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Abstract

In multivariate analysis, the covariance matrix associated with a set of vari-
ables of interest (namely response variables) commonly contains valuable infor-
mation about the dataset. When the dimension of response variables is con-
siderably larger than the sample size, it is a non-trivial task to assess whether
they are linear relationships between the variables. It is even more challenging
to determine whether a set of explanatory variables can explain those relation-
ships. To this end, we develop a bias-corrected test to examine the significance
of the off-diagonal elements of the residual covariance matrix after adjusting for
the contribution from explanatory variables. We show that the resulting test is
asymptotically normal. Monte Carlo studies and a numerical example are pre-

sented to illustrate the performance of the proposed test.
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1. INTRODUCTION

Covariance estimation is commonly used to study relationships among multivariate
variables. Important applications include, for example, graphical modeling (Edwards,
2000; Drton and Perlman, 2004), longitudinal data analysis (Diggle and Verbyla, 1998;
Smith and Kohn, 2002), and risk management (Ledoit and Wolf, 2004) among others.
The total number of parameters needed for specifying a covariance matrix of a mul-
tivariate vector with dimension p is p(p + 1)/2. When the sample size n is less than
p, the large number of covariance parameters can significantly degrade the statistical
efficiency of the usual sample covariance estimator, which makes interpretation diffi-
cult. It is therefore important to select the covariance structure so that the number
of parameters needing to be estimated is reduced and an easy interpretation can be

obtained.

There are a number of regularized estimation methods which have recently been
developed to address this issue; current research has focused particularly on identifying
various sparse structures; e.g. Huang et al. (2006), Meinshausen and Biithlmann (2006),
Lam and Fan (2009), Zhang and Leng (2012) and Leng and Tang (2012). While many
novel methods have been developed for covariance estimations, there has not yet been
much discussion focusing on statistical tests of the covariance structure. In addition,
the classical test statistics developed by John (1971), Nagao (1973), and Anderson
(2003) are not applicable for high dimensional data, since the spectral analysis of
the sample covariance matrix is inconsistent under a high dimensional setup (Bai and
Silverstein, 2005). Efforts to address this problem have led to various tests to determine
if the covariance matrix is an identity or a diagonal matrix; see, for example, Srivastava
(2005) and Chen et al. (2010). It is noteworthy that Chen et al.’s (2010) test allows for

p — 00 as n — oo without imposing the normality assumption; thus it is quite useful



for microarray studies (Efron, 2009; Chen et al., 2010). In addition, the aim of their
test is to assess whether the covariance matrix exhibits sphericity (i.e., the matrix is
proportional to the identity matrix, see Gleser (1966), Anderson (2003) and Onatski
et al. (2013)) or identity without controlling for any covariates. As a result, Chen et
al.’s (2010) test is not directly applicable for testing diagonality, in particular when

explanatory variables are included in the model setting.

In practice, a set of variables of interest (namely, a set of response variables, Y € R?)
could be explained by another set of explanatory variables, X € R, in a linear form.
For example, Fama and French (1993, 1996) introduced three variables to explain the
response of stock returns, and the resulting three-factor asset pricing model has been
widely used in the fields of finance and economics. To assess the significance of the off-
diagonal elements after adjusting for the contribution of explanatory variables, one can
naturally adapt the aforementioned methods to test whether the residual covariance
matrix, cov{Y — FE(Y|X)}, is diagonal or not. However, such an approach not only
lacks theoretical justification but can also lead to inaccurate or misleading conclusions.
This motivates us to develop a test for high dimensional data in a regression setting
to investigate whether the residual covariance matrix is diagonal or not. The resulting
test can be applied in various fields, such as financial theory (Fan et al., 2008) and

microarray analysis (Chen et al., 2010).

The rest of the article is organized as follows. Section 2 introduces the model
structure and proposes the bias-corrected test statistic. In addition, the theoretical
properties of the resulting test are investigated. Section 3 presents simulation studies
to illustrate the finite sample performance of the proposed test. An empirical example
is also provided to demonstrate the usefulness of this test. Finally, we conclude the

article with a brief discussion in Section 4. All the technical details are left to the



Appendix.

2. THEORETICAL ANALYSIS

2.1. Model Structure and A Test Statistic

Let Y; = (Yi1, - - ,Yip)T € R? be the p-dimensional response vector collected for the
1th subject, where 1 < i < n. For each subject 7, we further assume that there exists
a d-dimensional explanatory vector X; = (X;1,--+,X;q)" € R% For the remainder
of this article, d is assumed to be a fixed number, and p — oo as n — oo with the

possibility that p > n. Consider the following relationship between Y; and X;,

Yi=B'X; +&, (2.1)
where B = (1, ,3,) € R>P 3 = (Bj1,---,3ja)" € R are unknown regression
coefficients, and & = (g;1,--- ,€;,)" € R? are independent and identically distributed

vectors from a multivariate normal distributions with mean vector zero and cov(&;) =
Y = (0j,5,) for i = 1,---  n. For the given dataset Y = (Y7,---,Y,)" € R™P and
X = (X1, -+, X,)" € R we obtain the least squares estimator of the regression
coefficient matrix B, B = (X" X)"(XTY) € R®?. Subsequently, the covariance matrix
5} can be estimated by ¥ = (6;,;,), where 6,5, = n~' S0 &4, and &, and &;;, are

J1-th and j>-th components of (SA'Z =Y, — ETXZ», respectively.

