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Highlights
Genetic parameters enable the inclusion of these traits in donkey breeding programs.

Combined selection for maximum foal number and historical foal number is
feasible.

Selection for twinning in donkeys may have traditionally been carried out indirectly.

Genetic relationships enable developing donkeys' multiple birth production lines.

Abstract
Multiple births or twinning in equids are dangerous, undesirable situations that compromise the
life of the dam and resulting offspring. However, embryo vitrification and freezing techniques take
advantage of individuals whose multiple ovulations allow flushing more fertilised embryos from the
oviduct to be collected, increasing the productivity and profitability of reproductive techniques.
Embryo preservation is especially important in highly endangered populations such as certain
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donkey (Equus asinus) breeds; for which conventional reproductive techniques have previously been
deemed inefficient. For instance, becoming an effective alternative to artificial insemination with
frozen semen to preserve the individuals' genetic material. The objective of this study was to
examine the historical foaling records of Andalusian donkeys to estimate prevalence, risk factors,
phenotypic and genetic parameters for multiple births, assessing the cumulative foal number born
per animal, maximum foal number per birth and multiple birth number per animal. We designed a
Bayesian General Animal Mixed Model with single records considering the ‘fixed’ effects of birth
year, birth season, birth month, sex, farm, location, and husbandry system. Age was considered and
included as a linear and quadratic covariate. Gibbs sampling reported heritability estimates ranging
from 0.18±0.101 to 0.24±0.078. Genetic and phenotypic correlations ranged from 0.496±0.298 to
0.846±0.152 and 0.206±0.063 to 0.607±0.054, respectively. Predicted breeding values obtained enable
the potential selection against/for these traits, offering a new perspective for donkey breeding and
conservation.

Keywords

Donkey; Twinning; Heritability; Gibbs sampling; Risk factors

1. Introduction
The occurrence of multiple births has been addressed as one of the main causes of fetal and
neonatal loss in equids (Jeffcott and Whitwell, 1973). The majority of twin pregnancies in horses
(72.6%) terminates in abortion or stillbirth of both twins from eight months to term. Out of these
terminated pregnancies, 64.5% ends from 3months gestation to term. In the remaining cases, either
one (21%) or both twins (14.5%.) are born alive or survive after birth complications. However, the
foals are usually born stunted or emaciated, which does not allow them to survive further from
2weeks of age (Jeffcott and Whitwell, 1973).

In the case of the donkey species, (Quaresma et al. (2015)) addressed the overall neonatal mortality
for the first month of life to be near 9% of all births. These authors would also report that the
percentage of twin foaling at full term was only around 3%, with a neonatal foal mortality rate of
40%. Hence, the selection of individuals that may be less prone to present multiple ovulation could
be a preventive alternative to decrease the risks attached.

Contrastingly, the donkey is a species for which the most of its breed populations have been classed
as endangered (Kugler et al., 2008) and that has been reported to be highly reproductively
compromised as it happens with many other endangered populations (Navas et al., 2016). These
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reproductive compromises may be attributed to the deleterious effects of inbreeding in such
populations (Navas et al., 2017). The long gestation cycle (a norm of 12months to give birth in the
13th month) (Weaver, 2008), fertility that steadily decreases over generations (Quaresma et al., 2015)
and the highly inbred status of donkey breed populations (Navas et al., 2017; Quaresma, 2015) only
contribute to worsening the endangerment risk situation that donkey breeds face worldwide.

Furthermore, highly standardised reproduction techniques in horses and other equids (Hearn and
Summers, 1986) such as artificial insemination with frozen semen still represent a challenge in
donkeys. These challenges have been directly related to the anatomical, histological and
physiological differences that exist between the reproductive tracts of both species. Particularly, the
most likely hypothesis regarding the inefficiency of frozen semen artificial insemination addresses
the high immune response in the endometrium of jennies when compared to mares as the main
cause. Jennies are more likely to get acute endometritis 6h after artificial insemination (AI) with
frozen semen than mares, what has been attributed to the elimination of the modulating effects of
seminal plasma discarded while preparing frozen doses (Miró and Papas, 2017; Rota et al., 2017;
Saragusty et al., 2017). This context lays the basis for embryo vitrification and freezing to arise as
new possibilities that may enable the preservation of the genetic material of donkeys belonging to
populations for which the numbers rarely exceed 1000 individuals. This is supported as the
pregnancy rates of 50% and 36% after the transfer of fresh and vitrified embryos, respectively
(Panzani et al., 2017), overcome the best currently reported results for pregnancy rate (28%) obtained
for uterine horn insemination using frozen-thawed semen (de Oliveira et al., 2016). The efficiency
and profitability of such reproductive techniques could be improved relying on the higher ability of
certain animals to develop multiple ovulations, even more, when those animals may be genetically
prone to develop them at a higher rate.

Studies of the genetic background of multiple pregnancies and fertility in equines have reported
very low heritabilities, in general (Van Vleck and Gregory, 1996). However, these findings normally
ascribe to the capacity of the methodology implemented to fit the evaluation of such traits given
their statistical nature (non-normal distribution and high skewness) (Van Tassell et al., 1998). In this
context, horse breeding schemes progressively adopt new research methods such as the use of
genetic markers and genotyping beadchips as a way to integrate the most recent genetic advances to
their relatively stable traditional idiosyncrasies (Sieme and Distl, 2012). By contrast, no study
approaching the genetic background behind donkey fertility has been conducted until the date,
hence, efforts towards increasing the knowledge on the field have rather focused on risk factor
evaluation or populational frequency studies.

The present paper describes a retrospective study over a period of 38years, given the birth year of
the oldest animal registered in the studbook was 1980. The first aim of this paper was the
assessment of the prolificacy, fertility, and frequency of multiple pregnancies in the historical
population of Andalusian donkeys. To do this, we analyzed cumulative foal number born per
animal, maximum foal number per birth and multiple birth number per animal traits. Second, we
isolated and quantified the influence that non-genetic factors (farm, husbandry system, location,
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year of birth, birth season, birth month or age) may have on such traits. Then, we isolated and
quantified the genetic additive component for the same traits through the estimation of the genetic
parameters using Gibbs sampling. Afterward, we predicted breeding values as a way to assess the
potential implementation of a bidirectional breeding strategy for/against multiple pregnancies. This
strategy may simultaneously consist of animals selected against multiple births because of the
gestation complications that they involve, while other individuals may promote the occurrence of
multiple births, seeking higher conservation profitability based upon an increased number of
embryos to collect while implementing assisted reproduction plans.

2. Materials and methods

2.1. Sample size and background

We studied the foaling recordings of 765 individuals registered in the historical pedigree record of
the Andalusian donkey breed (181 jacks and 584 jennies). As age range was not normally distributed
(P≤0.01 Shapiro-Francia W′ test for normality), we used minimum, Q1, median, Q3 and maximum
to describe the age range in our sample. The minimum age in the range was six months, Q1 age was
six years, the median age was ten years, Q3 age was 14years, and the maximum age was 29years. Such
a wide age range was considered, given the fact that we assess reproductive traits in an endangered
breed with therefore a limited number of individuals able to provide data. That is, we need to build
a model that may suit the inclusion of cases like already dead animals from which we know their
whole birth record, those animals for whom their reproductive life is still active and likely to
continue or those for whom their reproductive life has not started yet. Hence, we included the age
of birth in our model to correct for such cases to adjust the data for each animal to their
reproductive moment. The youngest age at which both jacks and jennies gave birth for the first time
was three and four years old, respectively (Navas et al., 2017). Moreover, it is often a decision of
owners in particular not to breed the animals until they have been recognised as apt for
reproduction and included in the main section of studbook of the breed what takes place when the
animals turn 3years old.

