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Working with a physical system, the search for a model could be computed mainly

via physical equations or system identification when input/output data is available. A

model could be thoroughly detailed but it is never an exact representation of the real

physical system; and in many applications, noise is clearly present. Model uncertainty

refers to the differences between the models and the real system. Parametric uncertain

models consist of a set of models derived from a range of the uncertain parameters.

In linear time-invariant (LTI) control systems, input shaping (IS) is a technique

originally used for defining a shaped command input to eliminate or reduce unwanted
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system vibration. With the input shaping schemes being inherently open-loop, uncertainties

in the model can lead to system performance degradation. By its nature, the nominal

model-based input shaping cannot compensate for errors in the model, since it rejects

any possible variations in the parameters. For parametric uncertain models, a process to

compute a robust input signal that works for the set of models derived from the uncertain

parameters is required.

This work presents the analysis on input shaping design for model uncertainty.

Analyzing the parametric variability in the transfer function, it is assumed that a variation

within an interval is known and is applied via a normalized weighted perturbation matrix

and via a finite number of uncertainties. Robust input shaping is based on the extreme

models, initially derived from the extreme values of the uncertain parameters. Robustness

is then achieved by considering the extreme cases in the range of the parameters variations.

The result is a single input signal that guarantees tracking of a planned trajectory within a

specified accuracy and operating constraints. The solution proposed in this manuscript is to

address the task of trajectory planning as multivariable optimal input shaping design that

takes into account both dynamics and uncertainty of the model. The contribution of the

proposed analysis is a multivariable input shaping design, solved via convex optimization

to compute a robust input signal that guarantees tracking of a planned trajectory within a

specified accuracy and within the operating constraints.
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Chapter 1

Introduction

1.1 Motivation

The motivation of the study for this dissertation is based in a dual-mirror configura-

tion system. To illustrate the effectiveness of dynamic input shaping for FSMs, a beam

target trajectory problem with fast dynamic transitions (a square trajectory) is chosen.

The beam source will reflect in the mirrors while attempting to follow the trajectory.

Figure 1.1: Mechanical layout of a dual fast steering mirror system with two mirrors and
a beam source.
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The FSMs have strong mechanical vibrations and cross coupling between the

rotational axes. Applying the target command for the FSM, results not only in mechanical

vibrations of the angular rotation of the FSM around one of its main orthogonal axis; it

also creates a dynamic coupling in the form of vibrations around the other orthogonal axis.

The mirror dynamics is not capable of following the trajectory for fast transition of the

desired target, Figure 1.2.

Figure 1.2: Comparison of the target and the dynamics of the system.

This dissertation focuses in developing a method for dynamic trajectory planning of

systems that guarantees that optical signals are projected within a pre-specified accuracy

on a target plane.

1.2 Problem statement and contributions

1.2.1 Literature review

In linear time-invariant (LTI) control systems, the concept of input shaping is a

technique originally used for defining a shaped command input to eliminate or reduce

unwanted system vibration [1]. The input profile brings the system from an initial point to
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a desired target. Input shaping is usually formulated as an open-loop problem, which can

be reformulated as a convex optimization problem by imposing linear constraints on the

input and output signals. By approaching the input shaping problem as a general convex

optimization problem, the desired response can be further optimized by defining constraint

functions and limits or bounds for these constraints. In general, input shaping is capable of

adapting to single-input single-output (SISO) and multiple-input multiple-output (MIMO)

systems in continuous- and discrete-time [2, 3, 4].

In input shaping, the original input (unmodified) signal is passed through an input

shaper and this new shaped signal is fed to the system. The purpose of this new signal is

to remove oscillation that can be caused by the unmodified input signal [5]. Input shapers

used in the design of control systems decrease the overshoot or undershoot, as well as the

time for a steady response in an oscillating system [6]. For the most common methods

of input shaping, e.g. zero vibration (ZV), zero vibration derivative (ZVD) and extra

insensitive (EI); the primary measure of performance is the residual vibration. New tools

have emerged to solve the IS problem [7, 8]. A further analysis on the past 50 years of

input shaping is found in [9].

Models are not an exact match with real systems, and their quality depends on

how close their responses are to those of the true plants; a set of models is required to

compensate for the deficiencies. To sum up, a model that duplicates the true physical plant

behavior can never be computed. It is at this point where the term uncertainty appears,

referring to the differences between the models and the real system [10]. In robust control,

the presence of uncertainty and disturbances are taken into consideration [10]. To account

for the presence of uncertainty the system is not modeled as a single system. This work

addresses parametric uncertainty for input shaping considering a set G of discrete-time

models, also referred as interval plant or family of plants [11].

However, with input shaping schemes being inherently open-loop, uncertainties in
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the model can lead to system performance degradation [12]. The fact that input shaping

does not take into account parametric variability has been approached by different methods

where further measures are taken into account, such as: weighting the ranges of system

parameter values according to the expected modeling errors [13, 14]; allowing the shaper to

contain negative impulses [15]; a probabilistic approach of the uncertain model parameters

with a polynomial chaos approach [16]; design of closed loop input shapers [17]; just to

mention a few approaches. These methods show significant improvement, although most of

them are sill based on the ZV, ZVD and EI methods.

1.2.2 Problem formulation

A model G(θ) ∈ G with uncertainty on the parameter θ constitutes the set of models

for which input shaping must be performed. We assume that the set G is represented by

a nominal model G(θ̂) with a nominal parameter θ̂ and parameter uncertainty modeled

by a finite number of independent perturbations. A robust input shaping design produces

an input signal that is guaranteed to hold for the nominal model as well as for all the

uncertain models within the set G. The input signal is said to be robust if it holds for all

the models while satisfying the defined constraints.

Applying input shaping to the set G can be validated by applying it to the extreme

cases. The definition of the extremes is key to this process. We can start by defining the

set G as a parametrized structured set where the nominal model G(θ̂) has one or more

parameters only known to lie within an interval. These terms are the uncertainties on the

system, reflected as parametric variability. Robustness for input shaping results in the

performance holding for all G, while applying the computed input for the extreme models.

This work presents two approaches to input shaping design for model uncertainty.

The first approach consists of analyzing the parametric variability in the coefficients of the

transfer function of the model. For the second approach, model uncertainty is analyzed
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in the form of an impulse response. For both approaches, it is assumed that a variation

within an interval is known and is applied via a normalized weighted perturbation matrix

and via a finite number of uncertainties.

A closed-loop system might compensate for the uncertainties and disturbances. As

such, input shaping can be formulated for the reference signal in a closed-loop system

subject to linear constraints on amplitude and rate-of-change.

The purpose of this research is the computation of optimal input signals for output

tracking of a dynamic system. The input shaping problem formulation is as follows: a

desired output is defined for the dynamic model and an input is designed to track it. The

main objective of this work is to design an input shaping technique in order to enhance

control inputs such that a robust response can be achieved.

The solution proposed in this manuscript is to address the task of trajectory

planning as multivariable optimal input shaping design that takes into account dynamics

and uncertainty of the model. The contribution of the proposed procedure is a multivariable

input shaping design, solved via convex optimization to compute a robust input signal that

guarantees tracking of a planned trajectory within a specified accuracy and the operating

constraints.

For this dissertation, several input shaping problems were simulated.

• The input shaping trajectory for a single mirror optical system, for a dual-mirror

optical system and for a mass-spring damper system; all solved as a LP problem.

• An exercise on a second-order system and the improvement of input shaping in a

closed-loop approach solved as a QP problem.

• An input shaping design for a 2dof mass-spring-damper system model with uncer-

tainties with two approaches on the uncertainty analysis, solved as a QP problem.
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1.3 Structure of the Dissertation

The outline of the dissertation is as follows. A summary of the different input

shaping methods illustrated with a simulation is presented in Chapter 2. Chapter 3 is

a derivation of the input shaping problem solved via convex optimization. Chapter 4

presents an illustration of the input shaping method in open-loop for a fast-steering mirror

(FSM) problem. Chapter 5 presents an approach of compensating the open-loop input

shaping process for a dual-mirror system via hardware, utilizing a second mirror to compute

image motion compensation (IMC). Chapter 6 presents the input shaping method in a

second-order closed-loop system, illustrating the benefit of input shaping in a closed-loop

system. In Chapter 7, the robust input shaping process is introduced for a second-order

model, via parametric variations of the coefficients in the transfer function of the model.

Chapter 7 presents the robust input shaping process for a model via the impulse response

of the nominal transfer function of the model.

Appendix A is a summary of different open-loop input shaping methods applied

to two exercises. Appendix B is a technical brief on an open-loop input shaping exercise

for a dual-mirror system to create the IMC dynamics. Appendix C follows the process for

forward kinematics and inverse kinematics.

1.4 Nomenclature

The notation defined in Table 1.1 is valid for all sections. Additional variables

introduced in some sections are defined there.
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Table 1.1: Symbols.

Symbol Description

m number of outputs

p number of inputs

Q number of uncertainties

N number of points

G model

δi uncertainties

u ∈ RpN×1 inputs

y ∈ RmN×1 outputs

¯
y ∈ RmN×1 output lower bounds

ȳ ∈ RmN×1 output upper bounds

¯
u ∈ RpN×1 input lower bounds

ū ∈ RpN×1 input upper bounds

u, un ∈ RpN×1 input signal for nominal model

ur ∈ RpN×1 robust input signal

P ∈ RmN×pQ perturbation matrix

θ ∈ RmN×pN coefficients

θ̂ ∈ RmN×pN nominal coefficients

δ ∈ RQ×1 uncertainty vector [δ1, . . . , δQ]
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Chapter 2

Input shaping: an overview

Input shaping is defined as a feed-forward control technique first proposed in the

1980s. The initial purpose of IS was to shape the system input (commands) to eliminate

the system vibration in the response. The concept has expanded through the years finding

general applications.

From input shaping, first we explore zero vibration (ZV) [1]. Based on the knowledge

that most of the systems will vibrate when an impulse is given, applying a second impulse

to the system can cancel the vibration induced by the previous impulse. In ZV, is needed

to derive the amplitude and locations of the impulse commands [18].

The use of input shaping techniques in control systems helps to reduce the over-

shoot/undershoot and the settling time of under-damped systems. Finite impulse response

(FIR) filters are a different approach [19]. Unlike ZV input shapers, which are impulse-based,

the FIR filters preshape an input command to reduce the vibration [4].

The inverse model and input shaping techniques approaches enforce no limits on

the computed input or constraints on the system response. Convex optimization will also

be explored with a view to applying both constraints, via linear program (LP) problem

[20]. Finally mixed integer linear programming (MILP), in which the at least one of the

8



input variables is restricted to integers, will be applied [21, 22].

This chapter is an overview of the possible input shaping techniques to obtain an

ideal response. The example utilized to illustrate this process is a mass-spring-damper

system experiment. An Educational Control Product (ECP) is used to verify the results

obtained for the mass-spring-damper system. The main objectives of this chapter is to

introduce the reader to input shaping techniques in order to enhance control inputs such

that a more desirable system response can be achieved.

2.1 Mass-spring-damper System

The mass-spring-damper system is used for verification and interpretation of the

results we get with the processes we compare; since it’s a well understood dynamic system,

ZV, FIR, LP and MILP will be illustrated. We consider a step input on the mass-spring-

damper system and compute the inputs for each method based on the step-response. The

purpose is to move mass m1 as fast as possible to a desired position. The objective is to

find the right input signal to obtain the ideal result.

Figure 2.1: Cascade mass-spring-damper system.

The two-degree-of-freedom (2DOF) mechanical system depicted in Figure 2.1 consists

of 2 masses, m1 and m2, each having positioning freedoms x1 and x2, respectively. The

masses are connected via spring elements having stiffness coefficients k1 and k2 (spring

or flexible shaft). Additionally, to model the damping present in the system, a viscous

damping, d1 and d2, are assumed to act on each of the masses in the mechanical system.

9



To obtain data, we work with the ECP model 210, rectilinear plant in Figure 2.2.

Figure 2.2: ECP Model 210.

2.2 Inverse Model Approach

For a given model, a straightforward approach is to check if the inverse is stable. We

apply a step input signal the size of the output (once stable) to the inverse of the model,

G−1; this generates the ideal input.

In this case, the zeros are stable and an inversion can be performed on the model.

With the inverse the ideal input can be computed, but there is no assurance that the

computed ideal input is feasible, since we are working without any input constraints. The

hardware may not have enough freedom to generate such an idealized input.

2.3 ZV and FIR filters

Two impulse responses can be superimposed such that the system moves forward

without vibration after the input has ended. This is the two-impulse ZV input shaper. The

amplitudes, Ai; and times, ti; of the impulses are given by [23, 24]:

 Ai

ti

 =

 1
1+K

K
1+K

0 0.5Td

 , i = 1, 2, (2.1)
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where

K = e
−ζπ√
1−ζ2 , (2.2)

Td is the damped period of vibration, and ζ is the damping ratio. The convolution is

performed between the original input and the amplitude of the first and second impulse,

shifted by one-half of the damp vibration period. A constraint for the amplitude Ai of the

impulse has to be met, Ai ≥ 0 for i = 1, . . . ,m and
∑m

i=0
Ai = 1.

The impulse convolution with a step input signal might not be the ideal approach

for some systems. It creates smaller size steps until it reaches the full size step: a staircase

command. Each impulse added will result in an output delay. Figure 2.3 shows a basic

example of step command and impulse convolution as command shaping [25].

Figure 2.3: Input shaping a step to produce a staircase command.

Figure 2.4 shows the an improvement by utilizing the ZV method in regards of the

overshoot and oscillation, while it does not add a delay.

In a different feedforward approach, the input signal and FIR filters are convoluted;

this type of input shaper adds zeros to the system [3]. The poles in the z-plane are only at

z=0 and are represented by [19]:

H(z) =
M∑
n=0

bn · z−n, (2.3)

where bn are parameters of the filter. Similar to the ZV conditions, the FIR filter gain

shall be 1.

Figure 2.5 shows there is no improvement for this system utilizing FIR filters. The

10th and 20th order fiters do not improve the output, only add a delay.
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Figure 2.4: ZV for mass-spring-damper system. Top: output. Bottom: input. In each
plot: data from mass-spring-damper experiment (solid blue line), data from ZV (red dotted
line).
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Figure 2.5: FIR filters for mass-spring-damper system. Top: output. Bottom: input. In
each plot: data from mass-spring-damper experiment (dashed blue line), 10th order FIR
filter (red line), and 20th order FIR filter (black line).
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2.4 Convex Optimization

A convex optimization problems is LP, where the objective and all constraint

functions are linear. The general formulation for this is [20]:

minimize cTx

subject to aTi x ≤ bi, i = 1, ...,m,

(2.4)

where x is the vector of optimization variables and ai, bi and c are parameters and constraint

functions. The process is throughout described in Section 4.5.4.

Figure 2.6 schematically illustrates two different amplitude constraints [26]. In this

example the first constraint during the initial response is a large one, due to the response

initial oscillation. Once the response is settled, a second tight constraint suffices. The

maximum and minimum constraints are defined as ū and
¯
y, respectively.

Figure 2.6: Definition of the output constraints.

k∗ represents the samples to reach the steady state; if k∗ is longer than the minimum

necessary, the response will oscillate due to the freedom on time to reach the target. In

order to find the minimum sample number k∗min, the bisection method is used.

