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Evaluating energy retrofits of historic buildings in a university campus using an 

urban building energy model that considers uncertainties 

 
 Ziqi Lina, Tianzhen Hongb, Xiaodong Xua, Jiayu Chenc, Wei Wanga

 

aSchool of architecture, Southeast University, Sipailou 2, Xuanwu district, Nanjing, China 

bBuilding Technology and Urban Systems Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA 

cSchool of Civil Engineering, Tsinghua University, Beijing, China 

Abstract: 

Urban building energy model (UBEM) is a powerful tool to simulate performance and 

evaluate efficiency of upgrades for a group of buildings under the urban context. 

However, the larger the scale/number of buildings, more parameters must be collected 

to create energy models that cover each individual building, causing more uncertainties. 

To reveal this, this study created a UBEM for the mixed modern and historic buildings 

at a campus in China and produced a set of UBEMs that consider variations of key 

model parameters, with the modeled results meeting the 20% error range. The 

calibrated set of UBEMs were then used to evaluate uncertainties of energy-savings of 

four building energy retrofit (BER) measures. The first measure, BER 1, was to 

preserve the historic values of buildings; BER 2 to meet green building design standard; 

BER 3 to achieve 20% more savings than BER 2; and BER 4 to utilize renewable 

photovoltaic energy. For BER 1, BER 2, and BER 3, the energy savings of buildings of 

different ages varied within 10%–44%. For BER 4, the energy savings of buildings 

varied within 49%–505%, respectively, where the reason for higher than 100% is 

energy production is much higher than energy demand. Similar results can be concluded 

for building functions, for BER 1, BER 2, and BER 3, the energy-saving potentials 

varied within 6%– 45%, while 97%–492% to BER 4. This study can provide an 

important and significant reference to apply UBEM in evaluating energy-efficient 

retrofits as well as other energy-related studies that consider uncertainties. 

Keywords: Urban building energy model, uncertainties, energy retrofit, model 

calibration, university campus  
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1. Introduction 

With urbanization accelerating, cities host 65.22% of mainland China’s population 

by the end of 2022 (National Statistical Bureau of the People’s Republic of China, 

2023). This urban sprawl has produced profound changes in the urban physical 

environment, consequently increasing urban energy consumption and global carbon 

emissions (Gonzalez, 2005; Rahaman et al., 2022). Debates concerning environmental 

upheaval and energy usage highlight the urgent need for more sustainable development 

in the building sector. Considering the large number of buildings in the existing stock 

and the high cost of demolition and reconstruction, it is more technically feasible and 

financially effective to retrofit buildings than to construct new ones. Multivarious 

energy retrofits already have been proposed in many research and engineering fields 

and applied in modern urban buildings with passive or active retrofit approaches 

(Rodrigues & Freire, 2021).  

As known, the widely applied passive approach proposed to minimizes heat loss 

through building envelope, by reducing thermal conductivity, improving airtightness, 

maximizing daylight, and so on (Suárez & Fernández-Agüera, 2015). While active 

approach is also popular to upgrade heating, ventilation, and air-conditioning systems 

(Xin et al., 2018), replace high-energy appliances (Gupta & Gregg, 2016; Hinnells, 

2008), renewable energy (Luddeni et al., 2018; Zhou et al., 2013), smart buildings 

(Ibaseta et al., 2021), and so on. In many retrofits to achieve higher energy efficiency, 

both active and passive approaches are often adopted in one retrofit project (Hu et al., 

2021). Hu et al. combined the retrofits of wall insulation and photovoltaic (PV) 

installation to achieve an zero-energy residential building (Luddeni et al., 2018). Mata 

et al. found that the combination of various retrofit methods, including wall insulation, 

window replacement, and recovery system improvement, could achieve a 53% 

reduction of energy demand in Swedish residential building (Mata et al., 2013).  

Those mentioned above have been adopted a lot to the modern buildings and those 

approaches are also highly beneficial for older buildings (Na & Shen, 2021). Historical 

buildings are typically recognized as having relatively poor energy efficiency 

performance, therefore, an alternative to retrofitting should be considered (Cho et al., 

2020). In historic buildings, available energy-saving retrofit measures are more 

constrained than in modern buildings, and thus are fewer. For example, preservation of 
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historic buildings must not damage the facade, and also, it is essential to understand the 

influence of the future climate on a historical building, e.g., its artwork, construction, 

and so on (Muñoz González et al., 2020). Also, Qu et al. proposed a novel holistic 

building retrofit approach and emphasized the role of saving materials and avoiding 

complicated installation on retrofit measures of histolic buldings (Qu et al., 2020). Even 

so, some studies also have investigated the retrofits on historic buildings (Ascione et 

al., 2017; Schibuola et al., 2018). Rota presents that the historical museum buildings 

can be retrofit, seeking to balance the “passive” energy performance of the building 

envelope and the “active” performance of the energy systems (Rota et al., 2015). 

Coelho and Henriques used passive retrofit measures in the view of conservation of 

high-valued artefacts with a hygrothermal model (Coelho & Henriques, 2021). Milone 

investigated energy-savings of two different retrofits of the building envelope of a 

heritage house, and thought viable and best available technologies for historic buildings 

should be non-invasive or passive (Milone et al., 2015).  

No matter passive or active retrofits for modern and historic buildings, having an 

accurate estimation of a building’s energy consumption is quite important when making 

decisions on its renovation or retrofits (Kalogeras et al., 2020; Todorović et al., 2015). 

This requires validation of the energy model with measurement and simulation, which 

are frequently employed as efficient ways to assess the potential of various energy-

saving methods before initiating a retrofit program for existing buildings (Hong et al., 

2014). It usually requires detailed and accurate building energy model input and 

calibration, such as local weather, building schedule, envelope characteristics, and so 

on. However, this is a very time-consuming task and is also one of the 10 challenges 

discussed in Hong et al. (Hong et al., 2020). One thing that can’t be avoided is the 

uncertainty of a building energy simulation model (Ohlsson & Olofsson, 2021), which 

is due to unknown parameters that users have to guess at in the energy models. The 

uncertainty is enlarged in urban building energy model (UBEM) at a larger scale (Dilsiz 

et al., 2023). To create the energy model, a series of those inputs and parameters is 

usually set up (Sun & Hong, 2017). In the trial-and-error process, the inputs can be 

divided into known parameters that are easily acquired, such as building size, function, 

and equipment, and some unknown parameters that are difficult and costly to acquire, 

such as schedule, thermal conductivity, and operation. In such cases to deal with 
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unknown parameters, common strategies are to apply existing well-established 

templates or representative constructions (Coakley et al., 2014). Some researchers even 

creatively proposed representative communities (blocks) to evaluate future energy uses 

of comprehensively considering the influences of urban development, building retrofits, 

and so on (Oraiopoulos et al., 2023). Such simplified methods may save time in the 

early design stage, but would consequently further widen the gap between the simulated 

and actual values, for accurate retrofit projects (Li et al., 2015).  

