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Abstract

According to theories of event-predictive cognition, neural
processing focuses on the next relevant interaction targets. Ev-
idence for this notion comes from the anticipatory crossmodal
congruency effect (aCCE), which implies that spatial body rep-
resentations are mapped onto future goal locations in advance
of a goal-directed action. Here we present a free energy based
normative process model that accounts for the aCCE quanti-
tatively by applying crossmodal mappings between vision and
touch as well as active inference. A comparison with a dif-
fusion model shows that our model accounts for the response
time distributions and the aCCE with a sparser set of param-
eters. However, the temporal dynamics of the model require
further fine tuning to account for all aspects of the aCCE. The
model shows how the free energy framework can be used to
account for behavioral data in general and how to implement
theories of event-predictive cognition in a normative cognitive
process model.

Keywords: active inference; free energy; event-predictive
cognition; crossmodal congruency

Introduction
Theories of event-predictive cognition suggest that the central
nervous system develops internal generative event models,
predicting its environment in order to facilitate the invocation
and interpretation of goal-directed behavior (Butz, 2016; Ku-
perberg, 2020; Zacks, Speer, Swallow, Braver, & Reynolds,
2007). Event models encode predictions about the event dy-
namics as well as start and end conditions, which character-
ize event boundaries. In neuroscience, the concept of gen-
erative models was introduced by Rao and Ballard (1999) in
their predictive coding theory, which implements perception
as an inference process, where top-down predictions disam-
biguate bottom-up sensory signals. Discrepancies between
top-down predictions and sensory signals yield a prediction
error that can be used to adapt the model. Meanwhile, active
inference can invoke actions as the realization of top-down
proprioceptive predictions via muscular activation (Adams,
Shipp, & Friston, 2013). Together, predictive coding and ac-
tive inference provide a general formalism to describe neural
computations. Combined with event-predictive models, ac-
tive inference does not only activate immediate sensory con-
sequences, but also potentially anticipated event boundaries
and subsequent events.

In this paper we introduce a variational active inference
framework, which models response times from a behav-
ioral experiment by means of a normative process model

(Lewandowsky & Farrell, 2011). The experiment was origi-
nally designed to probe active inference on a behavioral level
(Belardinelli, Lohmann, Farnè, & Butz, 2018; Lohmann, Be-
lardinelli, & Butz, 2019). In particular, significant anticipa-
tory cross-modal interactions between light and tactile stimu-
lations show that our minds anticipate future bodily states rel-
ative to the surrounding environment. Our normative model
implementation offers an algorithmic explanation of these in-
teractions based on computational theories of active inference
and event-predictive cognition.

Active Inference on a Behavioral Level
Eye-tracking studies allow to probe the information sampling
processes unfolding during goal-directed actions. The ob-
served gaze patterns imply an anticipatory mode of control,
where the eyes are ahead of the hand and thus tend to fixate
next relevant hand targets (Hayhoe, Shrivastava, Mruczek, &
Pelz, 2003). More recently, Belardinelli, Stepper, and Butz
(2016) have shown that the fixations while preparing to and
grasping an object predict the type of grasp that is going to be
applied. The eyes tended to look towards future index finger
positions, presumably because the index finger was the first
one to pass and then touch the object. This selective sam-
pling of critical information regarding a certain sensorimotor
prediction fits well with the assumptions of active inference.
However, an exact algorithmic explanations of the involved
inference processes and underlying representational formats
is missing. Our model closes this explanatory gap.

The eyetracking results imply that the future hand and fin-
ger locations on the target object are predicted in advance of
the actual action. Note, though, that this does not necessarily
mean that the whole prediction process takes place in an eye-
centered frame of reference or that the finger locations are
predicted precisely. We hypothesize that coarse predictions
are made relative to the effector and the target object. These
predictions may then be mapped into an eye-centered frame
of reference. Such crossmodal mappings are a core feature of
certain spatial body representations, namely of peripersonal
space (PPS; Fogassi et al., 1996).

In line with the definition of Bufacchi and Iannetti (2018),
we consider PPS as a set of response fields, whose activation
depends on the behavioral relevance of a certain stimulus.
Hence, PPS is not primarily constrained by distance but by
the relevance to interact with or to avoid a certain object. In
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order to realize this function, PPS provides spatial mappings
between modalities, for instance between haptic perception
and motor codes, allowing for a fast response to tactile sen-
sations without looking. Direct mappings between sensory
modalities, such as vision and touch, exist as well, yielding
crossmodal congruency effects (CCE; Spence, Pavani, Mar-
avita, & Holmes, 2004), where visual stimuli facilitate the de-
tection of touch when presented close to the stimulated body
surface (congruent condition), while they partially interfere
when presented close to other relevant body parts (incongru-
ent condition).