To test whether ¥ is a diagonal matrix or not, we consider the following null and

alternative hypotheses,

Hy:0? . =0 forany j, # jo vs. Hy:o2. >0 for some j, # js. (2.2)

J1J2 J1j2

If the null hypothesis is correct, we should expect the absolute value of the off-diagonal
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element, 6, ;,, to be small for any j; # j». Hence, we naturally consider the test
statistic, T" = Zjl < &]2»1]»2. Under the null hypothesis, we can further show that

var'/2(T*) = O(n=3/2p*/?) provided that p/n — oo, which motivates us to propose the

following test statistic

_.3/2,-3/2 ~2
T—n/p / Zajm.

J1<j2
Clearly, one should reject the null hypothesis of diagonality if the value of T' is suffi-

ciently large. However, we need to develop some theoretical justification to determine

what value of T is sufficiently large.
2.2. The Bias of Test Statistic

To understand the asymptotic behavior of the test statistics T', we first compute

the expectation of T" in the following theorem.

Theorem 1. Under the null hypothesis Hy, we have

1/ n—d\"?(n—d\"* 9
=359 (5 o).

—1 p
j=1

where M., = p of; for k=1 and 2.

The proof is given in Appendix A. Theorem 1 indicates that E(7T') is not exactly zero,
which yields some bias. To further investigate the property of bias, we assume that
M., — M, as p — oo for some |M,| < oo. Then, E(T) ~ Mf\/n_p — 00. As
mentioned earlier, under the null hypothesis, we have var'/?(T*) = O(n=%/?p3/?) if
p/n — oo, which leads to var(T') = O(1). Accordingly, E(T)/var'/*(T) = O(\/np) —
o0, which suggests that 7'/{var(T")}'/? is not asymptotically distributed as a standard
normal random variable. This implies that we cannot ignore the bias due to 7' in
asymptotic test, so we need to turn to methods of bias correction. To this end, we

obtain an unbiased estimator of E(T) as given below.

bt



Theorem 2. Under Hy, we have E(éz';s) = E(T), where

_— n3/? 0 & ~ (9 .
. o (2) (a2
Bias = W [tT (2) — t’]"(z( )) and X = (O'jle). (23)
The proof is given in Appendix B. Theorem 2 shows that Bias is an unbiased estimator

of E(T). This motivates us to consider the bias-corrected statistic, 7" — Bias, whose

asymptotic properties will be presented in the following subsection.
2.8. The Bias-Corrected (BC) Test Statistic

After adjusting T by its bias estimator ]?i\as, we next study its variance.

—1 p K
i=1 055 — M, for some

constant |M,| < oo and for all k < 4. Under Hy, then var(T — Eizs) = (n/p)M3, +

o(n/p).

Theorem 3. Assume that min{n,p} — oo and My, = p

The proof is given in Appendix C. Theorem 3 demonstrates that var(7 — ]ggs) =
O(n/p) and we can show that its associated term M, , can be estimated by the following

unbiased estimators
My, = n’p! [(n —d)*+2(n— d)} Z 3.

This drives us to consider the following bias-corrected (BC) test statistic.

T — Bias
Z=—-—"2 (2.4)
(n/p)t/2 Mz

whose asymptotic normality is established below.

NP o —, M, for some

Theorem 4. Assume that min{n,p} — oo and My, =p =107

constant |M,| < oo and for all k < 4. Under Hy, we have Z —4 N(0,1).
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The proof is given in Appendix D. Theorem 4 indicates that the asymptotic null dis-
tribution of Z is standard normal, as long as min{n, p} — co. Applying this theorem,
we are able to test the significance of the off-diagonal elements. Specifically, for a given
significance level a;, we reject the null hypotheses of diagonality if Z > z;_,, where Z
is the test statistics given in (2.4) and z, stands for the ath quantile of a standard
normal distribution. Simulation studies, reported in the next section, suggest that such
a testing procedure can indeed control the empirical size very well. It is noteworthy
that Nagao’s (1973) diagonal test is valid only when p is fixed. To accommodate high
dimensional data, Schott (2005) developed a testing procedure via the correlation coef-
ficient matrix, which is useful if one is interested in testing whether cov(Y") is diagonal.
However, it cannot be directly applied to test the diagonality of cov{Y — E(Y|X)},
unless the predictor dimension d is appropriately taken into consideration; see Remarks

2 and 3 below for detailed discussions.

Remark 1. In multivariate models, researchers (e.g., Anderson, 2003, and Schott, 2005)
have proposed various methods to test whether or not the covariance matrix is diagonal.
It is interesting to recall that Anderson (2003) introduced the likelihood ratio test in
the field of factor analysis as a method of examining the number of factors. In fact,
identifying the number of common factors is similar to testing the diagonality of the
covariance matrix of the specific factor. This leads us to propose our approach for
testing whether the covariance matrix of the error vector is diagonal, after controlling

for the effect of explanatory variables.

Remark 2. By Theorem 2, Bias is an exactly unbiased estimator of 7', and it contains
the quantity (n — d). For the sake of simplicity, one may consider replacing (n — d)
in the denominator of (2.3) by n so that the multiplier of Bias becomes n'/2/(2p3/2).

Under this replacement, however, E(T — Bias) # 0 and it is of the order O(n!/2/p'/2),



which has the same order as (n/p)1/2]\7[2\7p given in the denominator of (2.4). Hence,
the resulting test statistic is no longer distributed as a standard normal. This suggests
that the predictor dimension (i.e., d) plays an important role for bias correction in our

proposed BC-test statistic.