Another solution is to conduct an on-site survey to calibrate the simulation model, 

minimizing the discrepancy between simulated and observed energy data (Manke et al., 

1996). Numerous calibration approaches based on manual iterative parameter tuning 

have been developed, including using open data (Sun et al., 2022), collecting 

supplemental evidence (Pan et al., 2007), and applying graphical comparisons with an 

iterative trial-and-error process (Pedrini et al., 2002; Yang et al., 2016), trying to find a 

more reliable energy model. Chaturvedi and Rajasekar generated 15000 model 

configurations to assess weather, physical and operational uncertainties on the annual 

and peak cooling energy demands for a residential building, finding that simulations 

predicted 0.22–2.17 and 0.45–1.62 times variation on acutal demand (Chaturvedi & 

Rajasekar, 2022). To reduce uncertainties, González and Bandera recommended high-

fidelity physical model to calculate and calibrate the energy models, which can improve 

22.9% of energy simulation accuracy (González & Bandera, 2022). Zhu et al. combined 

approximate Bayesian computation and machine learning algorithms to consider 

calibration of building energy models under uncertainty (Zhu et al., 2020), and a similar 

approach to analyze uncertainties can be also found in (Calama-González et al., 2021). 

A nested Fuzzy Monte-Carlo approach also was applied to quantify uncertainties from 

various inputs and parameters in building energy models (Shamsi et al., 2020). The 

reduced-order grey box energy model also has become widely recognized as an issue 

in building energy-saving retrofitting that needs to be considered, no matter what kinds 

of objectives and constraints (Gabrielli & Ruggeri, 2019) are being addressed.  

However, two retrofit issues still need more investigations: the feasibility for the 

mixed modern and historic buildings at urban block level, and concomitantly 

uncertanties for decision of urban block retrofit measures when using energy simulation 

estimation of energy savings at a larger scale. On one hand, historic buildings are 
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usually not separate in the urban context; rather, they are mixed with modern buildings. 

Therefore, full consideration of the larger-scale mixed urban block rather than 

individuals should be taken in urban building retrofit projects (Valencia et al., 2022). 

Meanwhile, different retrofit measures should be proposed for both modern and historic 

buildings. However, this is rarely investigated in the current literature. On the other 

hand, UBEM is the efficient and necessary tool to quantify energy performance on a 

larger spatial scale (Reinhart & Cerezo Davila, 2016). As the scale increases, accurate 

and detailed data acquisition becomes more difficult, and more unknown data needs to 

be determined by estimation and calibration. Therefore, the uncertainty of UBEM 

should be considered significantly.   

To address the above issues, a campus of Southeast University was selected as the 

case study. It has a mix of modern and national historical buildings with different 

functions and ages varying from 1922 to 2004. Several passive and active energy 

retrofit measures were proposed for both modern and historical buildings to meet 

different energy-saving targets. The UBEM of the campus was created with on-site 

survey and different feasible inputs were determined by a validation process using 

actual energy records. To consider the uncertainties, multiple sets of calibrated models 

that meet the error level of 20%, were adopted rather than one calibrated model, to 

evaluate the energy-savings of different retrofit measures. Finally, this study analyzed 

the impact of uncertainties from calibrating UBEM on energy-saving potentials of 

different retrofits for different-age and -type buildings. 

2. Methodology 

2.1 Framework of the methodology  

Fig. 1 illustrates the general framework of conducting a building energy retrofit 

process with the UBEM tool. The first stage is to create the parameterized simulation 

model of the building group using the Rhino tool and its built-in Grasshopper platform. 

On-site survey were to obtain the detailed building information, such as building shapes, 

floors, window-to-wall ratios, and so on. The second stage is to configure the UBEM, 

including determining the key inputs and dynamic simulation outputs (heating, cooling, 

and so on). In this stage, this study collected local microclimate data as the weather 

input from an on-site experiment to create the Energyplus Weather (EPW) file, and 
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energy records to calibrate the UBEM. In stages 3 and 4, several energy-saving retrofit 

measures are proposed to combine different measures for modern and historical 

buildings. With the calibrated UBEM, the energy-saving potentials of each retrofit 

measure was evaluated for different types of buildings. Finally, this study analyzed and 

determined the optimal energy retrofit solution and the uncertainties from different 

parameters.  
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Fig. 1. The general framework of a building energy retrofit assisted with UBEM 
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2.2 Case campus building group 

Southeast University (SEU, Fig. 2) was selected as the case urban block. It is 

located in the center of Nanjing City, Jiangsu Province, China. SEU has been built since 

1900s and is a complex of historic and new buildings with a total land area of 411,309 

m2. Since the buildings of SEU are of different ages, the architectural functions, sizes, 

and energy consumption of each building also varies greatly (Fig. 3). In this study, 19 

SEU buildings with real electricity consumption data were selected for energy retrofit 

trials, including office buildings, laboratories, educational buildings, and public 

buildings. Table 1 summarizes information of the selected buildings. Except 

Liwenzheng Building, and two-thirds of the buildings are brick-concrete structures, and 

the rest are reinforced concrete structures. Brick is mostly used as an exterior wall 

material, and cement block is used as exterior facade material. Before the 1960s, the 

buildings all adopted the form of a pitched roof, and vice versa after the 1980s. After 

the 1980s, the number of building floors is generally higher than before the 1980s.  

 
Fig. 2. The building plan of the Southeast University campus and actual images of 

three examples of office buildings 
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Fig. 3. Annual energy usage of buildings in Southeast University campus 

Table 1. Summary information of buildings in the Southeast University campus 

Name Year Structure Wall Roof  Storey 
Floor are

a (m2) 

Window-

wall ratio 
Function 

Gymnasiu

m 
1922 Brick-concrete Brick Slope 3 3,602 0.13 Public 

The Old 

Library 
1922 Brick-concrete Brick Slope 2 4,500 0.27 Office 

Jianxiong 1927 Reinforced concrete Brick Slope  3 5,072 0.40 Office 

Zhongda 1929 Brick-concrete Brick Slope 3 6,516 0.22 Office 

Jinling 1937 Brick-concrete Brick Slope 3 3,471 0.24 Office 

Wusi 1954 Brick-concrete Brick Slope 3 4,497 0.35 Office 

Wuwu 1955 Reinforced concrete Brick Slope 4 8,584 0.34 Office 

Hehai 1957 Brick-concrete Brick Slope 2 1,766 0.18 Office 

Nangao 1957 Brick-concrete Brick Slope 4 3,938 0.20 Lab 

Dongli 1957 Reinforced concrete Brick Slope 4 11,326 0.30 Education 

Zhongxin 196X Reinforced concrete Brick Flat 6 10,902 0.20 Lab 

Zhongshan 1982 Brick-concrete Brick Flat 6 7,482 0.22 Education 

Dongnan 1982 Brick-concrete Brick Flat 3 2,859 0.33 Education 

Library 1985 Brick-concrete Brick Flat 5 8,145 0.42 Office 

Qiangong 1987 Brick-concrete Brick Flat 6 5,595 0.18 Education 

Publisher 1990 Reinforced concrete 
Cement 

block 
Flat 4 2,086 0.14 Office 

Cezhen 1994 Brick-concrete Brick Flat 4 2,993 0.16 Office 

Architectur

e Design 

Institute 

199X Reinforced concrete 
Cement 

block 
Flat 4 7,106 0.30 Office 

Liwenzhen

g 
2004 Brick-concrete 

Cement 

block 
Flat 6 30,000 0.21 Lab 
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2.3 On-site experiment  

In this study, we installed one microclimate station on the roof of a seven-floor 

building (Qiangong, lat: 32.06; long: 118.80) in SEU. The microclimate station (Fig. 4) 

was from the Onset Computer Corporation (www.onsetcomp.com). It was charged by 

an AC adapter and equipped with a solar panel to produce power stored in the battery. 