The donkeys in the sample were the progeny of 93 jackstocks and 253 jennies. All the donkeys were
registered in the breed's Spanish studbook. The relationships among all the individuals comprising
the pedigree of the breed are routinely genetically tested using microsatellite genotyping and
parentage tests performed on each mating and its resulting offspring (Table 1). The application of
microsatellite molecular marker genotyping and parentage testing improves and ensures the
reliability of the information in the pedigree as a way to counteract the small size of the sample
tested. The 24 molecular markers used were recommended by the International Society of Animal
Genetics for donkeys (Table 1). The DNA used for parentage tests was obtained from hair samples
that are routinely taken when the inscription of each new animals takes place and from the
historical bank of samples of the breed kept at the laboratory of applied molecular genetics of the
University of Córdoba. All tests were carried out using a pedigree file provided by the Union of
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Andalusian Donkey Breeders (UGRA). The pedigree file included 1017 animals (272 males and 745
females) born between January 1980 and July 2015 from which only 914 donkeys, 246 males, and 668
females, were alive during the development of the study.

Table 1. 24 specifical microsatellite primers (nuclear DNA) used for genotyping and parentage tests in
donkeys.

AHT4 F: AACCGCCTGAGCAAGGAAGT 128–160

R: GCTCCCAGAGAGTTTACCCT

AHT05 F: ACGGACACATCCCTGCCTGC 124–154

R: GCAGGCTAAGGAGGCTCAGC

ASB2 F:*CACTAAGTGTCGTTTCAGAAGG 222–256

R: CACAACTGAGTTCTCTGATAGG

ASB23 F: GCAAGGATGAAGAGGGCAGC 134–148

R: CTGGTGGGTTAGATGAGAAGTC

UCDEQ (CA)425 F: AGCTGCCTCGTTAATTCA 222–242

R: CTCATGTCCGCTTGTCTC

HMS2 F: CTTGCAGTCGAATGTGTATTAAATG 225–245

R: ACGGTGGCAACTGCCAAGGAAG

HMS3 F: CCAACTCTTTGTCACATAACAAGA 152–170

R: CCATCCTCACTTTTTCACTTTGTT

HMS5 F: TAGTGTATCCGTCAGAGTTCAAAG 97–111

R: GCAAGGAAGTCAGACTCCTGGA

HMS6 F: GAAGCTGCCAGTATTCAACCATTG 149–167

R: CTCCATCTTGTGAAGTGTAACTCA

HSM7 F: CAGGAAACTCATGTTGATACCATC 167–177

R: TGTTGTTGAAACATACCTTGACTGT

HTG6 F: CCTGCTTGGAGGCTGTGATAAGAT 78–84

Locus Primers (5′ →3′) Sequence length/range (bp)



R: GTTCACTGAATGTCAAATTCTGCT

HTG10 F: CAATTCCCGCCCCACCCCCGGCA 83–103

R: TTTTTATTCTGATCTGTCACATTT

HTG15 F: TCCTGATGGCAGAGCCAGGATTTG 116–134

R: AATGTCACCATGCGGCACATGACT

LEX3 F:ACATCTAACCAGTGCTGAGACT 194–220

R:AAGAACTAGAACCTACAACTAGG

VHL20 F: CAAGTCCTCTTACTTGAAGACTAG 75–105

R: AACTCAGGGAGAATCTTCCTCAG

TKY287 F:ATCAGAGAACACCAAGAAGG 215–245

R:TCTCTGCTATAGGTAAGGTC

TKY294 F:GATCTATGTGCTAGCAAACAC 210–235

R:CTAGTGTTTCAGATAGCCTC

TKY297 F:GTCTTTTTGTGCCTCGGTG 215–250

R:TCAGGGGACAGTGGCAGCAG

TKY301 F:AATGGTGGCTAATCAATGGG 140–170

R:GTGTATGATGCCCTCATCTC

TKY312 F:AACCTGGGTTTCTGTTGTTG 90–130

R:GATCCTTCTTTTTATGGCTG

TKY321 F:TTGTTGGGTTTAGGTATGAAGG 175–210

R:GTGTCAATGTGACTTCAAGAAC

TKY341 F:TATCCAGTCACCCATTTTAC 135–160

R:TTGTGTCAGTACACTCTATG

TKY343 F:TAGTCCCTATTTCTCCTGAG 135–170

R:AAACCCACAGATACTCTAGA

TKY344 F:GTGTCCATCAATGGATGAAG 75–115

R:CTTAAGGCTAAATAATATCCC

F: Forward primer; R: Reverse primer.



2.2. Birth-related traits

We studied prolificacy, fertility and multiple birth occurrence in the historical Andalusian donkey
breed population through the assessment of cumulative foal number born per animal, maximum
foal number per birth and multiple birth number per animal for each jack or jenny. To obtain this
information, we contrasted the registries of the historical pedigree file with interviews with the 145
owners whose animals participated in the study. Owners were interviewed due to the fact that it is
very likely for the early abortion of multiple gestations not to be registered if it is not in the
veterinarian or owners' personal records. Then, from this initial sample of owners, we only
considered the ones who affirmatively responded to the question in block 2 for the estimation of
genetic parameters (90 out of 145 owners interviewed) as a veterinarian or theriogenologist had
issued an official gestation diagnosis (simple or multiple). This excluding criterion was applied as a
way to consider those cases when abortions had occurred. Many twin (and triplet) pregnancies in
equids are already lost at very early stages and the aborted material stays mostly undetected by the
owners, which could have distorted the true number of pregnancies with multiple conceptuses.

First, we summarised the cumulative foal number born per animal. That is for the total of 765
individuals, the number of offspring foaled (resulting from natural mating or artificial
insemination) by each of 584 jennies or born to each of 181 jacks, either over their reproductive
lifetime or up to July 2015 (absolute scale 0 to 40). Second, the maximum foal number per birth, or
the maximum number resulting at any of all the deliveries through the life of each jenny,
considering which jack was used to breed. That is, for the same 765 animals, the maximum number
of offspring born in a single foaling event in which the individual (male or female) was part of either
over its reproductive lifetime or up to July 2015 (absolute scale 0 to 3). Third, multiple birth number
per animal, that is for the same 765 animals, the sum of all mating events resulting in multiple
gestations either over the reproductive life of the individual (male or female) or up to July 2015
(absolute scale 0 to 5).

The units of study considered for descriptive statistics and populational data were each of the births
occurring in the 91% of Andalusian donkey population and the characteristics of such births
(number, moment, among others). The records for the remaining 9% of the population were not
readily available or did not fulfil the requirements set for them to be included in the analyses
(Supplementary Table S1). For genetic analyses, the unit of analysis that we considered was the
lifetime parentship record of each animal separately to avoid the possibly occurring unmodelled
covariance between sire and dam due to their mating and successful conception differences. That is
to say; we summed every molecularly confirmed jack and jenny's birth registries separately so that
for the data considered reliable. Given the BLUP methodology was applied (Parnell, 2004), data
obtained can either belong directly from field observations and registries or indirectly, because of
individuals being directly genealogically linked to common ancestors.

2.3. Interview description

A telephone survey was carried out to 145 different owners whose farms were located in Andalusia
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(southern Spain). The survey took place in June 2017. We interviewed owners regarding the specific
foaling registry of all the animals historically present at their farms since the 1980s until 2017 and
registered in the studbook of the breed at the moment that the survey took place. The oldest donkey
from which there was information available had been born in 1984. All the interviews comprised a
battery of 18 questions that were asked by the same interlocutor and each interview lasted for a
mean time of 10min. Despite the lack of multiple births or gestation in their farms stated by the
owners, all the questions were asked indistinctly. A description of the questions and options asked
the owners is shown in Supplementary Table S1. Supplementary Table S2 defines the unordered
categories or levels (extensive, semi-extensive, semi-intensive and intensive) of the husbandry
system factor. There were open questions (regarding the location of the farms, the age of the
animals or the number of animals present in the farms at the moment that the interviews took
place) and closed questions (regarding the sex, the husbandry system under which the animals were
handled, and the prevalence of multiple gestations from the past up to the date when the interview
was performed). All the information provided by the owners was contrasted with the information
provided by UGRA and the information present in the official stud-book of the breed.

