage current at nominal temperature, we get,

I(T )

I0

= (
T

T0

)µte+2 ∗ e
A(L)∗(T−T0)

T∗T0 (A.5)

Note that, A(L) is independent of temperature variations and depends only on

the process parameters. We model A as a function of I0, rather than L, since I0 of a

component is easily determined from the power-state based leakage power models.

We model A as a second order polynomial in ln(I0) and express it as:

A(I0) = C1 ∗ (ln(I0)
2) + C2 ∗ ln(I0) + C3 (A.6)

where, C1, C2, C3 are the fitting coefficients. These are calculated separately for the

N and P type devices and depend only on the technology node. We are able to achieve

less than 0.01% average error for N-type devices and about 1.29% average error for

P-type devices using this model.

Model Calibration and Verification To calibrate our leakage current model we use

data collected from HSPICE simulation of the Berkeley Predictive Technology 90 nm

BSIM3 model card [55]. The relative error curves (Ipredicted−Iexperimental/Iexperimental)
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for various channel lengths are plotted against temperature in Figure A.2. The channel

lengths range from 60 nm to 120nm. The error is higher at very high temperatures but

still within 5% for the NMOS and 7% for the PMOS device. For typical IC operat-

ing temperatures in the range of 300 K to 375 K, we observe that our model is very

accurate.
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(a) N-Type

(b) P-Type

Figure A.1: Modeling N-type and P-type leakage currents
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(a) N-Type device

(b) P-Type device

Figure A.2: Accuracy of temperature based leakage model for N-type and P-type
devices



Appendix B

B.0.3 Voltage and leakage models

In this section, we present models that are used to estimate the required voltage

and leakage power of each chip instance. The voltage model is used to compute the

minimum required voltage of a chip instance, given the required desired frequency of

operation. The leakage model is used to compute the leakage of a given chip instance

at the selected voltage of operation. These models are used along with Monte Carlo

sampling to design the variation-aware set of voltages. Various approaches in which

these models can be calibrated are presented in Chapter 4 of the thesis.

Voltage-delay characteristics

To take into account process variations, we compute the required voltage for

the required delay of a given chip instance using the delay information of the instance

at a known voltage. Assuming that the required critical delay is tdi
req, then, V i

req is

given modeled using:

V i
req(x) =

vCi
1 ∗ x + vCi

2

x + vCi
3

(B.1)

Here, x = log(tdi
req/D

i
VN

), where Di
VN

is the critical delay of the ith instance

at maximum operating voltage.vC1, vC2 and vC3 are chip specific coefficients that are

modeled as a function of maximum delay of the chips using the following relations,
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vCi
1 = K11 ∗ (Di

VN
)K
12 + K13

vCi
2 = K21 ∗ (Di

VN
)2 + K22 ∗ (Di

VN
) + K23

vCi
3 = K31 ∗ (Di

VN
)2 + K32 ∗ (Di

VN
) + K33 (B.2)

Here, K11, K12, K13, K21, K22, K23, K31, K32 and K33 are constants and de-

pend on process technology and the circuit only. We calibrated our models using

HSPICE simulation. Figure 4.6 compares the voltage obtained from our models and

experimental data from HSPICE. We observe that the above developed model closely

follows the experimental data. We compute that the mean relative error is less than

1%.

Leakage-voltage characteristics

We have developed models to compute the leakage current of a chip instance

i at a given voltage v given the leakage current of the instance at a known voltage VN .

In the following equations, we present models to compute transistor level N-type and

P-type leakage currents.

Ini(v) = Ini
VN
∗ e(nCoef i

1∗(v−1)+nCoef i
2)

Ipi(v) = Ipi
VN
∗ e(pCoef i

1∗(v−1)+pCoef i
2)

Here, Ini
VN

and Ipi
VN

, represent the leakage current values at VN . nCoef1, nCoef2,

pCoef1 and pCoef2 are the model constants and are different for each chip instance.

These coefficients are computed using the following equations,

nCoef i
1 = KIn11 ∗

(
Ini

VN

Innom

)KIn12

+ KIn13

nCoef i
2 = KIn21 ∗

(
Ini

VN

Innom

)KIn22

+ KIn23

We have similar equations to model the P-type current. The constants KIns and KIps

depend on the process technology only.
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To obtain circuit level leakage power we use the concepts similar to the ones

presented in [53] and model the circuit as a sea of inverters. Then, the total leakage

current is computed as

I i
leak(V ) = KN ∗ Ini(V ) + KP ∗ Ipi(V ) (B.3)

Here KN and KP are the active leakage widths of the circuit.

We compare the N-type leakage current obtained from our model to the ones

obtained using SPICE simulations in Figure B.1. The figure shows that our models

closely match the experimental data. The relative mean error is 2% for N-type leakage

current and less then 3% for P-type leakage current.
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(a) N-type

(b) P-type

Figure B.1: In and Ip leakage currents as a function of voltage for different chip
instances
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