The data can be stored locally as well as transferred to an online server through a Wi-

Fi channel. The parameters used in this study consist of the temperature (oC), relative 

humidity (RH, %), direct normal solar radiation (watts per square meter [W/m2]), wind 

speed (meters per second [m/s]) and direction (o). Table 2 shows the basic information 

about the version, operating temperature, accuracy, resolution, measurement range, and 

size of the selected sensors in this study.  

 
Fig. 4. The presentation of the microclimate station for the experiment in this study 

Table 2. The basic information of sensor set used in this study 

 Data Logger 
Temperature/ 

Humidity 
Wind Speed Wind Direction 

Solar 
Radiation 

Version RX3003 S-THB-M002 S-WSB-M003 S-WDB-M003 S-LIB-M003 
operating 

temperature 
40~+60℃ -40~+75℃ -40~+75℃ -40~+70℃ -40~+75℃ 

Accuracy - 
T: ±0.21℃ 
RH: ±2.5% 

±1.1m/s or 
±4% 

±5° 
±10 W/m2 or 

±5% 

Resolution - 
T: 0.02℃ 
RH: 0.1% 

0.5 m/s 1.4° 1.25 W/m2 

Measure-
ment range 

- 
T: -40~+75℃ 
RH: 0~100% 

0~76 m/s 0~355° 0~1280 W/m2 

Size 
186mm(H)×181 

mm(L) × 118 mm(W) 
10 mm × 
35 mm 

410 m × 
16 mm 

460 mm × 
200 mm 

41 mm(H) ×  
32 mm(Φ) 

http://www.onsetcomp.com/
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2.4 UBEM configuration 

2.4.1 The tool for UBEM 

The UBEM simulation in this study was mainly based on the Rhino platform. 

Rhino is a 3D modeling software widely used in architectural design, industrial 

manufacturing, and other fields. Its built-in visual programming plug-in Grasshopper 

can realize the simulation operation link to Rhino design model, which is convenient 

for architectural designers to adjust their design simultaneously thourgh building 

performance simulation. Among them, Ladybug and Honeybee are free open-source 

plug-ins for Grasshopper, and those tools can simulate energy consumption with an 

Energyplus engine in a Grasshopper environment, which can help create all sets of 

uncalibrated energy simulation models for next analysis. The UBEM configuration is 

divided into four modules: the parameter setting module, morphology generation 

module, performance simulation module, and data record module (Fig. 5). 

The parameter setting module mainly needs information of site weather, building 

physical parameters and building thermal parameters. The first step is to input the 

waeather information by creating an EPW file with the on-site micro-climate station 

and to obtain the building physical parameters through field investigation. Then, this 

study establishes the energy simulation model with Honeybee.  

 

Fig. 5. Energy consumption simulation process with UBEM 

2.4.2 Parameter settings for UBEM 
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 Considering that building thermal parameters are difficult to obtain through 

experiments, this study selects several references for different inputs based on the actual 

situation (Table 3). Wall and window construction can be obtained through on-site 

survey. Roof and floor construction refer to the Honeybee’s typical value. For 

equipment load, lighting density, and number of people, this study referred to the 

Design Standard for Energy Efficiency of Public Buildings GB 50189-2015, which also 

conforms to the energy usage habits of Chinese public buildings. ASHRAE 90.1 is a 

recommended default standard in Honeybee for further customization of the model 

inputs. Table 4 shows the performance characteristics for different building types. The 

certain value ranges for UBEM validation in Table 5 are assigned through trial-and-

error based on Table 4. The typically ±50% input range ensures most simulation results 

covering real energy data. Other parameters’ settings are concluded in Table 4 and 5. 

Considering the characteristics of campus buildings, this study set up a timetable 

to distinguish the hourly room occupancy rate during the semester, summer and winter 

vacation, weekdays, and weekends (Fig. 6). We made sure the input range of the 

parameters was large enough for the tolerance of UBEM validation. After the 

parameters were input, the building physical model was established through Rhino and 

Grasshopper, thermal parameters were input through Honeybee and Ladybug, and 

finally the data were integrated to Energyplus engine for energy simulation. When the 

accuracy of the simulation results met the requirements, the following data were 

recorded. 
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Fig. 6. The whole year occupancy schedules of Southeast University campus 

Table 3. The reference of input parameters 
Input Parameters Reference 
Wall Construction On-Site Survey 
Window Construction Typical Value of Single Pane 
Roof Construction Typical Value of Honeybee 
Floor Construction Typical Value of Honeybee 

Equipment Load Per Area 
Design Standard for Energy Efficiency Of Public 
Buildings GB 50189-2015 

Lighting Density Per Area 
Design Standard for Energy Efficiency Of Public 
Buildings GB 50189-2015 

Air Infiltration Rate ASHRAE standard 90.1 

Number of People Per Area 
Design Standard for Energy Efficiency Of Public 
Buildings GB 50189-2015 

Ventilation Per Person ASHRAE 90.1 

Table 4. Load settings for different types of buildings 
Input Parameters Office Education Laboratory Public 

Equipment Load Per Area (W/m2) 7.5 15 22.5 7.5 
Lighting Density Per Area (W/m2) 9 9 10 7 
Air Infiltration Rate (ACH) 0.5 0.5 0.5 0.5 
Area Per Number of People (m2/ppl) 10 6 10 6 
Ventilation Per Person (m3/s)  30/3,600 30/3,600 30/3,600 30/3,600 

Table 5. Performance characteristics during the UBEM configuration 
Input Parameters Default Unknown Parameter Values 
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Low Typical High 
Wall Construction (W/(m2*K) - 0.2  0.4 0.6 

Window 
Construction 

U-Value(W/(m2*K)) 2.5 - - - 
Solar Heat Gain Coefficient (%) 60 - - - 
Visible Transmittance (%) 55 - - - 

Roof Construction(W/(m2*K)) 0.5 - - - 
Floor Construction(W/(m2*K)) 1.5 - - - 

Equipment Load Per Area(W/m2) 
- 7.5 15 22.5 
- 15 30 45 

Lighting Density Per Area(W/m2) - 4.5 9 13.5 
Air Infiltration Rate (ACH) - 0.05 0.5 0.95 

Number of People Per Area(m2/person) 
- 12 6 4 
- 20 10 3/20 

Note：‘-’ means the ‘not applicable’ in the corresponding setting. 

2.4.3 Calibration process of UBEM 

Fig. 7 shows the validation process for iterations of UBEM. This study also 

referenced the 20% error requirement used in the energy consumption simulation 

conducted by Nagpal et al. at Harvard University (Nagpal & Reinhart, 2018). The 

simulation outputs are compared with the real energy consumption to judge whether 

accuracy is accepted. If yes, the parameter settings should be output. Otherwise, it is 

necessary to repeat the simulation to adjust the controllable unknown input parameters, 

and the Grasshopper slider is used to automatically iterate the input parameter. In the 

process, each building will have multiple sets of feasible inputs with modeled energy 

results in an acceptable range. The set of these models will be used in Section 2.5. 

