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ABSTRACT OF THE DISSERTATION 

 

Cell communication across scales: Using single-cell technologies to explore cellular dynamics 

 

by  

 

Maeve Patricia Nagle 

Doctor of Philosophy in Biochemistry, Molecular and Structural Biology 

University of California, Los Angeles, 2021 

Professor Roy Wollman, Chair 

 

 

The ability of a cell to accurate interpret its environment and communicate cues within itself is 

crucial to survival. How cells orchestrate the transmission of large amounts of information within 

themselves is a key biological question. From surface-level receptors binding to myriads of 

extracellular molecules to internal changes in gene expression, cells must process vast amounts 

of inputs and outputs every minute. This work follows the innerworkings of cells to further 

understand how cells interpret and respond to their environments. By following the flow of 

information with a cell, we can parse out the mechanisms by which cell signaling controls 

response. In this dissertation, I first describe a new suite of in situ technologies that are offering 

a paradigm shift in the manner in which we can understand biology across scales both large, in 

terms of the makeup and function of organ systems, to the minute, in terms of intracellular 

localization of molecules. In the second chapter, I describe how one of these technologies, 

MERFISH, can pair with live-cell imaging of mouse macrophages to further understand their 

cellular responses to inflammatory signaling molecules. In the third chapter, I describe a method 

by which endogenous proteins can be genetically tagged and imaged with individual molecular 
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barcodes to further understand cellular signaling and protein dynamics. In the last chapter, I 

describe how the cell’s chromatin environment is influenced more by cis regulatory elements than 

previously imagined. Combined, this dissertation explores several areas of cellular information 

transfer and communication.  
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CHAPTER 1 

Bridging scales: from cell biology to physiology using in situ single-cell technologies   
 

Abstract 

Biological organization crosses multiple spatial scales: from molecular, cellular, to 

tissues and organs. The proliferation of molecular profiling technologies enables increasingly 

detailed cataloging of the components at each scale. However, the scarcity of spatial profiling 

has made it challenging to bridge across these scales. Emerging technologies based on highly 

multiplexed in situ profiling are paving the way to study the spatial organization of cells and 

tissues in greater detail. These new technologies provide the data needed to cross the scale 

from cell biology to physiology and identify the fundamental principles that govern tissue 

organization. Here, we provide an overview of these key technologies and discuss the present 

and future insights these powerful techniques enable. 

 

Introduction 

In biology, structure and function are tightly linked. For example, it is the structure of a 

protein that determines its function, and not simply its amino-acid composition. To solve a 

protein structure the x, y, and z coordinates of each atom are determined, the local organization 

identified (e.g. alpha-helix, beta-sheets) and the different domains of the proteins are defined. It 

is the detailed understanding of the spatial organization of the different amino acids that make 

up the protein that allows researchers to build a model that explains how its structure (and the 

dynamics of that structure) determines its function. Similarly, at the cellular level, a list of all the 

molecules in a cell is insufficient to understand a cell’s function. Historically, the electron 

micrographs obtained by cell biology pioneers such as Palade and Porter in the 1950s were key 

to defining cellular organelles and determining the structural organization of the cell (Palade and 

Porter, 1954). In the 70 years that followed, modern cell biology connected these structural 
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insights to the molecular composition of a cell providing key understanding of how the spatial 

organization of the molecules that make up a cell determines the cell’s function. At the next 

level, the connection between an organ’s anatomy (i.e. structure) and its physiology (i.e. 

function) has always been a core perspective used to investigate tissues and organs.  

Histological sections observed using light microscopy have been a key tool that enabled 

understanding of organ function through insights into their microstructure.  However, similar to 

Palade and Porter’s electron micrograph, existing histological approaches lack sufficient 

molecular details. Histological staining is often based on a combination of non-specific dyes and 

a handful of molecular markers and does not provide sufficient information to fully understand 

the complex molecular and cellular structure of the organ. Therefore, while anatomical 

information is ubiquitous, the lack of spatio-molecular details limits the ability to connect a 

structure to its function across biological scales.   

 

From dissociative to spatial measurements 
 

Technological advances in single-cell measurements allow the cataloging of all cells into 

types, subtypes, and states. These catalogs provide key insights into the cellular composition of 

different organs. The most widespread single-cell technology is undoubtedly single-cell RNA 

sequencing (scRNA-seq) (Tang et al., 2009). Named “method of the year” for 2013 (2014), 

scRNA-seq has since become a fixture across many biology labs and has led to many new 

biological insights due to the ease of analyzing large numbers of cells in a short time frame. In 

scRNA-seq, cells are dissociated from each other, isolated, barcoded, and sequenced. Due to 

its dissociative nature, scRNAseq is especially suited for the task of cell classification. However, 

this dissociative approach loses the spatial context of cells. Therefore, while this technique 

provides an invaluable new vocabulary of cell type taxonomy, the lack of spatial information 

limits its use for organ-scale structure-function analysis.  
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In recent years, new technologies have been developed that measure the characteristics 

of single cells in situ (in the original site). These technologies link the detailed compositional 

information obtained through dissociative measurement with spatial histological measurements. 

These new measurement technologies have transformative potential as they provide the 

missing data on organs’ molecular and cellular structures. By bridging the gap left by 

dissociative techniques in situ technologies provide a route to connect organs’ functions to their 

molecular and cellular structure. 

 

In this review, we discuss the main technologies for characterizing cells in situ. We 

additionally discuss the ways in which in situ measurements are contributing to our 

understanding of biological organization from the subcellular scale to the physiological scale. 

This review will not focus on the technical aspects of each technology, as previous reviews for 

scRNA-seq (Chen et al., 2019; Stark et al., 2019) and spatial technologies (Asp et al., 2020; 

Lundberg and Borner, 2019; Young et al., 2020) have thoroughly addressed these topics. 

Rather, we provide an overview of key approaches and how they can be used to bridge scales 

and connect organ cellular structure to its function.   

 

In situ technologies 

The fast pace of technology development in this space introduces some ambiguity 

related to terminology. In this review, we make a distinction between the establishment of a cell 

taxonomy, i.e. classification, and the creation of a cell atlas that requires spatial mapping of cell 

types in tissues and organs. Similarly, the term in situ technologies is ill-defined as in situ 

measurement technologies are as old as histology itself (Motta, 1998) and, depending on the 

definition, can include a vast range of measurements. In the scope of this review, we will use a 

more narrow definition of in situ measurements to focus on highly multiplexed spatial 

measurements of RNA and proteins. RNA measurements are based on in situ hybridization, in 
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situ sequencing, or RNA capture and cDNA barcoding. Protein measurements are based on 

antibodies that recognize a specific antigen that can be read either using many rounds of 

imaging or conjugation with metal ions that are read with a rastering mass spectrometer. Figure 

1.1 provides an overview of current approaches for spatial in situ measurements.  
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Figure 1.1: Overview of key in situ technologies. (A)  Hierarchical classification of the main 
approaches used for in situ measurements. At the top level, methods are split depending if their main 
targets are nucleic acids or proteins. Nucleic acid approaches are divided based on the main readout 
mechanism, hybridization of fluorescent probes to the transcript of interest, or use sequencing to read out 
the transcript identity. Hybridization approaches are further split into individual approaches or 
combinatorial approaches. Sequencing approaches either measure RNA in the cell directly or measure 
DNA barcodes. Antibodies are frequently used to measure protein in situ and contain either fluorophore 
attachments that can be read by fluorescent imaging or metals that are read out by mass cytometry. (B) 
Schematic representations of key technologies. (i) Individual hybridization techniques, like smFISH, 
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employ many fluorescently-label DNA probes that bind to a transcript of interest. Each transcript appears 
as a diffraction-limited fluorescent spot in an image and is identifiable by its unique color. (ii) 
Combinatorial hybridization techniques utilize similar principles to individual hybridization but utilize 
consecutive binding of probes to the same molecules and sequential imaging to create a “barcodes” of 
fluorescent spots across imaging rounds that are used to determine a transcript’s identity. An additional 
set of probes are used in combination hybridization that bind directly to an RNA transcript with overhangs 
for fluorescent readout probes to bind to. (iii) In situ sequencing involves the readout of an RNA transcript 
directly or of a barcoded primer used to amplify that transcript. The transcript is first reverse transcribed 
into cDNA, then that cDNA is amplified, frequently by rolling circle amplification. The amplified cDNA is 
either sequenced directly or the sequence of a specific primer that binds to the cDNA is sequenced. (iv) In 
in situ barcoding methods, a sample is applied to a slide covered with DNA-barcoded microbeads. The 
sample is lysed and the resulting RNA binds to the beads, which are then sequenced. The location of the 
RNA is mapped back to the known location of the DNA barcode sequence from the bead. (v) In each 
round of fluorescent-based antibody readout, proteins are bound to an antibody with a fluorescently 
labeled molecule attached, similar to in (i). Each protein is represented by a single-colored fluorescent 
spot in an image. (vi) Metal-based antibody readouts are similar to fluorescent-based antibody readouts 
but utilize unique metal atoms attached to antibodies instead of fluorescent molecules. These metal 
atoms are read out using a mass cytometer. 

 

 

RNA hybridization 

Single-molecule RNA fluorescence in situ hybridization (smFISH) (Femino et al., 1998; 

Raj et al., 2008) was the first widespread single-molecule in situ RNA measurement technology. 

smFISH counts the number of mRNAs transcribed from a gene of interest within a cell by using 

DNA probes specific to the mRNA target sequence. These DNA probes are attached to a 

fluorescent molecule and collectively create a single diffraction-limited spot in the position of the 

mRNA molecule. The number of diffraction-limited fluorescent spots in a cell is counted to 

determine the number of mRNA molecules present. Several techniques seek to improve upon 

the probe design of smFISH. A partial list of these extensions includes RNAscope ((Wang et al., 

2012), which uses Z-shaped DNA probes to enhance specificity, osmFISH (Codeluppi et al., 

2018) which is optimized for use in thin tissue sections such as brain slices, ExFISH (Chen et 

al., 2016) which uses expansion microscopy to further separate mRNA spots and make image 

analysis easier, and SABER-FISH which uses multi-part probes to enhance the signal from 

each mRNA (Kishi et al., 2019). Overall, the principle that is shared between smFISH and its 

many subsequent versions is that expression of pre-defined genes is measured in a targeted 
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manner with one measurement per gene. The high accuracy and mRNA capture rate (both 

>95%) have led smFISH to become the “gold standard” among validation techniques (Torre et 

al., 2018). However, the high accuracy comes at a price: smFISH-based approaches assign 

each gene a specific measurement (i.e. color), so there can only be as many genes measured 

in a single hybridization as there are non-overlapping fluorescent molecules available. Four 

rounds of hybridization with this approach using four different types of fluorescent probes can 

measure a maximum of 16 genes. This linear scaling limits the ability of smFISH-based 

approaches to provide full and detailed structural information.  