2.4. Records description and scales

We organised the questions into three blocks (Supplementary Table S1). The first block aimed at
describing the farms of the owners' interviewed to statistically assess the possible effects that may
condition the prevalence of multiple gestations or births. We included the questions asked to the
owners to classify or define the husbandry system under which their farms were managed in
Supplementary Table S2. These questions based on the extension of territory to which the donkeys
had access, whether the donkeys were reproductively handled and whether the owner held daily
contact with them or they were handled just for minimum punctual health inspection and studbook
inclusion. The second block comprised a single question related to whether the diagnosis by a
veterinarian or theriogenologist had been requested. The second block comprised the excluding
question of whether a theriogenologist or veterinarian had been requested for diagnosis and an
official diagnose had been issued, as only the owners affirmatively responding to it were included in
the statistical and genetic analyses. The third block consisted of questions regarding the assertive
diagnosis of the multiple births, and the care and preventive measures taken in each case. When the
animals had never given birth, had suffered from an undetected early embryonic loss nor had
carried any embryo, we gave them a score of 0.

2.5. Population frequency statistical analysis (pedigree retrospective screening)

To achieve the first aim of the paper, that is to provide a picture of the prolificacy, fertility and
multiple gestation status during the whole history of the Andalusian donkey breed, descriptive
parameters were computed. Among these parameters, we calculated the average number of foals
born per year and the highest number of births registered during the whole story of the breed for a
certain year. Furthermore, the mean prevalence of multiple births per hundred births and the
percentage of the population that had not given birth to any foal when the registries were also



studied in the historical Andalusian donkey population. Then, to assess the occurrence of multiple
gestations the proportion of single, twin and triplet pregnancies detected was also studied for the
whole population. All triple pregnancies were interrupted.

2.6. Isolation and quantification of non-genetic risk factors

A Shapiro-Francia W′ test revealed that the data significantly deviated from a normal distribution
(P<0.001) (Fig. 1) which was supported by Kurtosis values (Supplementary Table S3). Thus, we carried
out a cross-sectional study employing Chi-square analysis to determine whether the categorical
independent effects of birth year, birth season, birth month, sex, location, farm/owner, and
husbandry system and the covariate of the age may randomly influence the dependent variables of
cumulative foal number born per animal, maximum foal number per birth and multiple birth
number per animal. We performed a Kruskal-Wallis H test to study the potentially existing
differences between levels of the same factor except for age, as it is measured on a continuous scale
(Table 2). We present Kruskal Wallis H Ranks for all the levels of the factors affecting historical foal
number born per animal, maximum foal number per birth and multiple birth number per animal
in Supplementary Table S4.

Afterward, we studied the pairwise comparisons between the levels of any dependent variables for
which the Kruskal-Wallis test was significant, aiming at assessing whether there were differences
between groups (levels) of the same factor. We used the Mann-Whitney U test for sex, as it only has
two levels, jack and jenny, and Dunn's test for the rest of the factors. Bonferroni corrections for
multiple comparisons were used to prevent the occurrence of Type I errors. Additionally, an
independent-sample median test was carried out to assess the differences in the median between
levels within the same factor.
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Fig. 1. Frequency distribution histograms for maximum foal number per birth, multiple birth
number per animal for a given donkey and cumulative foal number born per donkey.

Table 2. Summary of the results for the Kruskal-Wallis H test and their partial eta-squared
coefficients (ηp ) for fixed effects and the covariate included in the model to test for birth-related
traits in Andalusian donkeys.

Year of birth χ 41.548 30.787

df 31 31

p-value 0.098 0.477

Levels 1984–2017 1984–2017

Mean rank 345.15–404.00 345.15–404.00

ηp 0.234 0.184

Month of

birth

χ 16.085 15.128

df 11 11

p-value 0.138 0.177

Levels January, February, March, April, May,

June, July, August, September, October,

November, December

January, February, March, April, May,

June, July, August, September, October,

November, December

Mean rank 345.22–424.28 350.00–405.01

ηp 0.146 0.134

Season of

birth

χ 7.750 7.201

df 3 3

p-value 0.050 0.066

Levels Winter Spring Summer Autumn Winter Spring Summer Autumn

Mean rank 368.70 402.81 373.02 370.13 369.64 395.08 380.22 379.90

ηp 0.099 0.093

2

Factor Item Cumulative foal number born per animal Maximum foal number per birth

2

2

2

2

2

2



Then, we quantified the strength effect of the factors reported above on cumulative foal number

Sex χ 12.348 3.676

df 1 1

p-value 0.001 0.050

Levels Jack Jenny Jack Jenny

Mean rank 418.85 371.89 396.39 378.85

ηp 0.124 0.074

Farm/Owner χ 302.220 321.748

df 91 91

p-value <0.001 <0.001

Levels 1–92 1–92

Mean rank 162.00–732.00 350.00–744.75

ηp 0.626 0.558

Husbandry

system

χ 24.169 5.027

df 3 3

p-value <0.001 0.170

Levels Intensive Semi

intensive

Semi

extensive

Extensive Intensive Semi

intensive

Semi

extensive

Extensive

Mean rank 370.390 385.340 397.550 317.960 406.390 388.060 385.490 363.450

ηp 0.176 0.076

Location χ 67.358 42.013

df 10 10

p-value <0.001 <0.001

Levels 1–11 1–11

Mean rank 222.75–620.50 350.00–613.17

ηp 0.291 0.229

Age (in

years)

Spearman's

rho

−0.137 0.085

p-value <0.001 0.019

2

2

2

2

2

2

2

2



born per animal, maximum foal number per birth and multiple birth number per animal for each
jack or jenny to understand the proportion of variability existing in these variables that may be
isolatedly explained by each of the factors studied. To this aim, F values were computed from the
Kruskal-Wallis H tests using the modified method of Murphy et al. (2014). Then, from F(dfn,dfd), we
calculated partial eta squared (Lakens, 2013) following the methodology for non-standard
evaluations in the research described and reported by Li et al., 2019.

Partial eta-squared (ηp ), was computed to measure the strength of association between each
categorical independent factor from the first set with the ordinal dependent variables of cumulative
foal number born per animal (considered ordinal as described by (Ibarra et al., 2005), maximum foal
number per birth and multiple birth number per animal using the Crosstabs procedure from SPSS
Statistics for Windows, Version 24.0, IBM Corp. (2016) (Table 2). Values labeled eta squared on some
printouts from SPSS are actually partial eta . Similarly for age, Spearman's rho was computed to
measure the strength of association between it and the ordinal dependent variables of cumulative
foal number born per animal, maximum foal number per birth and multiple birth number per
animal using the Bivariate procedure from SPSS Statistics for Windows, Version 24.0, IBM Corp.
(2016) (Table 2). All non-parametrical tests were carried out using the independent samples package
from the non-parametrical task of SPSS Statistics for Windows, Version 24.0, IBM Corp. (2016).

Once the separate effect of each factor had been computed, a categorical regression (CATREG) was
used to describe how the variables in our study linearly depended on combinations of the factors
considered (Table 2, Table 3). Then, the resulting regression equations could be used to predict
cumulative foal number born per animal, maximum foal number per birth and multiple birth
number per animal for any combination of the independent factors included in the model.
Categorical Regression was carried out using the Optimal Scaling procedure from the Regression
task from SPSS Statistics for Windows, Version 24.0, IBM Corp. (2016).

Table 3. Model summary of CATREG optimal linear regression with transformed variables.

Cumulative foal number

born per animal

0.687 0.472 0.267 0.528 1.497 0.780 0.001

Maximum foal number per

birth

0.677 0.458 0.358 0.050 0.072 0.010 0.001

Multiple birth number per

animal

0.959 0.919 0.671 0.026 0.156 0.068 0.001

2

2

Variable Multiple

R

R

Square

Adjusted R

square

Apparent

prediction error

Estimate Std.

error

Significance
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2.7. Isolating and quantifying the additive genetic component: genetic model, phenotypic
and genetic parameters

As we only considered one measure per animal, the model used was a Bayesian general linear mixed
model with single records. All effects are random in a Bayesian analysis. However, we will follow the
nomenclature methodology explained by Van Tassell and Van Vleck (1995) regarding ‘fixed’ effects
and random effects as common in animal modelling. The factors submitted to the above described
statistical procedures and which comprised the general animal mixed model consisted of the ‘fixed’
effects of birth season (summer, spring, autumn, and winter); sex ( jack or jenny); the farm (92
farms/owners), the location (11 locations, clustering farms placed at the same municipality) and
husbandry system (intensive, semi-intensive, semi-extensive and extensive).