 

Fig. 7. Flowchart illustrating the UBEM calibration methodology 
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2.5 Building energy retrofit measures  

Once the feasible calibration models received, they will be used to energy 

simulation for different building energy retrofit measures. As a mixed historic urban 

block, the energy retrofit of SEU needs to consider the needs of both historical and 

modern buildings. Therfore, this study puts forward four retrofit targets with different 

energy-saving targets as well as four building energy retrofit (BER) measures. Multiple 

calibrated models of each building will be applied according to these retrofit measures 

and multiple simulations will be conducted to generate multiple sets of energy savings 

under BERs. Based on the current requirements of green building and the buidling 

characteristics of the mixed campus, the following four targets were proposed: 

• Target 1 maintains the historic campus style without damaging the building 

structure and transforms the parts that are easy to change. 

• Target 2 enables building energy consumption to meet the requirements of China’s 

Assessment Standard for Green Building GB/T 50378-2019. 

• Target 3 further improves upon Target 2 to achieve China’s Technical Standard for 

Nearly Zero Energy Buildings GB/T51350-2019. 

• Target 4 uses renewable energy technology in the buildings. 

According to these targets, this study puts forward the energy-saving retrofit 

measures (Table 6). Both active and passive retrofit measures are included in our BER 

measures, and the specific include roof, wall, window replacement, Leed light and 

HVAC system upgrade, and photovoltaic (PV) installation. BER 1 uses active technique 

such as replacing Leed lighting and upgrading HVAC systems. BER 2 adds passive 

measures to replace roofs, walls and windows for lower U-value on the basis of BER 

1. BER 3 is the advanced version of BER 2 and asks for the much more lower U-value. 

Based on BER 3, BER4 adds the step of installing PV. Although passive technique is 

encouraged for historical buildings retrofit and all the measures are fit for modern 

buildings, this study update all the feasible inputs of each building according to the 

measures above and the energy simulation results after retrofit will be used to analyze 

the impact of uncertainties from calibrating UBEM. 

Table 6. BER measures for the four different targets 
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 Target Target 1 Target 2 Target 3 Target 4 
 BER measures Value BER 1 BER 2 BER 3 BER 4 

Passive Roof insulation 
U-value 0.5→

0.32 
- ⚪ - - 

 Wall insulation U-value ≤0.48 - ⚪ - - 
 Window system U-value ×80% - ⚪ - - 

Active Led lights 
LPD-value ×

0.389 
⚪ ⚪ ⚪ ⚪ 

 
High-efficiency 
HVAC system 

COP＆EER-
value 3.08→3.4 ⚪ ⚪ ⚪ ⚪ 

 
Photovoltaic (PV) 

panel 
- - - - ⚪ 

High 
Standards 

Roof insulation U-value 0.5→0.2 - - ⚪ ⚪ 

 Wall insulation U-value ≤0.3 - - ⚪ ⚪ 
 Window system U-value ×50% - - ⚪ ⚪ 

Note：‘⚪’ means the BER measure used in 3.5, while ‘-’ the opposite. 

3. Results 

3.1 Results of campus building energy model calibration 

The four buildings in the southeast corner of the campus were used as samples to 

conduct the UBEM calibration (Fig. 8). The calibration results of the building energy 

consumption model mainly have the following characteristics: 

a) The peaks and troughs of the annual energy consumption of different buildings 

appear at different times. Taking summer as an example, the energy consumption of 

each building tends to increase with increaseing temperature and decrease with 

decreasing utilization rate during holidays. However, the Zhongshan, Dongnan, and 

Qiangong buildings reached peak energy demand in June, while the summer peak of 

the Zhongda building was delayed, occurring in July. 

b) During the year, the changes in energy consumption are different; some are 

stable, and some buildings have obvious changes, with the Dongnan and Qiangong 

buildings being the most typical. The annual energy consumption of the Dongnan 

building is relatively small, and the energy consumption is relatively stable throughout 

the year with the extreme difference is about 15,000 kilowatt-hours (kWh). However, 

the energy consumption of the Qiangong building is large in scale, changes drastically, 

and the biggest difference is the largest, reaching 70,000 kWh. 
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c) Inputting the same parameters, the energy simulation results of some buildings 

are closer to their maximum value, while others are the opposite. The minimum energy 

consumption results of Dongnan can only be maintained the same as the real energy 

consumption, while the real energy consumption of Zhongda is closer to the maximum 

simulated energy consumption, and even higher in one month. 

The main reason for this feature is the difference in the actual usage of buildings. 

Due to the various functions, building scales, and usages, the actual energy trend is 

quite different. However, the energy simulation results based on the same series of 

parameters can only show the same trend. The simulation results cannot fully consistent 

with the real energy consumption of atypical building. Although some monthly energy 

consumption exceeds the simulation range, the error can be accepted considering the 

overall energy consumption. 

 

Fig. 8. Comparison of the simulated monthly energy use distribution with observed 

data for the four buildings 

Fig. 9 shows the simulated energy consumption results with the error range of 20%. 

The tolerance can calculated by the perceptage that divides the measured energy by 

difference between simulated energy and measured energy. Points with the same 

measured energy use belong to the same building. Each column represents the 

simulated results of the same building, and each point represents the annual energy 
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consumption from one set of feasible inputs. For example, points in the red box 

represent the simulated annual energy of Dongli Building. The points in the grey area 

meet the accuracy requirements, and the corresponding inputs will be used in the 

procedure of assessing energy-savings of retrofits. As seen in Fig. 9, all buildings have 

their energy models that meet the 20% error requirement. This study also classified the 

buildings according to their ages and conducted the energy simulation calibration for 

each building. Except for the Architectural Design Institute and the Zhongxin building 

in the 1980–1990s, the energy consumption of the buildings in the 1920–1930s was the 

least, followed by most of the buildings in the 1980–1990s, the energy consumption of 

the buildings in the 1960–1970s was higher, and the energy consumption of the 

buildings in the 1940–1950s was between the two. This is related to the scale and 

materials of the building at that time and the use of it today.  

 
Fig. 9. Correlation of measured versus modeled energy use for individual buildings 

3.2 Results of building energy retrofit measures 

3.2.1 Results of BER 1 

According to BER 1, LED lights and a high-efficiency HVAC system are used for 
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energy retrofits. The energy-saving results are shown in Fig. 10. Each building’s 

energy-saving potential is presented in box and bubble plots. Box plot can express the 

different energy-saving potentials of multiple sets of feasible inputs from the same 

building. In the bubble plot, one bubble comes from the average energy-saving potential 

of the same building and the diagram compares the relationship between real energy 

consumption, energy-saving potential, and building scale. 

The average energy-saving potential of all buildings reaches 10%; the highest is 

about 40% for the Dongnan building, and the lowest is 10% for the gymnasium, both 

built in the 1920–1930s. The average energy-saving potential of the building group is 

about 25% (of which 12 buildings below the average energy-saving potential), and the 

simulated energy-saving potential of 7 buildings above the average value. For example, 

the energy-saving potential span of the library is large, with a range of near 50%, while 

the energy-saving potential span of the Cezhen building is the smallest, less than 5%. 