If PPS is indeed used to generate predictions and thus pro-
vide control signals regarding the future hand position, one
would expect to observe, for example, a CCE at the future
hand position. Such findings would not only support the idea
that the predictive process observed in eyetracking studies
is rooted in PPS. They would also support one of the cen-
tral claims of event-predictive cognition in general, as this
would indicate a focus of neural processing on the next rele-
vant event boundary. Indeed, PPS has been found to be highly
adaptive and to change with interaction possibilities and in-
teraction goals. While modulations of PPS due to tool use are
well established (cf. Bufacchi & Iannetti, 2018), recent find-
ings show that PPS is remapped to the future hand position
during goal-directed object interactions.

Anticipatory Crossmodal Congruency Effect

One of the first experiments indicating that PPS is indeed
mapped onto the target of a goal-directed movement was re-
ported by Brozzoli, Cardinali, Pavani, and Farnè (2010). Par-
ticipants had to perform either a grasping or a pointing move-
ment towards a cylinder. Before, at movement onset, or dur-
ing the movement, participants received an electric stimula-
tion at the thumb or index finger. At the same time, a LED
was flashed at the target object, either at the approximate
landing position of the thumb or index finger. Brozzoli et
al. (2010) observed a CCE between the visual and the tac-
tile stimulus. The advantage for congruent stimulation be-
came stronger for later stimulations, i.e. the CCE was larger
for stimulations during the movement than for stimulations
before the movement. The authors argued that these results
indicate an action-related remapping of PPS towards the tar-
get object. Seeing that the observed CCE occurred with re-
spect to the future finger positions, we call it the anticipa-
tory crossmodal congruency effect (aCCE). Several follow-
up studies probed the properties of the aCCE. These results
imply that the aCCE (i) is tied to movement planning and
occurs on a trial-wise basis as soon as the target becomes
visible (Belardinelli et al., 2018; Lohmann et al., 2019), (ii)
becomes stronger for later stimulations (Belardinelli et al.,
2018; Lohmann et al., 2019), (iii) is modulated by planning
certainty, that is, it is reduced if the sensorimotor mapping
becomes less predictable (Lohmann et al., 2019), and (iv) oc-
curs mainly for the currently relevant movement target in a
sequential interaction (Lohmann & Butz, 2020).

The aCCE supports theories of event predictive cognition
in general, but so far there is no formal normative model to ac-
count for it. The quantitative model introduced here provides
a free-energy based account for the anticipatory remapping of
PPS, which is considered as an active inference process. Fur-
thermore, the model also models the relation between the pre-
dictive state of the agent and the response to the tactile stim-
ulation. Due to the assumed crossmodal mappings, the an-
ticipatory remapping emerges due to the activation of future
goal states by active inference. The next section describes
the central model formalism. After introducing the model,
we evaluate our model in comparison to a diffusion model,
which we use as the baseline.

Model Description
In the following, we follow the Free Energy method as de-
scribed by Friston (2010) and Buckley, Kim, McGregor, and
Seth (2017). An overview of the model is shown in Fig. 1.
The general idea is to model a reaching action in the light of
its final goal state, that is, the grasp of the target object. In
terms of event-predictive cognition, the final goal state can
be encoded by an event boundary, which indicates the end of
the particular event that generates the goal state (Zacks et al.,
2007). In our simulations, the active inference process essen-
tially invokes a goal-directed motion by the pre-activation of
the desired goal posture (i.e. a grasp).

The environment of the agent is modeled as a multidimen-
sional state variable ϑ. It consists of a hand and a bottle, both
of which are located and rotated in space along one depth
axis. Both, hand and bottle have a certain rotation along that
axis. The index finger and the thumb, as well as the left and
right grip points on the bottle are described using cylindrical
coordinates with a fixed radius. Furthermore, the angles of in-
dex finger and thumb as well as left and right grip points are
assumed to have a fixed difference of 180◦. The considered
environmental state can thus be characterized by

ϑ = [xh xb αh αb st sv]
T ,

where xh and xb specify the positions of hand and bottle along
the depth axis, and αh, αb their respective rotations. Quanti-
ties st and sv encode the state of the tactile and the visual stim-
ulation as binary variables (either index/thumb tactile stimu-
lation or right/left visual distractor). Fig. 1 shows how the
environmental reality is encoded into the state variables in ϑ.