Remark 3. Although the BC-test in (2.4) shares some merits with the Schott (2005)
test, there are three major differences given below. First, the BC-test considers
min{p,n} — oo, while the Schott test assumes that p/n — ¢ for some finite con-
stant ¢ > 0. Second, the BC-test takes the predictors into consideration, which is
not the focus of the Schott test. Third, the BC-test is obtained from the covariance
matrix. In contrast, the Schott test is constructed via the correlation matrix and it
is scale invariant. It is not surprising that the asymptotic theory of the Schott test
is more sophisticated than that of the BC-test. According to an anonymous referee’s
suggestion as well as an important finding in Remark 2, we have carefully extended
the Schott test to the model with predictors. We name it the Adjusted Schott (AS)

test, which is

R . ~1/2 £1/2
where Tjrja = Uj1j2/{aj1j1aj2j2

}. Following the techniques of Schott (2005) with slightly
complicated calculations, we are able to demonstrate that Zadj is asymptotic standard
normal under the null hypothesis. However, its validity is established only when p/n —
¢ for some finite constant ¢ > 0, as assumed by Schott (2005). In high dimensional

data with p > n, the asymptotic theory is far more complicated and needs further

investigation.

3. NUMERICAL STUDIES



3.1. Simulation Results

To evaluate the finite sample performance of the bias-corrected test, we conduct
Monte Carlo simulations. We consider model (2.1), where the predictor X; = (Xi;)
is generated from a multivariate normal distribution with E(X;;) = 0, var(X;;) = 1,
and cov(X;,, Xi;,) = 0.5 for any j; # jo. In addition, the regression coefficients
Bjr are independently generated from a standard normal distribution. Moreover, the
error vector & = (g;;) is generated as follows: (i.) the ¢;; are generated from normal
distributions with mean 0; (ii.) the variance of ¢;; (i.e., 0;;) is simulated independently
from a uniform distribution on [0,1]; (iii.) the correlation between ¢;;, and ¢;j, for any

J1 # jo is fixed to be a constant p.

We simulated 1,000 realizations with a nominal level of 5%, each consisting of two
sample sizes (n = 100 and 200), three dimensions of multivariate responses (p = 100,
500, and 1,000), and four dimensions of explanatory variables (d = 0, 1, 3, and 5). The
value of p = 0 corresponds to the null hypothesis. Schott (2005) developed a diagonal
test in high dimensional data under d = 0. For the sake of comparison, we include the
Schott (2005, Section 2) test by calculating the sample correlation with the estimated
residual (SA'Z rather than the response Y;. In addition, we consider the Adjusted Schott

test given in (2.5).

Under normal errors, Table 1 reports the sizes of the BC, Schott, and Adjusted
Schott tests. When d = 0, all three tests perform well. However, the performance of
the Schott test deteriorates with d > 0. This indicates that the Schott test cannot
be directly applied to assess the diagonality of the residual covariance matrix after
incorporating the contribution from explanatory variables. In contrast, after adjusting
for the effective sample size from n to n—d, the performance of the Adjusted Schott test

becomes satisfactory, which indicates that the predictor dimension d is indeed critical.



Figure 1: Power functions for testing Hy : p = 0 with normal errors and n = 100.
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Table 1 also indicates that the BC test controls the empirical sizes well across the
various sample sizes, dimensions of response variables, and dimensions of explanatory
variables. To examine their robustness, we also generated errors from the Student (¢5),
mixture (0.9N(0,1) + 0.1N(0,3%)), and Gamma(4,0.5) distributions. Table 1 shows
that, under these error distributions, both tests control the empirical size adequately.
Finally, we investigate the power of the BC test and the AS test. For the sake of
illustration, we consider only the case with normal errors, n = 100, and d = 1. Figure
1 depicts the power functions for three dimensions of response variables (p = 100, 500
and 1,000) respectively. It shows that the powers of the two tests are almost identical,
and the power increases as p becomes large. Since all simulation results for n = 200
show a similar pattern, we do not report them here. In sum, both BC and AS tests are
reliable and powerful, while the theoretical justification for the AS test needs further

study as mentioned in Remark 3.
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Finally, upon the suggestion from the AE and an anonymous referee, we have
compared our proposed test with Chen et al.’s (2010) and the tests mentioned in
Onatski et al. (2013) for testing high dimensional covariances via simulation studies
with d = 0. The results show that all these tests perform well in testing for identity
under normal error, while BC test is superior to Chen et al’s and Onatski et al’s tests
for testing diagonality. This finding is not surprising since Chen et al’s and Onatski et

al’s tests are not developed for examining diagonality.
3.2. A Real Example

To further demonstrate the practical usefulness of our proposed method, we consider
an important finance application. Specifically, we employ our method to address an
critical question: how many common factors (i.e., explanatory variables) are needed to
fully describe the covariance structure of security returns? By Trzcinka (1986), Brown
(1989), and Connor and Korajezky (1993), this is one of the fundamental problems in
portfolio theory and asset pricing. To this end, we collect the data from a commercial
database, which contains weekly returns for all of the stocks traded on the Chinese
stock market during the period of 2008-2009. After eliminating those stocks with

missing values, we obtain a total of p = 1,058 stocks with sample size n = 103.

We consider as our explanatory variables, several of the factors most commonly
used in the finance literature to explain the covariance structure of stock returns. The
first such factor is X;; = market index, in this case, returns for the Shanghai Composite
Index. The market index is clearly the most important factor for stock returns because
it reflects the overall performance of the stock market. As a result, it serves as the
foundation for the Capital Asset Pricing Model (Sharpe, 1964; Lintner, 1965; Mossin,
1966). Empirical studies, however, have suggested that the market index alone cannot

fully explain the correlation structure of stock returns. Fama and French (1993, 1996)
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proposed the Three-Factor model to address this problem; they include the market
index as well as two other factors which are denoted by X;» = SMB and X;3 = HML.
Specifically, X;» measures the size premium (i.e., the difference in returns between
portfolios of small capitalization firms and large capitalization firms) and X3 is the
book-to-market premium (i.e., the difference in returns between portfolios of high book-
to-market firms and low book-to-market firms). Finally, recent advances in behavioral
finance suggest that stock returns have non-trivial momentum, which is captured by
the difference in returns between portfolios of high and low prior returns. To this end,
Jegadeesh and Titman (1993) and Carhart (1997) proposed the momentum factor,

which is denoted by X4.