At a previous stage of the study, we computed the double interaction between herd and year of birth
(Herd*Birthyear) and the triple interaction between the herd, the year of birth and season of birth
(Herd*Birthyear*Birth season) as these were the most regularly included in literature for the same
kind of studies in other species such as goats or sheep. Then we tested for the repercussion of the
inclusion of such interactions in the model used in the present paper (Eq. (1)). As results for adjusted
R-squared for non-normal data may be misleading, Akaike's Information Criterion (AIC) and
Bayesian Information Criterion (BIC) were computed both including and without including the
interactions reported above. A summary of the results in Supplementary Table S5. Adjusted R-
squared is used mainly to correct for overfitting, the phenomenon by which the residual sum of
squares (RSS) of the model typically keep on decreasing by adding additional variables. We
computed the expected prediction error of regression with 0.632 Bootstrap (“leave-one-out
bootstrap”) from 200 bootstrap samples (Efron, 1983; Kooij, 2007). In regression contexts (Yong,
2005), to choose the best predictive model we select the one that provides the minimum AIC or BIC
(excluding the interaction in our case), denoted by AIC* or BIC*. Candidate models are represented
by AICm or BICm (in our case the models including the interaction). We can compute delta
AIC=AICm–AIC* or delta BIC=BICm–BIC*. Given M models, the magnitude of the delta AIC and
BIC can be interpreted as evidence against a candidate model being the best model. The rules of
thumb are <2, it is not worth more than a bare mention (for both AIC and BIC); between 2 and 6 and
4 and 7 for BIC and AIC, respectively, the evidence against the candidate model is positive; between
6 and 10 for BIC, the evidence against the candidate model is strong and >10, the evidence is very
strong that is there is essentially the candidate model it is unlikely to be the best model (Fabozzi et
al., 2014).

The multi-trait animal threshold models used for the analyses can be described as follows:

where Y  is the separate record of ith trait for jth donkey (cumulative foal number born per
animal (1 in matrix below), maximum foal number per birth (2 in matrix below) and multiple birth
number per animal for a given donkey (3 in matrix below); μ is the overall mean for the trait; aij is
the additive genetic effect of the jth donkey for ith trait, Sea  is the fixed effect of the kth birth season

(1)Yijklmop = μ + aij + Sea𝑘 + Sex𝑙 + Far𝑚 + Sys𝑛 + Loc𝑜 + b1A𝑞 + b2A2
𝑞 + eijklmnop

ijklmnop

k
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(k=summer, spring, autumn, winter); Sex  is the fixed effect of the lth sex (l=jack, jenny); Far  is the
fixed effect of the mth farm/owner (m=1–92); Sys  is the fixed effect of the nth husbandry system
(n=intensive, semi-intensive, semi-extensive, extensive); Loc  is the fixed effect of the oth Location
(o=1–11); b1 and b2 are the linear and quadratic regression coefficients on age when the tests took
place (A  and A ) and e  is the random residual effect associated with each record. No maternal
effect was computed because of the low completeness level found in the pedigree, as 53.36% of the
dams in the study were unknown (Navas et al., 2017). Such a lack of information could have
represented a problem when performing genetic analyses. However, as our sample provides direct
or indirect information from 91% of the animals included in the pedigree, we could save the
possible drawback meant by the missing information. Then, the quality of the predicted genetic
values estimated was quantified by reporting their reliability.

We included the age of the animals expressed in years as a linear and quadratic covariate to correct
the variables measured according to the lifetime of each animal and specifically the cases in which
the animals were too young to have given birth to their first foal/s. We included the effect of sex on
our model to save the imbalance between sexes, even more, when we consider the vast differences
between the offspring of males and females given the long duration of the gestation of the species.

In matrix notation, the multi-trait model used was:

where y  to y  represent the phenotypical observation for each trait and animal. The vectors of ‘fixed’
effect for the three different traits considered (β  to β ) include all the effect related in the model
described above and the vectors α  to α  and ε  to ε  are random additive genetic and residual
effects for each trait, respectively. The incidence matrices X  to X  and Z  to Z  associate elements of
β  to β  and α  to α  with the records in y  to y .

If A is the matrix of additive genetic relationships among individuals, the mixed model equations
(MME) used is as follows:

Proxies of prolificacy (i.e. number of offspring produced in a single parturition) are calculated as
sums over random time periods eventually censored by nature, and/or the will of the owner, and/or
the timeframe of the study (each donkeys' lifetime, especially in animals that are too young to have
given birth). Hence the importance of including, assessing and controlling factors such as owner
and age of birth as reported above.

2.8. Institutional animal care and use committee statement

All farms included in the study followed specific codes of good practices for equids and particularly
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donkeys and therefore, the animals received humane care in compliance with the national
guidelines for the care and use of laboratory and farm animals in research. All subjects gave their
informed consent for inclusion before they participated in the study. The study was conducted in
accordance with the Declaration of Helsinki. The Spanish Ministry of Economy and Competitivity
through the Royal Decree-Law 53/2013 and its credited entity the Ethics Committee of Animal
Experimentation from the University of Córdoba permitted the application of the protocols present
in this study as cited in the 5th section of its 2nd article, as the animals assessed were used for
credited zootechnical use. This national Decree follows the European Union Directive 2010/63/UE,
from the 22nd of September of 2010.

3. Results

3.1. Interview results

Out of the 145 owners interviewed, we considered the information from 92 farms/owners. These
owners had affirmatively responded to the question in the second block as they were the only who
had requested information concerning diagnosis by their veterinarians or theriogenologists and
therefore, were the only ones providing reliable information. Due to the particularities of the
species and the breeding routines carried by the owners, the artificial insemination with fresh
semen of the animals registered in the studbook was infrequent, and almost all the matings were
performed naturally. No productive artificial insemination using frozen semen was registered. The
matings of only 66 animals out of the 765 donkeys from which there was information (8.63% of the
total sample) had resulted in multiple gestations. Out of this percentage, 1.04% of the animals
developed multiple gestations in more than one occasion through their lives and only one of the
animals was responsible for 0.13% of multiple gestations in the population (five multiple births out
of 40 births through his life).

3.2. Population frequency statistical analysis (pedigree retrospective screening)

The average number of foals born per year reported a value of 28.19, reaching the highest number
(71) in 2003. The mean prevalence of multiple births per hundred births in the Andalusian donkey
population was 9.85%. The 11.18% of the population had not given birth to any foal when the
registries were studied. The proportion of single, twins and triplets' pregnancies detected (all triple
pregnancies were interrupted) was 90.15%, 9.70%, and 0.15%, respectively implying 604 single births
records, 65 twin records, and 1 triplet birth record.

The pedigree of the donkeys in our sample was traced back six generations providing indirect
information from 930 connected ancestors (91% of the historical population registered) and
reporting an average inbreeding of 0.7% for the historical population. Although this average
inbreeding coefficient could seem not to be alarming enough, it is only due to this value presumably
being underestimated, as it happens in other endangered equid populations, given the low level of
completeness reported for the Andalusian donkey breed population (Navas et al., 2017). The same
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authors reported the same parameter increased up to 1.51% when only those animals whose first-
generation genealogy was known were considered. The percentage of females with progeny selected
for breeding was 10.76% and 25% for males in the historical population. Historically breeding jacks
were 2.98years older than breeding jennies on average. The average age of parents when their
offspring was born was 8.08years (8.03 for jennies and 8.16 for jacks). The average generation interval
was 7.40years (Navas et al., 2017).

3.3. Isolation and quantification of non-genetic risk factors

Shapiro-Francia W′ Test (P<0.001) and higher or lower kurtosis values than three on all the ‘fixed’
effects, the covariate and interaction showed that they highly significantly did not fit a normal
distribution. The variability observed for the two traits analyzed was from moderate to high, with a
coefficient of variation of 21.3% for the husbandry system effect and 82.2% for the effect of the
farm/owner.