The bisection method consists of defining the problem as feasible, and start with

the range [klow, khigh] which contains k∗. The convex feasibility problem it’s solved at its

midpoint t = (klow + khigh)/2, to determine whether the optimal value is in the lower or
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upper half of the range, and update the range based on the result. This produces a new

range, which contains the optimal value k∗, but has half the width of the initial one. This

is repeated until the interval is within a valid maximum value [20].

Figure 2.7 shows the optimization for the mass-spring-damper system compared

with the data from the experiment. The overshoot is completely removed and the response

is steady at around the half of the samples than the original experiment.
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Figure 2.7: Optimization for mass-spring-damper system. Top: outputs. Bottom: inputs.
In each plot: data from mass-spring-damper experiment (blue dashed line), and optimization
(green solid line).

2.5 Mixed Integer Linear Programming

Since we have emphasized on the restrictions the input may be subject to based on the

hardware, we explore further techniques such as MILP. Mixed integer linear programming

solves LP problems in which at least one of the variables is restricted to integers [21].

Solutions use full design freedom on the input, but in the real system only input signals

with particular constraints on the level/size can be applied. A valid approach could be

rounding the values to the nearest integer, but this might affect the optimal solution. In

those cases the MILP solution is given by [27].
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minimize cTx

subject to aTi x ≤ bi, i = 1, ...,m,

where x ∈ Z.

(2.5)

Figure 2.8 shows the results of the MILP technique applied to the mass-spring-

damper system.
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Figure 2.8: Computed fractional MILP and simulated response for mass-spring-damper
system. Top: outputs. Bottom: inputs. In each plot: data from mass-spring-damper
experiment (blue dashed line), and MILP (solid green line)

Figure 2.9 shows the MILP response of a binary type for the mass-spring-damper

system.

To smooth the MILP response, a fractional MILP approach is performed. The

problem is set as the MILP approach, but restricted to specific set of inputs u(k) =

{0, 0.2, 0.4, 0.6, 0.8, 1}. The response is better since the input is not of binary type, and

there is a smoother response from the initial shown in Figure 2.8. The response from

fractional MILP is similar to the convex optimization response, with the advantage that

the input values are restricted for hardware.
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Figure 2.9: MILP for mass-spring-damper system. Top: output. Bottom: input.
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Figure 2.10: Fractional MILP for mass-spring-damper system. Top: output. Bottom:
input.
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2.6 Experimental Verification

In general, the convex optimization techniques give better results. In order to test

the convex optimization technique, the experiment was performed on the ECP 210, from

which the data to compute the model via system identification was obtained. The obtained

input in Figure 2.7 is loaded as a trajectory (trj) file in the ECP. The results are shown in

Figure A.10. The response accurately tracks the prediction.
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Figure 2.11: Computed optimization input and simulated response for two-mass system.
Top: outputs. Bottom: inputs. In each plot: calculated optimization data (green solid
line), and ECP test obtained data (blue dashed line).
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Chapter 3

Open-loop input shaping process

For dynamic input shaping, knowledge of dynamics in the form of the state space

model can be used to constrain the dynamic motion of the system. For writing the (linear)

motion constraints, an approach similar to the one in [28] is followed to formulate the input

design as a LP problem [20, 29, 30, 31].

3.1 Linear input and output constraints

Consider the nth order state space representation of a discrete-time model G(q)

with p inputs and m outputs given by

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(3.1)

sampled with a sampling time of ∆T seconds and where u(k) ∈ Rp×1, y(k) ∈ Rm×1,

x(k) ∈ Rn×1. With zero initial conditions x(0) = 0n×1 and u(k) = 0p×1 for k < 0 are

assumed. Designing a desired input u(k) ∈ Rp×1 for (3.1) is the considered an open-loop

input design and coined as an input shaping problem.
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When designing a multi-variable input u(k) to be applied to the open-loop system

(3.1) or a multi-variable reference r(k) to be applied to the closed-loop system, restriction

will be imposed on the resulting input u(k) and output y(k). These restriction are:

• The p inputs in u(k) ∈ Rp×1 are bounded between distinct time-varying lower

amplitude bounds
¯
u(k) ∈ Rp×1 and time-varying amplitude upper bounds ū(k) ∈ Rp×1

for each value of k = 0, 1, . . . , N − 1, e.g.

¯
u(k) ≤ u(k) ≤ ū(k), k = 0, 1, . . . , N − 1

where
¯
u, ū ∈ Rp×1

(3.2)

• The p inputs in u(k) ∈ Rp×1 sampled at ∆T seconds are rate limited between

distinct time-varying lower rate bounds
¯
d ∈ Rp×1 and time-varying upper rate bounds

d̄ ∈ Rp×1 for each value of k = 0, 1, . . . , N − 1, e.g.

¯
d(k) ≤ u(k)−u(k−1)

∆T
≤ d̄(k), k = 0, 1, . . . , N − 1

where
¯
d, d̄ ∈ Rp×1 and u(−1) = 0

(3.3)

• The m outputs in y(k) ∈ Rp×1 are bounded between distinct time-varying perturbation

upper bounds
¯
ε(k) ∈ Rm×1 and time-varying perturbation lower bounds ε̄(k) ∈

Rm×1 around a time-varying desired output ydes(k) ∈ Rm×1 for each value of k =

0, 1, . . . , N − 1, e.g.

¯
ε(k) ≤ y(k)− ydes(k) ≤ ε̄(k), k = 0, 1, . . . , N − 1

where
¯
ε(k), ε̄(k) ∈ Rm×1

(3.4)

• (For closed-loop) The m references in r(k) ∈ Rm×1 are bounded between distinct

time-varying lower amplitude bounds
¯
r(k) ∈ Rm×1 and time-varying amplitude upper
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bounds r̄(k) ∈ Rr×1 for each value of k = 0, 1, . . . , N − 1, e.g.

¯
r(k) ≤ r(k) ≤ r̄(k), k = 0, 1, . . . , N − 1,

where
¯
r(k), r̄(k) ∈ Rm×1.

(3.5)

3.2 Open-loop input design

3.2.1 Feasibility for open-loop input design

Feasibility for open-loop input design is defined as the problem of finding feasible

p×N values of the finite-time input signal

u(k) ∈ Rp×1, k = 0, 1, . . . , N − 1 (3.6)

for the open-loop model given in (3.1), such that the linear conditions in (3.2), (3.3) and

(3.4) hold. Feasibility of these conditions clearly depend on how fast and how close the

output y(k) needs to follow ydes(k) within the bounds
¯
ε(k) and ε̄(k), but also on the fixed

amplitude bounds
¯
u, ū and the fixed rate bounds

¯
d, d̄ imposed on the input u(k). Any

point x̂ is said to be feasible it it satisfies the objective and all the constraints. The problem

is said to be feasible if there exists at leas one feasible point. The set of all feasible points

is called the feasible region, which implies the obtained solution is not unique. The choice

of the constraints as well as the method used for optimization will reflect on the solutions

obtained. Feasibility is checked by rewriting the linear conditions in (3.2), (3.3) and (3.4)

into a linear matrix inequality (LMI) and check feasibility with a linear programming (LP)

problem.

For vector notation purposes, the values of u(k) ∈ Rp×1, k = 0, 1, . . . , N − 1
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contained in the matrix U =

[
u(0) u(1) · · · u(N − 1)

]
∈ Rp×N is first written as

u = vec{U} =

[
u(0)T u(1)T · · · u(N − 1)T

]T
∈ RpN×1 (3.7)

to obtain a vector u of desired multi-variable input values.

The first condition on the input u(k) in (3.2) can be written as an LMI of the form

A1u ≤ b1 where

A1 =

 IpN

−IpN

 ∈ R2pN×pN (3.8)

b1 =

 ū

−
¯
u

 ∈ R2pN×1,
ū = vec

{[
ū(0) ū(1) · · · ū(N − 1)

]}
∈ RpN×1

¯
u = vec

{[
¯
u(0)

¯
u(1) · · ·

¯
u(N − 1)

]}
∈ RpN×1

(3.9)

with the definition of the vector u in (3.7). The second condition on the input u(k) given

in (3.3) can be written as an LMI of the form A2u ≤ b2, where

A2 =

 E

−E

 ∈ R2pN×pN , E =

 0p×p 0p×p(N−1)

−Ip(N−1) 0p(N−1)×p

+ IpN ∈ RpN×pN (3.10)

b2 =

 d̄

−
¯
d

 ∈ R2pN×1,
d̄ = ∆T · vec

{[
d̄(0) d̄(1) · · · d̄(N − 1)

]}
∈ RpN×1

¯
d = ∆T · vec

{[
¯
d(0)

¯
d(1) · · ·

¯
d(N − 1)

]}
∈ RpN×1

(3.11)

based on the definition of the vector u in (3.7).

For the condition (3.4) on the values of output y(k) contained in Y =

[
y(0) y(1) · · · y(N − 1)

]
∈

Rm×N the same vector operation is performed

y = vec{Y } =

[
y(0)T y(1)T · · · y(N − 1)T

]T
∈ RmN×1 (3.12)
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to obtain a vector y of desired multi-variable output values. The mapping of the input

values u(k) contained in u to the output values y(k) contained in y is done with the linear

state space description of the open-loop model in (3.1) via the convolution sum

y(k) = Du(k) +
k∑

m=1

CAm−1Bu(k −m)

under the zero initial condition assumption. This results in

y = Φu, Φ =



D 0m×p 0m×p · · · · · · 0m×p

CB D 0m×p · · · · · · 0m×p

CAB CB D 0m×p · · · 0m×p
...

... · · · . . . · · · ...

CAN−3B CAN−2B · · · CB D 0m×p

CAN−2B CAN−1B · · · CAB CB D


∈ RmN×pN (3.13)

as the linear matrix equality between u and y. The condition (3.4) on the values of the

output y(k) can now be written in an LMI of the form A3u ≤ b3, where

A3 =

 Φ

−Φ

 ∈ R2mN×pN (3.14)

b3 =

 ȳ

−
¯
y

 ∈ R2mN×1,
ȳ = vec

{[
ydes(0) + ε̄(0) · · · ydes(N − 1) + ε̄(N − 1)

]}
∈ RmN×1

¯
y = vec

{[
ydes(0)−

¯
ε(0) · · · ydes(N − 1)−

¯
ε(N − 1)

]}
∈ RmN×1

(3.15)

With all three conditions covered as LMIs in the form Aiu ≤ bi, i = 1, 2, 3, the
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feasibility for an open-loop input design can be formulated as the question of

∃u ∈ RpN×1, subject to Au ≤ b, with

A =


A1

A2

A3

 ∈ R4pN+2mN×pN , b =


b1

b2

b3

 ∈ R4pN+2mN×1

The existence of u can be verified by adding a slack variable z ∈ R4pN+2mN×1 ≥ 0 for all

the linear constraints and solve the optimization

min
z,u

∑
z subject to Au + z ≤ b and z ≥ 0

as a solution for z and u with z = 0 will amount to a feasible solution u. With the definition

of the full variable x =

[
uT zT

]T
∈ R5pN+2mN×1 the above optimization is written as

an LP problem

min
x
fTx, subject to

 A −I4pN+2mN

04pN+2mN×pN −I4pN+2mN

x ≤

 b

04pN+2mN×1

 with

fT =

[
01×pN 11×4pN+2mN

]
(3.16)

where the matrices Ai, i = 1, 2, 3 are defined in (3.8), (3.10) and (3.14) and the vectors

bi, i = 1, 2, 3 are defined in (3.9), (3.11) and (3.15) respectively. A feasible solution of the

LP problem in (3.16) will lead to feasibility for the open-loop input design.

3.2.2 Optimal open-loop input design

Although the LP problem in (3.16) finds a feasible input design for the choices of

the conditions formulated in (3.2), (3.3) and (3.4), the resulting input u(k) is not optimal.
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Only a feasible solution for both u and z is computed by minimizing the sum of the values

of the slack variable z. Depending on the optimization software used for solving the LP

problem, different values of u may be found that may not be desirable. Example may

include input sequences u(k) that oscillate within the rate bounds (3.3) but do not influence

the output constraints (3.4).

Additional uniqueness and an optimal value of the multi-variable input u(k) ∈ Rp×1

for k = 0, 1, . . . , N can be enforced by also minimizing the finite-time variance of the

rate-of-change of the input given by

σ2
N =

1

N

N−1∑
k=0

(
u(k)− u(k − 1)

∆T

)2

(3.17)

to avoid penalizing the actual input values u(k). The variance on the rate-of-change can

be computed via the matrices used in the liner programming to verify that

σ2
N =

1

2
uTHu, H =

2

N∆2
T

DTD,

where D was defined in (3.10) for the LMI A2u ≤ b2 to satisfy the condition (3.3). Assuming

the open-loop input design passed the feasibility test via the LP problem (3.16), the actual

open-loop input design can be optimized via a QP problem.

min
u

1

2
uTHu + fTu subject to Au ≤ b, with

fT = 01×pN ,
(3.18)

where the matrices Ai, i = 1, 2, 3 are defined in (3.8), (3.10) and (3.14) and the vectors

bi, i = 1, 2, 3 are defined in (3.9), (3.11) and (3.15) respectively. A feasibly solution to

(3.18) now produces an input signal u(k) that has minimized (3.17) under the conditions

of (3.2), (3.3) on the input u(k) and the condition (3.4) on the output y(k).
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Chapter 4

Multivariable Dynamic Input Shaping

for Two-Axis Fast Steering Mirror

4.1 Chapter Abstract

A two-axis Fast Steering Mirror (FSM) is a commonly used mechanical component

used in optical imaging and laser beam steering. This paper shows how inverse kinematic

analysis and dynamic input shaping can be used to compute the two-axis input signals

for the actuation of a FSM to be able to track a desired output trajectory. The approach

is based on quasi-static kinematic analysis and dynamic modeling of a two-axis FSM

multivariable motion from experimental step response data. It is shown how open-loop

tracking can be improved by properly designed dynamic input shaping signals that take

into account the inverse kinematics and dynamic response of the FSM.
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4.2 Introduction

A Fast Steering Mirror (FSM) is a commonly used mechanical component in

optical applications, such as astronomy, laser beam pointing systems, laser communication,

opthalmology and laser cutting [32]. The analysis of how a laser propagates from the

beam source via a mechanically adjustable mirror to a target is part of a multidisciplinary

problem called “beam control” as described by [33]. Accuracy of beam steering is influenced

by mechanical coupling, hysteresis and dynamics of the mirror itself [34], but also by

atmospheric conditions in case of long-distance pointing [35]. Innovative approaches such

as real-time or adaptive control of mirrors [36] can greatly improve the accuracy of beam

steering, but require real-time measurements of the beam target location.

Figure 4.1: Beam and steering mirror system

Following the schematic description on Figure 4.1, this paper presents an open-loop

approach to compute optimal steering signals of a FSM controlled by a Voice Coil Motor

(VCM) on each axis to achieve a desired trajectory in a target plane. The VCM actuation

of the FSM ensures minimal hysteresis effects, unlike the use of piezo-stacks for FSM

actuation, discussed in [34]. Furthermore the proposed open-loop approach in this paper

uses experimental data of the dynamic response of the FSM to formulate the optimal

input shaping signals. Although detailed dynamic modeling of mirror dynamics is useful

for analysis and design in high precision mirror systems [37], it is shown that a reliable
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realization method presented in [38] can be used to directly formulate a linear multivariable

dynamic model that captures the coupled dynamics of the two-axis VCM actuation of

the FSM. Recent approaches of data-based input shaping have been recognized for input

shaping of mechanical or MEMS devices, see e.g. [39], but often ignore the possible dynamic

coupling effects in case of multi-axis actuation as seen in a FSM.