The agent perceives the environment via sensory data ϕ.
The process linking ϑ and ϕ is referred to as the generative
process g, which is a (possibly non-linear) mapping of the
state of the environment to the mean of a Gaussian distribu-
tion of sensory data,

ϕ∼N (g(ϑ),Π−1
ϕ ),

where Πϕ is the precision (i.e. the inverse covariance) of the
generated sensory data. The agent then tries to estimate the
current state of the world ϑ̂ given ϕ and its own internal model
of the world, described by ĝ and Π̂. In our model, the agent
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Figure 1: While reaching for a bottle, the distance d = xb− xh reaches zero, while the angular orientation of the hand αh is
adjusted to the bottle’s orientation αb. At some point while the reaching behavior is initiated and executed, tactile stimulation
st on one of the fingers and a concurrent visual distractor sv are applied. In reaction to st the system models a verbal response
r, which is influenced by the anticipated proximity of the stimulus sv, yielding a compatible or incompatible reaction influence
dependent on the bottle’s orientation αb and the side of the distractor sv. The box on the left top shows how differences
between expected and perceived sensory information trigger actions a (reaching motion) as well as adjustments of the internal
environmental state estimations ϑ̂. The box on the bottom right depicts a schema of the diffusion model.

is allowed to perceive the world directly (with added noise),
so g(ϑ) = ϑ.

The dynamics of the environment ϑ are described using a
mapping f ,

ϑ
′ ∼N ( f (ϑ,a),Π−1

ϑ′ ),

with an action variable a, which the agent invokes as motor
activation. In our model, the agent can set the velocity of
the hand using ah and the velocity of the hand rotation aα,
essentially aiming at a particular target state ah of the hand
position xh and a particular target hand orientation aα for the
hand’s actual orientation αh:

f




xh
xb
αh
αb
st
sv



=


ah
0

aα

0
0
0

 .

The generative model of the agent encodes the relationship
between environmental states in a different fashion, namely
via a hyperprior

ϑ̂∼N (h(ϑ),Π̂−1
ϑ
),

where Π̂ϑ reflects the confidence in the assumed interdepen-
dence. Thereby we essentially model the hypothesized event-
predictive active inference nature of the agent, who has the
goal to align its hand position and orientation with the bottle.

We thus encode the hyperprior by:

h




xh
xb
αh
αb
st
sv



=


xb
xb
αb
αb
st
sv

 .

The agent then tries both to infer the true state of ϑ given
its model of the world and to change the world to match its
expectations via action. This is achieved by minimizing the
Free Energy within the model. Because the above probability
densities are Gaussian, the resulting Laplace approximation
implies that minimizing the Free Energy involves minimizing
the quantity (Friston, Trujillo-Barreto, & Daunizeau, 2008):

1
2
(εT

Π̂ε− ln |Π̂|),

with a block diagonal precision matrix

Π̂ =

[
Π̂ϕ

Π̂ϑ

]
,

and prediction errors

ε =

[
εϕ

εϑ

]
=

[
ϕ− ĝ(ϑ̂)
ϑ̂−h(ϑ̂)

]
.

On this quantity, gradient descent is performed:

∆ϑ̂ = ϑ
′− kp

∂εT

∂ϑ̂
Π̂ε,
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with a learning rate kp. In addition to adapting the estimated
environmental state ϑ̂ to minimize its prediction errors, the
agent is assumed to have learned how its actions can change
its sensory data. This knowledge is encoded in a quantity

∂ϕ

∂a∂t . The optimal action at any point in time is then given by

a =−ka

∫
∂εT

ϕ

∂a∂t
Π̂εϕdt,

which essentially invokes hand motions towards the target ob-
ject with the target orientation.

In the end, the agent is supposed to deliver a response in-
dicating which finger was stimulated. Therefore, it can set
a response variable r taking on possible values of st , and it
should do so while integrating the estimated tactile and vi-
sual stimuli. This is assumed to happen in a Bayes-optimal
fashion:

r =
ŝtΠ̂

t
ϕ +µ(ŝv)Π̂

v
ϕ

Π̂t
ϕ + Π̂v

ϕ

,

where Π̂t
ϕ is the tactile stimulus component of Π̂ϕ, Π̂v

ϕ is the
visual distractor component, and µ is a mapping representing
the integration of the stimulus.