The results of Chi-Square, Partial eta (for each independent categorical-dependent ordinal pair of
variables) and Spearman's rho correlation coefficient (for the effect of age on the ordinal dependent
variables studied), testing for the existence of linear correlation are shown in Table 2. Partial eta
effectively and statistically significantly measured the strength of collinearity that the sex and farm
factors have on continuous variables of cumulative foal number born per animal, maximum foal
number per birth and multiple birth number per animal for a given donkey.

Husbandry system reported highly statistically significant (P<0.001) collinearity with the cumulative
foal number born per animal (Table 2). Kruskal-Wallis H test and Chi-square reported the effects
birth year and birth month to be statistically nonsignificant (P>0.05) for the three dependent
variables considered. The same test reported the rest of independent variables (sex, owner/farm and
husbandry system) to be statistically significant (P <0.05) for all dependent variables except for
husbandry system on maximum foal number per birth and multiple birth number per animal for a
given donkey and birth season on maximum foal number per birth and multiple birth number per
animal for a given donkey (P>0.05) (Table 2).

From the results of the Mann-Whitney U Test (Supplementary Table S6), we can conclude that
cumulative foal number born per animal and maximum foal number per birth in jacks was
statistically significantly higher than in jennies (U=46,363.500, P<0.001 and U=50,364.000, P<005).
However, the opposite trend was described by multiple birth number per animal for a given donkey,
which was statistically significantly higher in jennies than in jacks (U=47,730.000, P<0.05).

The results of the Dunn test in our study reported the fact that there were highly statistically
significant differences for 44.69% of pairwise comparisons of farms/owners for maximum foal
number per birth and from 5.45% to 12.73% of pairwise comparisons of location for multiple birth
number per animal for a given donkey and of location for maximum foal number per birth,
respectively (mostly involving differences between location 3 and others). The same test reported
statistically significant differences between extensive, semi-extensive and semi-intensive husbandry
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systems (P<0.05) for maximum foal number per birth (Supplementary Table S7).

CATREG was performed on the 5 qualitative independent variables (birth season, sex, location,
farm/owner, husbandry system) and age as a covariable with the three birth-related continuous
variables (cumulative foal number born per animal, maximum foal number per birth and multiple
birth number per animal for a given donkey) as dependent variables. Categorical regression
quantifies categorical data by assigning numerical values to the categories, which results in an
optimal linear regression equation for the transformed variables. CATREG is also the name of the
program in SPSS that uses the Categorical Regression Analysis algorithm (Van der Kooij and
Meulman, 2007). In this analysis, categorical variables are quantified by using optimal scaling, in
order to reach the optimal regression model coefficients. “Optimal Scaling” is the quantification
method of the variant variables in Gifi (1990). With the results from CATREG, it is still required to
verify the statistical significance of the predictors. Consequently, CATREG is equivalent to a
standard linear regression when the qualitative predictors are substituted by the linear and
nonlinear transformed (quantified) values (Çilan and Can, 2014).

Optimal scaling transformations were carried out as described by (Van der Kooij and Meulman,
2007). According to these authors, at the same time that CATREG algorithm provides a very simple
and efficient way to compute the regression coefficients in the constrained models for Ridge
regression, the Lasso, and the Elastic Net it also prevents the inflation of R-squared and bias
(towards zero) of the estimates of standard errors and thus, F-tests and P-values that is likely to
occur. The estimated coefficients reflect how changes in the predictors affect the response. We
present the summary results with the significant variables in Table 3, Table 4. The standardised
coefficients (β) are listed in Table 4. CATREG reported all of the independent variables except for the
birth year and sex to be significant for cumulative foal number born per animal. Sex was
nonsignificant for the maximum foal number per birth and multiple birth number per animal. The
birth season was nonsignificant for Multiple birth number per animal and husbandry system for
cumulative foal number born per animal and multiple birth number per animal.

Table 4. Standardised coefficients and significance of CATREG model.

Birth season 0.098 0.013 0.086 0.000 0.031 0.993

Sex 0.435 0.000 0.020 0.391 0.006 0.902

Variable Cumulative foal number born

per animal

Maximum foal number per

birth

Multiple birth number per

animal

Parameter

Factor Standardised

Coefficients (β)

Significance Standardised

Coefficients (β)

Significance Standardised

Coefficients (β)

Significance
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Owner/Farm 0.478 0.000 0.592 0.000 0.921 0.000

Location 0.159 0.000 0.246 0.000 0.307 0.033

Husbandry

system

0.032 0.439 0.045 0.139 0.096 0.636

Age (in years) 0.207 0.002 0.163 0.000 −0.059 0.620

There was a small to moderate monotonic (whether linear or not) significant (P<0.05) correlation
between age and the three variables tested (Table 2). This correlation was inverse (−0.137) in
cumulative foal number born per animal, that is if age increases the cumulative number of foals per
donkey decreases, while it was direct, for maximum foal number per birth (0.085) and multiple birth
number per animal for a given donkey (0.339), which parallelly increased with age. The number of
standard deviations that a dependent variable will change per unit of standard deviation increase in
the age (or age CATREG (β) standardised coefficients) is shown in Table 4. CATREG (β) standardised
coefficients for age ranged from −0.059 to 0.207 for multiple birth number per animal and
cumulative foal number born per birth, respectively.

Month and year of birth, Chi-square values were non-significant (P>0.05), thus they were not
included in the CATREG analysis. Partial eta values ranged from 0.117 to 0.146 reporting a moderate
association between the month of birth and the dependent variables of multiple birth number per
animal for a given donkey and cumulative foal number born per animal. For the birth year, partial
eta cumulative values ranged from 0.177 to 0.234 addressing a moderately high association between
birth year and the dependent variables of multiple birth number per animal for a given donkey and
cumulative foal number born per animal.

For the birth season, Chi-square values were only significant for cumulative foal number born per
animal (P<0.05). Partial eta values ranged from 0.093 to 0.102 suggesting a low association between
birth season and the dependent variables of cumulative foal number born per animal, maximum
foal number per birth and multiple birth number per animal for a given donkey. CATREG
standardised coefficient for the birth season and multiple birth number per animal was non-
significant. However, CATREG standardised coefficients for maximum foal number per birth (0.098)
and cumulative foal number born per animal (0.086) reported a low increase of the standard
deviation of the birth year was needed to increase a unit of standard deviation in both dependent
variables.

For sex, Chi-square values were all significant (P<0.05), thus there were statistical differences
between jacks and jennies. Partial eta values ranged from 0.074 to 0.227 what reported a low to a
moderately high association between sex and the dependent variables of maximum foal number per
birth and cumulative foal number born per animal. CATREG standardised coefficient for sex and
multiple birth number per animal for a given donkey cumulative and maximum foal number per
birth were non-significant. However, CATREG standardised coefficients for cumulative foal number



born per animal (0.435) reported a high increase of the standard deviation of sex was needed to
increase a unit of standard deviation in cumulative foal number born per animal.

Owner/Farm, Chi-square values, were all significant (P <0.001), thus there were highly significant
statistical differences between the values of the dependent variables for each of the 92 levels of the
farm/owner factor. Partial eta values ranged from 0.330 to 0.626 what reported a high association
between owner/farm and the dependent variables of cumulative multiple birth number per animal
for a given donkey and cumulative foal number born per animal, respectively. CATREG standardised
coefficient for owner/farm were all highly statistically significant (P<0.001). CATREG standardised
coefficients ranging from 0.478 to 0.921 reported a high increase of the standard deviation of
owner/farm was needed to increase a unit of standard deviation in all three dependent variables
measured.