The input shaping for a two-axis FSM is broken down in two separable parts in

this paper. The first part consists of the forward kinematics and dynamic analysis of the

FSM. The forward kinematics uses the reflection matrix or mirror transformation matrix

as defined in [40] to describe the quasi-static behavior of the beam reflection as a function

of the two-axis rotation of FSM based on the work by [41] and [33]. Dynamic analysis of

the FSM is based on step-response experiments that measure the dynamic response of the

two-axis rotation of FSM and formulate a linear multivariable discrete-time dynamic model

based on the realization algorithm described in [38].

The second part consists of the inverse kinematic analysis of the FSM, along with

the computation of a set of dynamic voltage inputs to the VCMs used to steer the FSM.

The inverse kinematics computes the desired quasi-static movement of the FSM from a

desired target trajectory parametrization for beam forming. The set of dynamic voltage

inputs to the VCMs of the FSM are solved by a Linear Programming (LP) problem similar

to [42] but extended to the multivariable situation of the FSM. The LP problem uses

the multivariable model to solve the input assignment under constraints to find a feasible

solution for the input shaping of the FSM. Results are illustrated by the tracking of a square

target reference to show the effectiveness of the proposed multivariable input shaping.

4.3 Mirror Beam-Pointing Kinematics
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4.3.1 Rotated normal of the mirror

For the kinematic analysis we consider the steering mirror in Figure 4.2, whose

rotation axes are located at the center of the mirror. The reflection problem of a beam by

the mirror can be expressed as a matrix multiplication,

p1 = Tp0, (4.1)

where T denotes the reflection matrix and p0 and p1 represent unit vectors in the directions

of the incident beam and reflected beam, respectively. Following the approach of [41], we

will write the reflection matrix T as a function of the rotation of the normal vector n of

the mirror plane to accommodate inverse kinematic analysis.

Figure 4.2: Steering mirror axes and normal

Without loss of generality, the local mirror frame is defined to be the x- and y-axes

in the plane of the mirror and the normal n0 is aligned with the a z-axis. The mirror can

be rotated about both its x- and y-axes independently by the angles α and β, changing

and the normal vector n of the mirror as follows. With the unit vectors

µx0 =

[
1 0 0

]T
, µy0 =

[
0 1 0

]T
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in the local mirror frame and the Euler transform (or rotation) matrices

Rx(α) =


1 0 0

0 cosα − sinα

0 sinα cosα

 , Ry(β) =


cos β 0 sin β

0 1 0

− sin β 0 cos β


based on the rotation angles α and β, the rotated unit vectors of the normal are given by

µx(β) = Ry(β)µx0 =


cos β

0

− sin β

 , (4.2)

µy(α) = Rx(α)µy0 =


0

cosα

sinα

 . (4.3)

As a result, the normal of the mirror n`(α, β) in the local mirror frame is obtained with

the cross product n`(α, β) = µx(β)× µy(α) and leads to

n`(α, β) =


cosα sin β

− cos β sinα

cos β cosα

 . (4.4)

The normal n`(α, β) of the mirror in the local mirror frame must be referenced to

the global frame by considering the mounting angle of the mirror. The angle of rotation of

the mirror relative to the global frame can again be described by a rotation around the

x- and y- and z-axis of the global frame with rotation matrices Rx(φ), Ry(θ) and Rz(ψ)
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defined by the matrices


1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 ,


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 ,


cosψ − sinψ 0

sinψ cosψ 0

0 0 1


respectively. As a result, the rotated normal of the mirror in global frame is given by

n(φ, θ, ψ, n`(α, β)) = Rx(φ)Ry(θ)Rz(ψ)n`(α, β) (4.5)

where the normal n(·) in (4.5) is now also a function of the rotation angles (φ, θ, ψ) and the

normal of the mirror n` in (4.4). With the mounting angles (φ, θ, ψ) all fixed, the rotation

matrices can be characterized as constant, making

n(α, β) = Rn`(α, β) (4.6)

with n`(α, β) defined in (4.4) and R = Rx(φ)Ry(θ)Rz(ψ).

4.3.2 Beam reflection

With the rotated normal n(α, β) given in (4.6), Figure 4.3 shows an incident beam

p0 and the reflected beam p1. It should be noted that p0 and n(α, β) span the beam plane

and the reflected beam lies in the same beam plane, due to the assumption of a flat mirror.

With the notion of a perpendicular component p1⊥ and parallel component p1‖ [41],

it is clear that p1 = p1⊥ + p1‖ = p0⊥ − p0‖ and

p1 = p0 − 2p0n(α, β)nT (α, β),

which can be rewritten in the simplified matrix form p1 = T (n(α, β))p0 as mentioned earlier
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Figure 4.3: Incident and reflected beam decomposition

in (4.1). The analysis reveals that the reflection matrix T (n(α, β)) is given by

T (n(α, β)) = I3 − 2n(α, β)nT (α, β) (4.7)

in terms of the normal vector n(α, β) of the mirror.

It should be noted that if the mirror is kept in a fixed position, the normal n(α, β)

and the reflection matrix T (n(α, β)) are constant, making the direction p1 of the reflected

beam only a function of the direction p0 of the incident beam. Vice versa, keeping the

incident beam direction fixed at p0, the direction p1 of the reflected beam can be adjusted

by varying the rotation angle pair (α, β) of the mirror. In this case, the reflection matrix

T (n(α, β)) varies as function of the mirror rotation.

4.3.3 Beam intersection point

As the reflected beam p1 leaves the mirror, it creates a target location on a subsequent

target plane. This plane could be an imaging surface or another secondary mirror, as

indicated in Figure 4.4.

Consider the reflected beam with a direction vector p1, start point m1, and a final

point P1 which is derived from the previous values. We have the segment m1P1 and
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Figure 4.4: Reflected beam intersection with the target plane

following [43] we derive the intersection point.

P1(m1, p1) = m1 + kdpT1 , (4.8)

where k is a scale factor to assure the segment will be longer than the distance d to the

plane. The distance d is a constant value known based on the opto-mechanical layout.

The intersection p with the plane is derived with the parametric line equation

p(m1, P1, nt) = m1 + s× (P1 −m1), (4.9)

where nt is the normal of the subsequent plane and s is the intersection parameter scalar

obtained as

s =
nt · (m1 − pt)
nt · (P1 −m1)

. (4.10)

4.4 Mirror rotation dynamics

4.4.1 Step response excitation

A fast steering mirror (FSM) typically consists of a mirror, polished and with

coatings such as protected gold, aluminum or silver, [33]. Precision movement of the

FSM is done via embedded actuators capable of rotating the mirror closely along its two

perpendicular axes that typically intersect on the center of the mirror [44, 32, 34]. Similar
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to such a typical design of a FSM, this paper uses the the two inch FSM depicted in

Figure 4.5, which can be rotated around x- and y-axes with a voltage driven voice coil

motor actuation with an input range of ±10V .

Figure 4.5: FSM OIM202, courtesy of Optics in Motion LLC.

For understanding the rotation dynamics of the FSM, one would typically have to

model the dynamics of the FSM actuation system. Such a dynamic model must take into

account the rotational inertia of the mirror, vibrations of the mirror/actuation system

and possible dynamic coupling of vibrations due to off-centered actuation of the mirror

positioning system. However, such dynamic information becomes readily available by

performing experiments that reveal the coupled vibrations and static displacement of the

mirror/actuation system in the form of step response excitation experiments.

Discrete-time k = 1, 2, . . . data of mirror angle rotations α(k) and β(k) due to the

step response excitation of the VCMs of the FSM depicted in Figure 4.5 are displayed in

Figure 4.6. During the experiments, independent Voltage step signals (block wave form

signals) Vα(k) and Vβ(k) are applied to each of the VCM of the FSM, whereas multiple step

response measurements are used for averaging and additional measurement noise reduction.

It is worthwhile to note both the small, but non-negligible static and dynamic coupling

between the mirror angle rotations α(k) and β(k).
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Figure 4.6: Mirror step-response data. Left figures are α(t) and β(t) angle rotation
response to excitation of voltage Vα(t) of the voice coil motor (VCM) designed for α
rotation. Right figures are the same angle rotation response to excitation of voltage Vβ(t)
of the voice coil motor (VCM) designed for β rotation.

4.4.2 Step response realization

The process from step-response data to a linear dynamic model is accomplished

with the step-response realization algorithm as presented in [38]. The realization algorithm

uses the averaged step response data in Figure 4.6 to formulate a block Hankel matrix from

which a fourth order multivariable discrete-time state-space model

x(k + 1) = Ax(k) +B

Vα(k)

Vβ(k)

 ,
α(k)

β(k)

 = Cx(k) (4.11)

is derived via a singular value decomposition. More details of the procedure can be found

in [38], as for this paper it suffices to conclude that the state-space model in (4.11) is able

to model the static and dynamic coupling between the rotation angle mirror angle rotations

α(t) and β(t). A confirmation of the quality of the dynamic model is given in Figure 4.7

that presents a visual comparison of the measured step response data and the simulated
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step response produced by the fourth order state space model in (4.11).

Figure 4.7: Comparison between measured multivariable step response data (solid lines)
and simulated multivariable step response data (dashed lines) obtained by fourth order
state space model in (4.11) obtained, in turn, by the step response realization algorithm.

4.5 Mirror input shaping

4.5.1 Target parametrization

To illustrate the effectiveness of dynamic input shaping for a FSM, a target trajectory

with fast dynamic transitions in the motion of the FSM is chosen. Without loss of generality

we may assume a target surface aligned with the (y, z)-plane of the global coordinates and

formulate fast dynamic transitions in form of a square trajectory as indicated in Figure 4.8

The trajectory is parametrized by a parameter φ by following the sequence from

Figure 4.8 according to
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Figure 4.8: Trajectory of the square of size L in target surface aligned in (y, z)-plane.

(yp(φ), zp(φ))1 = (yp, zp − φ)

(yp(φ), zp(φ))2 = (yp − φ, zp)

(yp(φ), zp(φ))3 = (y
p
, zp + φ)

(yp(φ), zp(φ))4 = (y
p

+ φ, zp)

for 0 ≤ φ ≤ L

(4.12)

From the starting point p = (yp(φ), zp(φ)), we move through the axes by increments

of φ, until we close the figure in the same starting point.

4.5.2 Inverse kinematics

Given a target trajectory (yp(φ), zp(φ)) parametrized in terms of φ by (4.12), the

values for the desired mirror rotation pair (α(φ), β(φ)) can be found by inverse kinematic

analysis of the mirror rotation. In the inverse kinematic analysis, the mirror normal vector

n(α, β) dependent reflection matrix T (n(α, β)) given in (4.7) can be used to compute the

desired mirror rotation pair (α(φ), β(φ)).

To start the inverse kinematics process, we normalize the target p via

p1(φ) =
p

‖p‖
, where p = (yp(φ), zp(φ))
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and obtain the inverse direction vector p1, towards the mirror. Having the direction of the

incoming source beam p0, we can obtain the normal of mirror n(φ) in the global coordinates

as a function of the parameter φ via

n(φ) =
p1(φ)− p0

‖p1(φ)− p0‖
(4.13)

and the normal of the mirror in local coordinates given by

n`(α(φ), β(φ)) = R−1
y (45°)n1(φ).

Finally, the values of desired mirror rotation pair (α(φ),

β(φ)) are found by

α(φ) = tan−1(
−ny` (φ)

nz`(φ)
), β(φ) = tan−1(

nx` (φ)

nz`(φ)
) (4.14)

by using (4.4), where nx` indicates the x-coordinate, ny` indicates the y-coordinate and nz`

indicates the z-coordinate of n`(φ). Using the square shape as a target, we follow the

inverse kinematics process to compute the angles sets (α(φ), β(φ)) shown in Figure 4.9, to

reach the target as seen on Figure 4.8.

4.5.3 Quasi-static input shaping

Reaching the desired target with the computed mirror angle pair (α(φ(k)), β(φ(k))

obtained from the inverse kinematic analysis in (4.14) presents a challenge, as the actual

FSM is a dynamic system. This challenge becomes apparent when a (α(φ(k)), β(φ(k)) is

required over a short time period k = 1, 2, . . . , N − 1 of N = 300 samples as depicted

in Figure 4.9 and leading to the target shape depicted in Figure 4.10. It is clear that

the dynamic behavior of the FSM interferes with the quasi-static analysis of the inverse
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Figure 4.9: Discrete-time mirror angle pair α(φ(k)) (top) and β(φ(k)) (bottom) to obtain
the desired target square of size L over a short time period of 300 samples.

kinematics.

4.5.4 Dynamic input shaping

To address the coupled static and dynamic motion of the FSM, input shaping is

required. For the dynamic input shaping, knowledge of the dynamic model obtained by

step response experiments and given by the state space model in (4.11) can be used to

constrain the dynamic motion of the FSM. For writing the (linear) motion constraints we

follow an approach similar to [28], but impose additional constraints on the desired static

and dynamic motion of the FSM. This process is thoroughly detailed in Chapter 3.

The first constraint is to enforce the resulting output y(k) =

[
α(k) β(k)

]T
to

be close to the desired output y(φ(k)) =

[
α(φ(k)) β(φ(k))

]T
obtained from the inverse

kinematic analysis in (4.14) via y(k) ≤ y(φ(k)) + ε(k) and y(k) ≥ y(φ(k))− ε(k). Due to

the dynamic behavior modeled by the state space model in (4.11) and under the assumption

that initial state x(1)=0, such a constraint on the output y(k) can be converted to the

input u(k) =

[
Vα(k) Vβ(k)

]T
for input shaping at each time index k = 1, 2, . . . , N via the
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Figure 4.10: Target shape produced by FSM due to VCM actuation scaled by computed
quasi-static mirror angle pair (α(φ(k)), β(φ(k)) of Figure 4.9.

matrix relation y = Φu.

The next constraints impose constraints on the volatility and size of the resulting

input signal u(k) =

[
Vα(k) Vβ(k)

]T
. To avoid volatility in the voltage/input signals,

constraints on the rate of change |Vα(k)(k)−Vα(k)(k−1)| ≤ d(k), |Vβ(k)−Vβ(k−1)| ≤ d(k)

are implemented to avoid large values in the voltage/input signals during input shaping.

As also described in Chapter 3, the input shaping problem under the linear constraints can

be written in a LP problem.

Computation of a feasible solution to the LP problem of 3.16 using the target desired

mirror rotation pair y(φ(k)) =

[
α(φ(k)) β(φ(k))

]T
depicted earlier in Figure 4.9 now

leads to much better dynamic performance of the FSM in tracking the desired square

trajectory. The results are summarized in Figure 4.11 and it can be seen that despite the

short period of N = 300 samples, the dynamics of the FSM is correctly handled by the

input shaping routine.