This integration process is driven by the crossmodal map-
pings inherent to peripersonal space. The strength of these
mappings is affected by distance (cf. Spence et al., 2004),
however, the exact relation between distance and integration
strength remains open. For simplicity we assume a linear re-
lationship, with no integration at the initial hand position and
full integration at the target location,

µ(sv) = ki sgn(svst)(1−d) (1)
d = xh− xt ,

with an integration coefficient ki reflecting the strength of the
integration.

The response time is then determined as the duration be-
tween the appearance of the bottle stimulus and the point
where r reaches a threshold θ, with an additional offset ρ as
the non-response time. The evolution of r over time can be
described as a random walk with normally distributed incre-
ments. Hence, it is similar to a Wiener process that is used to
model response times in diffusion models.

To sum up, the model can describe changes in the hand
position and orientation over time, as well as the response
time for the tactile discrimination task.1

Results
To evaluate our model, we fitted the response time data from
the second experiment reported in Lohmann et al. (2019). We
focus here on the consistent condition with a predictable sen-
sorimotor mapping. We fitted the data with a diffusion model
and our free energy model and compared the goodness of fit

1A python implementation of the model can be found in the on-
line supplementaries: https://osf.io/p7zwn/.

of both approaches. The data set consists of 2926 response
times from 24 experimental conditions. In the experiment we
varied the bottle orientation (upright or upside down), the side
of the visual distractor (on the left side of the bottle, or on the
right side), the stimulated finger (index or thumb), and the
time point at which the visual and tactile stimuli were applied
(either after 250 ms after showing the bottle, at movement on-
set, or after 50% of the distance between starting position and
bottle was covered). The onset time of the stimulation rela-
tive to the stimulus onset or movement onset is referred to as
stimulus onset asynchrony (SOA). All of the 21 participants
completed six trials, yielding up to 126 response times in to-
tal, per condition. Only trials with responses were considered.
These data were used to fit the models. Thus, we trained both
models on response time distributions across participants.

Diffusion model
To assess the quality of the free energy model, we fitted the
data also with a diffusion model (Ratcliff, 1978). Diffusion
processes can be used to model response times in binary deci-
sion tasks, like responding with thumb or index finger given a
tactile stimulation in a crossmodal congruency task. A prefer-
ence for either one of the two options is considered as a one-
dimensional quantity that changes over time, until it reaches
either one of two threshold values, referred to as decision
boundaries. The change of evidence over time is described
in terms of a Wiener diffusion process, where a systematic
component yields a constant change of evidence over time,
while an additional random component adds Gaussian noise.

Diffusion models allow to estimate response time distri-
butions for binary decision tasks by sampling the diffusion
process given a set of parameters. Different extensions of the
simple diffusion model have been discussed (Wagenmakers,
2009). Here we use a basic version with four free parameters
per condition: the interval between the decision boundaries
(a); the strength and direction of the systematic component
of the diffusion process, that is, the drift rate ν; the duration
of a non-decision process contributing to the response time
(t0), which serves as a constant response time offset; and the
starting value of the diffusion process (z), which biases the
random component. For the optimization of the respective
parameters we used the partial derivative method proposed by
(Voss & Voss, 2007), and their fast-dm algorithm. We applied
the model separately to each experimental condition, yielding
four free parameters for each of the 24 conditions.2.

After estimating the parameters, we randomly sampled
1000 values from the modeled distribution per condition and
determined the KL divergences between the predicted and
observed distributions. To estimate the KL divergence of
two empirical density distributions, we used the algorithm
from Pérez-Cruz (2008). The KL divergences ranged be-
tween 1.7 and 2.3 with an average of 2.0. Two examples

2The raw data, the estimated parameters, as well as the set-
tings file for fast-dm can be found in the online supplemen-
tary, along with the R scripts used to generate the distributions
(https://osf.io/p7zwn/).
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Figure 2: A comparison of fits provided by the diffusion
model (left) and our free energy model (right). Red his-
tograms show examples of the estimated distributions. The
observed data is shown in blue. Data in the upper panels
(congurent condition) was obtained with upright bottles, vi-
sual stimulation on the right side and tactile stimulation at the
index finger during movement onset. Data in the lower panels
(incongruent condition) was obtained with rotated bottles and
otherwise the same stimulation setup. The free energy model
was fitted to all conditions at once, yielding a less precise fit
but still modeling the difference between the condition.

for estimated response time distributions are shown on the
left side of Fig. 2. We estimated linear mixed models for
the various factors and their combinations and performed a
hierarchical model comparison. Only the SOA had a sig-
nificant influence on the KL divergences. The respective
Spearman correlation indicated a significant positive associa-
tion between the ordered SOA levels (250 ms, movement on-
set, and during movement execution) and the KL divergences
(rs(22) = .61,p < .001). The KL divergences obtained with
the diffusion model thus provides a performance reference for
the free energy model. The reduced fit for later SOAs imply
a systematic deviation from a typical diffusion process.