Location Chi-square values, were all significant (P <0.001), addressing differences between locations.
Partial eta values ranged from 0.113 to 0.291 what reported a moderate to the moderately high
association between location and the dependent variables of cumulative foal number born per
animal, maximum foal number per birth, and multiple birth number per animal for a given donkey.
CATREG standardised coefficient for the location was highly statistically significant (P<0.001 for
Cumulative foal number born per animal and Maximum foal number per birth) and statistically
significant (P<0.05) for Multiple birth number per animal. CATREG standardised coefficients
ranging from 0.159 to 0.307 reported a moderate increase of the standard deviation of location was
needed to increase a unit of standard deviation in all three dependent variables measured.

Husbandry system Chi-square value was only significant (P<0.001) for cumulative foal number born
per animal, addressing differences among extensive, semi-extensive, semi-intensive and intensive
husbandry systems. Partial eta value for this dependent variable was 0.176 what reported a
moderately low association between husbandry system and the independent variables of cumulative
foal number born per animal and multiple birth number per animal for a given donkey. CATREG
standardised coefficient for owner/farm was not statistically significant (P>0.05) for any cumulative
of the three dependent variables.

We show the factors affecting the three birth-related variables in order of importance according to
the CATREG standardised coefficients (β) in Table 5. Since we used the stepwise method, there was
no multicollinearity problem. The standardised solution for the regression equations can be found
in Table 5 as well.

Table 5. Regression equations for maximum foal number per birth, multiple birth number per
animal for a given donkey and cumulative foal number born per donkey.

General model regression equation Legend
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Non-significant effects for each variable were not included (P>0.05).

3.4. Interaction exclusion and general mixed model predictive power

The triple interaction was statistically nonsignificant (P >0.05) so that it was not included in the
model. Although, the Herd*Birth year double interaction was statistically significant P <0.01, its
inclusion within the model distorted the results in the following way so that we decided not to
include such interaction. The model for cumulative foal number born per animal explained a
higher percentage of the variance in the sample when we included the interaction. However, the
estimation of the genetic parameters reported almost twice the standard error of the same model
without including the interaction as stated below, that may have its basis on the high amount of
possible levels of the interaction matched to a proportionally small sample. For maximum foal
number per birth, there was a reduction in Adjusted R squared from 0.421 to 0.406 and the expected
prediction error increased from 0.113 to 0.198 when we included the Herd*Birth year interaction.
For multiple birth number per animal, one or more levels for the interaction did not occur in the
sample. Furthermore, according to AIC and BIC (Akaike's Information Criterion and Bayesian
Information Criterion, respectively) the model that excluded the interaction had higher predictive
power as suggested in Supplementary Table S5 by its lowest values presented when compared to
those reported for the model including the interaction. These results suggested that the inclusion of
this interaction in the model may result in potentially distorting effects which were highlighted at
the statistical level as expected prediction error could not be computed. The results of the genetic
and phenotypic parameters estimated by a preliminary model including Herd*Birth year iteration
supported such distorting effects, as there was an increase in the standard errors from the general
animal mixed model used in our study (without including the interaction) 0.081 to 0.128 to 0.154 to
0.643 (including the interaction). As the previous statistical analysis had reported, the basis for such
distorting effects may be the fact that the number of categories considered for herd*year interaction
was 441, while the whole sample size was 765. This data may generate a statistical imbalance that
may result in an overestimation of the effect of the interaction as it has been reported by literature
(Schmidt et al., 2014), making it impossible to test for its effects properly, due to the lack of enough
animals in the pedigree between whom to compare.

CATREG R squared coefficient obtained ranged from 0.458 to 0.919 for the maximum foal number
per birth and multiple birth number per animal, respectively (Table 3).
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Table 6. Estimated components of variance, heritability (h ) and standard error (SE) for maximum
foal number per birth, multiple birth number per animal for a given donkey and cumulative foal
number born per donkey obtained from multivariate analyses for Mixed Animal Model using Gibbs
sampling in Andalusian donkeys.

Maximum foal number per birth 0.0287 0.1456 0.1169 0.2000±0.1050

Multiple birth number per animal for a given donkey 0.0198 0.1076 0.0877 0.1800±0.1010

Cumulative foal number born per donkey 1.1252 4.6190 3.4888 0.2400±0.0780

Table 7. Estimated phenotypic (r ) (above diagonal) and genetic (r ) (below diagonal) correlations for
maximum foal number per birth, multiple birth number per animal for a given donkey and
cumulative foal number born per donkey obtained in bivariate analyses using Bayesian methods in
Andalusian donkeys.

Maximum foal number per

birth

– 0.607±0.054 0.206±0.063

Multiple birth number per

animal for a given donkey

0.846±0.152 – 0.530±0.045

Cumulative foal number born

per donkey

0.496±0.298 0.605±0.222 –

Table 8. Descriptive statistics of predicted breeding values (PBVs) for maximum foal number per
birth, multiple birth number per animal for a given donkey and cumulative foal number born per
donkey for all the donkeys included in the pedigree sorted by model and sex.
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3.5. Isolating and quantifying the additive genetic component: phenotypic and genetic
parameters, predicted breeding values and prediction accuracy (distribution and
correlation)

The additive genetic component was isolated and quantified through the estimates for heritability,

Jacks

(n=272)

Maximum

foal

number

per birth

0.009 0.002 0.005–

0.014

0.037 0.003 −0.108 0.164 0.925 2.499

Multiple

birth

number

per animal

for a given

donkey

0.005 0.001 0.003–

0.007

0.013 0.003 −0.037 0.054 0.763 1.790

Cumulative

foal

number

born per

donkey

0.092 0.007 0.078–

0.106

0.116 0.059 −0.159 0.645 1.125 1.751

Jennies

(n=745)

Maximum

foal

number

per birth

0.004 0.002 0.001–

0.007

0.043 0.000 −0.157 0.190 0.035 2.086

Multiple

birth

number

per animal

for a given

donkey

0.002 0.001 0.001–

0.003

0.014 0.000 −0.053 0.064 0.204 1.960

Cumulative

foal

number

born per

donkey

0.038 0.003 0.031–

0.044

0.091 0.005 −0.109 0.520 2.004 4.613

interval

for mean



genetic and phenotypic variance estimated with Gibbs sampling shown in Table 6. Table 7 shows the
genetic and phenotypic correlation chart. The results for the estimates of predicted breeding values
(PBV) for both models (Bayesian general mixed animal model) separated in jacks and jennies are
shown in Table 8. Regarding phenotypic parameters, we also present the results for the best linear
unbiased estimators (BLUEs) obtained from the Gibbs sampling quantitative genetic analysis
through posterior mean, including age as a linear and quadratic covariate, the ‘fixed’ effects of birth
season, sex, farm/owner, location and husbandry system in Supplementary Table S8.

4. Discussion
According to literature, donkeys have a 13% higher fertility than horses (Debra and Hagstrom, 2004),
reaching an incidence for multiple ovulations of 61% in Mammoth jennies and standard jennies.
This higher incidence of multiple ovulation in donkeys translates in twinning occurring more
frequently. Although the incidence of twins has been reported to be as high as 40% via ultrasound at
day 21 in standard donkeys, for endangered donkey breeds such as Asinina de Miranda, the
percentage of twin foaling at full term reduces to 2.85% (Quaresma et al., 2015). The rate of multiple
ovulations in the donkey species varies with the reports from the literature, ranging from 5.3% to
almost 70% (Quaresma, 2015) so that our results fall within the range reported for other donkey
breeds.

In donkey breeding plans, selection has more frequently been applied to jackstocks, as historically,
owners have only paid attention to them for the selection of mating couples, erroneously
considering jennies a secondary item (Navas et al., 2017). This context can be compared to horses'
and sets the complex environmental and genetic background behind the economically important
trait of fertility.

Furthermore, the reproductive trends of this polygynous species have been reported to highly
depend on the owner tastes for certain morphological or coat characteristics and local availability of
the animals. Navas et al. (2017) suggested the typical excessive contribution of few ancestors to the
gene pool of small critically endangered donkey populations may lead to narrow bottlenecks shortly
whose hidden effects can only be controlled by tracking the populations. Among such hidden
effects, the compromises exerted on the reproductive and immune system of the animals have been
addressed to be some of the determinants of the difficulties experimented to conceive by
individuals (Ober et al., 1999).