It is also worthwhile to inspect the computed input shape u(k) =

[
Vα(k) Vβ(k)

]T
used as input for each of the VCM of the FSM. The input voltage signals are summarized
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Figure 4.11: Target shape produced by FSM due to VCM actuation via input shaping
via Linear Programming problem 3.16.

in Figure 4.12 and it is interesting to observe that the small changes in the input signal

anticipate the both the static changes and vibrations of the FSM to reduce tracking errors

and vibrations in the beam pointing.
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Figure 4.12: Result of input shaping for Vα(k) (top) and Vβ(k) (bottom) with Comparison
between the quasi-static input due to inverse kinematics only (solid lines) and the dynamic
shaped input (dashed lines).

4.6 Conclusions and Future Research

Kinematic analysis and dynamic modeling based on step response experiments is

shown to be an effective way to model both the quasi-static behavior of beam steering and

the dynamic coupling of the motion system of a fast steering mirror (FSM). In case of a

single FSM, inverse kinematic analysis can be used to compute desired mirror rotation

angles. In addition, it has been shown that step response experiments can be used to

formulate a multivariable model that captures both the static and dynamic coupling of a

two-axis motion system of a FSM.

The work in this paper shows how desired mirror rotation angles and the multivari-

able model can be used to formulate an input shaping design that is solved via a standard

Linear Programming problem. Experimental results from a commercial FSM are used to

validate the approach and a comparison is made between standard quasi-static input and

dynamically shaped input to show the effectiveness of the input shaping. Future work
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involves adding feed-forward control to the input shaping, as well as creating an optical

layout with feedback outside of the FSM, such as a position sensing device to measure and

correct any error due to input shaping.
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Chapter 5

Dynamic Input Shaping and Image

Motion Compensation for a

Dual-Mirror System

5.1 Chapter Abstract

This paper shows that the task of trajectory planning for a dual-mirror optical

pointing system with mehcanical vibrations greatly benefits from carefully designed dynamic

input signals, especially when high bandwidth throughput is required. The optical pointing

system consists of two Fast Steering Mirrors (FSM) for which dynamically coupled input

signals are designed, while adhering to mechanical and input signal constraints. The

proposed procedure consists of three steps and starts from dual-input vibration data to

formulate a dynamic model and then use the model to formulate an input shaped signal via

a convex optimization. First, step-response data is used to estimate a dynamic model of

each FSM via a realization algorithm. Second, via (inverse) kinematic analysis the planned

trajectories for the dual-mirrors are determined. Third, a linear programming problem is
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used to compute the dynamic input signal for each of the FSMs, with one of the mirrors

acting as an image motion compensation device, that guarantees tracking of a planned

trajectory within a specified accuracy and the operating constraints of the FSMs. The

end result is a dynamically coupled set of planned input signals that improve the overall

tracking of the dual-mirror optical pointing system, as demonstrated on the FSMs exercise

included in this paper.

5.2 Introduction

5.2.1 Motivation and method

The motivation of the study in this paper is based upon a two voice coil motor

(VCM) actuated FSM with a flexure suspension, organized in the dual-mirror configuration

of Figure B.1.

Figure 5.1: Mechanical layout of a dual fast steering mirror system with FSM1, FSM2

and a beam source. The orientation of the mirrors is indicated by the normal vectors n1,
n2 and the direction of the beam path is represented by the vectors p0, p1 and p2.
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To illustrate the effectiveness of dynamic input shaping for FSMs, a beam target

trajectory problem with fast dynamic transitions in the motion is chosen. The target is in

form of a square trajectory, as illustrated in Figure 4.8. The beam source will reflect in

FSM1 towards FSM2, which will attept to follow the trajectory. FSM1 then will act as a

compensator for the error on positioning from FSM2 to the target. (α1, β1) and (α2, β2)

are the position in degrees of each of the mirror axes. Each angle is commanded via voltage

input (cmdα1, cmdβ1) and (cmdα2, cmdβ2), respectively.

Figure 5.2: Beam desired trajectory: a square of size L in the target plane aligned in
(x, y)-plane.

The VCMs in each FSM are mounted in a push/pull configuration to generate torque

to rotate the mirror against the flexure suspension. Before formally stating the contributions

of this paper, it is worthwhile to illustrate the mechanical vibrations and (dynamic/static)

cross coupling between the rotational axes of the FSM, as summarized in the step response

measurement of Figure 5.3. It can be seen that application of a step-wise voltage input

signal on one of the VCMs in the FSM results not only in mechanical vibrations of the

angular rotation of the FSM around one of its main orthogonal axis; it also creates a

dynamic coupling in the form of vibrations around the other orthogonal axis. It is clear
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that the motion system of a FSM is inherently dynamic and considering only the static

kinematic relationships in a dual-mirror system is not enough for accurate precision.
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Figure 5.3: Illustration of angular vibrations and cross-couplig in the output, due to
step-wise voltage excitation of a VCM actuated FSM with a flexure suspension for each
rotational axis.

The contribution of this paper is to use step-response data of FSMs (as illustrated

in Figure 5.3) to develop a method for dynamic trajectory planning of a dual-mirror optical

pointing system (as illustrated in Figure B.1) that guarantees that optical signals are

projected within a pre-specified accuracy on a target plane. The mirror dynamics is not

capable of following the trajectory for fast transition of the desired target, Figure 5.4.

A step for this analysis is the kinematics analysis; this refers to the geometrical

motion of the mirrors without consideration of the forces (dynamics). The mirror is

commanded to move within a range of degrees, which reflects as the final position of the

beam in the target plane in x− y coordinates. The desired target is defined as coordinates

in the target plane, thus to compute the angles required fo trace the target, the inverse

kinematics process shall be performed to obtain the angles for each axis of both mirrors.

This process is explained in Section 5.3.
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Figure 5.4: Comparison of the target and the dynamics of the system.

The proposed solution to address the task of dual-mirror trajectory planning is

a combination of dynamic modeling and multivariable optimal input shaping that takes

into account both the dynamics and the kinematic coupling between the FSMs, as well

as constraints on the input signal that can be applied to the FSMs. The novelty of the

proposed procedure goes from multivariable step-response to feasible multivariable input

shape, while working with convex optimization to compute the dynamic input signal that

guarantees tracking of a planned trajectory within a specified accuracy and the operating

constraints. It is shown how a multivariable step-response data with dynamic coupling can

be used for coupled input shaping. In short, the approach outlined in this paper designs a

coupled input shaped for a coupled multivariable dynamic system.

The method of data-based IS for a dual-mirror system proposed in this paper

consists of three basic steps.

• Step-response data is used to estimate a dynamic model of each FSM via a realization

algorithm. This first step is used to directly formulate a linear multivariable discrete-

time dynamic model for each FSM that captures the coupled dynamics of the two-axis

actuation based on the realization algorithm.
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• Via (inverse) kinematic analysis the planned trajectories for the dual-mirrors are

determined. The forward kinematics describes the kinematic behavior of the beam

reflection as a function of the two-axis rotation of the FSM, extended to the dual-

mirrors system.

• The problem of dynamic IS based on the planned trajectories for the dual-mirrors

is solved by a linear program (LP) problem extended to the multivariable dynamic

model of the FSMs.

The LP problem solves the multivariable IS for each FSM under constraints on size and

rate-of-change on the input signal to find a feasible solution that guarantees a certain

accuracy for the planned trajectory of each FSM. The LP result for one FSM shows the

room for improvement if a second mirror is to be used as an image motion compensation

(IMC) device.

5.2.2 Literature overview

The concept of image motion stabilization via dynamic beam control covers an area

of multidisciplinary contributions in optics, atmospherics, control theory, vibration analysis

and lasers [33]. Examples of beam controls in military and commercial applications can be

found in [45, 46] and include surveillance, missile guidance, communications, astronomy and

lithography. The optical devices used in beam controls may vary according to the specific

application and include fixed mirrors, optical beam-splitter, position sensing detectors,

focusing lenses and fast steering mirrors.

A fast steering mirror (FSM) is especially useful in image motion stabilization as it

can be used to alter the optical pathway for beam controls [47, 48]. A FSM is typically

an electro-mechanical positioning device allowing rotational movement on either one or

two orthogonal rotational axes in the plane of the mirror. Multiple commercial FSMs exist
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and may include motion systems based on piezoelectric mirrors, galvanometer mirrors and

voice coil actuated mirrors [44]. Although useful for optical pathway planning, the motion

system of a FSM will exhibit dynamic phenomena that includes mechanical vibrations and

(dynamic/static) cross coupling between the rotational axes of the FSM. The resulting

challenge of dynamic pathway planning becomes compounded when two FSMs are used in

tandem to increase motion range in a so-called dual-mirror configuration [49, 50] as also

illustrated in Figure 5.1.

It should be recognized that the notion of input shaping (IS) is not new [1] and there

are new tools and techniques to solve the IS problem [7, 8]. The input shaping concept is

commonly used to describe the convolution of a reference command with a series of impulses

designed to eliminate unwanted vibration, which implies a short delay [1]. In this paper,

input shaping is formulated as an open-loop problem, with linear constraints on input and

output signals imposed to formulate a linear programming problem to find optimal input

profiles. Recent approaches of data-based IS have been developed for mechanical or MEMS

devices [39], but often ignore the possible dynamic coupling effects in case of multi-axis

actuation as seen in a FSM. Different approaches are used when solving a coupled dynamic

problem, from crafting a lower cross-coupling device to designing a controller to minimize

the error originated from the cross-coupling [51]. Although a precise decoupled mechanical

design of the FSMs provides the opportunity of performing two independent IS problems,

realistically a multi-input, multi-output approach is required [47]. In some exercises the

system model formulation is based in a physical approach [52], while some use convex

optimization approach for multi-input systems [53].

For system identification methods the algorithms in [54, 38] are referred. For

forward kinematics analysis, including beam reflection and instersection point, and inverse

kinematics [40, 43, 41, 33] are referred. The LP analysis is performed as in [55] with

references to [30, 31]. IMC plays an important role in a variety of applications such
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as satellites, telescopes and tracking/pointing systems, where the optical configurations

deployed require at least two optical devices (i.e. a gimbal and a mirror) to achieve a

common goal, such as accurately tracking a target [45, 56].

5.3 Beam-pointing kinematics

5.3.1 Beam reflection

For the kinematic analysis, the rotation axes of a FSM are assumed to cross at

a center point m of the mirror. The reflection problem can be formulated as a matrix

multiplication p1 = T (n)p0, where T (n) denotes the reflection matrix and p0 and p1 represent

unit vectors in the directions of the incident beam and reflected beam, respectively. The

reflection matrix T (n) = I3 − 2nnT , where I3 represents an identity matrix of size 3, is

a function of the rotation of the normal vector n of the mirror plane [41]. This section

summarizes the expression of T (n) as a function of the mirror rotation.

As a general approach, the local mirror frame is defined as the x- and y-axes in the

plane of the mirror, and the local normal vector n` of the mirror plane is aligned with the

z-axis. The mirror can be rotated about both its axes independently by the angles α and

β, changing the local normal vector n`(α, β) of the mirror according to

n`(α, β) =


cosα sin β

− cos β sinα

cos β cosα

 (5.1)

In addition, the local normal vector n`(α, β) in the local frame of the mirror must be

referenced to the global frame. As a result, the rotated normal n of the mirror in global

frame depends on the mounting (rotation) angles (φ, θ, ψ) of the normal of the mirror
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n`(0, 0) relative to the global frame. Since the mounting angles (φ, θ, ψ) of the mirror

can be assumed to be fixed, the associated rotation matrices are constant, creating a

global normal vector n(α, β) = Rn`(α, β), where R is the product of the rotation matrices

R = Rx(φ)Ry(θ)Rz(ψ).

Consistent with the dual-mirror configuration displayed in Figure 5.1, the notation

n1(α1, β1) and n2(α2, β2) is adopted to indicate the global normal vectors of the first FSM1

and the second FSM2 respectively. Similarly, n`,1(α1, β1) and n`,2(α2, β2) will be used for

the local normal vectors. Assuming FSM1 in Figure 5.1 is a flat mirror, it should be noted

that p0 and n1(α1, β1), span the beam plane and the reflected beam p1 lies in the same

beam plane. The resulting reflection matrix T1(n(α1, β1)) for FSM1 now depends on α1 and

β1 and given by T1(n1(α1, β1)) = I3 − 2n1(α1, β1)nT1 (α1, β1) in terms of the global normal

vector n1(α1, β1) of FSM1.

5.3.2 Beam intersection point

Continuing the kinematic analysis of the dual-mirror system depicted in Figure 5.1,

the reflected beam p1 = T1(n1(α1, β1))p0 creates a location p ∈ R3×1 on a subsequent target

plane via FSM2. This section summarizes the computation of the point p as function of

the angular rotations of the two FSMs in the dual-mirror system.

Figure 5.5: Intersection of reflected beam, p1, with FMS2 plane at point I2.

Figure 5.5 illustrates the reflected beam vector p1, starting at point m1 is used to

51



describe a segment m1P1 with final point P1(m1, p1) = m1 + kd1p
T
1 , where k is a scaling

of the (unit) vector p1 to assure the segment will be longer than the distance d1 between

FSM1 and FSM2. The mirror plane of FSM2 can be described by a set of points I for

which (I −m1) · n2(α2, β2) = 0. The resulting intersection point I2 of the segment m1P1

and the surface of FSM2 can be found with the parametric line equation

I2 = m1 + s× (P1 −m1), s =
n2(α2, β2) · (m1 −m2)

n2(α2, β2) · (P1 −m1)
(5.2)

where s is the intersection parameter scalar [43]. Assuming the inner product (P1 −m1) ·

n2(α2, β2) 6= 0, i.e. the beam vector p1 is not parallel with the surface of FSM2.

Following the same derivation, the relation of the reflected beam p2 = T2(n2(α2, β2))p1

of FSM2 to the point of intersection p on the target plane with the normal vector nt is

obtained. The final point of segment I2P2 is P2(m2, p2) = I2 + kd2p
T
2 , where k is a scaling

of the (unit) vector p2 to assure the segment will be longer than the distance d2 between

FSM2 and the target plane. Assuming again (P2 − I2) · nt 6= 0, e.g. the reflected beam

vector p2 is not parallel with the target plane, the end result is a target point

p = I2 + s× (P2 − I2), s =
nt · (I2 −mt)

nt · (P2 − I2)
(5.3)

where mt is a (central) point on the target plane, nt is (unit) normal vector of the

target plane and I2 is the intersection point of FSM2 given in (5.2). To be complete,

p2 = T2(n2(α2, β2))p1 and p1 = T1(n1(α1, β1))p0, making the target point p basically a

function of the rotations (α1, β1) of FSM1 and the rotations (α2, β2) of FSM2.
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5.3.3 Target parametrization

To illustrate the effectiveness of dynamic input shaping for FSMs, a target trajectory

with fast dynamic transitions in the motion is chosen. Similar to the kinematic analysis

presented, the target plane is assumed to be aligned with the (x, y)-plane of the global

coordinates and formulate fast dynamic transitions in form of a square trajectory as

indicated in Figure 4.8. The trajectory is parametrized by φ by following the square in

Figure 4.8 according to

(xp(φ), yp(φ))1 = (xp, yp − φ)

(xp(φ), yp(φ))2 = (xp + φ, y
p
)

(xp(φ), yp(φ))3 = (xp, yp + φ)

(xp(φ), yp(φ))4 = (xp − φ, yp)

for 0 ≤ φ ≤ L, where L = 4 inches.

(5.4)

From the starting point p = (xp(φ), yp(φ)), the trajectory is followed along the different

axes of the square by increments of φ, ending in the same starting point.