In our analysis, we consider four nested models, My = 0, M; = {Xu}, My =
{Xi1, Xio, Xiz}, and M3 = { X, Xj2, Xis, Xia} and apply the proposed method to each
candidate model; this gives test statistics of 20,560, 3,357, 228, and 215, respectively.
Similar results are obtained via the AS test. We draw two conclusions from these
results. The first comes from observing the differences between these values. As ex-
pected, the Fama-French model (M) improves enormously on both the model with
no predictors and the model with only the market index, and while the fourth factor
(momentum) does improve on the Fama-French model, its contribution is clearly small.
The proposed statistical method, therefore, provides additional confirmation that the
Fama-French model is an extremely important finance model, even in datasets with
p > n. Secondly, the addition of a fourth factor still does not allows us to accept
the null hypothesis of a diagonal covariance matrix. This suggests that there may
be factors unique to the Chinese stock market which contribute significantly to the
covariance structure. To explore this idea further, we applied the principle compo-

nent method of factor analysis to the residuals of M3 and found that the test statistic
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continued to decline with the inclusion of as many as 75 of the additional factors we
identified. While this additional finding is interesting, it lacks of insightful financial
interpretations, and so we believe that further research on risk factors in the Chinese

stock market is warranted.

4. DISCUSSIONS

In this paper, We propose a bias-corrected test to assess the significance of the
off-diagonal elements of a residual covariance matrix for high-dimensional data. This
test takes into account the information from explanatory variables, which broadens the
application of covariance analysis. Although the results are developed in the context
of a linear regression, it could certainly be extended to nonparametric regressions; see
for example, Fan and Gijbels (1996), Hérdle et al. (2000), and Xia (2008). In the
theoretical development of our test statistic, we focus principally on the normal error
assumption. It could, however, be useful to obtain a test for diagonality with weaker
assumptions such as sub-Gaussian errors, although simulation studies show that the
proposed test performs well for non-normal errors. Moreover, it would be interesting
to extend our test to the correlation matrix with d > 0 and min{n, p} — oo. Finally,
a generalization of the test statistic to the case with d > n could be interest. In this
context, the shrinkage regression estimates, e.g., LASSO of Tibshirani (1996), SCAD
of Fan and Li (2001) and Group LASSO of Yuan and Lin (2006), could be useful
in developing a test statistic. Based on our limited studies, obtaining a shrinkage
estimator of B that is consistent for variable selection will be important in extending
our proposed test. With a consistently selected model, we believe that the usual OLS-
type estimator and the theoretical development of the resulting test statistic can be
achieved. Consequently, it is essential to develop an effective shrinkage method for

both d > n and n — oo.

13



APPENDIX

Appendiz A. Proof of Theorem 1

To facilitate the proof, we will refer to the following lemmas, so we present them
first. The proof of Lemma 2 follows directly from the proof of Lemma 3 in Magnus

(1986). Its proof is therefore omitted.

Lemma 1. Let Uy and Us be two m X 1 independent random vectors with mean vector 0
and covariance matrix I,, where I, is an m x m identity matrixz. Then for any m x m
projection matriz A, we have (a) E(U AU,) = tr(A) and (b) E[(U] AU3)?| = tr(A).
Further assume Uy and Uy follow multivariate normal distributions, then we have (c)
E[(U]AU,)?U AULU, AU, = 4tr(A) +4tr?(A) +tr3(A), (d) E[(U] AUY)? = tr2(A) +

2tr(A), and (e) E[(U] AU)* = 3tr?(A) + 6tr(A).

Proof. The proofs of (a) and (b) are straightforward, and are therefore omitted.
In addition, results (d) and (e) can be directly obtained from Proposition 1 of Chen
et al. (2010). As a result, we only need to show part (c). Using the fact that U AU, €
R, UAU, € RY, U] AU, € R, UM AU, = U,) AU,, and U; and U, are mutually

independent, we have
E{(UlT AU)2UT AULUY AUQ} _ tr{E<U1T AULAULUT )E(UJ AU AUUY ) }

- tr{E<AU1U1T)2E<AU2U;)2}. (A.1)

Next, let A = (a;;) and Uy = (Uy;), where a;; = a;; since A is a projection matrix.

Then we have (AU,U[")? = AU (U] AU U, = (U] AU,)AULU" = (ayj), where

dz‘j = <ZzakhU1kU1h> <Z az‘lUll> Ulj-
=1

k=1 h=1

14



Using the fact that U; is a m-dimensional standard normal random vector, we obtain

k#j k#j
E(a;) =2 Z AikQk; + Q45 Z g + 3a;5a;;

1<k<m 1<k<m
=2 Z ik Qlj + Qg Z Ak
1<k<m 1<k<m
As aresult, we have E(AU U, )? = 2A4%+tr(A)- A. Because U; and U, are independent
identically distributed random variables and A is a projection matrix, the right-hand
side of (A.1) is equal to tr(24%+tr(A)- A)? = 4tr(A*) +4tr(A3)tr(A) +tr?(A)tr(A?) =

4tr(A) + 4tr*(A) + tr3(A). This completes the proof.

Lemma 2. Let U be an m X 1 normally distributed random vector with mean vector
0 and covariance matrix I,,, and let A be a m x m symmetric matriz. Then, for the

fixed integer s, we have that,

S S

; -1
E(UTAU)® Z’ys H {tr AJ)} , where vy5(v) = 5!2”1_[ [nj!(Qj)”f} ,
Jj=1 j=1
with the summation over all possible v = (ny,na, -+ ,ns)" € R® such that Z§:1 jn; =s

and n; (1 <j <s)is a nonnegative integer.