 

 Combinatorial FISH approaches address the key limitation of smFISH by increasing the 

number of genes that can be counted per experiment and thereby provide much more detailed 

information on the cellular composition in the tissue. These techniques include MERFISH (Chen 

et al., 2015; Moffitt et al., 2016a, 2016b; Wang et al., 2020; Xia et al., 2019a), seqFISH+ (Eng et 

al., 2019), and most recently split-FISH (Goh et al., 2020). These approaches, while very 

similar, differ in some of the details related to barcoding strategy and how they remove the 

fluorescently-tagged oligo probes. The core improvement over smFISH is that combinatorial 

FISH approaches utilize barcodes for each RNA to increase the measurement capacity. Each 

gene is given a ‘barcode’ that is a combination of colors, so the gene identity is uncovered by 

the data from every round of hybridization. This process scales exponentially, so four rounds of 

hybridization with four different types of fluorescent probes would allow for up to 256 genes to 

be analyzed, instead of 16. Using four dyes and eight rounds of hybridization (48 = 65,536), in 

principle an entire transcriptome can be measured. However, the use of RNA barcodes comes 

at a price. In the 48 scheme, any error in “calling” one of the four measurements needed to 

assign a gene identity to an RNA molecule will result in an incorrect assignment. Such errors 

have the potential to substantially reduce the accuracy of combinatorial FISH approaches. To 

address this limitation, the barcodes are typically chosen sparsely from a large set of possible 
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codes. This intentional reduction in chosen barcodes can substantially reduce the error rates of 

combinatorial approaches at a cost of an increase in the number of hybridization rounds. In 

typical combinatorial measurement, 24 rounds are used with each molecule having 4 

measurements out of the possible 24 rounds. The sparsity of barcode assignment is such that 

200-500 genes can be measured using 24 rounds of imaging. Both MERFISH and seqFISH+ 

were used to demonstrate that transcriptome scale (~10,000 genes) is possible but at a cost of 

a much higher number of measurements and overall reduced throughput (Chen et al., 2015; 

Eng et al., 2019). The flexibility of combinatorial FISH approaches is important as the complexity 

of the approach often requires tailoring measurements to specific samples and experiments. 

Optical crowding of many RNA spots per image can impede RNAs from being resolved and 

require integration of some smFISH rounds for highly expressed genes or a substantial increase 

in the number of measurements. As a result, large samples can require weeks of continuous 

imaging and can generate terabytes of image data. Overall, combinatorial FISH approaches 

provide a very powerful platform for targeted spatial RNA counting that can be tailored to the 

specific needs of a project. 

 

Antibodies  

Immunohistochemistry (IHC) has been used since 1942 to study the spatial location of 

proteins in a tissue (American Association of Immunologists, 1942). IHC involves adding labeled 

antibodies to a sample in order to visualize proteins and other molecules of interest. Despite the 

high specificity achieved by antibodies, IHC is difficult to multiplex. Only in the last two decades 

have a few approaches been successfully implemented to enable 30+ protein readouts in a 

sample. The first difficulty is the generation of validated high-quality antibodies. In practice, this 

is a non-trivial issue that has been partially addressed by both commercial and academic 

groups (Edfors et al., 2018) but is by no means a solved problem. The second difficulty relates 

to how the spatial distribution of these antibodies is read. To prevent cross-reactions and due to 
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the limited number of host animals used in antibody production, the use of primary and 

secondary antibodies, common in standard IHC, is difficult. This limits antibody selection to 

mostly primary antibodies that need to be read across multiple measurements. Here, we focus 

on solutions that address the readout problem. Overall the multiple attempts at “cracking” the 

multiplexing challenge can be divided into two types: 1) repeated imaging on a light microscope 

and 2) coupling antibodies to unique metal ions.  

 

A straightforward way to increase the number of readouts is to use existing tools for 

fluorescence-based antibody detection and simply repeat them many times (Fig 1.1). For 

example, a set of antibodies would be added to a sample, imaged, then stripped away and 

replaced with a new set of antibodies. This idea is implemented in methods such as MxIF 

(Gerdes et al., 2013), CycIF (Lin et al., 2015, 2018), and 4i (Gut et al., 2018). The key distinction 

between the different variants is in how the multiple rounds of staining are achieved, i.e. are the 

antibodies themselves stripped from the sample, or are they simply quenched by 

photobleaching. An important advantage of these approaches is that since they are based on 

standard microscopy; they can also be coupled to live-cell imaging (Lin et al., 2015). Borrowing 

from the relative ease of repeated imaging after RNA hybridization a few methods, CODEX 

(Goltsev et al., 2018), DEI (Wang et al., 2017), and Immuno-SABER (Saka et al., 2019) use 

oligo-conjugated antibodies and fluidics systems almost identical to the one used by 

combinatorial FISH approaches.   

 

An alternative approach for multiplexing antibody staining is based on changing the 

readout from a light microscope to a mass spectrometer. Mass cytometry imaging approaches 

have been developed to avoid some of the practical limitations encountered by attempts to 

multiplex IHC-based analysis. Specific implementations of imaging mass cytometry include 

Multiplexed Ion Beam Imaging (MIBI) (Angelo et al., 2014; Keren et al., 2019; Ptacek et al., 
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2020) and Imaging Mass Cytometry (IMC) (Giesen et al., 2014; Ijsselsteijn et al., 2019). Each of 

these approaches uses secondary ion mass spectrometry to image antibodies tagged with 

isotopically pure elemental metal reporters. The main distinction between the two methods 

arises in sample ablation which leads to differences in image resolution and acquisition times 

between IMC and MIBI (Baharlou et al., 2019). Though these techniques can analyze up to 40 

proteins in a sample at a given time, they are both limited by antibody availability and quality. 

Additionally, MIBI and IMC require specialized equipment to point-scan small fields, and 

therefore imaging large samples can be slow and costly.  

 

Sequencing  

The accessibility of DNA sequencing, achieved in part due to six orders of magnitude 

decrease in sequencing cost per base pair (Stark et al., 2017), motivated innovative approaches 

that leverage DNA sequencing while still preserving spatial information. The approaches that 

couple spatial information to RNA sequencing can be divided into three distinct categories: 1) 

separation of RNA based on their spatial location followed by sequencing, 2) use of spatially 

distinct DNA barcodes during library preparation, and 3) performing the sequencing reactions 

themselves in situ. The first two categories directly leverage existing sequencing technologies 

whereas the latter use many of the chemistry developed for sequencing however the readout 

itself is microscopy-based and shares many similarities to combinatorial FISH-based 

approaches.   

 

Perhaps the most straightforward way to assign spatial information to RNA molecules is 

to only collect RNAs from a specific spatial domain. This concept is the basis of highly useful 

methods such as LCM-seq (Nichterwitz et al., 2016) and GEO-seq (Chen et al., 2017) that use 

laser capture microscopy to sequence a small number of cells at a time. A more systematic 

application of a spatial collection of RNA from distinct regions was applied using a method 



11 
 

called Tomo-seq (Burkhard and Bakkers, 2018) that uses cryosectioning to the tissue before 

sequencing. Photoactivation is another useful tool that was used to encode spatial information 

and capture RNAs in spatially distinct domains.  Transcriptome in vivo analysis (TIVA) exposes 

live cells to multifunctional caged mRNA-capture molecule tags called TIVA that upon 

photocleavage hybridize to mRNAs within a cell allowing sequencing of RNAs from specific 

spatial position (Lovatt et al., 2014). A similar idea was implemented by ZipSeq (Hu et al., 2020) 

that used patterned light and three distinct colors to label cells according to their spatial position. 

Labeled cells are sorted and sequenced using standard scRNAseq tools. These spatial-specific 

capture approaches have been effective tools in understanding the organization of tissues. 

However, they suffer from an inherent tradeoff between resolution and throughput. While Tomo-

seq allowed sequencing entire embryos, this was done in linear sections of 18-micron thickness. 

On the other extreme TIVA can be used for subcellular localization of RNA molecules however it 

can only process one location at a time. Therefore, while the approaches that are based on 

spatially restricted RNA collection provide important spatial information they stop short of 

enabling the cellular structure of organs and tissues.   

 

To overcome the tradeoff between spatial resolution and throughput, an alternative 

approach is based on localized barcoding of cDNA during library preparation prior to 

sequencing. The key advantage of position-based barcoding is that once each region is labeled 

by a specific code the entire sample can be sequenced as one and using prior knowledge of the 

XY position of each barcode, the spatial position of all RNA molecules is reconstructed 

computationally. These approaches involve capturing RNA from tissue samples on a spatially 

barcoded bead array which is later sequenced. Both High Definition Spatial Transcriptomics 

(Salmén et al., 2018; Ståhl et al., 2016; Vickovic et al., 2019) and Slide-seq (Rodriques et al., 

2019; Stickels et al., 2020) use this approach. While this technique cannot define cell 

boundaries, High Definition Spatial Transcriptomics can achieve two-micron resolution and 
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allows for fast, high-throughput processing (Vickovic et al., 2019). A key advantage of these 

approaches is that they leverage many of the experimental and computational tools developed 

for scRNASeq. In fact, popular analysis tools such as Seurat were able to add the spatial 

capture analysis despite the scarcity of datasets that used this approach partially due to its 

similarity to scRNAseq (Stuart et al., 2019). Spatially resolved sequencing is a promising 

approach, however, presently it suffers from low RNA capture efficiency. The low capture 

efficiency means that the capture bin (i.e. spatial domain of a single barcode) needs to be big 

enough to contain a sufficient number of RNA molecules. Furthermore, even if the capture 

chemistry will improve, similar to other capture-based approaches there is an inherent tradeoff 

between resolution, i.e. the size of a single capture bin and the number of bins. To allow 

subcellular information, capture bins need to be <100 micrometer2 which means that a standard 

tissue section of 100 mm2 will need 106 distinct barcodes, a non-trivial library to sequence.   

 

In situ sequencing leverages the conceptual advances of DNA sequencing, but not the 

sequencing machines themselves. In situ sequencing converts RNA in a cell to cross-linked 

cDNA amplicons that are sequenced within a cell on a microscope. These molecules can either 

be the RNAs of interest themselves, as in FISSEQ (Lee et al., 2014, 2015), or an RNA barcode 

specific to transcripts of interest, like in ISS (Ke et al., 2013), STARmap (Wang et al., 2018),  

and Baristaseq (Chen et al., 2018). FISSEQ (Lee et al., 2014, 2015) cross-links DNA amplicons 

to a matrix to directly sequence the amplicon inside a cell. ISS, STARmap, and Baristaseq add 

barcoded oligos specific to targets of interest and sequence the barcodes to determine the 

presence of transcripts. Similar to combinatorial FISH approaches, barcode-based in situ 

sequencing requires an oligo library that targets genes of interest. While in principle in situ 

sequencing approaches can provide an unbiased view of RNA in tissues and organs, in practice 

this comes at a cost associated with the need to sequence many copies of highly abundant 

RNA molecules. The targeted methods have shown more robustness in their implementations 
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and have dominated over unbiased ones. Interestingly, given their targeted nature, the 

distinction between them and combinatorial hybridization-based approaches diminishes. This is 

exemplified in a new protocol called HybISS that merges the rolling circle amplification typical to 

in situ sequencing approaches with hybridization-based multi-round readout that is common in 

combinatorial FISH (Gyllborg et al., 2020).    

 

Integrative in situ measurements 

Integrative spatial multi-modal in situ approaches combine the measurements across 

modalities, i.e. RNA and protein. The integrative and multi-model data will likely enable a more 

comprehensive understanding of single-cell processes and functions. Many recent innovations 

in this direction point to an exciting future with complex datasets that span different data types. 

Techniques like Digital Spatial Profiling (DSP) (Merritt et al., 2020), RNAscope (Kann and 

Krauss, 2019), smFISH-IF (Tutucci and Singer, 2020), and ImmunoFISH (Kwon et al., 2020) 

combine FISH and immunofluorescence methods to measure RNA and protein levels within a 

single cell. RNAscope has additionally been paired with mass cytometry to read RNA and 

protein levels (Schulz et al., 2018). SABER-FISH also allows for the in situ measurement of 

DNA or RNA transcripts and can combine protein staining for simultaneous detection of a 

gene’s transcript and protein levels (Kishi et al., 2019). Another venture involves reading out 

DNA and RNA within the same cell in situ. ClampFISH (Rouhanifard et al., 2018) probes can be 

used on both DNA and RNA sequences, allowing for the measurement of DNA and RNA in the 

same cell in the same experiment. Additionally, live-cell imaging has been combined with in situ 

transcriptomics to allow for mapping the transcriptional state of a cell to its phenotype. CycIF 

tracked the translocation of a YFP-FoxO3a reporter followed by the readout of seven additional 

protein levels (Lin et al., 2015). A recent paper analyzed calcium signaling response and gene 

expression of calcium signaling-related genes in over 5,000 cells (Foreman and Wollman, 

2020). New avenues of spatial multi-omics are just now being explored and could have a great 
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impact on the construction of atlases with many maps. Furthermore, these technologies open 

up new avenues to study gene perturbations (Wang et al., 2019), cell lineage tracing (Chen et 

al., 2018; Frieda et al., 2017), and other aspects of functional DNA and RNA biology (Cai et al., 

2020; Maiser et al., 2020). 