Free Energy model
The fit of the Free Energy model to the empirical data was
carried out as follows. First, for simplicity, all precision ma-
trices were assumed to be diagonal. The estimated precisions
Π̂i

ϕ were set equal to the true precisions Πi
ϕ, following the

theoretical assumption that precisions are learnt by agents in
a long-term learning process, i.e. longer than the duration of
the experiment. Due to the structure of the h function in the
model, out of the values in Π̂ϑ, only Π̂

xh
ϑ

and Π̂
αh
ϑ

have an
influence on the update equations. Therefore, the remaining
components of Π̂ϑ can be set to 0. The values for the learning

rates kp = .1, ka = .5 were determined such that the simu-
lation would be numerically stable. Similarly, the precision
parameters involved in the grasping task were chosen so that
the hand of the agent performs a natural motion. The remain-
ing five parameters (visual and tactile stimulus perception, ki,
θ and ρ) were fitted for all the 24 conditions at once using
a Covariance matrix adaptation evolution strategy (CMA-ES
Hansen, 2006). We simulated 100 trials for each condition,
determined the KL divergence between simulated and empir-
ical data, and added up the squares of all divergences.

The KL divergences were more broadly distributed than for
the diffusion model and ranged between 1.07 and 9.61 with
an average of 5.09. Two examples for estimated response
time distributions are shown on the right side of Fig. 2. Re-
garding the aCCE, the free energy model could reproduce its
general magnitude, but the predicted SOA variation of the
congruency effect was smaller than in the observed data (Fig.
3). Most likely this is due to the assumed linearity in (1),
which should be investigated further.

Figure 3: Observed (data taken from Lohmann et al., 2019)
and predicted aCCE in the respective congruent (red bars) and
incongruent (blue bars) conditions. Error bars show the stan-
dard error of the mean. The free energy model reproduces the
congruency effect and its increase in strength qualitatively.

As we did for the diffusion model, we analyzed the KL di-
vergence variations between the experimental factors by esti-
mating linear mixed models for the various factors and their
combinations and performed a hierarchical model compari-
son. Again, only the SOA had a significant influence on the
KL divergences. The respective Spearman correlation indi-
cated a significant positive association between the ordered
SOA levels (250 ms, movement onset, and during movement
execution) and the KL divergences (rs(22) = .47,p = .019).
Especially for stimulation at movement onset, the KL diver-
gences were larger.

Like the diffusion model, our free energy approach had dif-
ficulties to account for responses at later SOAs. Compared to
the diffusion model, the KL divergences show more variation
in general and are overall higher, however, the free energy
approach uses much less parameters.
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Comparison
While the diffusion model is agnostic regarding the actual ex-
perimental setup, the free energy approach tries to capture
core processes of the setup, like the assumed remapping of
peripersonal space. This yields a lower number of free param-
eters compared to the diffusion process, however, fitting our
free energy model to all conditions at once, led to systematic
deviations, most notably for conditions with stimulation at
movement onset. Given the sum of KL divergences in all con-
ditions, one can obtain an upper bound on the Bayesian infor-
mation criterion (BIC) score for both models using Jensen’s
inequality (Needham, 1993) as

BIC≤ p lnn≤ 2∑KL+ p lnn,

with p as the number of free parameters (96 for the diffusion
model, 12 for the free energy model) and n as the number of
observations (in this case the 2926 response times in the 24
conditions). Due to smaller number of parameters the accord-
ing BIC value for the free energy model is 340, compared to
961 for the diffusion model.