The overall building energy-saving potential is between 30%–50%. Among all the 

energy-saving potentials, the Qiangong and Zhongshan buildings have the largest 

energy-saving potential (57%), and the Jianxiong building has the smallest energy-

saving potential (-7%). There are negative numbers in the energy-saving potential data 

of some buildings, because when the input parameters of energy-saving retrofits are 

selected, the corresponding simulation results are higher than the current energy 

consumption.  

Also, we found that the average simulated energy consumption increases along 

with the larger corresponding building area, and energy-saving potentials of large 

buildings fluctuate less and are closer to the average energy-saving potential. Although 

the energy consumption of the original building has an age concentration, for BER 1 

the energy-saving potential does not show an obvious pattern. It shows that there are 

no typical results for the lighting energy consumption and the energy efficiency levels 

of the equipment used in buildings of different ages. As shown in Fig. 10, for office 

buildings, the energy-saving potentials are more stable and closest to the average 

energy-saving potential. However, the energy-saving potential of educational buildings, 

laboratory buildings, and public buildings fluctuates greatly. This is consistent with the 

fact that the lighting energy consumption of office buildings is relatively stable, and the 

actual usage of other functional buildings is significantly different.  
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Fig. 10. Energy consumption and energy-saving potential after applying BER 1 

3.2.2 Results of BER 2 

The BER 2 measures are mainly carried out through the reduction of heat transfer 

coefficients of roofs, walls, and windows in the renovation of passive energy-saving 

technology, as well as through the use of LED lighting and a high-efficiency HVAC 

system. Fig. 11 shows the energy-saving potentials. Overall, the energy-saving 

potentials are larger than those of BER 1, and the median value of the energy-saving 

potentials of all the building samples reach 15%. The highest is still 40% for the 

Dongnan building, and the lowest is 15% for the gymnasium. The average energy-

saving potential is 26% for the building group, of which 13 buildings below the average 

energy-saving potential, and the simulated energy-saving potential of 6 buildings above 

the average value. The basic situation of the extreme value of energy-saving potential 

is similar to that of BER 1. The largest and smallest spans are still the library and the 

Cezhen building. The range of the overall building energy-saving potential is also 

mostly between 30%–50%. Among all energy-saving potentials, the maximum energy-

saving potential of the Qiangong and Zhongshan buildings slightly increased, but it is 

still about 57%, and the minimum energy-saving potential of the Jianxiong building is 

-6%. The variation of BER 2 is also similar to that of BER 1, indicating that the 
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efficiency of passive technology renovation on the overall building complex is 

relatively uniform, and there is no obvious individual difference.  

Fig. 11. Energy consumption and energy-saving potential after applying BER 2. 

3.2.3 Results of BER 3 

Upon BER 2, BER 3 strengthens the intensity of passive energy-saving 

technology renovation, and the heat transfer coefficient of the roof, walls, and windows 

has been significantly reduced. The results are presented in Fig. 12. The overall energy-

saving potential data of BER 3 is larger than it of BER 2, and the simulation energy 

consumption results are smaller. The average energy-saving potential of the building 

group is about 27%; there are 13 buildings with less than the average energy-saving 

potential, and the simulated energy-saving potential of 6 buildings is higher than the 

average. The highest median value of the energy-saving potential of the building 

complex is still about 43% for the Dongnan building, while the lowest is only 19% for 

the Jinling building. 
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Fig. 12. Energy consumption and energy-saving potential after applying BER 3 

3.2.4 Results of BER 4 

Based upon BER 3, BER 4 adds active renovation technology, and configures 

PV panel production capacity on the roof. The energy consumption simulation result 

and change of BER 4 are quite different from the previous ones, indicating that the 

active energy-saving technology has a greater impact on the building complex. As 

shown in Fig. 13, the energy-saving potential of the building complex has a large span. 

The gymnasium, which has always shown a low energy-saving potential, improves 

significantly, reaching the same level as the Dongnan building and the old library, which 

have always had considerable energy-saving potential. The energy-saving potential of 

other buildings is between 50%–300%. Among them, the energy-saving potential of the 

Jinlin building is still the smallest, only 50%. 

The active technology has a very strong energy-saving effect on the campus 

building complex. After applying BER 4 measures, the average energy-saving potential 

of the building complex is 191%, and the average energy consumption simulation result 

is less than 0, whereas the energy consumption simulation results have negative 

numbers. On the one hand, due to the small overall scale of the campus building 

complex and the low population density, the energy consumption scale is relatively 



 23 

small. On the other hand, the campus buildings are mostly low-rise buildings. When 

the building area is the same, the area where solar PV panels can be installed on the 

roof will be larger, and the production capacity will be more, potentially even offsetting 

the building energy consumption. 

Fig. 13. Energy consumption and energy-saving potential after applying BER 4. 

For the vast majority of buildings, as the average simulated energy increases, the 

energy-saving potential decreases, as shown in Fig. 13. The main reason for this result 

is that the energy consumption offset by active technology accounts for a large 

proportion of the building’s original energy consumption, resulting in a certain positive 

correlation between the final energy consumption simulation results and the energy-

saving potential. Some buildings do not fully meet the positive correlation, mainly 

because their original construction area is small and the floors are low, as well as the 

energy demand of the building, therefore, installing the PV panels on the roof can 

produce larger the energy-saving potential.  

3.2.5 Overall analysis of all BERs 

Overall, from the perspective of energy-saving retrfot measures 1 to 3, passive 

energy-saving technology has a relatively strong energy-saving effect on buildings in 

the 1920–1930s, and the energy-saving potential changes significantly, while it is 
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relatively stable for buildings in the 2000–2010s. The main reason is that the walls of 

the buildings in the 1920–1930s were all brick walls, while the buildings in the 2000–

2010s were cement walls; changing the heat transfer coefficient had a different impact 

on the building energy consumption. The differences in the energy consumption 

simulation results of BER 4 are mainly reflected in two aspects: On the one hand, the 

overall layout of the building energy simulation data results has changed greatly, but 

the consumption simulation results are only in the average position. On the other hand, 

the energy-saving potential of the buildings has changed greatly, which is reflected not 

only in the fact that the energy-saving potential no longer has negative values, but also 

because the overall span has increased, ranging from 5% to 500%. There are also 

obvious changes in the layout of the energy-saving potential of different buildings. This 

is mainly because the active energy-saving technology is related to the form and area 

of the building roof, and energy-saving renovation measures 1 to 3 mainly take into 

account the influence of building structure, materials, and equipment lighting. There is 

no direct connection between the two, so there is different energy consumption.  

For all buildings, the energy-saving potentials of BER 1 to BER 3 are similar; the 

difference is mainly reflected in BER 4. As shown in Fig. 14(a), the energy-saving 

potential variation of buildings in 1980–1990s is large, and this may due to the larger 

number of buildings and the different structure, wall and roof materials, building area, 

window-to-wall ratio, functions and so on. In contrast, for buildings in the 1920–1930s 

and 2000–2010s, the difference is smaller, and there are fewer buildings. As for Fig. 

14(b), there are many office buildings on the campus with obvious differences in scale 

and usage, resulting in a large variation of energy-saving potentials. For laboratory 

buildings and public buildings, the data are more concentrated.  