Proof of Theorem 1. Let ¢; = (g1;,625, " ,&5;) € R™ for j = ,d. From
the regression model (2.1), we know that £; has mean 0 and covariance matrix o,;1,
where I € R™" is a n x n matrix. Furthermore, the j-th residual and the (j1,j2)-
th estimator of ¥ are & = (I — H)g; and 6;,;, = n e &, = n'e] (I — H)ey,,
respectively, where H = X(X"X)7!1XT € R™" is an n x n projection matrix. Under

Hy, ¢j, and ¢j, are independent if j; # jo. Applying Lemma 1(b), we have that

15



E(6%.)=n"2(n—d)oj 04, Accordingly, we obtain that
J131% 292

. n—d\ _
E(T) = E{ng/zp_g/Q > (792'13'2} = (W) P 04510

J1<j2 J1<Jj2

n—d i p P p )
- (ﬁ) p? { DD 05T — Z%’}

n=1j2=1 J=1
1/n—d\"*/n—d\"?
-3(7) (5 (- am) (2

This completes the proof.

Appendiz B. Proof of Theorem 2

By Lemma 1(a), we have that F(6,;) = n~'(n — d)oj;. Then, using the fact that

6,5, and 6;,;, are uncorrelated, we are able to calculate E[tr2(2)] as follows.

P 2 P
E[t?”2(i)i| = E{Z&”} = E{ Z &jljl&jzjz + Z&?J}

Jj=1 J1#j2 Jj=1

n—d 2 p
= ( n ) Zajljlajzjz—i_E(Z&?j)

J1#J2 Jj=1

2
- p(n ; d) (pMip — MZP) + E[tr(i@))}.

This, together with (A.2), implies that

n3/2

W{E 2] = B[ir(s®)] } - B(D)

which completes the proof.
Appendix C. Proof of Theorem 3

— —2 —
Note that var{T — Bias} = E{Bias } + F{T?} — 2E{TBias}, where the right-hand

side of this equation contains three components. They can be evaluated separately
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according to the following three steps.

o . )
Step 1. We first compute E£{Bias }. Recall that Bias = 27! (n—d)"'n*/2p=3/2{tr*(¥)—

tr(2®)} defined in Theorem 2, we then obtain

T2 _ _ _ A~ 4 A~ 4
Bias =4 l(n_ d) 277,3}9 ’ Z Z Ti1iy 04151 Oigin O jaja - (A3)

11771 12772

T

s o-1aTa 1T foa s a4 T
Because 6 = n™'é/ & = n”'e; (I — H)ey, we have G,4,0j,j,0iyir0jojy = 1 gy (I —

H)ene! (I — H)ejel (I — H)epel (I — H)ej,. According to the values of iy, ia, ji,

J i2 J2
and jo, we subsequently calculate the expectation of 64,05, j, 0i,i,05,5, according to the

following three cases.

CASE I: 44, 49, j1, and jo are mutually different. Then, 6,4, 0j,1, Ciyi,, and 7,

are mutually independent. By Lemma 1(a), we have
E <0A—Z'1i1 a—jljl a—iziz a—jzjz)
_ n—4E{gZ(I — H)ey, }E{g;(l ~ H)e, }E{g;(f - H)giQ}E{ngQ(I - H)ng}
4
= 77,_401'11'1 03141 Tiziz O jaja {tT(I - H)} = 77,_4(77, - d)4ai1i1 O31j1 Oizin O jaja - (A4)

. . _ . . _ . . . A~ A~ A~ A . /\2 /\2
Cask II: 11 = 12, 71 = J2, but 11 7é J1- Then, Oirin Oj1j1 OiniaOjoga = 04141051, By

Lemma 1(d), we obtain that
2 2
B0, 010205 ) = 0 B{=] (I = H)zw, b B{=] (1 = H)z, )

11917 J11

2
—nio?, o2 {trQ(I — H) +2tr(I — H)}

=n"tol, 07 (n—d)?(n—d+2)>. (A.5)

1191 j1j1
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CASE I1II: 41 = 19, but 41, ji, and jo are mutually different. Then, 6;,4,05,j, 0izir0jojy =

07.01710jsj,- By Lemma 1(a) and 1(d), we have

2
E<&i1i1&j1j1&i2i2&j2j2) = 77,_4E{€;|; (I - H)gil} E{%Tl (I - H)gjl }E{g; (I - H)gjz}
4

=n O—i21i10—j1j1 Ojajia (77, - d)g(n —d+ 2)‘ (A6)

This, together with (A.3), (A.4), and (A.5), leads to

2 2
. — —d+2
4p3n_1E{BiaS2} — (n_d) Sl +2 (w) 82
n

n

where

S1 = E Oi1i10 j1 j1 Oigiz O jagia s

11751 12 #J2
Zaw Tjj
i#j
and S3 = oloi o
3 — w7 J131Y J292
i#j1 i#J2

Step 2. We next consider E(1?). Using the fact that T = 27n3/2p=3/2 %" . 52

and 6;; =n~'e] (I — H)e;, we have

T 4 1n3p—3 Z Z Zl]l Zz]z

11771 12772

=47 plp3 Z Z < (I —H 531)2<5Z(I—H)5j2)2.

11771 12772

Applying the same procedure as that used in Step 1, we compute E(7T?) according to

18



the following three different cases.