 

Integrative reconstructions have been developed by combining large dissociative 

datasets with a smaller number of spatial measurements used as a “ruler”. For example, 

algorithms have been developed to infer the original spatial location of cells analyzed by 

scRNA-seq by correlating the level of key marker genes with levels of those genes found within 

in situ datasets (Achim et al., 2015; Satija et al., 2015). Other algorithms such as trendsceek 

and LIGER have also been used to integrate scRNA-seq data with spatial transcriptomics 

information (Edsgärd et al., 2018; Welch et al., 2019). The integration across spatial and non-

spatial datasets enabled spatial reconstruction by combining laser capture microdissection, bulk 

sequencing those cells, and then reconstructing the whole tissue through spatial tissue 

reconstruction (Moor et al., 2018). These reconstruction-based approaches are very powerful as 

they merge the strengths of dissociative and spatial measurements. However, care needs to be 

taken in the interpretation of these reconstructions. The recovered maps are based on spatially 

stratified averaging of many cells. These averaging could mask additional spatial differences 

that are lost due to averaging. Therefore, the details of the reconstruction matter and care 

should be used in the interpretation of these measurements.  

 

Challenges are truly opportunities 

The ultimate in situ measurement technology will have sub-cellular resolution, high 

detection sensitivity, will be applicable to 3D volumes, compatible with multiple fixation protocols 

including FFPE, and provide highly multiplexed data on a wide range of molecular species. 

Given the inherent tradeoff between resolution, sensitivity, and throughput, none of the 
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technologies described above should be considered a “winner”. It is likely that many different 

technologies will be developed where each will be a “winner” for a specific subset of 

applications. As a result, in situ technologies contain a smorgasbord of different approaches, 

each with their own acronym and nuances. Despite the variety, these technologies face some 

similar challenges. The first challenge is the computational and data complexity. Despite the 

differences in methods, many computational steps, such as spot calling and cell segmentation 

(Littman et al., 2020), are shared across approaches. Development of standards and mature 

computational libraries that can allow the separation of the computational analysis from data 

acquisition will allow more cross-fertilization in this field. Currently, the Chan Zuckerberg 

Initiative (CZI) has begun building a unified data-analysis tool and file format called starfish to 

address this issue (Perkel, 2019). These standards will allow the use of modern machine 

learning methods that will invariably be key to solving many of these problems (Bannon et al., 

2021; Chen et al., 2020a; Moen et al., 2019; Stringer et al., 2021).  The second challenge 

relates to scale. MERFISH imaging of a volume comparable to a mouse brain would require 

more than a year of continuous imaging. Other technologies, such as spatial RNA barcoding, 

have a similar order of magnitude time requirements. To achieve cellular resolution for such 

volume requires ~1013 reads which, even on an advanced NovaSeq 6000 will take multiple 

years to sequence. The third challenge is the dissemination of these technologies to the 

scientific community. The complexity of many of these protocols makes the open-source / open-

hardware model challenging. Many companies are actively working on bringing these 

innovations to market which will help. However, whether these efforts will democratize the best 

technologies remain to be seen. Finally, once spatial data is collected, how to fully analyze it 

and maximize the insights such data provides is very much an open research question. As was 

the case for single-cell biology, we anticipate that increase in data availability will result in 

further developments in statistical and bioinformatics methodology to analyze these rich and 
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interesting datasets. We are optimistic that these challenges will act as a catalyst for innovation 

and we expect further technological development in this space.  

 

From cell biology to physiology 

The technologies introduced above are paving the way for bridging the gap between 

intracellular, cellular, and physiological scales (Fig 1.2).  

 

 

Figure 1.2: Bridging scales with in situ technologies. In situ technologies can reveal new biology 
across many scales of biology, including within a cell, cell types, cellular neighborhoods, tissue 
organization, and physiology. By bridging these scales, in situ technologies can provide insights into the 
structure-function relationship across multiple scales.   

 

Within a cell 

In situ measurements provide three key benefits over dissociative approaches in the 

analysis of single cells: 1) higher accuracy, 2) spatial context, and 3) subcellular information:   

 

Accuracy: Many in situ techniques like MERFISH and seqFISH are more sensitive and 

less biased than their dissociative counterparts like scRNAseq. Therefore, for a broad range of 

biological questions that require accurate transcript numbers in situ technologies should be 

used. For example, analysis of gene expression variability is non-trivial using scRNAseq data 
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with sensitivities around 10%. Analysis of gene expression variability based on scRNAseq data 

requires accounting for this large measurement error with complex error models. Unfortunately, 

these are non-trivial and introduce a large number of additional assumptions, such as a high 

degree of transcriptional bursting (Jiang et al., 2017; Larsson et al., 2019), that are not always 

fully substantiated (Battich et al., 2015; Foreman and Wollman, 2020).   

 

Spatial Context: The spatial context of in situ technologies allow for analysis of cellular 

heterogeneity in a much more physiological context. To fully understand the sources of cellular 

heterogeneity, we need to understand what factors influence cell state. Does spatial position in 

a tissue affect the variance of key genes? How does a cells’ gene expression predict its present 

and future behavior? Efforts to track cells over time have revealed that understanding a cell’s 

gene expression is insufficient to understand the choices that cells make (Weinreb et al., 2020). 

More information about a cell is therefore imperative to know in order to understand how a cell 

makes decisions. Recent work identified more than 40 genes in the mouse hippocampus to be 

cell subtype-specific spatial differentially expressed genes (spDEGs) (Littman et al., 2020). 

These results suggest that a spatial position can explain much of the heterogeneity seen using 

dissociative approaches.  

 

Subcellular Information: A subset of in situ techniques are capable of discerning RNA 

and protein localization at the subcellular level. High resolution allows for the determination of 

expression patterns in organelles as well as the analysis of coexpression of genes by 

subcellular localization. MERFISH is one such technique and has characterized the RNA 

enrichment in the endoplasmic reticulum and the nucleus (Xia et al., 2019b) as well as the 

dendrites and axons of neurons (Wang et al., 2020). On the proteomics side, 4i allows 

subcellular detection of protein abundances (Gut et al., 2018). 4i goes further and determines 

that the subcellular spatial protein distribution between single cells that experience different cell 
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cycle states, microenvironments, or growth conditions affects the localization of EGFR upon the 

cell’s exposure to EGF. Collectively, the accuracy, context, and resolution of many in situ 

technologies enable a more accurate picture of the biology of cells in a true physiological 

context.  

 

Cell types: the building blocks of tissues 

Classification of cells into (sub)types and states is an important step toward deciphering 

the structure/function relationship of tissues and organs. The two key advantages of 

classification of cells into (sub)types and state are 1) reduction of data complexity, i.e. a single 

cell type label can be used to replace a complex vector of transcriptome scale gene expression 

values. 2) interoperability between different experiments including across spatial and dissociate 

measurements, i.e the same nomenclature can be prescribed to cells across experiments. 

These benefits of cell classification systems and the existence of a large body of data from 

dissociative studies motivate many ongoing efforts to create robust cell classification systems 

(Trapnell, 2015; Yuste et al., 2020). However, the definition of a cell type and cell states is not 

consistent across fields, or even across researchers within a field. In addition, the appropriate 

criteria to use to classify cells are debated. This heterogeneity adds additional complications to 

cell classification, so it remains unclear if a single classification system will emerge or whether 

classification will have to be redefined for each analysis. 

 

Three complementary and non-mutually exclusive views of cell types have been used as 

frameworks to determine cellular classification systems: landscape, microenvironment, and task 

(Fig 1.3). The first view, famously referred to as the Waddington landscape (Waddington, 

1957a), suggests that intracellular biological regulatory networks are configured such that they 

can exist in a finite number of steady states. In the landscape point-of-view, cellular 

classification is molecular in origin and depends on stability analysis in high-dimensional phase 
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space (Ferrell, 2012; Trapnell, 2015). While inputs to the cell during its developmental trajectory 

can influence cell fate decisions, these transitions are still encoded by the underlying regulatory 

network and therefore the classification is focused on a cell’s internal state (Waddington, 

1957b). The second view is that a cell type is defined by its microenvironment:  the chemical, 

mechanical, and biological cues surrounding the cell. The cell is influenced and shaped by its 

neighbors, its resources, and its environmental cues. The third view is that classification of cells 

into types has to follow the functional tasks cells are required to perform for the organism as a 

whole. Under this view, there are key cell archetypes, each specialized in a specific task. Each 

individual cell performs one or a few of these tasks and its molecular state will match the tasks it 

performs (Korem et al., 2015). Not only are the three views of landscape, microenvironment, 

and task non-mutually exclusive, they are in fact complementary and are likely different views of 

roles and states of cells in a multicellular organism. For example, the transition from monocyte 

to macrophage is guided by an internal epigenetic regulatory network (Álvarez-Errico et al., 

2015). Macrophages can polarize to perform different tasks based on stimulatory cytokines 

(Murray, 2017) while at the same time are heavily influenced by the tissue microenvironment 

(Lavin et al., 2014). Combining multiple viewpoints to create one (or more) cell classification 

system is an important stepping stone in analyzing the cellular structure of tissues and organs.  
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Figure 1.3: Geometrical representation of cell types. Three complementary views of the concept of 
cell type. These concepts are non-mutually exclusive and represent complementary views. (Top) The 
Waddington landscape uses the geometrical analogy of landscape. In this view, a cell type is a specific 
valley in ‘cell space’. As pluripotent cells differentiate they pass through the landscape to reach their final 
position. This view is largely focused on the intracellular epigenetic and gene regulatory networks that 
define the possible valleys in the landscape.  (Left) The task-based view proposes that each cell performs 
one or a few tasks. Each task (cell archetype) is represented as a vertice on a high dimensional 
polyhedron. The specific tasks each cell performs will determine its position within the polyhedron.  
(Right) The microenvironment view proposes that cell types are defined by the chemical, mechanical, and 
biological cues surrounding a cell. The cartoon shows a simplified view with two signaling gradients and 
the position of the cell in that space will determine its type.   
 

In situ measurement technologies are well suited to generate and utilize cell 

classification systems. MERFISH and seqFISH were used to categorize the organization of 

predefined cell types within the brain (Chen et al., 2015; Littman et al., 2020; Shah et al., 2016). 

Other in situ technologies, such as in situ sequencing leverage the existing cell type taxonomies 

to overcome low RNA detection efficiency and still provide key cell type information (Qian et al., 
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2020). Rather than solely focusing on existing classification systems, work based on seqFISH in 

combination with scRNAseq redefined cell types based on a Hidden Random Markov Field 

analysis of expression domains (Zhu et al., 2018). With further improvement of cell 

segmentation algorithms, it is likely that morphological information could be incorporated into 

classification models based on in situ measurements. Together with existing spatial information, 

it is expected that in situ technologies will play a key role in further refinement and development 

of cell type and state classification.  