The differences in building energy consumption classified by building years come 

mainly from the differences in the physical properties of buildings, which consist of not 

only the overall building scale and floor height, but also the structure, materials, and 

window-to-wall ratio settings used. As shown in Fig. 14(a), for buildings of all ages, 

the energy-saving potentials of BER 1 to BER 3 are relatively stable, ranging from 

18%–44% for buildings in the 1920–1930s, 20%–37% for buildings in the 1960–1970s, 

16%–35% for buildings in the 1980–1990s and 10%–26% for buildings in the 2000-

2010s. The energy-saving potential of BER 4 for buildings in different eras varies 
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greatly. The energy-saving potential of buildings in the 1920–1930s is roughly 505%, 

buildings in the 1960–1970s are between 93%–196%, buildings in the 1980–1990s are 

between 140%–258%, and buildings in the 2000–2010s is roughly 49%. 

As shown in Fig. 14(b), for BER 1 to BER 3, the energy-saving potentials of 

buildings with different functions are stable. The energy-saving potential of office 

buildings is 16%–33%, it of educational buildings is 27%–45%, it of laboratory 

buildings is 13%–29%, and it of public buildings is 6%–25%. Among the buildings 

with BER 4, public buildings have the largest energy-saving potential, at roughly 492%; 

office buildings and educational buildings have a wide range of energy-saving 

potentials, at 145%–255% and 100%–166%, respectively, and experimental buildings 

have stable energy-saving potential of about 97%.  

 

Fig. 14. Distributions of energy-saving potentials within (a) different building years 

and (b) building type. 

4. Discussion 

This study provided a reference that calibrates building energy model at the urban 

level, and relieves the impact of the uncertainty of the calibiration on the energy-saving 

potential of retrofitting historic buildings. While creating UBEM for decision of 

different retrofit measures at urban scale, many inputs must be obtained, some of which 

are easy to obtain as known paramters while some of which are difficult to obtain as 

unkonw parameters. That says, for the same building, there are multiple sets of feasible 

inputs that bring the simulation results close to the real energy use, in turn, multiple 

groups of energy models can be produced from model calibration. As dicussed in 
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Literature review, multi-parameter inputs or multi-systems (retrofit measurements or 

energy systems) will produce uncertainties of energy models (Ruan et al., 2023). 

Therefore, two methods of dealing with uncertainty can be summarized. One is to reveal 

the impact of uncertainty sources at inputs of energy models, such as, uncertainties from 

climatic changes (Liu et al., 2023), building form, and its physical parameters (Dilsiz 

et al., 2023), occupancy density (Shin & Park, 2022), or those combined with efficiency 

of energy systems (Ye et al., 2021). The second is to reveal the impact uncertainty on 

the application of energy models, for example, early to take uncertainty into account, 

Heo et al. proposed a scalable probabilistic methodology of calibrating building energy 

models for large-scale investments in building energy retrofits (Heo et al., 2012). The 

works in our study also applies to the second one, which is also a contribution to make 

up for the lack of considering uncertainties for energy model at urban block level.  

This study also have those contributions and implications. First, establishing and 

calibrating UBEM was time-consuming and labor-intensive, and most of the research 

time was spent on the field investigation, data query, and iterative calibration. This 

study provided an idea of classifying building groups of different functions and ages, 

and calibrated one building of those groups to obtain various sets of feasible inputs. As 

seen from the calibration results, all the buildings can have their possible feasible 

energy models. This idea might help save the time for related research. Second, energy 

simulation, especially at urban scale, faces many inputs, and it is very difficult to obtain 

accurate data for each input. Uncertainty is therefore common, and has great impact of 

energy-related decisions. This study can provide a good case study of applications of 

UBEM that tunes the models and considers uncertainties. Third, urban renewal is now 

the main theme of China's urban construction and an important aspect of urban 

sustainable development. This study provided an important and significant reference 

for those considering to apply UBEM in evaluating energy-efficient retrofits in mixed 

historic urban blocks, and further for exploring the impact of general uncertainties of 

UBEM on evaluating the potential of energy-efficient retrofits at an urban block scale. 

This study can also be referred to those activities such as low-carbon urban design, 

design of energy system, urban energy planning, which also needs to consider 

uncertainties to make more scientific decisions.  

However, this study also had some limitations. First, in the process of energy 



 27 

simulation, landscape design, especially the impact of trees on the environmental 

microclimate, was not considered. This omission could reduce the accuracy and 

authenticity of energy consumption simulation results, which also could be an 

important consideration in future work to include such impact on retrofit choices. 

Second, the main idea of this study analyzed the energy-savings of different building 

energy measures at urban scale, however, no in-depth analysis of how to implement 

those energy-efficient retrofit measures. For example, this study did not consider to 

apply PV panels on historic buildings, however, when installing PV on modern 

buildings, how much the tall trees will affect the roof PV. Finally, this study created all 

parameterized sets of UBEM by adjusting slider tool in Grasshopper slider, which help 

only reduce the workload of manual adjustment, but cannot reduce the amount of 

calculation. Therefore, an important future work needs to introduce optimization or 

machine learning algorithms to speed up the simulation process and improve calibration 

efficiency. 

5. Conclusion 

This study investigated energy retrofit under uncertainties of urban building 

energy model for mixed modern and historic buildings on a university campus. An 

urban building energy model was created with an on-site survey in the Rhino 

Grasshopper tool, and real electricity data were used to calibrate the models to ensure 

the modeled results were within 20% tolerance of the measured energy data. The 

calibrated set of UBEMs rather than one were used to evaluate four energy retrofit 

measures that target China green building energy standards, China ultra-low energy 

building standards, and active use of photovoltaic energy generation. Four different 

building energy retrofit (BER) measures: BER 1 to maintain the historic values, BER 2 

to achieve green building design standard, BER 3 to achieve energy savings 20% higher 

than BER 2, and BER 4 to utilize renewable energy. The different energy-saving 

potentials of four BER measures can be used as a reference for future energy-saving 

retrofits of related buildings. 

The multiple set of calibrated energy models were applied to simulate the energy-

saving potentials of the four BER measures. For different building ages, the energy-

saving potentials of BER 1 to BER 3 are relatively stable, ranging from 18%–44% for 

buildings in the 1920–1930s, 20%–37% for buildings in the 1960–1970s, 16%–35% 
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for buildings in the 1980–1990s and 10%–26% for 2000-2010s buildings. Differently, 

the energy-saving potentials of BER 4 varies greatly, which is 505% for buildings in 

the 1920–1930s is roughly, 93%–196% for buildings in the 1960–1970s, 140%–258% 

for buildings in the 1980–1990s, and about 49% for buildings in the 2000–2010s, 

respectively. Similar results can be concluded for building functions, for BER 1 to 

BER 3, the energy-saving potential of office buildings is 16%–33%, 27%–45% for 

educational buildings, 13%–29% for laboratory buildings, and 6%–25% for public 

buildings. Among the buildings with BER 4, public buildings have the largest energy-

saving potential, at roughly 492%; office buildings and educational buildings have a 

wide range of energy-saving potentials, at 145%–255% and 100%–166%, respectively, 

and experimental buildings have stable energy-saving potential of about 97%.  

Acknowledgements 

The work described in this paper was sponsored by the National Natural Science 

Foundation of China (NSFC#52208011 and #51978147). Any opinions, findings, 

conclusions, or recommendations expressed in this paper are those of the authors and 

do not necessarily reflect the views of the organizations. 