5.3.4 Inverse kinematics

Given the target trajectory (xp(φ), yp(φ)) parametrized by (4.12), the values for the

desired mirror rotation pairs (α1, β1) and (α2, β2) can be computed as a function of φ by

inverse kinematic analysis of the dual-mirror system. Typically in dual-mirror systems,

one mirror is smaller with a reduced angular range and higher bandwidth, and the second

mirror is bigger with a wide angular range and smaller bandwidth. In the dual-mirror

system of Figure B.1, FSM2 may act as a larger/coarse tracker while FSM1 is responsible

for the fine tracking of an optical target on the target plane. As such, FSM1 can be used

to compensate for any tracking errors or range limitations due to FSM2 and FSM1 acts as
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the image motion compensation device. Following this notion of IMC, inverse kinematics is

performed by first setting (α1, β1) = (0, 0) and computing (α2, β2). Any errors created by

the dynamic motion of FSM2 will then be compensated via designing a dynamic input for

FSM1.

The inverse kinematics process starts by normalizing the beam reflection vector

p2(φ) = p/‖p‖, where p = (xp(φ), yp(φ)) is parametrized by (4.12). With (α1, β1) = (0, 0),

the beam reflection vector p1 is known and the global and local normal vector of FSM2 are

computed via

n2(φ) =
p2(φ)− p1

‖p2(φ)− p1‖
n`,2(φ) = R−1

y (−135°)n2(φ)

(5.5)

Subsequently, the values of desired mirror rotation pair (α2(φ), β2(φ)) are found by

α2(φ) = tan−1(
−ny`,2(φ)

nz`,2(φ)
), β2(φ) = tan−1(

nx`,2(φ)

nz`,2(φ)
) (5.6)

where nx`,2, ny`,2 and nz`,2 respectively denote the x-, y- and z-coordinates of n`,2(φ) of FSM2

defined in (5.5).

Figure 5.6 shows the computed angles through the inverse kinematics process to

reach the square shape target from Figure 4.8. In this analysis, N is the number of points

along the parametrized trajectory, where N is chosen to be N = 200.
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Figure 5.6: Kinematic angles of FSM2 to obtain the desired target along the square
trajectory of size L, with N points and one mirror, FSM1 is fixed (α1, β1) = (0,0). Top
figure: FSM2 (α2(φ), β2(φ). Bottom figure: beam projection on the target plane.

5.4 Mirror rotation dynamics

5.4.1 Step-response excitation

Typically a FSM consists of a polished mirror with coatings such as protected gold,

aluminum or silver [33]. Precision movement of the FSM is done via embedded actuators

capable of rotating the mirror closely along its two perpendicular axes that typically

intersect on the center of the mirror [44, 32, 34]. The work in this paper utilizes the two

FSMs depicted in Figure 5.7, which can be rotated around x- and y-axes with a voltage
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driven voice coil motor (VCM) actuation with an input range of ±10V .

Figure 5.7: OIM202 FSM models, courtesy of Optics in Motion LLC. The mirror on the
left is a 2” mirror, OIM202. The mirror on the right is a 2.1” x 3.0” mirror, OIM202.3.

A FSM may be modeled as a double integrator, or as lightly damped second order

system [49]. However, such models may only approximate the dynamic behavior and

assume a negligible coupling or decoupled model [47, 57]. Furthermore, input shaping is

a model-based feedforward compensation and model errors should be reduced as much

as possible since it cannot compensate for errors due to model uncertainties [58, 59, 18].

Simple step-response excitation experiments, as illustrated earlier in Figure 5.3, can provide

detailed information on dynamic behavior and dynamic coupling of the FSM.

Figure 5.8 and Figure 5.9 show the data of mirror angle rotations due to the

step-response excitation of the VCMs of the FSMs. Step experiments are obtained by

applying independent voltage step (block wave form signals) Vα(k) and Vβ(k) to each of

the VCMs of the FSMs through the module analog I/O module IO104 from Speedgoat

GmbH with Simulink Real-Time™, which measures the angles position as voltage. Multiple

step-response measurements are used for averaging and noise reduction. It should be noted

that the FSMs from OIM do include a feedback controller to help dampen oscillations

but is bypassed to operate in open-loop and to illustrate IS for such a lightly damped

mechanical system.
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Figure 5.8: OIM202, FSM1, step-response data. Left figures depict α(t) and β(t) angle
rotation response measured in voltage to excitation of voltage Vα(t) of the V CMα rotation.
Right figures depict the same angle rotation response to excitation of voltage Vβ(t) of the
V CMβ rotation.

5.4.2 Step-response realization

The process of estimating a multivariable discrete-time model from step-response

data is accomplished with a step-response realization algorithm [38, 54]. In particular for a

FSM that exhibits (dynamic) coupling between the mirror axes rotation, a multivariable

model can be used to model this coupling. For each FSM, the realization algorithm produces

a fourth order multivariable discrete-time state-space model

x(k + 1) = Ax(k) +B

Vα(k)

Vβ(k)

 ,
α(k)

β(k)

 = Cx(k). (5.7)

where the state matrices A, B and C will be used for model-based IS for each FSM.

Figure 5.10 and Figure 5.11 present a visual comparison of the measured step-

response data and the simulated step-response produced by the fourth order state space

model for each FSM. It can be seen that the state-space model in (5.7) is able to model
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Figure 5.9: OIM202.3, FSM2, step-response data. Left figures depict α(t) and β(t) angle
rotation response measured in voltage to excitation of voltage Vα(t) of the V CMα rotation.
Right figures depict the same angle rotation response to excitation of voltage Vβ(t) of the
V CMβ rotation.

the static and dynamic coupling between the mirror angle rotations α(t) and β(t).
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Figure 5.10: Comparison between measured step-response data (solid lines) and simulated
step-response data (dashed lines) obtained by fourth order state space model in (5.7) for
FSM1.
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Figure 5.11: Comparison between measured step-response data (solid lines) and simulated
step-response data (dashed lines) obtained by fourth order state space model in (5.7) for
FSM2.
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5.5 Mirror input shaping

5.5.1 Application of quasi-static input

The angle pair (α2(φ), β2(φ)) computed in (5.6) and depicted in Figure 5.6 are

made discrete-time dependent angles (α2(k), β2(k)) via φ = φ(k) over a time interval

tk = k∆t, k = 1, 2, . . . , N . Tracking such a time-dependent angle pair (α2(k), β2(k))

presents a challenge for the flexible FSM2, especially when ∆t is small and the time interval

N∆t is short. With ∆t = 2 msec, N∆t = 400 msec and voltage signals are applied to

FSM2 that are simply scaled proportionally to the quasi-static values of (α2(k), β2(k)), this

challenge becomes apparent and is analiyzed in [60].

5.5.2 Dynamic input shaping

For dynamic input shaping, knowledge of dynamics in the form of the state space

model in (5.7) obtained by the step-response experiments and the realization algorithm,

can be used to constrain the dynamic motion of FSM2. For writing the (linear) motion

constraints, an approach similar to the one in [28] is followed to formulate the input design

as a LP problem [20, 29, 30, 31] as described in Chapter 3.

The first constraint is to enforce the resulting output y(k) =

[
α(k) β(k)

]T
to be close to the desired output y(φ) =

[
α(φ) β(φ)

]T
in (5.6) via the requirement

|y(k)−y(φ)| ≤ ε(k), k = 1, 2 . . . , N . Such a constraint on the output y(k) can be converted

to the input u(k) =

[
Vα(k) Vβ(k)

]T
for input shaping via the matrix relation y = Φu.

The second constraint is a limit on the rate-of-change |u(k)−u(k− 1)| ≤ d(k)∆t, to reduce

volatility in the voltage input signals u(k). Such a rate-of-change constraint is implemented

via Eu ≤ d as described in Chapter 3. The last constraint limits the size of the input

signal via
¯
u ≤ u ≤

¯
u, to avoid large values during input shaping.
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The feasibility of a multivariable input signal u =

[
u(1) u(2) · · · u(N)

]T
that

satisfies these constraints can be written as a LP problem. The LP problem proposed in

3.16 is solved with the simplex method, which is very common for linear objective functions.

Finding a feasible solution to the LP problem 3.16 using the desired angle pair

(α2(k), β2(k)) computed in (5.6) now leads to the dynamic response of FSM2 summarized

in Figure 5.12. It can be observed that the dynamics of FSM2 is correctly handled by the

input shaping, despite the short time interval of N∆t = 400 msec. The offset of the angles

(α2(k), β2(k)) leads to a small offset on the target.

It is worthwhile to notice the result obtained in Figure 5.12 is following the mechanical

constraints of the FSM2. The LP problem offers the advantage to compute IS, while allowing

the adjust to several constraints. The constraints are given by the mechanical specifications

of the FSM and the desired result for a specific application; the rate of change d and the

size of the input signal ū and
¯
u are attached to the mechanical specs of the mirror, while

the margin of error ε is defined by the desired response of the application.
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Figure 5.12: Dynamic response of FSM2 with dynamic input shaping. Top figure:
comparison of discrete-time dynamic angle pair α2(k), β2(k) (solid lines) and desired inverse
kinematic angle pair α2(φ), β2(φ) (dashed lines). Bottom figure: comparison of beam
projection on the target plane when FSM1 is fixed at (α1, β1) = (0,0) for same (α2(k), β2(k))
(solid line) and kinematic angles (α2(φ), β2(φ)) (dashed line).

5.6 Image motion compensation

Although input shaping for FSM2 greatly improves angle tracking, small errors

remain on the target plane due to the limitations on the applicable accuracy ε and the

voltage input constraints in the LP problem of (3.16).

A basic IMC concept illustrated in [56], consists of a fine device working with a

coarse device. FSM2 is considered the coarse device, which generates a response with a

residual error. The fine device is considered the IMC device, represented by FSM1 in this
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exercise. The residual FSM2 error signal is used to define the motion of the IMC device.

A redundant device such as FSM1 augments the performance of FSM2 by reducing the

error. The target trajectory defined in Figure 5.2 by (5.4) is not fully reached by FSM2.

The definition of a new trajectory for FSM1, (x1(φ), y1(φ)), is the difference of the desired

target and the obtained result. Figure 5.13 illustrates the definition of the target for FSM1

as the residual FSM2 error signal.

Figure 5.13: Illustration of subsequent input shaping for low bandwidth FSM2 and high
bandwidth FSM1.

Following the angles computation process from Section 5.3.4, the new angles (α1, β1)

to compensate for the error can be estimated. Computation of the desired discrete-time

varying angles α1(k), β1(k) can be done via inverse kinematics and followed again by a

computation of the input signal u =

[
u(1) u(2) · · · u(N)

]T
for the multivariable input

u(k) =

[
Vα(k) Vβ(k)

]T
of FSM1. These computations lead to the dynamic response of

the combination of FSM1 and FSM2 summarized in Figure 5.14.

The IMC implemented by FSM1, following the limitations of the position accuracy

of FSM2, is capable of a fast change in the direction of the beam due to its high angular

resolution and bandwidth. Keeping FSM1 initially centered, e.g. (α1, β1) = (0, 0) and

computing the position angles of FSM2 first, provides FSM1 with the capability to rotate

to its full capacity on its two axis for error correcting purposes. The control process can be

summarized as follows:
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Figure 5.14: Combined dynamic response of FSM2 with dynamic input shaping and
FSM1 with dynamic input shaping for target error correction. Top figure: comparison
of discrete-time dynamic angle pair α1(k), β1(k) (solid lines) and initial zero angle pair
(α1, β2) = (0, 0) (dashed lines). Bottom figure: comparison of beam projection on the target
plane with FSM1 moving with (α1(k), β(k)) and FSM2 moving with (α2(k), β2(k) (solid
line) and kinematic angles (α2(φ), β2(φ) (dashed line).

1. Define the beam projection target and compute the angles via inverse kinematics;

2. given the desired angles, perform input shaping;

3. apply the input shaped to one mirror (FSM2) and compute the residual error, which

is the target for the IMC device (FSM1);

4. compute the angles for the IMC device (FSM1) via inverse kinematics;

5. compute the input shaped for the IMC.
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At the end of this process, the shaped inputs for both mirrors are obtained. In practice,

the result position is measured with a laser beam profiler (e.g. camera), then the error

between the desired target and the result position is computed.

The improvement in tracking on the target plane is summarized in the measured

Root Mean Square (RMS) values in Table 5.1. The FSM2 and IMC input shaping result in a

10× improvement over the FSM2 input shaping only. A significant improvement is achieved

compared to the application of a quasi-static input obtained from inverse kinematic analysis

alone.

Table 5.1: RMS of tracking errors for different approaches.

RMS error (in) x-axis y-axis
Quasi-static input 0.5361 0.7419

FSM2 Input Shaping 0.1410 0.0904
FSM2 and IMC Input Shaping 0.0162 0.0095

5.7 Conclusions

Tracking performance of a target in a dual-mirror system is significantly improved by

an open-loop approach in which kinematic analysis and modeling of dynamics is combined

with dynamic input shaping. Step-response experiments combined with a realization

algorithm provide a linear discrete-time state space model that provides information on

motion dynamics and motion coupling of a fast steering mirror (FSM). Using (inverse)

kinematic analysis, the desired rotation angles of the main FSM can be computed while

the state-space model can be used to formulate the dynamic input signal design via a

feasibility check of a linear programming problem. Any remaining target tracking errors

can be picked up by the second FSM acting as an image motion compensation device by

again input shaping based on FSM dynamics and desired rotation angles.

The end result is a ten-fold reduction of the RMS of the tracking error, while
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maintaining constraints on rate-of-change and size of the voltage signals applied to the

FSMs in the dual-mirror system. The approach is illustrated here only for the open-

loop steering of the dual-mirror system to illustrate the benefit of input shaping of a

highly resonant and coupled mechanical motion system. By its nature, the model-based

feedforward approach cannot compensate for errors due to model uncertainties, therefore,

future work will include a closed-loop based reference signal shaping in which a feedback

controller can be used to reduce the effect of model uncertainty.
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Chapter 6

Reference signal shaping for

closed-loop systems with causality

constraints

6.1 Chapter Abstract

A reference signal shaping problem formulated as a convex optimization problem is

presented for the design of the reference signal in a closed-loop discrete-time linear-time-

invariant system, with the purpose that internal control signals and system output are

bounded within constraints. A causal solution endures the reference profiles changes only

after a system output is required to change. The proposed solution allows us to compute

a causal or noncausal reference profile, by adding a time-dependent signal constraint.

Feasibility and existence of a reference profile is verified with a linear programming (LP)

problem, while an optimal reference profile for the closed-loop system is obtained via

a quadratic program (QP) problem. A mass-spring-damper system paired with a PID

controller is the illustrative example for closed-loop reference shaping. To evaluate the
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proposed design, the closed-system response for both causal and noncausal reference profiles

are compared.

6.2 Introduction

In linear time-invariant (LTI) control systems, input shaping (IS) is a technique

originally used for defining a shaped command input to eliminate or reduce unwanted

system vibration. The input profile brings the system from an initial point to a desired

target without the unwanted vibration [1]. Input shaping is usually formulated as an open-

loop problem, which can be reformulated as a convex optimization problem by imposing

linear constraints on the input and output signals [20, 29, 61]. Commonly, input shaping is

used in open-loop for multiple-input multiple-output (MIMO) systems in continuous time

and discrete time [2, 3, 4]. With the input shaping schemes being inherently open-loop,

uncertainties in the open-loop model can lead to system performance degradation.