 

Cellular neighborhoods and communities 

Cellular neighborhoods, the local spatial distribution of different cell types on the scale of 

hundreds of micrometers, are poorly understood. However, such length scales likely play an 

important role in bridging the gap between individual cell function and complex organ function. A 

good analogy for cellular communities is urban planning for human residential neighborhoods. A 

typical neighborhood with many houses will also have a coffee shop, a grocery store, and will be 

served by major roads and key public transportation. Similarly, cellular communities will have 

many cells of a few types that are needed for the specific organ (i.e. neurons in the brain, 

hepatocytes in the liver), but will also have resident macrophages, mast cells, and fibroblasts 

and will be in proximity to blood vessels. The number and spatial distribution of these 

specialized cell types have major implications for the function of the organ in their ability to relay 

information and perform their function (Bagnall et al., 2018). A good example of these principles 

come from recent cell-type mapping in the brain were in situ multiplexed RNA FISH uncovered a 

high spatial self-affinity of ependymal cells as well as spatial self-avoidance of inhibitory 

neurons, microglia, and astrocytes (Codeluppi et al., 2018). The paper also found that 

endothelial cells were found within roughly 65 microns of all other cell types. Another principle 

that will likely help identify cellular communities is communication between cells. Direct 

measurement of communication between cells is challenging, but a useful proxy is ligand-
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receptor interactions in neighboring cells (Browaeys et al., 2020). Work that used multiplexed 

RNA measurement in brain slices (Eng et al., 2019) found that endothelial cells next to microglia 

in the olfactory bulb express endoglin and activin A receptor mRNA while the microglia 

expressed TGFB ligand mRNA (Eng et al., 2019). By contrast, endothelial cells adjacent to 

microglia in the cortex expressed Lrp1 and Pdgfb mRNA. Collectively such studies bring an 

intriguing hypothesis that there are key principles that could be generalized to identify 

community-level ‘rules’ of cellular patterning. What exactly are these rules and what are the 

molecular mechanisms used to implement them, e.g. the chemical gradient (Lander et al., 2009) 

and differential adhesion (Tsai et al., 2020), are key open questions.  

 

In situ technologies coupled with new analysis approaches are well-positioned to make 

valuable contributions to our understanding of cellular communities. The highly multiplexed and 

inherently spatial nature of in situ measurement technologies makes them an ideal tool to 

acquire the data needed to understand cellular community organization. However, data 

collection is only the first step in identifying the rules and principles that govern cellular 

community organization. New bioinformatics and statistical tools will be required to allow 

researchers to convert the raw data on molecular distributions of RNA and proteins into insights. 

The rich literature of statistical learning including ideas related to community detection in multi-

layer networks (Mucha et al., 2010) and concepts from topic modeling (Blei et al., 2003) will 

accelerate the development of these much-needed statistical analysis tools for cellular 

community organization. Initial implementation of ideas from topical modeling to cellular 

communities is very promising (Chen et al., 2020c). Overall, while the amount of work done so 

far to understand cellular neighborhoods remains small, the iterative development of data 

collection and analysis tools presents enticing prospects for understanding the role of the 

microenvironment in cellular organization.  
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Principles of tissue organization  

How do multiple cellular communities interact together to form complex organs is a 

fundamental question. It is unclear whether there are few fundamental principles that can 

explain cellular self-organization across multiple organs or whether the way that multiple cellular 

communities synergy is organ dependent. It is likely that the organization of complex organs 

such as the brain or the liver that perform many distinct functions are different from each other 

and from simpler tissues such as the intestine or cornea. Nonetheless, the lack of complete data 

on cell type, RNA, and protein distribution across entire organs makes answering such 

questions difficult.  

 

The liver was the first organ to be studied in depth with in situ approaches. The largest 

internal organ in the body, it performs roughly 500 tasks, including bile production, fat 

metabolization, vitamin and mineral storage, and blood filtration (Ben-Moshe and Itzkovitz, 

2019). These tasks are non-homogeneously carried out by different subsets of cells within the 

liver. While it has long been understood that the various functions of the liver are not all carried 

out in the same spaces, in situ approaches have allowed researchers to dive further into the 

detailed arrangement of cell types and functions throughout the liver. Halpern et al. showed that 

roughly half of the hepatocyte genes, the main cells of the liver, are expressed in a zonated 

manner (Halpern et al., 2017). A subsequent study showed that liver endothelial cells are also 

highly zonated, with more than 30% of their genes expressed in a zonated manner (Halpern et 

al., 2018). Using spatial mapping, a high-resolution, global expression map of liver zonation was 

created that showed tasks that are high-energy are carried out in the highly oxygenated 

periportal locule layers where hepatocytes can more readily generate ATP through respiration 

(Halpern et al., 2017). This conclusion supports theoretical results on spatial task allocation in 

organs (Adler et al., 2019). While the work on the liver has shown exciting insights into its 

spatial organization it is still nascent and does not differentiate between the different lobes of the 
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liver, begging the question of whether each lobe shows additional sub-specializations. 

Outstanding questions of the liver organization still remain, including whether specific cell types 

including Kupffer cells (Bykov et al., 2004) and hepatic stellate cells (Friedman, 2008) are 

spatially heterogeneous. As technology develops, we anticipate exciting findings on the spatial 

organization of the liver’s 500 tasks. The example of the liver shows how much was already 

learned, yet at the same time how much more there is to discover on tissue spatial organization 

using in situ measurement technologies.  

 

To physiology and beyond  

The ultimate goal of biomedical research is to improve our understanding of human 

biology and how it is disrupted during disease. From a translational point of view, it is often an 

organ function that is impacted by disease. In situ measurement technologies are poised to 

provide new insights on normal physiology and importantly provide detailed information on what 

goes wrong in a disease state. In situ techniques have been applied to a subset of organ 

diseases. Systematic charting of the brain (Moffitt et al., 2018; Shah et al., 2017; Zhang et al., 

2020), heart (Asp et al., 2019), liver (Ben-Moshe and Itzkovitz, 2019; Halpern et al., 2017, 

2018), intestine (Moor et al., 2018), and bone marrow (Baccin et al., 2020) are starting to 

uncover the single-cell architecture of multiple tissues and organs. Spatial Transcriptomics has 

been used to study ALS (Maniatis et al., 2019), prostate cancer (Berglund et al., 2018), 

melanoma (Thrane et al., 2018), and Alzheimer’s disease (Chen et al., 2020b) while MIBI-TOF 

and imaging mass cytometry have been applied to the study of breast cancer (Jackson et al., 

2020; Keren et al., 2018). Systematic efforts to scale in situ mapping to tumors are ongoing 

(Rozenblatt-Rosen et al., 2020). 

 

Spatial maps of prostate cancer transcriptomes have shown prostate cancer samples 

have high heterogeneity across the tumor and that distinct cancer expression regions can 
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extend beyond the boundaries of annotated tumor areas (Berglund et al., 2018). These findings 

suggest using spatial information of tumors is important in classification schemes to rank tumor 

severity and could be used to predict further ‘high risk’ areas of potential cancer growth. 

Similarly, an analysis of triple-negative breast cancer by MIBI-TOF found that the spatial 

organization of infiltrating immune cells inside solid tumors is predictive of patient survival, 

where patients with more compartmentalized immune cells inside tumors fared better than 

patients where immune cells were well mixed within the tumor (Keren et al., 2018). Spatial 

transcriptomics has also been used in other diseases to track how disease progression occurs 

molecularly. A recent study of ALS quantified over 11,000 genes in mice and over 9,000 genes 

in humans to show that microglial dysfunction occurs well before ALS symptom onset and this 

dysfunction is mediated by the phagocytosis-related genes TREM2 and TYROBP (Maniatis et 

al., 2019). These technologies are pushing our frontier of understanding and even show areas 

where in situ analyses can suggest improvements in current medical practices. On a longer 

timescale, it is possible that in situ measurements will become an important diagnostic tool.  

 

Conclusion   

Spatial Biology is still an emerging field driven in large part by new in situ technologies. 

The ability of these approaches to provide rich spatially defined datasets about molecular and 

cellular distribution across multiple spatial scales poise these technologies to make critical 

contributions to our understanding of the inherent relationship between structure and function at 

multiple levels. The future of this field is quite bright, with applications ranging from 

understanding disease progression and how the structure of organs such as the brain and the 

liver relates to their functions. As was the case with single-cell biology, an increase in the 

adoption of these technologies will increase data availability and will result in innovation in data 

analysis. Such iterative improvements in data acquisition and analysis will provide key insights 
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that will allow researchers to bridge the gap from molecular and cellular biology to complex 

human physiology. The best is yet to come. 
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CHAPTER 2 

Information Transfer in Stimulus-Specific Activation of Macrophages 

 

Abstract 

Macrophages control inflammation responses through the NFKB and p38 pathways. 

Individually, these two pathways control cellular response through temporal patterns of activity 

that initiate gene expression changes. How these pathways use combinatorial as well as 

temporal activation to further refine responses to stimuli is not well understood. We utilize a 

dual-reporter macrophage system to explore the dynamics of p38 and NFKB. We show that 

both pathways show stimulus-specific response to PAMPS through high-throughput live-cell 

microscopy as well as MERFISH. Together, these results provide a clearer understanding of the 

innate immune system.  

 

Introduction 

Cells in the body contend with complex environments and are required to respond 

appropriately to extracellular signals. This fact is especially true for cells in the immune system, 

whose constant vigilance via the innate immune system is a key component to maintaining 

health. Signaling that activates appropriate gene expression profiles to accurately and quickly 

respond to a threat is a critical component in the innate immune system. Two broad hypothesis 

describe the process by which a cell encodes information about an extracellular threat: the 

temporal coding hypothesis1 and the combinatorial encoding hypothesis2. The temporal coding 

hypothesis suggests that information about an extracellular stimulus is encoded in the dynamic 

of a signaling molecule over time. Combinatorial encoding has been shown to allow cells to 

perceive information encoded by simultaneous activation of multiple signaling pathways3,4. 
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 Two major pathways are critical in orchestrating immune response. NFKB controls 

transcription of DNA, cytokine production, and cell survival. Misregulation of this pathway has 

been linked to cancer, autoimmune disease, and viral infection5. Mitogen-activated protein 

kinases (MAPK) regulate many cell responses. p38 MAPKs are involved in the production of 

many inflammatory mediators. p38 plays an essential role in regulating many cellular processes, 

especially inflammation. The p38 kinase has a well-documented link to the NF-KB pathway5,6. 

Combinatorial signaling through both p38 and NF-KB has been shown to regulate strength of 

immune response in macrophages7,8. 

 

Macrophages are among the most fascinating cells in the human body, ranging in 

function from ingesting and degrading dead cells to wound healing and inflammation response9. 

These myeloid immune cells are found in practically all tissues in the body10. Macrophages 

respond to a wide array of pathogen association molecular patterns (PAMPS) that represent 

broad classes of cellular threats11. Their ability to correctly identify both the identity and the 

scale of the threat is crucial to mounting an appropriate response. Immune cells have been 

shown to have gene expression changes that are stimulus- and pathogen-specific12–14. These 

cells make an excellent model system for the study of immune activation. In this chapter, we 

investigate p38 and NFKB signaling and response in macrophages using a dual-reporter 

system. 

 

Results 

 To build upon previous work in establishing the encoding and decoding of signaling 

dynamics in cell lines, we intended to study the combinatorial and temporal patterns of NF-KB 

and p38 signaling in primary macrophages in response to a wide range of immune threats 

(Figure 2.1). Using a previously described mVenus-RelA reporter mouse line15 transduced with 
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a mCerulean p38 kinase translocation reporter (KTR)16, we developed a dual-reporter system 

for the analysis of p38 and NF-kB response in bone-marrow derived macrophages. Previous 

work has used RelA fusion proteins ectopically expressed in immortalized cell lines17,18. Ectopic 

expression can lead to artifacts19 and immortalized cell lines have been shown to have 

diminished immune responses20. Kinase translocation reporters (KTRs) have proven to be 

effective measurement tools of kinase activity in vivo and offer improvements longevity and 

multiplexing opportunities over the previous most popular kinase reporter, FRET16,21. Here, we 

show the first single-cell study of NF-kB and p38 trajectories in primary macrophages.  