CASE 1. i1, 79, j1, and jp are mutually different. Then, ¢, ;, and 7;,;, are mutually

independent. By Lemma 1(b), we have

E(aZ(I _ H)gj1)2<gg(1 _ H)gj2)2 _ E(aZ(I _ H)gj1)2E<gg(I _ H)gj2)2

= (77, - d)2ai1i1 03151042120 jaja - (A8)
CASE II. iy =iy, j1 = J2, but iy # j1. Then, amlafm = zm By Lemma 1(e), w

obtain that

2

B0 = ) (e300 - ) = B0 - 12’

(A.9)

1141 ]1]1 lel ]1]1

— o2, {3157" (I—H)+6tr(I—H)}:3(n—d)(n—d+2)

CASE III. 4y = iy, but i, j1, and j» are mutually different. Because {e; (I —H)e;, }?

and ¢, (I H)e;, are scalars, we apply Lemma 1(d) and have
({0 = My Yl - 1z, Y)
= B[t ({0 - Mew HeL( = M Hel (T - 12,3
_ tr{ E<5j15; (I — H)eyel (I — H){e] (I - H)€j2}2) }
—t{ B (=3, ) B[~ Ml (- ML - =)}
= Uj1j1E<€Z—E (I o H)gil {5 (I H)€J2}{€ I H 6“})

= 0j,tr [E{al([ — H)ejenel (I — H)}E{ap en (I — H)H
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2
= Ojij Uj2j2E<€z—E (I - H)gil) = (77, - d) (77, —d+ 2)0311’1 031510 jago - (AlO)

Using the results of (A.8), (A.9), and (A.10), we obtain

2
. . —d+2
AP E{T?) = (nn d) S, 46 (n d) (n d+ )82

n n

+4 (”’;d) (”_z”) Ss. (A.11)

Step 3. Finally we compute E{T ]ggs}. After algebraic simplification, we obtain

the following expression

How_ 4—1._3 -1, -3 A2 A oA
TBias=4""n’(n—d) p g E 03141 Oiniz Oz jo

11771 12772

=47 n—d)'p? > el (I = H)ey, Yel (I — H)eye (I — Hey,.

i1#j1 12#)2
Similar to Steps 1 and 2, we consider three cases given below to calculate this quantity

separately.

CASE 1. iy, iy, j1, and jp are mutually different. Then, 62

1417 Uigig and Uj2j2 are

mutually independent. By Lemma 1(a) and 1(b), we have
E({el(I = H)ej, Vel (1 = H)ese (1 = H)ey, )

= B({eh (1 = H)ey ) B(e0 — )z ) E(<L0 — 1)z, )

= (77, - d)30i1i1 03151042120 jaja - (A'12)

. . . . . . . /\2 A A /\2 A~ A
CAsk 1I. 11 =12, J1 = )2, but 11 7é J1- In this case, Oi1j1Ti2inOjaje = 0441 Tiriy Ojiji -
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By Lemma 1(c), we obtain that
B({el (1 = H)ey Vel (I = H)zie (I — H)ey,)

= E({gl(l — H)ej, Yl (I - H)&‘ﬁ;([ - H)gjl)

= (77, —d+ 2)2(77’ - d)U?lZ»l 031510 j2j2 - (Alg)

CASE II1. #; = iy, but 41, j1, and jo are all different. In this case, &fljl&iQiQ&ijQ =

67, OiriyOjajp- We apply Lemma 1(d) and have
(T~ Pl ) = B(E100 - M0 1~ 0,

— tr{E((I — H)eje) (I — H)eyel [e] (I - H)&J)}

= tr{(I — H)E(gjlngl)(I - H)E<5i1€;‘|; [5Z(I - H)azl})}

= Ujl]itr

E((I — H)ene [eX (T - H)gil})] - aj1j1E<aZ(1 ~ H)€i1)2
= (n—d)(n—d+2)0}, 0j,j.

Accordingly, we obtain that
B({ei(l = H)ej, Yei (1 = H)esei(I = H)ey, )

= E({ail(f — H)ej Yoei (I - H)gil)E<€j2(I B H)%)

= (77, - d)2(n —d+ 2)0311’1 031410 j2j2 - (A'14)
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Combing the result of (A.14) with those of (A.12) and (A.13), we have

— —d\? —d+2\°
4p°n~' E{TBias} = (nT) S +2 (%) Sy

+4(”;d)(”_s+2)&% (A.15)

Consequently, (A.7), (A.11), and (A.15) in conjunction with the fact that Sy = p* M3 —

pM, p,, imply that
—— — 2 —
var{T — Bias} = E{T?} + E{Bias } — 2E{TBias}

-1 —d+2 —d—1
:<4p3n_1) 4(77, - )(n n )52-

=n"'pP(n—d+2)(n—d-1) <p2M227p h pM4’p)

_ 2 —d—1
_ (n d+ ) (n . )Mgp—n_lp_2(n—d+2)(n_d_ 1)My,. (A.16)
» :

In addition, by the assumption that M, , —, M, with |M,| < co and xk < 4, we have
p?nt(n —d+2)(n —d—1)My,| < p?n~'n?*|My,| = O(n/p*). As a result, the

right-hand side of (A.16) is

(n—d+2) (n—d_l)M;p—i—O(n/ﬁ)

P n

2
B nMZP

D

——(M;l)ﬂﬁp+00f%4)+Oﬁﬂﬁ) (A.17)

Employing the assumption of min{n,p} — oo, we know that n — oo. Hence, the
second and third terms in (A.17) are negligible as compared with the first term,
nM3,/p = O(n/p). Analogously, the last term in (A.17) is also negligible since p — oco.