Discussion
Theories of event-predictive cognition and active inference
essentially hypothesize that action effects and final event out-
comes guide behavior (Butz, 2016; Friston, 2010; Kuperberg,
2020; Zacks et al., 2007). We introduced an event-predictive,
free energy-based normative model, which is able to model
behavioral dynamics. In particular, we focused on simulat-
ing behavioral response time data generated by means of an
anticipatory crossmodal congruency effect (aCCE) paradigm.
To elicit an aCCE, participants are asked to interact with an
object and to concurrently report tactile finger stimulations as
fast as possible (Brozzoli et al., 2010; Lohmann et al., 2019).
While preparing and executing the action, light stimuli at the
target object systematically interact with tactile stimulation
on the hand before the hand actually reaches the object. In
our model we assume that the agent predicts its future hand
location before starting the action. This prediction is assumed
to be realized by remapping peripersonal space to the future
hand location. By means of free energy minimization the
agent then tries to align its current hand position and orien-
tation with the predicted one through action. The generation
of the verbal response is modeled by a diffusion process that
accumulates the evidence for a stimulation of either thumb or
index finger. We assume an automatic, mandatory integration
of visual and tactile stimuli within peripersonal space. Hence,
the remapping of peripersonal space yields an integration of
vision and touch at the goal location. This effect is assumed
to become stronger the closer the hand is to the goal loca-
tion. The results show that our model implementation elicits
the aCCE across the different conditions, including a slight
increase in strength for later SOAs—where the hand is closer
to the bottle—in qualitative accordance with available data.

We contrasted the performance of our model with a diffu-
sion process model, which modeled the different conditions

separately, and thus the aCCE patterns from the data directly.
This yielded a lower bound for the KL divergence, which
can be obtained when fitting the data with a diffusion pro-
cess. Meanwhile, the diffusion model has many more free
parameters compared to our free energy model. A BIC-based
model comparison confirmed that our event-predictive free
energy model yields a better fit. Our model indeed produces
a consistent congruency effect over the different SOA con-
ditions. However, compared with the observed data, the in-
crease of the congruency effect for later SOAs is not captured
well. While our model predicts a larger difference between
response times in congruent and incongruent conditions at
later SOAs, the magnitude of this effect is much smaller than
in the observed data. The reason for this mismatch is proba-
bly twofold. First, the variance in the observed data is higher
for later SOAs. Since the KL divergence is asymmetric and
punishes distributions that are too wide more than distribu-
tions that are too narrow, the KL-based optimization tends to
produce distributions that underestimate the variance. Sec-
ond, the discrepancy indicates that the assumption of a linear
relationship between distance and the strength of the cross-
modal mapping is not warranted. However, this relationship
can be probed on a behavioral level and according data will
help to improve the model.

While the results seem promising, showing that our free
energy model can account for the data with a much sparser
set of parameters than a saturated diffusion model, our study
also indicates limitations in the current model implementa-
tion. Most notably, the model has difficulties to capture the
magnitude of the observed variation of the aCCE over SOAs.
This implies that the temporal dynamics of the modeled con-
gruency effect require further fine tuning. Furthermore, the
integration mapping µ, which plays a crucial role in model-
ing the dynamics of the effect, was designed by hand. For
a pure free-energy account, further work would be required
to derive this mapping from the underlying FEP framework
instead. Finally, both models had difficulties to account for
response times obtained at later SOAs. This might be due
to the increased variance in response times for later SOAs. A
closer examination or a computational explanation about how
this data pattern comes about is pending. The assumptions of
the free-energy model are yet to be empirically investigated.
In particular, it remains unclear if the modeled direct access
to the real world obscures additional behavioral effects when
facing real visual data. The model also provides predictions
with respect to the dependence of the aCCE on the precision
parameters, which may be studied in an experimental setup
where the variance of the sensory information can be altered.
A virtual reality environment seems especially suitable to this
end, as visual noise can be flexibly applied to the grasping tar-
get before or during the action.

Overall, the proposed model allows to simulate response
times from unrolling an active inference process in a varia-
tional predictive model. This is a promising first step in ap-
plying the free energy framework to model actual behavioral
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data. In a next step we plan to model further data regard-
ing the aCCE. For instance, we have shown that the aCCE is
selectively reduced at movement onset if an unexpected mis-
match between seen and felt hand movement is introduced
(second experiment in Lohmann et al., 2019). Our model
should be able to reproduce this finding by variations in the
prediction errors. Improving our models ability to account
for the temporal dynamics of the aCCE and probing its pre-
dictions on a behavioral level, will provide a useful tool to
investigate the predictions of active inference in general, and
event-predictive cognition in particular.
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(2018). Mental space maps into the future. Cognition, 176,
65–73. doi: 10.1016/j.cognition.2018.03.007

Belardinelli, A., Stepper, M. Y., & Butz, M. V. (2016). It’s
in the eyes: Planning precise manual actions before execu-
tion. Journal of Vision, 16. doi: 10.1167/16.1.18

Brozzoli, C., Cardinali, L., Pavani, F., & Farnè, A.
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