Feedback control and the resulting closed-loop system compensate for the uncertain-

ties and disturbances [62, 17]. As such, input shaping can be formulated for the reference

signal in closed-loop MIMO discrete-time systems subject to linear constraints on amplitude

and rate-of-change as followed in [26, 63]. Some research has suggested placing the input

shaper as part of the closed-loop system [64, 65], while a different approach for closed-loop

control is extending the system by placing the input shaper outside of the loop [66].

Approaching the IS problem as a general convex optimization problem, the desired

response can be further optimized by defining constraint functions and limits or bounds for

these constraints [20, 29, 67]. All constraints are combined in a linear matrix inequality

(LMI), which can be solved as either a linear program (LP) problem or as a quadratic

program (QP) problem. If a solution is found via LP, which follows the constraints, this

might not be a desirable input profile if it results in an aggressive motion [23]. Furthermore,
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an LP input profile might not be unique and if very different sets of input profiles are

obtained by slightly adjusting the constraints, choosing a solution might be challenging

[68, 69]. As an example, considering the variance of the rate-of-change in the obtained

input profile provides additional uniqueness and an optimal value; the objective function is

then redefined as quadratic and we can get an optimal solution via QP.

The problem of computing a reference trajectory that satisfies certain constraints

on output and input signals, formulated as an LP or QP problem, has been studied

[63, 70]. Unfortunately the results for LP and QP usually lead to a noncausal shaped input

obtained from the desired output and its bounds. This might not be the ideal case in many

applications, where the use of feedback controllers that do not explicitly require future

data to be known is a requirement or and advantage (i.e., causal controllers) [71]. We

consider the computation of both causal and noncausal reference signals. The term causal

is used to refer to shaped signals (input or reference) which are allowed to change only

after the output actually requires it. Likewise, in reference shaping, the reference signal

should change at the time when the output is required to change, not before.

In the classical approach as open-loop input shaping, the input shaping technique

proves its accuracy in an open-loop system, but by its nature it cannot compensate for

errors due to model uncertainty or disturbance signals. Input shaping techniques can be

combined with any type of feedback controller [65] and show significant improvement. In

this paper we focus on the design of a reference signal for a closed-loop system and design

an out-of-the-loop reference shaper, which will be referred to as a closed-loop reference

shaping (CLRS) problem. For the design of the reference input we considered time-variant

amplitude and rate-of-change bounds of the closed-loop signal. The CLRS is first verified for

feasibility as an LP problem and then restructured as a QP problem to obtain a smoother

input profile. Furthermore, this paper presents the possibility of causality, a characteristic

usually neglected. These constraints are time-dependent to allow both causal and noncausal
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reference profiles to be computed.

The paper is structured as follows. Section 6.3 is the definition of the open and

closed-loop systems. Section 6.4 describes the definition of input and output constraints

for the system. Section 6.5 discusses the feasibility of the problem by restating the linear

constraints from section 6.4 in terms of linear matrix inequalities, which are used to define

the convex optimization problem [72]. Feasibility is verified with an LP problem and the

input profile is optimized via a QP problem. In section 6.6 we consider a mass-spring-

damper system in closed-loop with an existing PID controller (with gains initially defined)

as a closed-loop reference shaping problem. The time-dependent constraint added to the

reference shaper enables the causality results. Both the causal and noncausal reference

profiles applied to the closed-loop system are compared.

6.3 Defining the System: Open-loop and closed-loop

models

Given the fact that the continuous-time system will be excited with a Zero-Order-

Hold signal updated at regular discrete-time intervals, motivates the use of a ZOH discrete-

time equivalent model representation of the continuous-time system. Consider the nth

order state space representation of a discrete-time model G(q) with p inputs and m outputs

given by

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(6.1)

sampled with a sampling time of ∆T seconds and where u(k) ∈ Rp×1, y(k) ∈ Rm×1,

x(k) ∈ Rn×1. Without loss of generality, zero initial conditions x(0) = 0n×1 and u(k) = 0p×1

for k < 0 are assumed. Designing a desired input u(k) ∈ Rp×1 for (6.1) is considered an

open-loop input design and coined as an input shaping problem.
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To address robustness of input shaping and, in particular, robustness to possible

variability in the dynamics or DC-gain of of the model G(q), input shaping will be done for

a closed-loop system. The presence of an additional feedback controller can help reduce the

effects of variability in the dynamics of G(q), especially in the case of DC-gain variations

that would require different steady-state value of the input u(k). For a closed-loop reference

design, consider an additional ncth order negative feedback discrete-time controller C(q)

with m inputs, p outputs and a sampling time of ∆T seconds used to compute the input

u(k) via a reference signal r(k) according to

u(k) = C(q)[r(k)− y(k)] .

As a result, the closed-loop system

 u(k)

y(k)

 =

 C(q)

C(q)G(q)

 (Ip×p + C(q)G(q))−1r(k) (6.2)

with the feedback interconnection well posed, will have a state space model

z(k + 1) = Aclz(k) +Bclr(k) u(k)

y(k)

 =

 Cu

Cy

 z(k) +

 Du

Dy

 r(k) ,
(6.3)

where z(k) ∈ Rn+nc×1 contains both the model and the controller state and r(k) ∈ Rm×1.

For the purpose of the analysis presented here, the closed-loop output matrix Ccl and feed-

through matrix Dcl are split in the contributions that produce the control signal u(k) and

the output signal y(k). Again, without loss of generality, zero initial conditions z(0) = 0n×1

and r(k) = 0p×1 for k < 0 are assumed. Designing a desired reference r(k) ∈ Rpm×1 for

(6.3) will be considered a closed-loop reference design referred as a closed-loop reference
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shaping problem.

6.4 Linear input and output constraints

When designing a multi-variable input u(k) to be applied to the open-loop system

(6.1) or a multi-variable reference r(k) to be applied to the closed-loop system, restriction

will be imposed on the resulting internal control signal (input) u(k) and system output

y(k). These restrictions are:

•The p inputs in u(k) ∈ Rp×1 are bounded between distinct time-varying lower amplitude

bounds
¯
u(k) ∈ Rp×1 and time-varying upper amplitude bounds ū(k) ∈ Rp×1 for each

value of k = 0, 1, . . . , N − 1, e.g.

¯
u(k) ≤ u(k) ≤ ū(k), k = 0, 1, . . . , N − 1

where
¯
u, ū ∈ Rp×1

(6.4)

•The p inputs in u(k) ∈ Rp×1 sampled at ∆T seconds are rate limited between distinct

time-varying lower rate bounds
¯
d ∈ Rp×1 and time-varying upper rate bounds d̄ ∈ Rp×1

for each value of k = 0, 1, . . . , N − 1, e.g.

¯
d(k) ≤ u(k)−u(k−1)

∆T
≤ d̄(k), k = 0, 1, . . . , N − 1

where
¯
d, d̄ ∈ Rp×1 and u(−1) = 0

(6.5)

• The m outputs in y(k) ∈ Rp×1 are bounded between distinct time-varying lower

perturbation bounds
¯
ε(k) ∈ Rm×1 and time-varying upper perturbation bounds

ε̄(k) ∈ Rm×1 around a time-varying desired output ydes(k) ∈ Rm×1 for each value of
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k = 0, 1, . . . , N − 1, e.g.

¯
ε(k) ≤ y(k)− ydes(k) ≤ ε̄(k), k = 0, 1, . . . , N − 1

where
¯
ε(k), ε̄(k) ∈ Rm×1

(6.6)

•The m references in r(k) ∈ Rm×1 are bounded between distinct time-varying lower

amplitude bounds
¯
r(k) ∈ Rm×1 and time-varying upper amplitude bounds r̄(k) ∈ Rr×1

for each value of k = 0, 1, . . . , N − 1, e.g.

¯
r(k) ≤ r(k) ≤ r̄(k), k = 0, 1, . . . , N − 1,

where
¯
r(k), r̄(k) ∈ Rm×1.

(6.7)

In the above constraints, N is the number of samples, for which the bounds and rates

are defined. The first two conditions on the input u(k) are needed to satisfy basic amplitude-

and rate-limit constraints. The condition on the output y(k) defines a performance condition

in terms of desired output profile ydes(k) and allowable perturbations around it. Rate

limits on the output can also be easily included, but not included here as rate limits on

the input u(k) and the dynamics of G(q) already impose rate limits. Fixed amplitude-

and rate-limit constraints on the input u(k) are typical for actuation of a dynamic system

(with or without control) to avoid excessive values on the input in terms of size and rate-of-

change. The last condition imposed time-variant amplitude bounds on the reference signal

to allow both causal and noncausal solution for the reference signal shaping. However such

fixed constraints will allow u(k) to change before ydes(k) changes for planning purposes.

Requiring u(k) to change only after ydes(k) changes, e.g. ū(k) =
¯
u(k) = 0 before ydes(k)

changes, can be used to enforce causal solutions. Such causal solutions are therefore easily

found by using time-varying amplitude- and rate-limit constraints on the input u(k), to

enforce u(k) to change only after ydes(k) changes. Both solutions will be illustrated here.
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6.5 Closed-loop reference design

6.5.1 Feasibility

Feasibility for closed-loop reference design is defined as the problem of finding feasible

m×N values of the finite-time reference signal

r(k) ∈ Rm×1, k = 0, 1, . . . , N − 1 (6.8)

for the closed-loop model given in (6.3), such that the linear conditions (6.4), (6.5) hold for

the resulting reference profile signal r(k), while also satisfying the linear conditions (6.6)

for the resulting output y(k) of the closed-loop system.

Feasibility of these conditions will depend on the closed-loop dynamics created by

the feedback of G(q) and the controller C(q), but also also on the specified desired output

ydes(k) and its bounds
¯
ε(k) and ε̄(k). The fixed amplitude bounds

¯
u, ū and the fixed

rate bounds
¯
d, d̄ imposed on the input u(k) are now a combination of the design of the

reference r(k) and the control signals generated by the controller C(q). Any point x̂ is said

to be feasible if it satisfies the objective and all the constraints. The problem is said to be

feasible if there exists at least one feasible point [20, 29]. The set of all feasible points is

called the feasible region, which implies the obtained solution is not unique. The choice of

the constraints as well as the method used for optimization will reflect on the solutions

obtained. Feasibility is verified by rewriting the linear conditions in (6.4), (6.5) and (6.6)

into a linear matrix inequality and find a solution via a linear programming problem.

For vector notation purposes, the values of u(k) ∈ Rp×1, k = 0, 1, . . . , N − 1

contained in the matrix

U =

[
u(0) u(1) · · · u(N − 1)

]
∈ Rp×N
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is first written as

u = vec{U} =[
u(0)T u(1)T · · · u(N − 1)T

]T
∈ RpN×1

(6.9)

to obtain a vector u of desired multi-variable input values. In addition, consider the

notation In to denote a square identity matrix of size n× n, 1n to denote a n× 1 vector

with values 1 and 0n×m to denote a zero matrix of size n×m, along with the notion of the

Kronecker product ⊗.

For the condition (6.6) on the values of output y(k) contained in

Y =

[
y(0) y(1) · · · y(N − 1)

]
∈ Rm×N

the same vector operation is performed

y = vec{Y } =[
y(0)T y(1)T · · · y(N − 1)T

]T
∈ RmN×1

(6.10)

to obtain a vector y of desired multi-variable output values.

Similar to the vectorization of u(k) to u ∈ RpN×1 in (6.9) and y(k) to y ∈ RmN×1

in (6.10), the values of the multi-variable reference r(k) ∈ Rm×1, k = 0, 1, . . . , N − 1 are

vectorized via

r =

[
r(0)T r(1)T · · · r(N − 1)T

]T
∈ RmN×1 (6.11)

to obtain a vector r of desired multi-variable reference values. To implement the constraints

on the resulting control signal u(k) and resulting model output y(k), first the mapping

from r to u and y must be established. The linear mapping is done with the linear state
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space description of the closed-loop model in (6.3) via the convolution sums

u(k) = Dur(k) +
k∑

m=1

CuA
m−1
cl Bclr(k −m)

y(k) = Dyr(k) +
k∑

m=1

CyA
m−1
cl Bclr(k −m)

under the zero initial condition assumption. This results in

u = Φur, where

Φu =



Du · · · 0p×m

CuBcl · · · 0p×m

CuAclBcl · · · 0p×m
... · · · ...

CuA
N−3
cl Bcl Du 0p×m

CuA
N−2
cl Bcl CuBcl Du


∈ RpN×mN

(6.12)

as the linear matrix equality between r and u and

y = Φyr, where

Φy =



Dy · · · 0m×m

CyBcl · · · 0m×m

CyAclBcl · · · 0m×m
... · · · ...

CyA
N−3
cl Bcl Dy 0m×m

CyA
N−2
cl Bcl CyBcl Dy


∈ RmN×mN

(6.13)

76



as the linear matrix equality between r and y.

The above linear matrix equalities can now be used to translate the closed-loop

input u(k) and output y(k) constraints to the reference signal r(k). With the definition of

Φu in (6.12), the first condition on the input u(k) in (6.4) can be written as an LMI of the

form G1r ≤ b1, where

G1 =

 Φu

−Φu

 ∈ R2pN×mN , and (6.14)

b1 =

 ū

−
¯
u

 ∈ R2pN×1 ,

ū = vec

{[
ū(0) · · · ū(N − 1)

]}
∈ RpN×1

¯
u = vec

{[
¯
u(0) · · ·

¯
u(N − 1)

]}
∈ RpN×1

(6.15)

with the definition of the vector u in (6.9). Similarly, the second condition on the input

u(k) given in (6.5) can be written as an LMI of the form G2r ≤ b2, where

G2 =

 DΦu

−DΦu

 ∈ R2pN×mN ,

D =

 0p×p 0p×p(N−1)

−Ip(N−1) 0p(N−1)×p

+ IpN ∈ RpN×pN

(6.16)

and b2 =

 d̄

−
¯
d

 ∈ R2pN×1 ,

d̄ = ∆T · vec

{[
d̄(0) · · · d̄(N − 1)

]}
∈ RpN×1

¯
d = ∆T · vec

{[
¯
d(0) · · ·

¯
d(N − 1)

]}
∈ RpN×1

.

(6.17)

It is worth noting that in case fixed values ū(k) = ū and
¯
u(k) =

¯
u are used, then the
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expressions for ū and
¯
u in (6.15) simplify to ū = 1N ⊗ ū and

¯
u = 1N ⊗

¯
u. Similar for fixed

values d̄(k) = d̄ and
¯
d(k) =

¯
d in (6.17), where d̄ = 1N ⊗ d̄∆T and

¯
d = 1N ⊗

¯
d∆T , [73].

Finally, the condition (6.6) on the values of output y(k) can be written as an LMI of the

form G3r ≤ b3, where

G3 =

 Φy

−Φy

 ∈ R2mN×mN , and (6.18)

b3 =

 ȳ

−
¯
y

 ∈ R2mN×1 ,

ȳ = vec

{[
ydes(0) + ε̄(0) · · ·

ydes(N − 1) + ε̄(N − 1)

]}
∈ RmN×1

¯
y = vec

{[
ydes(0)−

¯
ε(0) · · ·

ydes(N − 1)−
¯
ε(N − 1)

]}
∈ RmN×1

(6.19)

for which the matrix Φy is defined in (6.13).