 

Macrophages differentiated from primary bone-marrow cells derived from homogenous 

RelAv/v mice showed normal levels of nuclear activity of both signaling proteins. Cells were 

stimulated with the inflammatory molecules TNF, Pam3CSK, and LPS (Figure 2.1). These three 

ligands represent a diverse array of ligands sources: a native cytokine that stimulates TNFR, a 

synthetic lipopeptide that stimulates TLR2, and a bacterial TLR4 agonist22. The amount of 

nuclear NFKB and p38 fluorescence in single cells was quantitated with a fully automated 

imaging pipeline as described in Selimkhanov et al 2014 and Zambrano et al 201623,24. Cells 

were imaged on 40 mm coverslips treated with poly-l-lysine. We found that using PDMS to 

create wells was not practical when working with macrophages, as they tended to interact with 

irregular pieces of PDMS on the walls of the wells. We suspect that using PDMS wells could be 

a source of artificial activation of some macrophages. Instead, we adapted wells from Ibidi 

removable chambers to fit on 40 mm coverslips. Macrophages did not interact with these wells 

and data collected from the 40 mm coverslips correlated highly with experiments performed on 

8-well Ibidi SlideTek chambers. 
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Figure 2.1 Schematic of innate immune signaling network activating p38 and NFKB. 

 

Obvious differences in both NFKB and p38 dynamics are seen at the single-cell level 

(Figure 2.2). As seen in previous work, LPS shows strong initial and sustained RelA response 

and TNF induces an oscillatory response in the RelA reporter that desynchronizes over time1,15. 

P3C4 shows a more delayed initial response with a similar overall trajectory to LPS. The p38 

dynamics are similar to those of NFKB. The most diverging stimulus is TNF, which shows a fast, 

relatively weak initial response and a small second peak. This ligand does not seem to produce 

oscillatory dynamics. In p38 activation, LPS again shows a strong, broad peak of activity and 

P3C4 is similarly strong. While p38 signaling has previously been shown to oscillate in a FRET-

based system in response to the cytokine IL-1β, it does not appear that any of the ligands in the 

current study induce oscillatory dynamics25. 
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Figure 2.2 Stimulus-specific activation of p38 and NFKB. A) Heatmaps are ordered by maximum initial 
peak height. Top row shows p38 activation in response to ligands. Bottom row shows RelA activation. B) 
Average RelA response of cells to ligands. C) Average p38 response of cells to ligands. 
 

In order to further investigate the stimulus-specific activation of p38 and RelA, we 

employed MERFISH, a method to count single molecules of RNA within cells, to determine the 

gene expression changes of each cell in response to the stimuli. Custom coverslips containing 

microgrids as fiduciary markers made the collection of such a multi-omic dataset possible 

(Figure 2.3).  Macrophages were fixed immediately after eight hours of imaging. With this 

timescale, macrophages show distinct changes in many gene expression groups14. We seek to 
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understand the linkage between signaling activation of NFKB and p38 with gene expression 

changes. The work of combining these MERFISH datasets with live-cell imaging is ongoing. 

 

In determining the decoding of external stimuli via changes in gene expression, it is 

critical to study at the single-cell level. Both signaling dynamics and gene expression changes 

show high degrees of heterogeneity, which means that population-level analyses miss crucial 

changes that average out across many cells. Coupling live-cell imaging and transcriptional 

readouts so that the information from the same cell can be linked together in a multi-omic 

dataset is critical to parsing out the details in the heterogeneity.  

 

Figure 2.3 Paired single-cell MERFISH and live-cell imaging (A) Measuring live-cell signaling dynamics 
and gene expression changes in a single cell allow for paired datasets (B) Cells are segmented and 
signaling dynamics are measured for NFKB and p38. Then the same cells have their gene expression 
measured by MERFISH (C) Coverslip overview. Setup of coverslip with three microgrids and a modified 
Ibidi removable chamber. Live macrophage images are paired with MERFISH images via alignment of 
coordinates via microgrid orientation. (D) Images of macrophage cells during one round of hybridization. 
Left – raw image. Right – image with background subtraction. 
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Discussion 

In this chapter, we determine the stimulus-specific response of RelA and p38 in 

macrophages to a variety of ligands. We show that NFKB has oscillatory dynamics to some 

stimuli, while p38 does not express oscillations in this dual-reporter system. While stimulus-

specific temporal responses were obvious, lack of correlation between RelA and p38 responses 

leave it unclear as to whether combinatorial encoding plays a role in decoding the stimuli’s 

identities. 

 

Our ultimate goal is to generate high-quality multi-omic datasets linking the dynamics of 

multiple signaling molecules to gene expression changes at the single-cell level. It is well 

established that NFKB  and p38 dynamics are correlated with gene expression1,26,27. Future 

work could also resolve more information in these linked datasets, such as microenvironment 

effects and neighbor similarities. Extracellular signaling molecules such as cytokines are known 

to affect the function of immune cells and could alter the encoding and decoding of cellular 

signaling13. Further exploration of the link between heterogeneity in signaling and gene 

expression are key to understanding the mechanistic underpinnings of the innate immune 

system. 
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Materials and Methods 

Cell culture 

BMDMs were prepared by culturing bone marrow monocytes from femurs of 8-12 week old in 

L929 -conditioned medium using standard methods20. BMDMs were re-plated in imaging dishes 

on day 4, then were stimulated on day 7 or day 8. 

 

Live-cell imaging 

Bone-marrow macrophages were replated on day 4 at 24,000 or 20,000/cm2 in custom 

coverslip chambers, for imaging at an appropriate density (approx. 60,000/cm2) on day 7 or day 

8. 2 hours prior to stimulation, a solution of 2.5 ng/mL Hoechst 33342 was added to the BMDM 

culture media. After the start of imaging, additional culture media containing stimulus (TNF, 

LPS, or P3C4) was injected into the chamber in situ. Cells were imaged at 5-minute intervals on 

a Zeiss Axio Observer platform with live-cell incubation, using epifluorescent excitation from a 

Sutter Lambda XL light source. Images were recorded on a Hamamatsu Orca Flash 2.0 CCD 

camera. 

 

Image analysis and processing  

Microscopy time-lapse images were exported for single-cell tracking and measurement in 

MATLAB R2016a. The tracking routines followed those used in earlier work23. Briefly, cells were 

identified using DIC images, then segmented, guided by markers from the Hoechst image. 

Segmented cells were linked into trajectories across successive images, then nuclear and 

cytoplasmic boundaries were saved and used to define measurement regions in other 

fluorescent channels were quantified on a per-cell basis, normalized to image background 

levels, then were baseline-subtracted. Mitotic cells, as well as cells that drifted out of the field of 

view, were excluded from analysis. 
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Coverslip modification 

Forty millimeter coverslips (Bioptechs) were allyl silane functionalized according to Moffitt et al 

(2016), which briefly consists of washing coverslips in 50% methanol and 50% 12M HCl, and 

then incubating at room temperature in 0.1% (vol/vol) triethylamine (Millipore) and 0.2% (vol/vol) 

allyltrichlorosilane (Sigma) in chloroform for 30 min. Wash with chloroform and then with 100% 

ethanol, and air-dry with nitrogen gas. These were stored in a desiccator for less than a month 

until use. Ibidi removable chambers (Ibidi 80841) were modified to contain only four wells and 

applied to the glass 40 mm round coverslips. Fiduciary grids in the form of Gilder Finder Grids 

(VWR) were glued on to the coverslips using small amounts of Gorilla Clear Glue. 

 

Sequential FISH staining 

Immediately after imaging cells were fixed for 5 minutes, washed 3x with PBS, then stored with 

70% ethanol at -20 degrees C. After storage, the Ibidi wells were removed from the coverslip 

and the coverslips were washed 3x with PBS and then permeabilized with 0.5% Triton X-100 

in PBS for 15 min. Coverslips were washed with 50 mM Tris and 300 mM NaCl (TBS), and then 

incubated overnight with MelpaX to functionally add acrolyl modificaitons. Coverslips were 

washed again with TBS and immersed in 30% formamide in TBS for 5 min to equilibrate, all the 

liquid was aspirated from the petri dishes, and 30 µL of 100 µM encoding probes were added on 

top of the coverslip. A piece of parafilm was place on top of the coverslip to evenly spread the 

small volume over the surface and prevent evaporation. The entire petri dish was sealed with 

parafilm and incubated at 37°C for 36–48 h. The parafilm was removed, and the coverslip was 

washed 2X with 30% formamide with 30-min incubation at 37°C for both washes. A 4% 

polyacrylamide hydrogel was then cast to embed the cells before clearing with 2% SDS, 0.5% 

Triton X-100, and 8 U/ml proteinase k (NEB P8107S), according to previously published 

methods. Coverslips were incubated in clearing buffer for 12 h and then washed 3x in TBS for 

15 min each at room temperature. 
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MERFISH imaging 

smFISH staining was imaged on a custom-modified Zeiss Axio Observer Z1 body with Andor 

Zyla 4.2 sCMOS camera and 1.4NA 63 Plan-Apo oil immersion objective. Illumination light was 

provided by LUXEON rebel LEDs (deep red and blue) to excite Cy5, Hoechst, and 200 nm deep 

blue fiducial markers. The microscope was controlled by micromanager28 and custom MATLAB 

software. Automated washing during sequential rounds of hybridization was accomplished by 

using a previous published setup29,30. Briefly, FCS2 bioptech flow chambers were attached to a 

Gilson Minipuls peristaltic pump pulling liquid from reservoirs attached to Hamilton MVP valves. 

The pump and valves were controlled with Arduino, and serial commands with Python 

https://github.com/ZhuangLab/storm-control/tree/master/storm_control/fluidics. This setup was used 

to automatically wash cells with TBS, then 2 ml of TCEP (Sigma) in TBS incubated for 15 min, 

then rinse with TBS, then flow in 2 ml of wash buffer [10% ethylene carbonate in TBS with  0.3% 

polyvinyl sulfonic acid (VWR)], followed by 3 ml 3 nM readout probes in wash buffer incubated 

for 15 min, then rinsed with 2 ml wash buffer, then 1 ml of TBS, and finally 3 ml of imaging 

buffer. Imaging buffers 0.15 U/ml rPCO (OYCO), 2 mM PCA (Sigma), 2 mM Trolox (Sigma), 50 

mM pH 8.0 Tris–HCl, 300 mM NaCl, and 40 U/ml murine RNase inhibitor (NEB). MERFISH 

imaging processing and gene calling were performed as described in Foreman et al31. 
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CHAPTER 3 

A method to tag endogenous genes using a barcoded CRISPR tag via intronic regions  

 

Abstract 

The localization and abundance of endogenous proteins provides a myriad of useful 

information. In this chapter we report a high-throughput method to study endogenous protein 

dynamics. We combine an intronic CRISPR tagging approach with a molecular barcode to 

identify uniquely tagged cells. We demonstrate this is a scalable endogenous tagging approach 

for single cell protein tracking. Furthermore, the addition of the in situ molecular barcode allows 

this method to be scaled up to genome-wide proteomic studies. 

 

Introduction 

High-throughput screens are playing an increasingly important role in advancing the 

understanding of biological systems and cell biology1. Large-scale screens are greatly facilitated 

by the ability to pool multiple cell lines of interest together to analyze, instead of having to study 

each cell’s condition independently. The study of the dynamics of endogenous proteins remains 

an important endeavor to further understand cell signaling pathways, cell cycle progression, 

differentiation, and more.  

 

Fusing fluorescent or epitope tags to endogenous proteins is a widely used method to 

study proteins within their natural context2. Fluorescent tagging allows for the analysis of protein 

localization, behavior, and even interactions with other molecules. Tracking cellular proteins in 

vivo with fluorescent tags was enabled by the discovery of GFP and the generation of a suite of 

fluorescent proteins from this original molecule3. Creating a genetic in-frame fusion of GFP to a 

protein of interest allows the visualization of that protein in time and space in tissues, cells, or 
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even sub-cellular structures. Their quick folding4 and fluorescent lifespan5 makes them a very 

useful biological tool.  