Such reproductive compromises have been suggested to be a direct cause of inbreeding depression
in donkeys. However, the lack of completeness of the pedigree of endangered donkey populations
and the irregular distribution through great extensions of territory makes the estimation of this
parameter little reliable (Navas et al., 2017). Quaresma et al. (2015) reported the numbers obtained in
40 populations indicated an average value of 3.14 of lethal equivalents with 50% due to recessive
lethal alleles.
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Taberner et al. (2008) stated that multiple ovulations tend to repeat in several estrous cycles, which
may support the existence of animals that present a certain cyclical predisposition towards multiple
births. The relative frequencies for multiple pregnancies of certain donkeys were higher than for
others, which suggested a genetic background behind multiple births, as it had previously been
reported by Ginther (1992). Similarly, Quaresma et al. (2015) suggested an indirect selection of
certain family lines may have been carried out in the Mammoth donkey, what may have resulted in
the higher incidence of multiple ovulations reported by Blanchard et al. (1999).

Specific studies have assessed the possible repercussion of certain environmental factors on the
fertility of donkeys. For example, in our study, the Chi-square values for the birth season were non-
significant (P>0.05). Thus, there was not any statistical difference between the values of the
dependent variables for each of the four levels of birth season. The findings by Contri et al. (2014)
support our results. These authors reported estrous cycle can be detected during the whole year in
jennies, with no differences in the estrous cycle length among seasons. Parallelly, the pattern of the
plasma concentration of certain hormones such as E2 and P4 during the estrous cycle did not report
any difference among seasons, although a larger diameter of the ovulating follicle was reported for
spring and summer.

Breeding season and month significantly affected gestation and estrous cycle length in donkeys
(Galisteo and Perez-Marin, 2010). However, these authors did not study whether the effect of the
month may condition the occurrence of multiple births and fertility. Quaresma and Payan-Carreira
(2015) reported the incidence of single, double, and triple ovulations to be 57.58%, 36.36%, and
6.06%, respectively. The same authors stated, multiple ovulations affected neither the length of the
interovulatory interval nor the individual cycle stages (P >0.05) but lengthened the interval from the
beginning of estrus to the last ovulation (P=0.01), which may support the results found by our study
and those found by Galisteo and Perez-Marin (2010) as well.

No paper has reported the higher prevalence of multiple births or a higher likelihood of presenting
a higher maximum number of foals depending on the husbandry techniques carried in the farms.
The results found in our study for Dunn's and independent samples median tests suggested
donkeys located at semi-extensive farms presented a higher likelihood of presenting higher
maximum foal numbers per birth, followed by semi-intensive farms and extensive farms,
respectively (Supplementary Table S7). The criteria used to classify the husbandry systems of the
farms in the study (Table 3) may suggest that the access to more extensive territories, when owners
provide regular reproductive care to the animals and the daily contact with the owners may have an
increasing importance in the occurrence of a higher number of foals per birth. The higher strength
effect of the farm factor on all the variables tested ranging from 0.598 to 0.873, for multiple birth
number per animal and cumulative foal number born per animal, respectively supported the
finding.

A higher relevance was attributed to jennies in having a cumulatively higher number of foals, a
higher number of multiple offspring and a higher maximum number per birth. These values
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balanced (providing an equal relevance to jacks and jennies) as the number of foals and multiple
births increased, as we can observe in the charts in Supplementary Table S5. Still there seems to be a
very slight effect of specific jacks on promoting the obtention of a higher cumulative number of
foals. This could be attributed to the reproductive characteristics of the jenny and breeding
strategies of donkey owners, as it has already been suggested by Bresińska et al. (2004) and is
addressed by the results of the Mann-Whitney U test of our study (Supplementary Table S5).
According to our results, the fact that foal number born per animal and maximum foal number per
birth in jacks was statistically significantly higher than in jennies could be attributed to the fact that
jacks can act as the sire for several jennies at the same time, while jennies are going to be
reproductively blocked for a whole year when they have become pregnant. The same test suggested
that although jacks were likely to significantly reach a higher number of foals on a certain gestation
through their lives when compared to jennies, jennies were statistically significantly more prone to
develop multiple gestations through theirs. This could be supported by the greater chance of jacks
to mate and the fact that multiple ovulations are a female trait, usually associated with endocrine
changes that originate a sort of independence from the falling FSH values, that allow two (or more)
dominant follicles to ovulate.

The potential imbalance between the partial genetic implication of equine stallions ( jacks or horses)
and dams ( jennies or mares) has often been overlooked in literature, as only a few studies report a
comparison between sires and dams (Lin et al., 2016; Mucha et al., 2012). This way, these studies
rather focus on examining their genetic implications separately (Giesecke et al., 2010; Mahon and
Cunningham, 1982) than make a combined effort to compare the effects of both factors.

Using Gibbs sampling methods, as we consider the relationship among the individuals present in
the pedigree, regardless their sex, we can estimate genetic information for the animals from which
we have direct observations, and predict such information for animals assessing the additive
indirect observations obtained from their ancestors. Hence, we can get the information for a
particular trait of an individual when it is naturally impossible or potentially difficult to obtain it.
For instance, prolificacy in foals that are too young to give birth, milk production from a male or
when fertility rates are unbalanced between sexes (i.e., the number of offspring that a male can
produce compared to the number of offspring a female can give birth to) (Parnell, 2004).

Estimates of additive genetic variance for maximum foal number per birth and multiple birth
number per animal for a given donkey were around the lowest margin of the values reported for
twinning and fertility in horses. By contrast, the estimate of additive genetic variance for cumulative
foal number born per donkey was around the highest margin reported for fertility in horses (Table
4), what resulted in higher heritabilities (Mucha et al., 2012). Sairanen et al. (2009) values for the
heritability of foaling rate ranged between 3.4% and 3.7% in Standardbreds and between 5.5% and
9.8% in Finnhorses when the outcome of the foaling was considered to be a trait of the expected
foal. However, the models used in such circumstances differed from ours. Interestingly, the low
genetic component of variance did not affect heritability estimates which were moderate and ranged
from 0.18 to 0.24 for the general linear model for multiple birth number per animal for a given
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donkey and cumulative foal number born per donkey, respectively. Furthermore, these heritability
values were from moderately to highly accurate as suggested by the estimation error found ranging
from 0.078 to 0.105 for cumulative foal number born per donkey and multiple birth number per
animal for a given donkey for the generalised animal model, respectively (Table 6).

Our results resemble those at the upper limit for the heritabilities of fertility in stallions as reported
in literature. Hamann et al. (2005) reported heritability estimates for stallion fertility to range from
0.03 to 0.15 for foaling rate per breeding season. In the same way, the same authors reported a
marked maternal component for some traits such as pregnancy rate per oestrus (PRO) associated
with breeding year and season, breeding centre, age of mares, breeding history of mares, type of
covering (natural or artificial insemination), breeding management (number of coverings and time
intervals between them), and type of semen (fresh within 24h, fresh and shipped within 48h or
frozen/thawed) (Hamann et al., 2005).

Similarly, the use of genetic markers implemented in the study of mare multiple pregnancies,
fecundity (defined as ratio of progeny number to number of pregnancies) and length of
reproduction cycle has reported heritability estimates of mare fecundity and number of pregnancies
that range from 0.03 to 0.07, respectively, and hence, proportionally present the same positive
correlation that the traits considered in our study.

Genetic, phenotypic and environmental correlations widely vary from low to moderate and from
negative to positive from one year to another. In general, genetic, phenotypic and environmental
trends for fecundity and the number of pregnancies have been reported to be non-negative (Mahon
and Cunningham, 1982) as it can be seen in Table 6, Table 7. However, these annual effects highly
fluctuate, which may be attributed to the influence of some sires incorporated into population, as
supported by Bresińska et al. (2004). These authors reported very high frequencies of twinning in
some families in this population, hence the possibility to classify stallions into two opposite groups
according to twinning level of their daughters.