References 

Ascione, F., Ceroni, F., De Masi, R. F., de’ Rossi, F., & Pecce, M. R. (2017). 
Historical buildings: Multidisciplinary approach to structural/energy diagnosis 
and performance assessment. Applied Energy, 185, 1517–1528. 
https://doi.org/10.1016/j.apenergy.2015.11.089 

Calama-González, C. M., Symonds, P., Petrou, G., Suárez, R., & León-Rodríguez, Á. 
L. (2021). Bayesian calibration of building energy models for uncertainty 
analysis through test cells monitoring. Applied Energy, 282(April 2020). 
https://doi.org/10.1016/j.apenergy.2020.116118 

Chaturvedi, S., & Rajasekar, E. (2022). Application of a probabilistic LHS-PAWN 
approach to assess building cooling energy demand uncertainties. Building 
Simulation, 15(3), 373–387. https://doi.org/10.1007/s12273-021-0815-6 

Cho, H. M., Yun, B. Y., Yang, S., Wi, S., Chang, S. J., & Kim, S. (2020). Optimal 
energy retrofit plan for conservation and sustainable use of historic campus 
building: Case of cultural property building. Applied Energy, 275(June), 115313. 
https://doi.org/10.1016/j.apenergy.2020.115313 

Coakley, D., Raftery, P., & Keane, M. (2014). A review of methods to match building 
energy simulation models to measured data. In Renewable and Sustainable 



 29 

Energy Reviews (Vol. 37, pp. 123–141). Elsevier Ltd. 
https://doi.org/10.1016/j.rser.2014.05.007 

Coelho, G. B. A., & Henriques, F. M. A. (2021). Performance of passive retrofit 
measures for historic buildings that house artefacts viable for future conditions. 
Sustainable Cities and Society, 71(May), 102982. 
https://doi.org/10.1016/j.scs.2021.102982 

Dilsiz, A. D., Ng, K., Kämpf, J., & Nagy, Z. (2023). Erratum to: Ranking parameters 
in urban energy models for various building forms and climates using sensitivity 
analysis (Building Simulation, (2022), 10.1007/s12273-022-0961-5). Building 
Simulation. https://doi.org/10.1007/s12273-023-0988-2 

Gabrielli, L., & Ruggeri, A. G. (2019). Developing a model for energy retrofit in large 
building portfolios: Energy assessment, optimization and uncertainty. Energy 
and Buildings, 202, 109356. https://doi.org/10.1016/j.enbuild.2019.109356 

Gonzalez, G. A. (2005). Urban sprawl, global warming and the limits of ecological 
modernisation. Environmental Politics, 14(3), 344–362. 
https://doi.org/10.1080/0964410500087558 

González, V. G., & Bandera, C. F. (2022). A building energy models calibration 
methodology based on inverse modelling approach. Building Simulation, 15(11), 
1883–1898. https://doi.org/10.1007/s12273-022-0900-5 

Gupta, R., & Gregg, M. (2016). Do deep low carbon domestic retrofits actually work? 
Energy and Buildings, 129, 330–343. 
https://doi.org/10.1016/j.enbuild.2016.08.010 

Heo, Y., Choudhary, R., & Augenbroe, G. A. (2012). Calibration of building energy 
models for retrofit analysis under uncertainty. Energy and Buildings, 47(2012), 
550–560. https://doi.org/10.1016/j.enbuild.2011.12.029 

Hinnells, M. (2008). Technologies to achieve demand reduction and microgeneration 
in buildings. Energy Policy, 36(12), 4427–4433. 
https://doi.org/10.1016/j.enpol.2008.09.029 

Hong, T., Chen, Y., Luo, X., Luo, N., & Lee, S. H. (2020). Ten questions on urban 
building energy modeling. Building and Environment, 168, 106508. 

Hong, T., Yang, L., Hill, D., & Feng, W. (2014). Data and analytics to inform energy 
retrofit of high performance buildings. Applied Energy, 126, 90–106. 
https://doi.org/10.1016/j.apenergy.2014.03.052 

Hu, X., Xiang, Y., Zhang, H., Lin, Q., Wang, W., & Wang, H. (2021). Active–passive 
combined energy-efficient retrofit of rural residence with non-benchmarked 
construction: A case study in Shandong province, China. Energy Reports, 7, 
1360–1373. https://doi.org/10.1016/j.egyr.2021.02.045 

Ibaseta, D., García, A., Álvarez, M., Garzón, B., Díez, F., Coca, P., Pero, C. Del, & 



 30 

Molleda, J. (2021). Monitoring and control of energy consumption in buildings 
using WoT: A novel approach for smart retrofit. Sustainable Cities and Society, 
65, 102637. https://doi.org/10.1016/j.scs.2020.102637 

Kalogeras, G., Rastegarpour, S., Koulamas, C., Kalogeras, A. P., Casillas, J., & 
Ferrarini, L. (2020). Predictive capability testing and sensitivity analysis of a 
model for building energy efficiency. Building Simulation, 13(1), 33–50. 
https://doi.org/10.1007/s12273-019-0559-8 

Li, N., Yang, Z., Becerik-Gerber, B., Tang, C., & Chen, N. (2015). Why is the 
reliability of building simulation limited as a tool for evaluating energy 
conservation measures? Applied Energy, 159, 196–205. 
https://doi.org/10.1016/j.apenergy.2015.09.001 

Liu, S., Wang, Y., Liu, X., Yang, L., Zhang, Y., & He, J. (2023). How does future 
climatic uncertainty affect multi-objective building energy retrofit decisions? 
Evidence from residential buildings in subtropical Hong Kong. Sustainable 
Cities and Society, 92(December 2022), 104482. 
https://doi.org/10.1016/j.scs.2023.104482 

Luddeni, G., Krarti, M., Pernigotto, G., & Gasparella, A. (2018). An analysis 
methodology for large-scale deep energy retrofits of existing building stocks: 
Case study of the Italian office building. Sustainable Cities and Society, 
41(December 2017), 296–311. https://doi.org/10.1016/j.scs.2018.05.038 

Manke, J., Hittle, D., & Hancock, C. (1996). Calibrating building energy analysis 
models using short term test data. https://doi.org/CONF-9603117- ISBN 0-7918-
1765-2; TRN: IM9711%%132 

Mata, É., Sasic Kalagasidis, A., & Johnsson, F. (2013). Energy usage and technical 
potential for energy saving measures in the Swedish residential building stock. 
Energy Policy, 55, 404–414. https://doi.org/10.1016/j.enpol.2012.12.023 

Milone, D., Peri, G., Pitruzzella, S., & Rizzo, G. (2015). Are the Best Available 
Technologies the only viable for energy interventions in historical buildings? 
Energy and Buildings, 95, 39–46. https://doi.org/10.1016/j.enbuild.2014.11.004 

Muñoz González, C. M., León Rodríguez, A. L., Suárez Medina, R., & Ruiz 
Jaramillo, J. (2020). Effects of future climate change on the preservation of 
artworks, thermal comfort and energy consumption in historic buildings. Applied 
Energy, 276(June), 115483. https://doi.org/10.1016/j.apenergy.2020.115483 

Na, R., & Shen, Z. (2021). Assessing cooling energy reduction potentials by 
retrofitting traditional cavity walls into passively ventilated cavity walls. 
Building Simulation, 14, 1295–1309. 