 

The advent of CRISPR has made modification of the genome, and addition of 

fluorescent protein tags, even easier6–8. However, the traditional method of protein tagging of 

homology-direct repair (HDR) still involves high amounts of labor and cost for multiplexed 

tagging efforts. The necessity for fluorescent proteins to be in-frame with their endogenous 

counterpart requires that CRISPR efforts via HDR are carefully considered and screened. While 

generic strategies have been attempted via HDR, the creation of indels, which are erroneous 

insertions or deletions around an entry site, severely curtails its usefulness. Addition of DNA by 

HDR creates indels at approximately 34% of sites9. Any disruption to the exonic portions of 

genes can disrupt their function and produce unusual results. Individual HDR donors must be 

constructed for each gene of interest, cloned, and tested. 

 

An alternative to HDR is to capitalize upon a previous approach for tagging endogenous 

genes through synthetic exons. This method, called “CD-tagging” or “protein trapping”, has used 

transposons or retrovirus to random tag genes with a synthetic exon10–12. This approach has 

been shown to work in mammalian cells12, zebrafish10 and Drosophila13. The biggest drawback 

to this approach has historically been the random nature of its integration into the genome. 

However, with the use of CRISPR technology this drawback can be overcome. By using 

CRISPR to integrate the synthetic exon into the intronic regions of a gene, a non-homologous 

end joining (NHEJ) approach can be used that does not necessitate DNA specific to each gene. 

A generic template for the synthetic exon tag can be used, which simplifies the tagging and cuts 

down on cost. The risk of affecting the exonic regions of genes by frame-shift or mutation is 

greatly diminished. The ability to tag a certain gene of interest also increases, as the choices for 

sgRNA are greatly widened by the number of introns and their lengths.   
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In order to truly run large-scale tagging experiments, it is imperative to have an easy and 

efficient manner of detecting which gene or genes are tagged in each cell. As the number of 

non-overlapping fluorescent protein emission wavelengths are limited, a limit of one gene per 

fluorescent protein color can be tagged in each cell. In a large-scale experiment, this would 

necessitate the isolation and characterization of each type of tagged cell. One method to 

overcome this issue is to use an RNA barcode. RNA barcodes allow for the determination of a 

cell’s identity without needing to remove or destroy the cell. Barcodes can be read out in situ, 

which vastly increases the application of such a tagging system. Methods such as MERFISH 

allow for easy readout of in situ barcodes14–16. These barcodes have previously be 

demonstrated to be capable of screening 20 million E. coli cells17. This approach has been 

attempted by a recent paper using in situ sequencing to determine cell identities18. A drawback 

to the ISS approach is the need to image single spots, which is a slow process that requires 

custom microscopes. By amplifying a barcode many times, lower objectives can be used and 

cells can be segmented at much lower resolution.  

 

We propose a 24-bit barcode scheme that can be integrated into the genome along with 

the synthetic exon so as to be able to quickly and easily determine cell identities (Figure 3.1). 

Each bit of the barcodes is a 20 base pair site that is composed of one of two different 

sequences, which either represent a value of “1” or “0”. Only one of the two sequences, the “1” 

value, will bind a fluorescently-labeled probe. The other sequence, the “0” value, does not bind 

to anything at all. To increase the rate of hybridization, the sequences were constructed from a 

three-letter nucleotide alphabet only containing A, T, and G in order to destabilize potential 

secondary structures19. This design offers 2^24 choices of possible barcodes, or greater than 

16.7 million possible barcodes. Having such a large pool of possible barcode options minimizes 

the probability of two cells having identical or similar barcodes. Only ~21,000 protein-coding 
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genes are present in the human genome20, a number more than 500 times smaller than our 

number of possible barcodes. Therefore, this method is highly error-robust.  

 

Results 

Our tagging scheme involves the use of a generic donor plasmid with a Cas9 protein 

and targeted gRNA to intronically tag endogenous protein-coding genes (Figure 3.1). The 

generic donor plasmid contains a fluorescent protein, mVenus, surrounded by a splice donor 

(SD) and a splice acceptor (SA) to create a synthetic exon. The synthetic exon sequence is 

surrounded by two sgRNA target cut sites comprised of sequences not found in the human 

genome21. The gRNA for these target sites is found on a second plasmid, which contain the 

Cas9 protein as well. A third plasmid contains the gRNA targeting the protein of interest. This 

synthetic exon is inserted into the intronic region of the gene via NHEJ. During transcription, the 

synthetic exon is transcribed, spliced into the mature RNA product, and forms into a protein with 

an attached fluorescent protein. The use of NHEJ offers many possible insertion sites within 

intronic regions, which average length is ~3.4 kb and occur approximately 8 times per gene22. 

The only constraint for intronic targeting is to use an intron that allows for the donor plasmid to 

be in frame in the final mRNA so as not to cause frameshift mutations. We show results from 

proteins tagged with generic donors in “frame 0” but have also created donors with one or two 

additional ‘A’s between the splice acceptor and start of the mVenus fluorescent protein for 

“frame 1” and “frame 2” so that all potential introns can be targeted.  
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Figure 3.1. Introduction of fluorescent tag into endogenous gene. (A) Overview of scheme to create 
pooled, intronically tagged cells, then image them using live-cell microscopy, and finally read out their 
molecular barcode. (B) Using a generic donor DNA that contains a fluorescent protein surrounded by a 
splice acceptor and splice donor creates a synthetic exon that can be inserted into the intronic region of a 
gene. Since this way of integration is through NHEJ it does not require the use of lengthy homology arms. 
Intronic regions also offer many more locations for insertion of synthetic DNA than exons. (C) A549 cells 
with an intronically tagged ACTB gene at its fourth intron. Scale bar is 5 µm. (D) Flow of A549 cells 
transfected with the triple plasmid scheme. Untagged cells are represented by blue, tagged cells are 
represented by orange. (E) Introduction of three plasmids to tag endogenous genes 
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While the fluorescent protein tag can potentially be inserted upside down, the use of flow 

cytometry to isolate positive fluorescent cells allows for the identification of proteins that have 

successfully been tagged. Using this approach, we tagged the fourth intron on the actin protein 

and showed normal localization patterns in A549 cells. We further validated the correct insertion 

of the mVenus tag through RNA extraction and RT-PCR of the actin RNA. Gel electrophoresis 

revealed that one allele of the gene was successfully tagged while the other allele remained 

untagged (Figure 3.2). We see a potential further use for this technique in dual-allele tagging 

with different colored fluorescent tags for functional analyses and other experiments. Sanger 

sequencing revealed continuous reads containing the insert at the 5’ and 3’ junction with the 

endogenous exonic portion. This result shows that the fluorescent tag can be completely and 

accurately integrated into the cell’s genome and transcriptome. 

 

To allow for this technique to be used in a more high-throughput manner, we explored 

the use of RNA barcodes for rapid identification of cellular identity (Figure 3.3). The use of an 

RNA barcode requires that a representation of the population of cells to be analyzed is 

sequenced before the experiment to determine the sequence of barcode found in each cell 

along with its tagged gene. Once a table of tagged genes and barcode ID is assembled, the 

barcodes can be read out in situ, allowing for rapid identification of cellular identity as well as the 

ability to pair live-cell measurements, similar to recent studies23. We designed a 24-bit barcode, 

comprised of sections of 20 nucleotide bits that can either bind a readout probe (“1”) or cannot 

bind a readout probe (“0”) (Table 3.1). This barcode has 2^24, or roughly 16 million, possible 

combinations. Figure 3.3B shows the successful creation of a barcode library which was pooled 

into lentivirus used to infect cells.  

 

In the convention readout process of the barcode, cells on a coverslip are fixed, 

permeabilized, and an acrylamide gel loaded with acrydite-modified primers is formed around 
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the cells. Barcode RNA binds to the primers now embedded in the gel and the rest of the 

cellular contents are cleared away. The barcode can then be read by MERFISH (Figure 3.3D). 

In order to increase the speed of imaging by 10x, the barcoded RNA attached to acrydite-

modified primers embedded in the acrylamide gel can by reverse transcribed and amplified by 

PCR (Figure 3.3E). The acrylamide gel limits diffusion of the PCR product, allowing the 

barcoded RNA to remain in the same area and not diffuse into other cells. The resulting 

amplified barcode DNA is read out by FISH at a much lower magnification, allowing for greater 

multiplexing. 
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Figure 3.2 Validation of tag insertion (A) PCR result of sequencing of area surrounding the mVenus 
synthetic exon. Two alleles of the gene are present in this cell line – a tagged allele (top) and untagged 
allele (bottom) (B) Sanger sequencing results of an RT-PCR amplicon showing continuous reads 
containing the insert and the exonic region of ACTB. Reads are shown at the 5’ junction of the fourth 
exon and the mVenus insert at the 3’ junction of the mVenus insert and the fifth exon.  
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Figure 3.3 RNA barcode scheme (A) A key feature of our approach includes a unique RNA barcode 
inserted into each cell by a low MOI infection. The barcode can be read out at the end of a live-cell 
microscopy by FISH and is comprised of 24 bits that can either successfully bind a readout probe or not 
bind a readout probe (B) Gel image showing the successful creation of a library of 24-bit barcodes (C) 
Gel image showing the results of a RT-PCR or two different barcoded cell lines. The first lane 
corresponds to a full-length barcode whereas the second lane represents a truncated barcode (D) Single-
molecule readout of the barcodes with clearing (E) Amplification scheme for easier readout of the 
barcodes. Amplifying the RNA barcode by RT-PCR allows for faster readout using lower magnification 
microscopy. This will improve speed of barcode analysis by 10X. 
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Table 3.1 Barcode bitmap. Demonstration of the bitmap of a full-length barcode with 13 positive bits and 
11 negative bits. 
 

DISCUSSION 

In this chapter we have established a scalable protocol for the creation of pooled 

endogenously tagged library. By demonstrating the usefulness and feasibility of this approach, 

we hope this information will act as the basis of future studies to address questions of impacts 

of drugs and drug combinations. Our method improves upon previous methods to fuse 

fluorescent or epitope flags to proteins to study their functions, localizations, and interactions 

within living cells. Other methods using plasmids or viral vectors tend to result in overexpression 

artifacts, lack of endogenous regulatory environments, and scale poorly. The use of a generic 

DNA donor for large-scale applications makes the use of intronic tagging via CRISPR a highly 

effective option.  

 

Improvements upon the technique will allow for greater efficiency of the tagging 

approach. Currently, the random orientation of the tag cuts efficiency in half because half of all 

fluorophores will be integrated into the DNA upside-down. Methods to ensure the proper 

integration of the tag will increase efficiency by 2x. The selection of an appropriate intron to 

integrate a tag into is also crucial to success. Integrating into certain introns could case the 

proteins to misfold, possibly creating cells that have diffuse fluorescence due to protein mis-

localization. A crucial check to the system is comparison to known localization patterns of 

proteins in wild-type cells. A key metric to ensuring proper localization is comparison to 

previously published work, such as The Human Protein Atlas which lists the subcellular 

distributions of proteins encoded by 12813 genes - accounting for 65% of the human protein-
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coding genes24,25. Future sets of systematic tagging experiments will be needed to understand 

the parameters by which intronic protein tags are more effective and least disruptive. 

 

Exploring the dynamics of endogenously expressed genes is a useful tool to explore 

pathways. While previous efforts to explore the dynamics and localization have yielded 

important insights into the role of non-genetic heterogeneity they have been low-throughput and 

laborious. By enabling the ability to analyze many hundreds or thousands of genes at a time, we 

will greatly accelerate the ability to explore cells’ reactions to different environments, whether it 

is in signaling responses or survival patterns in response to a chemotherapy. We believe this 

technique will be a widely applicable tool that will have a broad range of uses. 