Moioli et al. (2017) found similar SE for the same parameters and traits in the Maremmana local
cattle breed whose sample size was similar to the one in our study. Among the common factors to
the two studies, microsatellite genotyping of the pedigree relationships may have played an essential
role in the estimation of such reliable genetic parameters. A mixed inheritance model of twinning
has also been hypothesised for horses such as (Zöldág et al., 2001) and cattle. Studies on cattle
showed similar conclusions. For instance, some bulls had several hundred daughters with no
multiple births, and the top bull had daughters with a twinning rate of 12.9% (Karlsen et al., 2000).

From a theoretical perspective, low heritability estimates indicate a larger environmental influence,
that may occur after an indirect selection process for a certain trait through time. Reproductive
traits are well known to be lowlily heritable because of this. Such selection process derives then in
fixation of such trait in the population. For example, (Van Vleck and Gregory, 1996) reported an
increase in the average twinning rate of cattle of >25% in fifteen years. In general, these traits are
troublesome in statistical modelling. One of the main assumptions of the classical methods is,
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among others, normality of residuals. Unfortunately, these traits do not hold the assumption as it
happens in our study. Both the number of progenies per pregnancy and the number of pregnancies
are typically discrete traits determined by many loci. But the twinning rate may also be expressed as
a continuous trait (when it is summarised as fecundity, fertility or cumulated number of foals, as it
happens in our study). Heritabilities of these traits can be underestimated since, in case of a
deviation from the model assumption, the error variance is overestimated. Van Tassell et al. (1998)
reported higher heritability estimates from the threshold than linear model for twinning cattle data,
whereas Kadarmideen et al. (2016), obtained very close estimates via both types of models.

Several authors have suggested Bayesian inference Threshold models to be more suitable to analyze
non-normally distributed functional traits in small samples (Johanson et al., 2001; Skotarczak et al.,
2007; Van Tassell et al., 1998; Wolc et al., 2006). Furthermore, REML estimates tend to be included
within the credible interval of the estimates obtained using Gibbs sampling methods, thus
reporting similar results (Mucha et al., 2012).

Mostly all authors agree that the analysis should be based on the threshold model, what was also
proved at a preliminary stage in our study when a linear model was tested and discarded. Still some
papers using REML models appear (Sairanen et al., 2009). These results obtained clearly indicate
that foaling rates, fertility or twinning are influenced by reproductive ability of dams, inbreeding,
and other environmental factors. In this way, heritability estimates for both fecundity and number
of pregnancies are low, and seem to be affected by some deviation from the assumption of the
model employed (for instance, a skewed distribution) but also may benefit from the improvement of
environmental factors deserves special attention.

Our estimates for phenotypic and residual variance are almost 4 to 6 times higher than genetic
variance estimates. As it has been reported in horses (Mucha et al., 2012), the current analysis
assumes that fertility and multiple births are determined by an infinite number of loci that
contribute each with a minimal effect in what is called infinitesimal mode of inheritance. Hence, we
can suppose, fertility may complexly depend on many physiological processes each of which is
controlled by specific biochemical pathways.

The high value for genetic, phenotypic correlations between maximum foal number per birth and
multiple birth number per animal for a given donkey could have been expected as the fact that an
animal is more prone to have multiple births may make it more prone to have a higher maximum
number of foals per birth. We found moderate genetic and low phenotypic correlations between
maximum foal number per birth and cumulative foal number born per donkey. This finding may
mean a weak relationship between animals that have a high cumulative number of offspring
through their lives and the same animals having a high maximum number per birth, which may
suggest a lower reproductive life for those animals producing multiple offspring. Genetic and
phenotypic correlations between the number of multiple per animal and cumulative foal number
born per donkey were moderately high, which suggests the higher the number of total offspring
through the life of a given donkey is (that is the more fertile), the more likely these animals are to
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produce multiple births.

These correlations have been described as well in humans (Colletto et al., 2001; Rickard et al., 2012).
For instance, all the findings by Mbarek et al. (2016) point to spontaneous twinning being a heritable
trait and suggest the potential for polygenic inheritance as supported by the genetic correlations
found by our analyses. The same authors reported that consistent with its effects on higher
circulating FSH levels; the rs11031006-G allele also associates with a higher total lifetime number of
children. Moreover, Boomsma et al. (1992), reported an increased frequency of the S allele in fathers
of dizygotic twins. However, this may be a secondary effect of assortative mating for family size. The
Andalusian donkey is a highly standardised breed for which assortative mating may have played an
indirect role when seeking for obtaining specific phenotypical characteristics what may account for
the low genetic variance for maximum foal number per birth and multiple birth number per animal
for a given donkey.

Despite its demographic bottlenecks, the Andalusian donkey still maintains considerable levels of
genetic variability for fertility and multiple birth traits (Navas et al., 2017). Given the favorable
existing genetic relationships between the traits involved, these traits can play an essential role in a
selection program aimed at improving the breeding efficiency of the animals. The potential
opportunities arising from the incorporation of genomic information in the selection program
should be investigated and implemented carefully in the future. Their contribution to reducing
generation intervals and enhancing selection accuracy could result in extraordinary benefits for
genetic progress, avoiding to detrimentally increase the inbreeding problems and endangerment
risk from which the species suffers (Haberland et al., 2012). PBVs for multiple births and fertility
show considerable variability, indicating a possibly effective selection based on genetic merit
objective estimates. The moderate heritability values balance the high existing phenotypic
variability, resulting in a moderately wide PBV distribution (Table 8). Implementing a systematic
genetic evaluation procedure through the genetic information available, allowing the early selection
of breeding animals becomes then one of the main aims of the study. However, the reduction of
generation intervals, enhancing selection accuracy through multivariate animal models for
functional traits, and thus, the reduction in the number of breeding jackstocks to compatible levels
with an increased selection response, must consider the detrimental problems that are likely to
appear because of an increase in inbreeding in breeds with such a low effective population number.
In these breeds, the protection of genetic variability and minimizing inbreeding are primary
concerns as they may prevent population bottlenecks from occurring. The incorporation of genetic
markers in the functional selection against or for donkeys for multiple births or fertility is a still a
developing possibility. Hence, the exceptional importance of the implementation of these validated
assessment tools and new methods and the perspective to develop routinely studies assessing the
same animals over several years. Genotyping Beadchip and expression microarrays could greatly
enhance studies aimed at understanding equine reproductive physiology and pathology (Sieme and
Distl, 2012). Still donkey fertility studies are far from the recent developments in equine genomics.
The application of new genetic advances provides novel possibilities and tools for mapping fertility
traits in the horse and for unraveling the causes of intersexuality and reproductive inborn defects.
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Utilizing a large number of genome-wide equidistantly distributed markers offers the possibility for
interrogation of the whole equine genome for associations and linkage at high resolution and this
should greatly facilitate identification of causal genes for fertility and other complex traits, even
those with low heritability.

5. Conclusions
The values found for genetic parameters enable the potential inclusion of these traits within
breeding programs seeking the genetic progress of donkey breeds. Positive and moderate genetic
correlations enable the combined selection for maximum foal number per birth and cumulative foal
number born per donkey, with low detrimental effect for either one. Selection for multiple births or
fertility in donkeys may have traditionally been carried out indirectly. Thus, the routine application
of the assessment including a higher number of animals is required to standardize the valuation
methodology implemented. However, this is a difficult task to achieve, considering the current
extinction risk of donkey breed endangered populations. Functional traits related to fertility and
prolificacy can play an essential role in a selection program aimed at improving the suitability of
donkeys for their inclusion in embryo vitrification, or freezing assisted reproduction programs. The
present results lay the basis for a bidirectional selection strategy. On one hand, the specific nature
and the magnitude of the existing genetic relationships may make interesting to consider the
possibility of developing and maintaining specialised lines relying on the ability of particular
donkeys to develop multiple births within the Andalusian donkey breeding program, hence,
increasing the productivity of assisted reproduction techniques. On the other hand, when embryo
collection is not the purpose aimed at, selection could focus on the obtention of those individuals
that may be less prone to develop multiple births, thus, avoiding the risks of multiple gestations,
which in the end translates in the improvement of the reproductive welfare of the individuals.
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