Nagpal, S., & Reinhart, C. F. (2018). A comparison of two modeling approaches for 
establishing and implementing energy use reduction targets for a university 
campus. Energy and Buildings, 173, 103–116. 



 31 

https://doi.org/10.1016/j.enbuild.2018.05.035 

National Statistical Bureau of the People’s Republic of China. (2023). Statistical 
Bulletin of the People’s Republic of China on National Economic and Social 
Development in 2022. 

Ohlsson, K. E. A., & Olofsson, T. (2021). Benchmarking the practice of validation 
and uncertainty analysis of building energy models. Renewable and Sustainable 
Energy Reviews, 142(February 2020), 110842. 
https://doi.org/10.1016/j.rser.2021.110842 

Oraiopoulos, A., Hsieh, S., & Schlueter, A. (2023). Energy futures of representative 
Swiss communities under the influence of urban development, building retrofit, 
and climate change. Sustainable Cities and Society, 91(January), 104437. 
https://doi.org/10.1016/j.scs.2023.104437 

Pan, Y., Huang, Z., & Wu, G. (2007). Calibrated building energy simulation and its 
application in a high-rise commercial building in Shanghai. Energy and 
Buildings, 39(6), 651–657. https://doi.org/10.1016/J.ENBUILD.2006.09.013 

Pedrini, A., Westphal, F. S., & Lamberts, R. (2002). A methodology for building 
energy modelling and calibration in warm climates. Building and Environment, 
37(8–9), 903–912. https://doi.org/10.1016/S0360-1323(02)00051-3 

Qu, K., Chen, X., Ekambaram, A., Cui, Y., Gan, G., Økland, A., & Riffat, S. (2020). 
A novel holistic EPC related retrofit approach for residential apartment building 
renovation in Norway. Sustainable Cities and Society, 54(November 2019). 
https://doi.org/10.1016/j.scs.2019.101975 

Rahaman, Z. A., Kafy, A. Al, Saha, M., Rahim, A. A., Almulhim, A. I., Rahaman, S. 
N., Fattah, M. A., Rahman, M. T., S, K., Faisal, A. Al, & Al Rakib, A. (2022). 
Assessing the impacts of vegetation cover loss on surface temperature, urban 
heat island and carbon emission in Penang city, Malaysia. Building and 
Environment, 222(June), 109335. 
https://doi.org/10.1016/j.buildenv.2022.109335 

Reinhart, C. F., & Cerezo Davila, C. (2016). Urban building energy modeling - A 
review of a nascent field. Building and Environment, 97, 196–202. 
https://doi.org/10.1016/j.buildenv.2015.12.001 

Rodrigues, C., & Freire, F. (2021). Environmental impacts and costs of residential 
building retrofits – What matters? Sustainable Cities and Society, 67(July 2019), 
102733. https://doi.org/10.1016/j.scs.2021.102733 

Rota, M., Corgnati, S. P., & Di Corato, L. (2015). The museum in historical 
buildings: Energy and systems. the project of the Fondazione Musei Senesi. 
Energy and Buildings, 95, 138–143. 
https://doi.org/10.1016/j.enbuild.2014.11.008 

Ruan, Y., Qian, F., Sun, K., & Meng, H. (2023). Optimization on building combined 



 32 

cooling, heating, and power system considering load uncertainty based on 
scenario generation method and two-stage stochastic programming. Sustainable 
Cities and Society, 89(October 2022). https://doi.org/10.1016/j.scs.2022.104331 

Schibuola, L., Scarpa, M., & Tambani, C. (2018). Innovative technologies for energy 
retrofit of historic buildings: An experimental validation. Journal of Cultural 
Heritage, 30, 147–154. https://doi.org/10.1016/j.culher.2017.09.011 

Shamsi, M. H., Ali, U., Mangina, E., & O’Donnell, J. (2020). A framework for 
uncertainty quantification in building heat demand simulations using reduced-
order grey-box energy models. Applied Energy, 275(June), 115141. 
https://doi.org/10.1016/j.apenergy.2020.115141 

Shin, H., & Park, C. S. (2022). Parameter estimation for building energy models using 
GRcGAN. Building Simulation, 2, 629–639. https://doi.org/10.1007/s12273-022-
0965-1 

Suárez, R., & Fernández-Agüera, J. (2015). Passive energy strategies in the 
retrofitting of the residential sector : A practical case study in dry hot climate. 
Building Simulation, 8, 593–602. https://doi.org/10.1007/s12273-015-0234-7 

Sun, K., & Hong, T. (2017). A framework for quantifying the impact of occupant 
behavior on energy savings of energy conservation measures. Energy and 
Buildings, 146, 383–396. https://doi.org/10.1016/j.enbuild.2017.04.065 

Sun, K., Hong, T., Kim, J., & Hooper, B. (2022). Application and evaluation of a 
pattern-based building energy model calibration method using public building 
datasets. Building Simulation, 15(8), 1385–1400. https://doi.org/10.1007/s12273-
022-0891-2 

Todorović, M. S., Ećim-Crossed D Signurić, O., Nikolić, S., Ristić, S., & Polić-
Radovanović, S. (2015). Historic building’s holistic and sustainable deep energy 
refurbishment via BPS, energy efficiency and renewable energy - A case study. 
Energy and Buildings, 95, 130–137. 
https://doi.org/10.1016/j.enbuild.2014.11.011 

Valencia, A., Hossain, M. U., & Chang, N. Bin. (2022). Building energy retrofit 
simulation for exploring decarbonization pathways in a community-scale food-
energy-water-waste nexus. Sustainable Cities and Society, 87(May), 104173. 
https://doi.org/10.1016/j.scs.2022.104173 

Xin, L., Chenchen, W., Chuanzhi, L., Guohui, F., Zekai, Y., & Zonghan, L. (2018). 
Effect of the energy-saving retrofit on the existing residential buildings in the 
typical city in northern China. Energy and Buildings, 177, 154–172. 
https://doi.org/10.1016/j.enbuild.2018.07.004 

Yang, T., Pan, Y., Mao, J., Wang, Y., & Huang, Z. (2016). An automated 
optimization method for calibrating building energy simulation models with 
measured data: Orientation and a case study. Applied Energy, 179, 1220–1231. 



 33 

https://doi.org/10.1016/j.apenergy.2016.07.084 

Ye, Y., Hinkelman, K., Lou, Y., Zuo, W., Wang, G., & Zhang, J. (2021). Evaluating 
the energy impact potential of energy efficiency measures for retrofit 
applications: A case study with U.S. medium office buildings. Building 
Simulation, 14(5), 1377–1393. https://doi.org/10.1007/s12273-021-0765-z 

Zhou, L., Li, J., & Chiang, Y. H. (2013). Promoting energy efficient building in China 
through clean development mechanism. Energy Policy, 57, 338–346. 
https://doi.org/10.1016/j.enpol.2013.02.001 

Zhu, C., Tian, W., Yin, B., Li, Z., & Shi, J. (2020). Uncertainty calibration of building 
energy models by combining approximate Bayesian computation and machine 
learning algorithms. Applied Energy, 268(September 2019), 115025. 
https://doi.org/10.1016/j.apenergy.2020.115025 

 