 

We see this method as potentially very useful to address the question of drug resistance 

in cancer. In particular, this method is highly suited to the study of fractional killing – the 

phenomenon when tumor cells are exposed to a chemotherapy, some cells are killed while 

others survive. This fractional killing selects for drug resistance in cancers. Further 

understanding the processes that lead to drug resistance is crucial in developing new targeted 

therapies. Recent studies show that heterogenous gene expression plays a role in non-genetic 

resistance. Cells that stochastically express high levels of certain genes have a higher likelihood 

of surviving a dose of chemotherapy. Current methods to explore these cell states are time-

consuming, costly, and scale poorly. With our method, thousands of cells with hundreds of 

tagged proteins can be tracked through live-cell imaging to quantify the dynamic changes in 

expression and localization that leads to differences in drug survivability. 

 

While tagging a single fluorophore here, these methods can be readily adapted to use 

FRET, complementation, and co-localization analysis with additional organelle markers, this 

tagging approach readily provides information about variation and heterogeneity in single cells 
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over time, and thus lineage history. Therefore, this protein tagging strategy will be especially 

powerful for uncovering latent drug-responsive or -resistant states within single cells. We hope 

that this method will offer a robust and scalable approach for the study of proteomics at scale. 
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Materials and methods 

Barcode assembly 

The barcode library consists of a set of plasmids, each containing a DNA barcode sequence 

that encodes and RNA designed to represent a single N-bit binary word. Every barcode in the 

library has 24 readout sequences, one corresponding to each bit, that are designed to be read 

out by hybridizing fluorescent probes with the complementary sequence. For each bit position, 

we assigned one 20-mer sequence to encode a value of “1”. To increase the rate of 

hybridization, the sequences were constructed from a three-letter nucleotide alphabet only 

containing A, T, and G in order to destabilize potential secondary structures. Every other bit was 

separated by a single base pair of “A”. The barcode library was assembled as described in 

Zhuang et al 201717. 

 

Cloning 

The mVenus donor tag26 was amplified out of another plasmid containing the fluorophore. The 

template was amplified by primers to add the splice donor and acceptor sites. Sequences for 

the CRISPR cut sites were obtained from Talas et al21. The component parts of the plasmid 

were assembled via Gibson cloning. The sgRNA-expressimg plasmids were generated by 
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digesting a lentiGuide-Puro plasmid (Addgene 52963) with Esp3I and ligating an annealed 

sgRNA duplex as described in Ran et al 20136.  

 

Cell culture and transfection  

Experiments were performed in A549 (ATCC CCL-185), HEK293 (ATCC CRL-1573), and PC9 

(ATCC CRL-11350) cells. Each cell line was cultured in DMEM (Thermo Fisher Scientific) +10% 

fetal bovine serum (FBS; VWR)+ pen-strep (Thermo Fisher Scientific). Cells were transfected at 

80% confluency with lipofectamine 3000 with a ratio of 2:1:1 of mVenus generic donor plasmid 

to Cas9 plasmid to gene-specific sgRNA plasmid.  

 

Flow cytometry and cell sorting 

Sorting was accomplished with a BD FACSAria cell sorter. Tracking of expression after sorting 

was accomplished with a BD LSRII. Cells were initially filtered using forward scatter and side 

scatter. mVenus signal was measured with FITC-A. TagBFP signal was measured with 

PacBlue-A. Data were analyzed using custom MATLAB scripts (https://github.com/wollmanlab). 

 

RT-PCR analysis of genomic regions 

Roughly 1 million cells were harvested for RNA extraction. SuperScript IV kit was used for the 

RT-PCR with primers ‘AGGGCTAATTCACTCCCAACG’ and ‘GTTCAGACGTGTGCTCTTCC’. 

The amplicons were imaged alongside a 1 kb bp DNA ladder (New England Biolabs) and 

extracted from a 1% agarose gel using the Monarch Gel Extraction kit (New England Biolabs) 

and analyzed by Sanger sequencing (GENEWIZ) using the primers 

‘AGAGAGGCATCCTCACCCTG’ and ‘GATAGCACAGCCTGGATAGCA’. 
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CHAPTER 4 

Determining the Underlying Mechanisms of Gene Coexpression in the Human Genome  

 

Abstract 

Obtaining a quantitative understanding of how cells regulate gene expression is a central 

goal of biology. Proper regulation of gene expression is vital to cell development and survival. 

However, there is a gap in understanding how genes are expressed differentially across the 

genome. The enormous complexity of the gene regulatory network inhibits the quantitative 

understanding of gene regulation. Regulation can occur at transcription, RNA processing, and 

translation; however, the primary point of regulation is transcription. Traditionally, transcriptional 

regulation has been split into two types: trans and cis. Trans regulation is driven by soluble 

factors, called transcription factors (TFs), that bind to elements in a gene’s local chromatin 

environment and cause activation or repression of proximate genes. Cis regulation refers to 

DNA elements in a gene’s environment that can interact with trans factors to affect nearby 

genes. Previous research has focused efforts on understanding cis elements adjacent to the 

gene of interest, such as promoters. In this chapter, we focus on understanding cis effects 

outside of an open reading frame and their consequences on gene expression. 

 

Introduction 

Molecular processes in cells deal with very small numbers of molecules, leading to large 

fluctuations in output1.  Gene expression is one of these molecular processes that exhibits large 

amounts of variability2. Fluctuations in gene expression, also known as gene expression noise, 

are prevalent across multitudes of organisms, ranging from bacteria and yeast to mammalian 

cells3,4. Even within isogenic populations of cells grown under the same conditions, phenotypes 

can vary significantly5.  
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The influence of genomic position on gene expression has been known since the 1930s 

and is termed the ‘position effect’6. This effect has important implications in synthetic biology 

and the study of genetic diseases7. The same open reading frame (ORF) placed synthetically in 

different areas of the human genome will lead to wide differences in expression outcomes. Work 

by Akhtar et al. has expanded on the position effect by showing a 1,000-fold range of transgene 

expression in mRNA across 27,000 integration sites in mouse cells8. A subsequent report in 

yeast showed a 20-fold range in average noise of GFP protein expression9. However, these 

studies are single-reporter systems that do not have sufficient controls to account for the effects 

of cell-wide global factors on gene expression and genomic noise. Both studies only tested 

histone modifications as possible causative agents of the position effect and have not gone 

further to propose mechanisms by which the different environments of the transgenes influence 

their expression.  

 

One of the main causative agents of gene expression noise is transcriptional regulation5. 

A basic model of gene expression is that regulatory proteins called transcription factors (TFs) 

can act in trans to inhibit or promote expression at certain genomic locations by binding to DNA-

specific sequences in cis-regulatory modules (CRMs). TFs are presumed to be constant across 

a cell’s volume while CRMs change based on location in the chromatin (Figure 4.1). Most 

previous studies of genes that show covariance across a genome attribute this phenotype to co-

regulation by trans soluble factors. The effects of cis controllers of expression have focused 

mainly on promoter architecture as a controller of transcriptional noise10–12. There has been a 

lack of studies exploring how the environment outside of a promoter will affect transcription. 

Ebisuya et al. attempted to address this question by demonstrating that intensive transcription at 

one gene can have a “ripple effect” that increases transcription at neighboring genes13. 

However, a more rigorous approach is necessary to understand how the local environment 

outside an open reading frame affects transcription. 
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Dual-reporter systems have also been used to study stochastic gene expression2,14–16. 

Raj et al. performed a dual-reporter assay that integrated two reporter genes in one cell at the 

same genomic location and two reporter cells in another cell at random, distant genomic 

locations17. This experiment showed a high correlation (0.89) for the gene expression at the 

same location and a very low correlation (0.056) for the genes at distant genomic locations. This 

result is consistent with a hypothesis of cis regulation, as two neighboring loci share the same 

chromatin environment. However, by not repeating the integrations of distant reporters, the 

experimenters missed out on sampling distant environments that are under the same kinds of 

regulatory control. Genes in these environments would also show high levels of co-expression, 

similar to the two neighboring loci. 

 

The main drawback of current single- and dual-reporter studies is the lack of proper 

control for global factors. Global factors, such as cell size, cell cycle stage, and number of 

ribosomes, affect many genes in the cell simultaneously and induce correlated fluctuations 

between genes18,19. In order to separate correlations that are due to similar local chromatin 

environments and correlations that are due to global factors, a third type of reporter must be 

introduced. In this chapter, we introduce a triple-reporter system to study the cis effects of 

transcriptional regulation across the chromatin environment in mammalian cells. 

 

Results 

Generation of a new triple-reporter assay  

We propose a novel approach to study cis chromatin regulation through the use of a 

triple-report system. The key innovation in this approach to improve upon dual-reporter systems 

is the introduction of a third reporter that has multiple integrations across the genome. This third 

reporter is under the same promoter as the singly-integrated reporters to control for the 
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promoter effect. A multiply-integrated reporter will occur in many different local environments 

across the genome, so the total protein expression will be an average of these conditions. With 

enough integrations, the third reporter expression will be contingent on only global factors and 

no local factors. By conditioning the single reporter expression on the multiply-integrated 

reporter’s expression, any correlation between the single reporters that resulted from global 

factors will be removed. Any remaining correlation will be from local effects. 

 

 The human leukemia cell line K562 was chosen for this work because it is well-

characterized and widely used20–23. K562 is one of three tier-one cell lines of ENCODE and is 

also most commonly used for large-scale CRISPR/Cas9 screens. We have genetically 

engineered K562 cells to contain three different types of fluorescent reporter genes: a single 

integration of a green fluorescent protein gene, a single integration of a red fluorescent protein 

gene, and multiple integrations of a blue fluorescent protein gene (Figure 4.1C). Lentiviruses 

were used to randomly insert each gene into the K562 genome. The green and red genes were 

transduced at a MOI of less than 10,000 viruses per million cells in order to ensure single 

integrations. The blue genes were integrated at a very high multiplicity of infection to obtain a 

high number of integrations. All three reporters were inserted with the same open reading frame 

under the ubiquitin C (UBC) promoter. The UBC promoter was chosen since it has, as the name 

suggests, ubiquitous and constituent expression in many tissue types and has been shown to 

be difficult to silence24–26.  
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Figure 4.1 Scheme of Triple Reporter Assay (A) Cis regulatory elements are local elements that regulate 
gene expression. (B) Trans regulatory elements can be distal elements that regulate a gene’s expression. 
(C) The process to create a triple-reporter system in mammalian cells via sequential addition of reporters 
via lentivirus transduction.  
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Integrations of each gene were done by lentiviral infection, specifically using a modified 

HIV-1 virus. Lentiviruses were chosen over other gene delivery methods because they infect 

many cell types, can infect both dividing and non-dividing cells, have a large carrying capacity, 

and can stably insert their cargo into the host genome27,28. Lentiviruses have slight preferences 

for integrating their cargo into gene-rich areas28–30. Although there are some concerns that using 

lentivirus might change local chromatin structure around the insertion site, Chen et al. found that 

replacing native yeast genes with a synthetic reporter did not perturb the chromatin landscape31.  

 

The first challenge to this project was to determine if regions of co-regulation could be 

found with only a few hundred randomly integrated reporters. Encouragingly, correlations of up 

to 0.65 were found with only 52 cell lines. After conditioning green and red expression on blue 

expression, correlations ranging between 0.06 and 0.65 were calculated with an average 

correlation of 0.31. Figure 4.2 shows how the conditional correlation is calculated using a 

weighted average of subsamples of cells that share the same blue expression. Using only a 

small number of integration sites revealed a range of levels of co-regulation. 
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Figure 4.2 Conditional correlation analysis. A) Flow cytometry results outlining the conditional correlation 
analysis between Green and Red conditioned on Blue. For simplicity, the figure shows 8 discrete bins. 
The analysis itself is done using a Gaussian moving window B) The measured conditional correlation 
values calculated based on 13 cell lines. 