In sum, we have var(T — ]igs) =nMj,/p +o(n/p). This completes the proof.
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Appendix D. Proof of Theorem J

To prove this theorem, we need to demonstrate (I.) (7" — ]ggs)/varl/z(T - ]igs)
is asymptotically normal; and (II.) ]\//724) —p Ms,. Because (II) can be obtained by
applying the same techniques as in the proof of Lemma 2.1 of Srivastava (2005), we
only focus on (I). To show the asymptotic normality of (7" — ]igs) Jvar'/?(T — ]ggs),
we need to employ the martingale central limit theorem; see Hall and Heyde (1980).
To this end, we define F, = o{e1,e9,---,&,}, which represents the o-field generated

by {e1,e9,-- ,&.} for r =1,2,--- ,p. We further define

ape = 0722y [{gj(I—H)gj}2—(n—d)—l{gj(I—H)gi}{gj(f_ﬂ)gj} . (A.18)
i<j<r

Obviously, a,, € F,, and one can easily verify that 7" — Bias = app. Then, set

A, = apy — apr—1 with a,¢ = 0. Furthermore, we can show that E(a,|F;) = ap,

for any ¢ < r. This implies that, for an arbitrarily fixed p, {A,,,1 < r < p} is

a martingale difference sequence with respect to {F,,1 < ¢ < p}. Moreover, define

Ugm =F (A;A}}_l). Accordingly, by the martingale central limit theorem (Hall and

Heyde, 1980), it suffices to show that

D 2 P (A4
LTy gyg 2P, (A 19
var (71" — Bias) var?(T — Bias)

This can be done in three steps given below. In the first step, we obtain an analyti-

cal expression of o2

o which facilitates subsequent technical proofs. The second step

demonstrates the first part of (A.19), while the last step verifies the second part of

(A.19).

Step 1. Using the fact that n/?p*2A,,, = 311 [{e] (I—H)e, }2—(n—d) " {e] (I—-
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H)ei}{e! (I — H)e,}], we have

np’ol, =np’E(A2 | F,_1) < Z{aj I — H)e,}? {5 (I — H)e,}?
4= )2 ST~ B (e (1~ )] (1 - H)e,)

-1 r—1

—2(n — d)_lz 2{83(1 — H)e,}{e; (I — HejHe, (I - H)er}

ﬂ_1> . (A20)

To obtain the explicit expression of 2., we next calculate the three terms on the

p.T>

right-hand side of (A.20) separately.

THE 1sT TERM IN (A.20). It is noteworthy that
B({e] (1 = M)z {e] (1 = H)=, 2|7,

= tr{E({aiT(I — H)e, Ye,e)

ﬂ_l) (I — H)eje) (I - H)}. (A.21)

This allows us to focus on the computation of E({gj(l - H)ar}%raﬂ]-}_l) in the first
term’s calculation. For the sake of simplicity, let {e] (I — H)e, }?c,e] = C = (c,4n) and

(I — H) = B = (b;j), where g, h,i, and j range from 1 to n. Accordingly, we have

n n n n
Cgh = g E E g <5r95rh) <5illbllk15rk1) <5ilzblzkzgrk2)'

k1=1ko=111=113=1

Because ¢, is a n-dimensional normal vector with mean 0 and variance o,..1, this leads

to E(cgnlFro1) = 07,2, 1, Ongbion+01,nbsg)€in ity = 20737, 4, bigbisneiny€a, for g # h.

In the case of g = h, we have

k#g
E(cgn|Fr1) = 0y, E b kbirEin i, + 302, E bi,gb1,gEi1, Eil,

k,l1,l2 11,02
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=207, E €it, biygbipg€it, + 07, E é‘zzl( E bzlkbzzk)é‘zzz

ll 12 ll 12

_ 2
- QUW E 5111611961295112 + Urrgz (I H)
l1,l2

Since the (g, h)-th element of (I — H)e;e] (I — H) is 3, ;. €a,bi,gbi,n€ir,, we obtain

E({gI(I—H)gT} £ )—20 (I — H)ee! (I — H) + o2e] (I — H)2e,I

=202 (I — H)eie] (I — H) +o2e] (I — H)gil,

rr-1

because I — H is a projection matrix. This, together with (A.21), leads to
E({e] (1 = H)e =] (1 = H)e, 2| o)

=tir

{2a (I — H)ewe] (I - H)}{(I—H)gjgj(l—ﬂ)}]

+tr

{o2el 1~ HkJ}ﬂf—Hkﬁﬂf—H&]
=202 {e] (I — H)g;}? + o2 {e] (I - H)ai}{ng(I — H)ej}. (A.22)
This completes the calculation of the major component of the first term in (A.20).

THE 2ND TERM IN (A.20). Employing Lemma 1(d), we obtain that
(n— ) 2B ({e] (1~ H)e, Y el (1 - H)s e (1 - e )| 7
=(n—d) " (n—d+2)or{e] (I — H)e;H{e] (I — H)e;} (A.23)

THE 3RD TERM IN (A.20). Lastly, we evaluate the third term of (A.20) by
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computing its major component,

B({e] (1 = M)y (] (1~ H)e)

Froa)

= B|{e] (1 = H)e,Hel (1 = H)eHe] (1 - H)e,)

Froa]

:tr{[E{a (I — H)eYeel |(1— H)eie] (I — H)} (A.24)

For the sake of simplicity, let {e] (I — H)e, }e,e, = C = (¢,1,), where

n n
Egh: E E 5rggrh(5rkbkl5rl)-

k=1 [=1

When g # h, we have FE(¢y,) = 202.bgn; otherwise, we obtain that

E(CQQ) - bggE + Z bkkE rg ) - 3bggaw + Z bkkarr
k#g k#g

=202 bgg + 02 Y by = 207, bgg + 0ptr(I — H) = 207,bgg + (n — d)o?,.