Similar to the input amplitude bounds used in open-loop input shaping, reference

amplitude bounds (6.7) lead to an LMI of the from G4r ≤ b4 where

G4 =

 ImN

−ImN

 ∈ R2mN×mN , and (6.20)

b4 =

 r̄

−
¯
r

 ∈ R2mN×1 ,

r̄ = ∆T · vec

{[
r̄(0) · · · r̄(N − 1)

]}
∈ RmN×1

¯
r = ∆T · vec

{[
¯
r(0) · · ·

¯
r(N − 1)

]}
∈ RmN×1

(6.21)

with the definition of the vector r in (6.11).
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With all four conditions covered as LMIs in the form of Gir ≤ bi, i = 1, . . . , 4, the

feasibility for a closed-loop reference design can be formulated as the question of

∃r ∈ RmN×1, subject to Gr ≤ b, with

G =



G1

G2

G3

G4


∈ R4pN+4mN×mN ,

b =



b1

b2

b3

b4


∈ R4pN+4mN×1.

(6.22)

The existence of r can be easily checked by a common transformation to replace the general

inequality constraint by a pair of constraints: a general equality constraint containing an

extra (slack) variable, and a nonnegativity bound on the slack variable [29]. Adding a slack

variable z ∈ R4pN+4mN×1 ≥ 0 to cover all the linear constraints and solve the optimization

min
z,r

∑
z subject to Gr ≤ b+ z and z ≥ 0

as a solution for z and r with z = 0 will amount to a feasible solution r. With the definition

of the full variable x =

[
rT zT

]T
∈ R4pN+5mN×1, the above optimization is written as a
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standard linear programming problem

min
x
fTx, subject to G −I4pN+4mN

04pN+4mN×mN −I4pN+4mN

x ≤

 b

04pN+4mN×1



with fT =

[
01×mN 11×4pN+4mN

]
,

(6.23)

where matrices G and b are defined in (6.22). A feasible solution to (6.23) now produces a

reference signal r(k) that satisfies the feasibility for the closed-loop reference design. The

actual reference signal r(k), k = 0, 1, . . . , N − 1 can be extracted from r contained in

x =

[
rT zT

]T
via the inverse operation of (6.11).

6.5.2 Optimal reference

Although the LP problem in (6.23) does give a quick answer to whether or not a

feasible reference design exists based on the choices of the conditions formulated in (6.4),

(6.5) and (6.6), the resulting reference r(k) is not unique. Again, solutions for r(k) may

result in closed-loop input sequences in which r(k) oscillates within the rate bounds (6.7)

but do not influence the input or output constraints as the oscillations of r(k) are blocked

by any possible (right half plane) transmission zeros of the controller C(q) [74].

Additional uniqueness and an optimal value of the multi-variable reference r(k) ∈

Rm×1 for k = 0, 1, . . . , N can be enforced by also minimizing the finite-time variance of the

rate-of-change of the reference given by

µ2
N =

1

N

N−1∑
k=0

(
r(k)− r(k − 1)

∆T

)2

(6.24)
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to avoid penalizing the absolute values of r(k). This will now ensure that the resulting

reference signal r(k) will be as smooth as possible. It should be noted that a smooth

reference r(k) will also lead to a smooth input u(k), provided the controller C(q) of the

closed-loop system (6.2) is well designed. In addition, during the reference shaping, the

rate constraints on the input u(k) with the matrices G2 in (6.16) and b2 (6.17), ensure an

admissible control output u(k) is obtained. The value of µ2
N in (6.24) can be related to the

design variable r via

µ2
N = 1

2
rTHr, H = 2

N∆2
T
ETE ,

E =

 0m×m 0m×m(N−1)

−Im(N−1) 0m(N−1)×m

+ ImN ∈ RmN×mN

(6.25)

Assuming the closed-loop reference design passed the feasibility test via the LP problem

(6.23), the actual closed-loop reference design can be optimized via a quadratic programming

problem,

min
u

1

2
rTHr + fTu subject to Gr ≤ b, with

fT = 01×pN , H =
2

N∆2
T

ETE
(6.26)

where E is defined in (6.25) and the matrices G and b are defined in (6.22). A feasibly

solution to (6.26) now produces a reference signal r(k) that has minimized the finite-time

variance (6.24) on the rate-of-change of the reference r(k), while satisfying the conditions

of (6.4), (6.5) on the input u(k) and the condition (6.6) on the output y(k).

6.6 Experimental simulation

Consider the discrete-time ZOH equivalent of the SISO continuous-time system

G(s) =
1

ms2 + ds+ k
,
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modeling a single mass m, spring k, damper d mechanical system; with a force u(k) as an

input and a position y(k) as an output. This example is chosen for its simplicity, while

retaining the intuition and importance of open-loop input shaping and closed-loop reference

shaping for a dynamic system with a single resonance mode. For numerical evaluation we

consider a nominal model with m = 1, k = 100 and d = 2 with a sampling time ∆T = 0.05

leading to the ZOH equivalent

G(q) =
1

100
· 0.1185q + 0.1145

q2 − 1.627q + 0.9048
, (6.27)

with a discrete-time zero located at −0.9669 inside the unit disc. It is worth noting that

G(s) and G(q) have a static gain of 1/100, which will be used to create a simple quasi-static

input uq(k) given by uq(k) = ydes(k)/100 that would ignore the dynamics of G(q) and

serves as a baseline comparison for dynamic input shaping.

For the closed-loop reference shaping we consider a normalized ydes(k) of an even

number of N samples. The ydes(k) is created by the filtering of a constant and equal

acceleration and deceleration over Ns < N samples in the middle of the interval of the

N samples, where Ns is the number of samples where the transitions of desired values

are defined. The filtering to obtain the desired position ydes(k) is a discrete-time ZOH

equivalent of a double integrator. For a sampling time ∆T , such a normalized output ydes(k)

can be characterized by

ydes(k) = ∆2
T

q+1
(q−1)(q−1)

ades(k),

ades(k) =



0, k = 0, . . . , N/2−Ns

c, k = N/2−Ns + 1, . . . , N/2

−c, k = N/2 + 1, . . . , N/2 +Ns

0, k = N/2 +Ns + 1, · · · , N − 1
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where c is chosen such that ydes(k) is normalized to ydes(0) = 0 and ydes(N − 1) = 1. In the

numerical study included here, the values of N = 40 and Ns = 4 are chosen for a relatively

short transition of ydes(k) from 0 to 1 in just 2Ns = 8 samples to illustrate the dynamic

effects of G(q) in both the input and reference planning.

For the closed-loop reference shaping we consider the control of G(q) with digital

PID controller specified by

C(q) = 100 · 2.8q2 − 4.8q + 2.6

q2 − q
, (6.28)

which will be used in the feedback connection (6.2). The PID controller provides some

damping of the resonance mode of G(q), but more importantly, it provides steady-state

output tracking. The property of steady-state output tracking is used to create a simple

quasi-static reference rq(k) given by rq(k) = ydes(k) that would ignore the dynamics of

G(q) and serves as a baseline comparison for dynamic reference shaping.

For the noncausal reference shaping, the time-invariant input amplitude bounds and

input rate limits are set to: ū = −
¯
u = 110 and d̄ = −

¯
d = 500. For closed-loop reference

shaping, reference amplitude bounds and set r̄ = −
¯
r = 1.1. Results for the (nominal)

closed-loop reference shaping are summarized in Figure 6.1 where it can be observed that

the open-loop shaped reference guarantees that the output remains within the bounds after

the transition period. In addition, the control signal u(k) satisfies the imposed constraints

of (6.4) and (6.5). In comparison with a quasi-static reference r(k) = ydes(k), the shaped

reference signal does a better job of ensuring the output settles within the imposed margins

around the desired output ydes(k) in the presence of a feedback controller C(q), while

satisfying the constraints on the size and rate of change of the input u(k).

It is clear again that the reference shaping does lead to a noncausal input r(k) that

changes before the desired transition takes place in ydes(k). Causality can be enforced by
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imposing time-varying amplitude bounds r̄(k) and
¯
r(k) given in (6.7) to ensure only a

causal solution is found. An example is illustrated in the reference shaping of Figure 6.2

where the reference r(k) is bounded to not change before the transition occurs in the

desired output ydes(k) at t = k∆t = 0.8 seconds. The resulting causal reference shape r(k)

is a signal pattern for the closed-loop system to ensure the output y(k) is placed within its

desired bounds around ydes(k). The shape of r(k) is not only determined by ydes(k) and the

imposed margins, but also dependent on the closed-loop dynamics and the rate-of-change

bounds imposed on u(k).
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Figure 6.1: Comparison between noncausal closed-loop reference shaping for the
model/controller G(q), C(q) given in (6.27), (6.28) and a quasi-static input r(k) = ydes(k)
for N = 40 and Ns = 4.

84



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

0.5

1

ou
tp

ut

desired output
output with quasi-static reference
desired bounds
output with reference shaping

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-50

0

50

100

150

in
pu

t

input with quasi-static reference
input with shaped reference

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

time [sec]

0

0.5

1

re
fe

re
nc

e

quasi-static reference
shaped reference
desired bounds

Figure 6.2: Comparison between causal closed-loop reference shaping for the
model/controller G(q), C(q) given in (6.27), (6.28) and a quasi-static input r(k) = ydes(k)
for N = 40 and Ns = 4 via time varying bounds on the reference r(k) to allow r(k) to
change only after t = 0.8 sec.

6.7 Conclusions

A closed-loop reference shaping problem has been described in this paper and solved

as a QP problem. First, feasibility was verified via LP and an optimal reference profile

was computed formulating the problem as QP. It is shown that the shaped reference signal

maintains the system response within the desired bounds, but it is also noticeable how the

reference shaping leads to a noncausal signal profile, which might not be desirable or feasible

for certain systems. A time-dependent constraint added to the convex optimization problem

formulation allows us to obtain a reference for a causal response. The mass-spring-damper

system in closed-loop with a PID controller illustrates how the reference shaping can enforce

causality, via a time-dependent bound signal. The convex optimization problem formulation

with a time-dependent constraint computes a valid reference shaping for systems where

causal profiles are required. Reference shaping working with a closed-loop system is a safe

way to compensate for errors due to model uncertainty or disturbance signals; for which
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reference shaping, by its open-loop nature, cannot compensate. As part of future research,

robustness to the reference shaping problem should be considered, to ensure the reference

profile can be applied to an existing closed-loop system with uncertainties.
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Chapter 7

Robust Input Shaping Design for

Uncertain Second-order Dynamics

Systems

7.1 Chapter Abstract

Models of dynamics systems with resonance modes might include uncertainty on

the exact numerical value of the damping and natural frequency. These models are referred

to as parametric uncertainty models. Input shaping (IS) design is often computed for a

nominal model, rejecting any possible variations in the parameters. Input shaping that

is robust for a parametric uncertainty on the resonance mode over a range is required.

The process defined in this paper considers the problem of robust input shaping, where a

single input signal is designed for a range of uncertainty in the parameters of a dynamic

model. Robust input shaping is achieved by considering the extreme cases in the parameter

variations, and designing a robust input signal for which constraints on both input and

output signals are satisfied. The approach is tested on a second order model with 10%
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variation in the natural frequency and 10% variation on the damping, which illustrates the

ability to design a robust input signal.

7.2 Introduction

Working with a physical system, the search for a model (plant) could be computed

mainly via physical equations or system identification when input/output data is available.

Models which closely describe physical systems are difficult or impossible to precisely

characterize; when modeling a physical system via the physical equations, the parameters

might not have the exact values. Common problems in system identification include:

limited data, data containing a degree of uncertainty, unmodeled dynamics (since any

dynamical model will neglect some physical phenomena) and unknown initial conditions

[75],[76]. A model could be thoroughly detailed, but it is never an exact representation

of the real physical system and in many applications noise is clearly present [75]. Having

said that, modeling errors shall be considered as they might affect the performance of the

control system [11].

In linear time-invariant (LTI) control systems, the concept of input shaping (IS) is

not new; it is a technique originally used for defining a shaped command input to eliminate

or reduce unwanted system vibration [1]. New tools have emerged to solve the IS problem

[7, 8]. Commonly, input shaping is used in open-loop for multiple-input multiple-output

(MIMO) systems in continuous time and discrete time [2], [3], [4]. With the input shaping

schemes being inherently open-loop, uncertainties in the open-loop model can lead to

system performance degradation [12].

For the most common methods of input shaping, e.g. zero vibration (ZV), zero

vibration derivative (ZVD) and extra insensitive (EI); the primary measure of performance

is the residual vibration. The fact that input shaping does not take into account parametric

88



uncertainty has been approached by different methods where further measures are taken

into account, such as weighting the ranges of system parameter values according to the

expected modeling errors [13, 14]; allowing the shaper to contain negative impulses [15]; a

probabilistic approach of the uncertain model parameters with a polynomial chaos approach

[16]; design of closed loop input shapers [17]; just to mention a few approaches. These

methods show great improvement, while most of them are sill based on the ZV, ZVD and

EI methods.

The approach to robust input shaping in this paper differs from the traditional

approaches. The robust input shaping is formulated as a convex optimization problem

by imposing simultaneous linear constraints on the input and output signals of multiple

models that represent the extreme cases of the parametric uncertainties. By approaching

the robust input shaping problem as a general convex optimization problem, the desired

response can be further optimized by defining constraint functions and limits or bounds

for these constraints [20], [29]. All constraints are combined in a linear matrix inequality

(LMI) [72] which can be solved as either a linear program (LP) problem or as a quadratic

program (QP) problem. In this paper robust input shaping is formulated as an open-loop

problem with linear constraints on input and output signals, imposed to formulate an LP

problem to verify feasibility and a QP problem to compute the optimal input profiles.

Robust control consists of the control methods utilized to operate in the uncertain

parameters of a model; the predominant idea is to compensate for the model uncertainty

via feedback [75, 77, 78]. Feedback would be omitted in most control systems if there were

no disturbance and uncertainties [10]. Since this IS problem is approached as an open-loop

problem, the feedback solution is not suitable for this method. Input shaping has proved

effective on different types of systems, however IS methods neglect taking into account the

modeling errors and parameter uncertainty. In real systems, there is some knowledge of

the model uncertainties; taking this knowledge into consideration leads to a better shaped
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input [13]. Since the uncertainties on the model parameters might affect the performance

of the output to the input shaping design, the design must consider these uncertainties in

order to be robust.

An approach to uncertainty is illustrated in [79], where the analysis is based in an

state-space model and the relationship between the parameter perturbation range and the

associated eigenvalue/eigenvector. In this paper, a direct parametric approach is utilized

for the robust input shaping, which will be illustrated on a second-order system. The

parametric uncertainty is modeled as a normalized variation weighted by a perturbation

matrix. The perturbation matrix allows the normalized parametric uncertainty to be

distributed over the different parameters in a discrete-time model that is used for the

robust input shaping design. The robust input shaping design illustrated consists of the

application of the input shaping problem to obtain a shaped input signal, not only for the

nominal model, but also for a number of extreme models.

The extreme models are defined as the models for which the response is at the

extremes of the bounds for the response. As a first approach, the following conjecture of the

extreme models is made; the extreme values in the normalized variation of the parametric

uncertainty are used to define the extreme models for which the input signal must be

designed. The robust input shaping design is computed for these models and the outputs

for all the models within the uncertainty range are evaluated. If any output is outside the

bounds, the worst case is considered an extreme model.