 

 

 Next, we sought to identify the sources of variation in green expression across each cell 

line. We were inspired by the work of Elowitz et al2, which suggests that expression variance 

can be decomposed into uncorrelated and correlated variance. Our triple-reporter assay 

assumes that the correlated component of gene expression with the multiply-integrated blue 

reporter captures all the regulatory mechanisms that act in trans and the uncorrelated 

component captures cis regulation (Figure 4.2). The sources of variation in green expression 

across each cell line should be able to be decomposed into three types of variation: variance in 

yellow that is explained by cyan (global variance), variance in yellow that is explained by red 

and not by cyan (local variance), and variance in yellow that is unexplained by either cyan or red 
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(unexplained variance). The variance decomposition was based on a modified function of the 

law of total variance. The law of total variance is as follows: 

 

        (Eq. 4.1)                       𝑉𝑎𝑟(𝑌) = 𝐸[𝑉𝑎𝑟(𝑌|𝑋)] + 𝑉𝑎𝑟(𝐸[𝑌|𝑋]) 

 

Where E[Var(Y|X)] is the amount of variance in Y that is unexplained by the variance in X and 

Var(E[Y|X]) is the amount of variance in Y that can be explained by the variance in X. Therefore, 

to modify this law for a triple-reporter system we can modify the law of total variance to be 

applicable to our system. Our modified function is as follows: 

 

        (Eq. 4.2)        𝑉𝑎𝑟(𝐺) = 𝑉𝑎𝑟/𝐸(𝐺|𝐵)1 + 𝐸(𝑉𝑎𝑟/𝐸(𝐺|𝐵, 𝑅)1 + 𝐸(𝐸/𝑉𝑎𝑟(𝐺|𝐵, 𝑅)1) 

 

In this function, Var(E(G|B)) represents the global variance, which is expressed as the 

variance of the green expression conditioned on the variance of the blue expression. This can 

also be thought of as the variance of green expression that can be explained by the blue 

expression. E(Var(E(G|B,R))) represents the variance in green expression that can be explained 

by the variance in red expression. This component shows the effects of local chromatin 

structure on variance. The last variable E(E(Var(G|B,R))) is the variance that is unexplained by 

either reporter gene. This variance may result from random fluctuations within the cell as well as 

local effects that are not captured by the red reporter alone. 

 

If all correlated variance acts in trans on all three colors, then the component of the 

variance in green that is explained by red and not blue, i.e. the local variance, should be zero. 

Any meaningful explanatory power of red reporter after the blue reporter was included indicates 

that green and red are co-regulated in a way that blue is not. Given that blue, green, and red all 
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have identical open reading frames it will indicate that two local regulatory mechanisms are 

dependent on each other. 

 

We generated Gillespie simulations to test our method of conditioning gene expression 

on a multiply-integrated reporter (Figure 4.3). A Gillespie algorithm generates a trajectory of a 

stochastic equation32. In this case, the Gillespie simulation was used to model the steady-state 

expression of each reporter gene with changing noise components in the propensity of a gene 

to be transcribed. The simulation conditions were global noise, biochemical noise, and local 

noise. Global noise refers to global factors that affect protein expression in the same way for 

each gene within a cell. Biochemical noise refers to random factors that cause stochasticity in a 

cell, such as Brownian motion of polymerases. Local effects refer to CRMs that may be similar 

in the environment of the green and red genes. We showed that, as expected, conditioning on a 

multiply-integrated reporter decreases the correlation between two genes affected by only 

biochemical and global noise from 0.64 to 0.01 (Table 4.1). The previous correlation resulted 

from global factors, but the correlation disappeared when the global factors were removed by 

conditioning expression on blue expression. The more physiological condition of having 

biochemical, global, and local noise decreased correlation from 0.78 to 0.65, which matches 

nicely to our observed maximum correlation in the triple reporter cells of 0.65. These simulation 

experiments convincingly show that as predicted, conditioning on a multiply integrated blue 

reporter can remove sources of global noise to allow local effects to become easier to interpret. 
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Figure 4.3. Three-way variance decomposition (A) Scatter plot of expression of the three fluorescent 
reporters Red, Green, and Blue. The surface shows the expected value of Green based on Blue alone 
(cyan) and combined with Red (red). The deviation between these surfaces shows that the addition of 
Red increases the explained component of the overall variance in Green. This suggests that Red and 
Green share a co-regulatory mechanism that not shared by Blue. Bottom panels show the decomposition 
into three components based on successive application of the law of total variance (B) The amount of 
total variance explained by Red and not by Blue in 13 cells lines. Error bars show the standard deviation 
of duplicate measurement per cell line. The cell lines are significantly different from each other (one-way 
ANOVA p<0.05).  
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Table 4.1 Gillespie model decomposition of the correlation coefficient. Outcomes of the Gillespie model 
simulated decomposition of correlation coefficient with and without conditioning on a third reporter.  
 

 

Lastly, we sought to determine the genomic locations of the green reporters in our 

assay. Using the Genome Walker method, we extracted DNA from cell lines of interest, used 

restriction enzymes to cut the surrounding DNA, ligated primers to amplify the region of interest, 

and used a primer internal to the mVenus sequence to Sanger sequence the surrounding 

genomic area. We found that our three starting green reporter positions were located in three 

separate chromosomes (Table 4.2). With this method, the location of all green and red reporter 

genes could be found and their environments assayed. Scaling future work would benefit in 

using higher-throughput methods such as the recent work in Zhang et al33 to more quickly 

determine many genomic insertion sites in parallel.   

 
 

 

Table 4.2 Genomic location of the green reporter gene in three cell lines 
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Discussion and Future Directions 

Previous views of gene regulation do not fully consider the cis effects outside of a gene’s 

promoter. Here, we present evidence that the local environment of a gene plays a larger role 

than previously imagined in determining gene expression. In order to show the influence of local 

chromatin environments, we explored the co-regulation of two distant genes and showed high 

degrees of correlation and high degrees of variance across genomic positions. Decomposing 

the variance across positions showed effects of biochemical, global, and local noise. We 

demonstrate that a triple reporter system is effective at removing global sources of influence on 

positional correlations. The development of this triple reporter system has implications on 

position effect and gene expression noise. 

 

Further work in this area could include the incorporation of publicly available data on 

K562 chromatin environments. For example, The ENCODE database contains information on 

over 3000 ChIP-seq experiments done so far in K562 cells22. The Roadmaps Epigenetics has 

ChIP-seq data for eleven histone modifications, H2A.Z occurrences, and DNase sensitivity20. 

Using these publicly available data, one could analyze the levels of each possible regulator at 

the report locations in each cell line within a few kilobases. This data could then create a 

similarity score between the levels of the regulators at each location. The similarity score could 

then assess which regulators or combinations of regulators correspond with the observed 

correlations in gene expression between two locations. We anticipate that no single regulator 

alone is responsible for the totality of gene expression correlations, but combinations of 

regulators are more likely culprits. For example, H3K4me has been shown to be predictive of 

transcription factor binding34 and H3K4me often co-occurs with H3K79me3 and 

H3K27ac35. Dogan et al. proposed that a handful of main transcription factors and histone 

modifications are the main predictors of enhancer activity35.  
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A better understanding of what drives gene expression correlation in the genome will be 

the use of perturbation assays. These perturbations would test the effects of removing 

regulators from the system. By doing a multivariable analysis of multiple gene knockouts at a 

time with histone perturbations, one could test which factors in combination have the greatest 

effect on gene regulation. Testing the effect of transcription factors will be more straightforward, 

as gene knockouts can be performed using CRISPR/Cas9 to specifically remove any TF of 

interest from the cell lines. Only one or two cell lines showing high correlation will be necessary 

to test for perturbation assays and gene knockout studies.  

 

The most rigorous test of our understanding of regulatory control of genes across the 

genome would be the accurate prediction of sites within a genome that should be co-regulated. 

Inserting reporters into these areas and measuring the outcome in terms of gene expression 

correlation would demonstrate mastery of understanding the mechanistic underpinnings of gene 

expression correlation. We hope that this work will further the aim to be able to fully understand 

the regulatory underpinnings of gene expression control.  
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Materials and methods 

K562 cell culture 

A K562 suspension cell line provided by Sigma-Aldrich was grown at 37 °C in RPMI 1640 

medium (Gibco) supplemented with 10% FBS (Gibco), 1% penicillin-streptomycin (Gibco) and 

1% GlutaMAX (100x) (Gibco) under 5% CO2 atmosphere. 
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Reporter plasmids 

The following elements were included in the base plasmid in order to allow for viral packaging 

and integration. HIV-1 truncated 5’ LTR, HIV-1 packaging signal, HIV-1 Rev response element 

(RRE), HIV-1 truncated 3’ LTR and Central polypurine tract (cPPT). The Ubiquitin promoter (ubi) 

drove expression of mVenus, mScarlet, and mTurquoise. Lentiviral constructs were constructed 

through Gibson assembly.  

  

Lentiviral production and cell line generation  

Reporter and third generation lentiviral packaging plasmids were transfected into HEK 293T 

cells to generate reporter vectors. Transfected HEK293T culture supernatant was collected and 

concentrated by Lenti-X-concentrator (Takara) 48 hours post transfection. K562 cells were 

transduced with reporter-containing lentivirus in media supplemented with 5 μg/ml polybrene 

and 20mM HEPES for 2 hours of spinoculation and left to incubate for 24 hours. To generate 

singly-integrated cell lines, a MOI of 0.01 was used to ensure that the majority of transduced 

cells integrated with a single reporter copy. Founder cells were then singly sorted by 

fluorescence-activated cell sorting (FACS) at 72 hours post-transduction to generate unique cell 

lines.  

 

Gillespie stochastic simulation  

Stochastic simulations of the stochastic mRNA and protein model described in Table 4.1 were 

performed by implementing Gillespie’s Direct method32 in Matlab (The Mathworks).  

 

Fluorescence activated cell sorting and flow cytometry 

Sorting was accomplished with a BD FACSAria cell sorter. Tracking of expression after sorting 

was accomplished with a BD LSRII. Cells were initially filtered using forward scatter (FSC-A) 
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and side scatter (SSC-A). EGFP signal was measured with FITC-A or GFP-A. TagBFP signal 

was measured with DAPI-A or Pac-Blue-A. tagRFP signal was measured with PI-A or RFP-A.  

 

Identification of genomic integration sites  

Mapping of reporter integration sites was done by nested PCR coupled with Sanger sequencing 

using the GenomeWalker kit from Takara (638901). Amplicons were sequenced by Sanger 

Sequencing using primer GCTCCTCTGGTTTCCCTTTCGCTTTCAA. Results were mapped 

against the human genome using the BLAST algorithm. 
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Conclusion 

The studies in this dissertation have offered a glimpse into the complexity of intracellular 

information transfer. I have broadly discussed the methods by which cells communicate 

internally and have revealed how much more there is to learn across the fields of biology. In 

Chapter One, I review the current offering of in situ technologies and offer a wide breadth of 

unanswered questions that these technologies could be key in answering. Chapter Two 

demonstrated the efficacy of these technologies by discussing how they can be used in 

conjunction with other techniques, such as live-cell protein imaging, to create multi-omics 

datasets. This chapter also demonstrated how cells take complex data, such as the incoming 

signals from two different pathways, to learn more about their extracellular environments. In 

Chapter Three, I present a method by which many more proteins can be studied by live-cell 

imaging by intronic CRISPR tagging. This tag coupled with a RNA barcode allows for the high-

throughput investigation of many proteins in multiplex. This method allows for the study of 

intracellular communication through proteins at a very large scale. Finally, in Chapter Four, I 

investigate the communication of a cell within its own chromatin through cis regulatory 

mechanisms. I show that cells have correlated expression across different regions of the 

genome, suggesting a greater role of cis regulatory mechanisms than previously thought. 

Altogether, this thesis explores central idea of cellular communication. 

 

 