i=1
Accordingly, we have FE(¢! (I — H)e,e,e,) = 20%.(I — H) + (n — d)o?,I. The above

results lead to

E({e] (1 — H)e, Y] (1 = H)e He) (1 - H)ej}Fo )

=tr [{20 (I = H)+ (n = )2, 1) [{(T = H)zie] (1 - >}] (=] (1= 1))
=(n—d+2o.{e] (I - H)e}{e] (I — H)ej}. (A.25)

which completes the calculation of the major component of the third term. This,
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together with (A.20), (A.22) and (A.23), yields,

r—1 r—1
op,=2n""p Pl Y Y [{62(1 — H)e;}? — (n—d)"Hei(I — H)e He,; (I — H)ej}
i=1 j=1
= 4n_1/2p_3/203rap,7«_1 +2n 73D, (A.26)

where D, = 02, 31— H{1 — (n — d)~"}{&] (I — H)&;}? and a,,, is defined in (A.18).

Step 2. We verify the first part of (A.19). Because A, , is a martingale sequence,

one can verify that E(o) 407 o+ --+07 ) = Val"{T—gl-;S}. Accordingly, we only need

to show that var(3-V_, o7 ) /var®(T — ]igs) — 0. To this end, we focus on calculating

var(y_"_ o7 .). Because Theorem 3 implies that var(T — Bias) = O(np™!), (A.26)
suggests that we can prove the first part of (A.19) by demonstrating the following

results.
p p
(i.) V&l"(Z DT) = o(n'p") and (ii.) V&l"(Z afram_l) = o(n’p). (A.27)
r=1 r=1
To prove equation (i), we first note that
p p—1 p
ZDT = {1 —(n— d)_l} Z {5?([ — H)e; Z afr},

r=1 =1 r=i+1

where {¢/ (I — H)e; : 1 < i < p — 1} are mutually independent. After algebraic

simplification, we have

V&T(;DT) = {1 —(n—d) 1}2; <r;103r)2var{aj(l - H)az}
(i (S ) et a)
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< 277,2( Z ) (A.28)

=1 r=i+1
where the last inequality is using the fact that {1 — (n — d)™'}*(n —d) = (n — d —
1){1 - (n - ) 1} <n. Since Zr =i+1 Urr < Zr 100 pM27P and M27P —p M2 with

| M| < o0, the right-hand side of (A.28) can be further bounded from infinity by
p—1 9
2n Z <pM27p) oy < 2np*Mj, Z oy < 2np° M3, = o(n'p).
i=1 =

This verifies the equation (i) in (A.27).
We next show equation (ii). Because a,, =Y ._; A, ;, we obtain that
p D r—1
D Ohtnr1 =D 00 ) A= ZAPS >
r=1 r=1 s=1

r=s+1

Furthermore, using the fact that {A,: 1 < s < p— 1} is a martingale sequence, we

have

P p—1 P 2
var <Z afrap7r> = Z E<A§78) < Z gw> p*M; Z E< )
s=1 r=s+1

By Cauchy’s inequality, the right-hand side of the above inequality can be further

bounded from infinity by

» 1/2
p*M3 ,p {p‘l Y E (Aﬁ,s)} : (A.29)
s=1

Moreover, using the result that will be demonstrated in (A.30), we have Y 7_, E(A; ) =
O(n?p~3). This, together with the assumption, My, —, My with |Ms| < oo, implies
that the right-hand side of (A.29) is the order of O(np) = o(n®p), which completes the

proof of equation (ii) in (A.27).
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Step 3. We finally show the second part of (A.19). It is noteworthy that

r—1

Apy=n"p 2y [{é‘f(f — H)e,}* = (n—d)"{e (I — H)ei}{e, (I = H)ey}

=1

r—1
n—1/2p—3/2 Z{ngrgi}7
=1

where A, = (I — H)e,e| (I — H) — (n—d)~Y(I — H){g, (I — H)e,} that is a symmetric

matrix, and it is related to the current observation ¢, only. When ¢ # r, one can show

g

that tr(A,) = 0 and E(g] A,g|e,) = 0. Using these results, we have

— r—

oo

=1io=

rT— rT—

n2p6E <A§7r

1r—1 r—1
TA o7
&;, Ar€in€ Z2A €ir€i, Ar€is€y, TAe,le
liz=11d4=1

i3=1i4=

= F <3 Z Z{aTAraz} {€TA7«€]}2 -+ Z{aTA i} r).
i=1 ji

In addition, one can verity by Lemma 2 that there exists constants C;, Csy, and Cj

such that
r—1
O <A§7T 57«) < Z Z ohostr? (AZ) + Co Z oy [tr2(Af) + tr(AY)
i=1 j#i i=1

< Cop? [1r2(A2) + (D).
After algebraic simplification, we obtain that
tr(A?) = <(I H)ewe! (I — H)eye[ (I —H) + (n—d) (I — H{e] (I — H)e, }?
—2(n —d)"MI — H)eye] (I — H){e] (I — H)gr})
={1-(n—-d) " He (I - H)e,}?
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and tr(AY) ={1—4(n—d) +6(n—d)>—3(n—d)*}{e] (I — H)e,}*. Consequently,

we have
WP E(AL) < E{cgp%r?(Af) + cgp%r(A;‘:)} < c4p2E<{g:(1 - H)gr}‘l)

rro

4
< C4p2E(5TT€T)4 = Cyp*n'E <5:5r/n) < 20p*no?

where C} is a positive constant and the last inequality is due to the fact that €e,/n —,

o This implies that
P
E(Z A;T) <2Cn*p ol = 0<n2p_2), (A.30)
r=1

which proves the second part of (A.19) and thus completes the proof of Theorem 4.
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