The contribution of this paper is to propose a method to analyze the model uncer-

tainty through the parameters in the equations of the discrete-time model, and to compute

a single robust input shaping signal that is able to satisfy constraints on both the open-loop

input and the desired open-loop output over the range of the parametric uncertainty.

The paper is structured as follows. In section 7.3 the open-loop model and the

notation for model uncertainty are described, as well as the computation of a perturbation
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matrix which reflects the uncertainties in the model. Section 7.4 elaborates on the input

shaping process, the constraints, feasibility and optimal solution. Section 7.5 illustrates the

previous definitions with a simulation example.

7.3 Defining the parametric uncertainty model

Consider the nth order state space representation of a discrete-time model G(q)

given by

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(7.1)

sampled with a sampling time of ∆T seconds. Zero initial conditions x(0) = 0 and u(0) = 0

are assumed. Open-loop input shaping is now defined as the design of an input u(k) for

(7.1) over a finite time interval k = 1, . . . , N so that the output y(k) and the resulting

shaped input u(k) satisfy certain (time-varying) constraints. As the input design problem is

mostly an input/output based design approach, we will move to an input/output dynamic

representation of (7.1), but the state space matrices A, B, C and D will be used in the

formulation of the constraints for the sake of generality.

Consider the system

G(q, θ) =
B(q, θ)

A(q, θ)
, (7.2)

where θ is a vector of uncertain parameters and B(q, θ), A(q, θ) are polynomials in q with

coefficients which depend on θ.

It is assumed that the set of model G is represented by a nominal model G(q, θ̂)

with a nominal parameter θ̂ and parameter uncertainty modeled by a finite number Q of

independent perturbations.

To address parametric uncertainty for a robust input shaping design, the set G of

discrete-time models G(q, θ) ∈ G shall be considered. The uncertainty on the parameter θ
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constitutes the set of models for which the robust input signal must comply.

G(q, θ) =
b1q
−1 + b2q

−2 + · · ·+ bmq
−m

1 + a1q−1 + a2q−2 + · · ·+ anq−n
.

An uncertain polynomial a(q, θ)

a(q, θ) =
n∑
i=1

ai(θ)q
i , (7.3)

is used to define an interval polynomial family, with uncertainty θ. Nc is the number of

coefficients in the polynomial that reflect uncertainty. θ̂ represents the nominal value of

the coefficients in G. The uncertainty on the parameters θ of the model are captured by a

linear parametric variation

θ = θ̂ + P̂ · δk, |δk| ≤ 1, k = 1, . . . , Q , (7.4)

where P̂ denotes an additive perturbation matrix. P̂ is used to distribute the normalized

parametric uncertainty δk over the parameters θ of the model.

For a scalar uncertainty the above description simplifies to θ = θ̂ + P̂ δ, where P̂ is

a perturbation vector.

For n variations of each δ, a new θ is computed with all the variations in the model.

Both are represented as ∆ = [δ1, δ2 . . . δn] ∈ RnQ×Q and θ = [θ1, θ2, . . . , θn] ∈ RNc×nQ ,

respectively. It should be noted that if the perturbation matrix P̂ is not know, but the set

of ∆ and θ are known, the perturbation matrix P̂ in the linear parametric variation (7.4)
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can be computed via a least squares (LS) solution.

[θ1, θ2, . . . , θn] = θ̂ + P∆T + ε(P ) ,

Defining Θ = [θ1 − θ̂ θ2 − θ̂ . . . θn − θ̂] , we have

Θ = P∆T + ε(P ).

Minimizing the LS error Tr {ε(P )T ε(P )} leads to the solution

P̂ = Θ∆[∆T∆]−1 ∈ RNc×Q. (7.5)

With the P̂ matrix, the variation of the model can be estimated directly with the parameters

in the transfer function. This provides a tool for analysis of the uncertainties. In Section

7.5 the perturbation matrix computation is exemplified.

7.4 Robust Input Shaping

7.4.1 Linear input and output constraints

The robust input shaping performance of an uncertain discrete-time model is achieved

by designing a single open-loop shaped input signal u(k) for m extreme discrete-time models.

Utilizing the same shaped input signal for the computation of the m outputs y(k) of each

model generates outputs within the imposed constraints. Since the purpose of this process

is to obtain one signal only for different models, for this particular exercise the number of

inputs p = 1. The following restrictions will be imposed on the control (input) signal u(k)

and system outputs y(k):

• The single input u(k) is bounded between distinct time-varying lower and upper
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amplitude bounds, which satisfies the amplitude constraints, i.e.

¯
u(k) ≤ u(k) ≤ ū(k), k = 0, 1, . . . , N − 1

where
¯
u, ū ∈ Rp×1

(7.6)

•The single inputs u(k) sampled at ∆T seconds is rate limited between distinct time-

varying lower and upper rate bounds, which satisfies the rate-limit constraints, i.e.

¯
d(k) ≤ u(k)−u(k−1)

∆T
≤ d̄(k),

k = 0, 1, . . . , N − 1

where
¯
d, d̄ ∈ Rp×1 and u(−1) = 0

(7.7)

•The m outputs in y(k) are bounded between a time-varying lower and upper bounds

around the same time-varying desired output profile ydes(k), which defines the allow-

able perturbations for the outputs y(k), i.e.

¯
ε(k) ≤ y(k)− ydes(k) ≤ ε̄(k),

k = 0, 1, . . . , N − 1

where
¯
ε(k), ε̄(k) ∈ Rm×1

(7.8)

7.4.2 Feasibility for open-loop input design

Feasibility for open-loop input design is defined as the problem of finding feasible

p×N values of the finite-time input signal,

u(k) ∈ Rp×1, k = 0, 1, . . . , N − 1 (7.9)

for the open-loop model given in (7.1), such that the linear conditions hold. Any point x̂

is said to be feasible if it satisfies the objective function and all the constraints [20, 29].
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Linear conditions in (7.6), (7.7) and (7.8) are rewritten into a linear matrix inequality

(LMI) for feasibility and solved as a QP problem.

For vector notation purposes, the values of u(k) ∈ Rp×1, k = 0, 1, . . . , N − 1

contained in the matrix

U =

[
u(0), u(1), . . . , u(N − 1)

]
∈ Rp×N

is first written as

u = vec{U} =

[
u(0)T , . . . , u(N − 1)T

]T
∈ RpN×1

to obtain a vector u of desired multi-variable input values.

The first condition on the input u(k) in (7.6) can be rewritten as an LMI of the

form A1u ≤ b1 where

A1 =

 IpN

−IpN

 , b1 =

 ū

−
¯
u

 .
∈ R2pN×pN ∈ R2pN×1

(7.10)

The second condition on the input u(k) given in (7.7) can be written as an LMI of the

form A2u ≤ b2, where

A2 =

 E

−E

 , b2 =

 d̄

−
¯
d

 , with

∈ R2pN×pN , ∈ R2pN×1,

E =

 0p×p 0p×p(N−1)

−Ip(N−1) 0p(N−1)×p

+ IpN ∈ RpN×pN

(7.11)

with d̄ = ∆T{[d̄(0) d̄(1) · · · d̄(N − 1)]} ∈ RN×1 and
¯
d = ∆T{[

¯
d(0)

¯
d(1) · · ·

¯
d(N − 1)]} ∈
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RN×1.

The mapping of the input values u(k) contained in u to the output values y(k)

contained in y is done with the linear state space description of the open-loop model in

(7.1) via the convolution sum

y(k) = Du(k) +
k∑

m=1

CAm−1Bu(k −m)

This results in y = Φu, with Φ ∈ RmN×N . The condition (7.8) on the values of the output

y(k) can be written in an LMI of the form A3u ≤ b3, where

A3 =

 Φ

−Φ

 , b3 =

 ȳ

−
¯
y

 ,
∈ R2mN×N ∈ R2mN×1

(7.12)

with ȳ = vec{[ydes(0) + ε̄(0), ydes(1) + ε̄(1), . . . , ydes(N − 1) + ε̄(N − 1)]} ∈ RmN×1 and

¯
y = vec{[ydes(0)−

¯
ε(0), ydes(1)−

¯
ε(1), . . . , ydes(N − 1)−

¯
ε(N − 1)]} ∈ RmN×1.

With all three conditions covered as LMIs, the feasibility for an open-loop input

design can be formulated as

∃u ∈ RpN×1, subject to Au ≤ b, with

A =


A1

A2

A3

 ∈ R4pN+2mN×pN , b =


b1

b2

b3

 ∈ R4pN+2mN×1

(7.13)

7.4.3 Optimal open-loop input design

The problem in (7.13) can have additional uniqueness and an optimal value of the

multi-variable input u(k) ∈ Rp×1 for k = 0, 1, . . . , N by also minimizing the finite-time
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variance of the rate-of-change of the input given by

σ2
N =

1

N

N−1∑
k=0

(
u(k)− u(k − 1)

∆T

)2

(7.14)

to avoid penalizing the actual input values u(k). The decision for miniization on σ2
N is

based on the benefit of a smoother rate-of-change for the input. The variance on the

rate-of-change can be computed via the matrices defined as it is easy to verify that

σ2
N =

1

2
uTHu, with H =

2

N∆2
T

ETE.

The actual open-loop input design can be optimized via the QP problem,

min
u

1

2
uTHu + fTu subject to Au ≤ b, with

fT = 01×N , H =
2

N∆2
T

ETE.
(7.15)

A feasibly solution to (7.15) produces an input signal u(k) that has minimized (7.14) under

the constraints in (7.6), (7.7) and (7.8).

7.5 Simulation Study

7.5.1 Definition of discrete-time model uncertainty

The second-order model is used for the simplified dynamic analysis and the capability

of an oscillatory response to a step input while generating results that are easier to interpret.

Consider the continuous-time second-order resonant system given by

G(s) =
Kω2

n

s2 + 2ζωns+ ω2
n

, (7.16)
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modeling a mass-spring-damper mechanical system, with a force u(k) as an input and a

position y(k) as an output, for which a 10% variability in the natural frequency ωn and a

10% variability in damping ζ are present. The variability of the natural frequency ωn and

damping ζ is an example of parametric uncertainty.

Perturbations in ωn in the continuous-time modelG(s) will typically map non-linearly

to the parameters θ of the discrete-time model G(q, θ). However, a linear approximation

with (7.4) can be shown to provide an excellent way to capture the uncertainty. For

illustration purposes, consider a nominal continuous-time model G(s) with K = 1/100,

ωn = 10 and ζ = 0.2 to find a nominal discrete-time model G(q, θ̂) with a sampling time

∆T = 0.05. A Zero-Order-Hold discrete-time equivalent of the system in (7.16),

G(q, θ) =
b1q
−1 + b2q

−2

1 + a1q−1 + a2q−2
, θ̂ =

[
b1 b2 a1 a2

]T
.

7.5.2 Input Shaping for the nominal model

For the input shaping is considered a normalized ydes(k) of an even number of N

samples. The ydes(k) is created by the filtering of a constant and equal acceleration and

deceleration over Ns < N/2 samples in the middle of the interval of the N samples, where

Ns is the number of samples where the transitions of desired values are defined. The

filtering to obtain the desired position ydes(k) is a discrete-time ZOH equivalent of a double

integrator. For a sampling time ∆T , such a normalized output ydes(k) can be characterized
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by

ydes(k) = ∆2
T

q+1
(q−1)(q−1)

ades(k),

ades(k) =



0, k = 0, . . . , N/2−Ns

c, k = N/2−Ns + 1, . . . , N/2

−c, k = N/2 + 1, . . . , N/2 +Ns

0, k = N/2 +Ns + 1, · · · , N − 1

where c is chosen such that ydes(k) is normalized to ydes(0) = 0 and ydes(N − 1) = 1. In the

numerical study included here, the values of N = 40 and Ns = 4 are chosen for a relatively

short transition of ydes(k) from 0 to 1 in just 2Ns = 8 samples to illustrate the dynamic

effects of G(q) in the input planning.

The property of steady-state output tracking is used to create a simple quasi-static

input given by uq(k) = ydes(k) that would ignore the dynamics of G(q) and serves as a

baseline comparison for dynamic input shaping. For the input shaping, the time-invariant

causality is enforced by imposing time-variant amplitude bounds ū(k) and
¯
u(k) [80]. Results

for the (nominal) open-loop input shaping are summarized in Figure 7.1 where it can be

observed that the open-loop shaped input guarantees that the output remains within the

(narrow) bounds after the transition period.

7.5.3 Computation of the perturbation matrix

Given by the nominal parameter θ̂ from G

θ̂ =



0.0011

0.0011

−1.5968

0.8187


(7.17)
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Figure 7.1: Comparison between the quasi-static input and input shaping for the nominal
model G. Desired output ydes (solid blue line), bounds (dashed blue line), quasi-static
signals (solid black line), input shaping signals (solid red line).

Combining n = 100 linearly spaced values for each, δ1(k) and δ2(k), in the range from −0.1

to 0.1 to perturb ωn = 10 · (1 + δ1(k)) and ζ = 0.2 · (1 + δ2(k)), the result is ∆ ∈ R1002×2.

Computing the resulting parameters ZOH discrete-time model parameter θ(k) organized in

the 4× 100 matrix

θωn =

[
θ1 θ2 · · · θ100

]
∈ R4×100 ,

θζ =

[
θ1 θ2 · · · θ100

]
∈ R4×100 ,

(7.18)

can be illustrated that the (non-linear) parameter perturbations in θ can be approximated

with (7.4) using a single |δ| ≤ 1 and a perturbation matrix P . A least squares approximation

is utilized to compute P as shown in (7.5),

P =



0.002 0

0.002 0

0.0577 0.0142

−0.0164 −0.0164


. (7.19)

Note that P indicates all parameters in θ are perturbed with the proper scaling to
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capture the perturbation of the frequency ωn and damping ζ. It is worthwhile to note that

the values δ1 = ±1 in (7.4) will indicate the extreme values of the 10% frequency and 10%

damping variations.

7.5.4 Extreme models and input shaping

It is not defined what the extreme models are, so as an initial conjecture, the extreme

models G1, G2, G3 and G4 are defined from the extreme values of the natural frequency

ωn and damping ζ. This is reflected as the extreme values of P , computed with δ = ±1, in

order to define the extreme models, as per (7.4). An illustration of shaped input for the

nominal model G, applied to the extreme models is given in Figure 7.2. The response of

the extreme models to the nominal shaped input, is clearly not within the constraints (ȳ,

¯
y) defined for the output (7.8).
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Figure 7.2: Comparison between input shaping for the nominal model G applied to the
extreme model G1, G2, G3 and G4. Desired output ydes (solid blue line), bounds (dashed
blue line), input shaping signals (solid red line), extreme models (dashed red line).

The input shaping process is computed a second time considering only the extreme

models. Adding the nominal model G to the computation will not improve the shaped

input signal, since it is a model covered by the extremes. The new input shaping design
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signal is computed for a new G = [G1 G2 G3 G4], which illustrates the fact of the process

for robust input shaping is the same as the process for input shaping, for one, two or more

models. The linear input/output constraints and desired output remain the same, while

having a different transfer function. To estimate the shaped input for the extreme models

the constraints on the output are wider in order to allow the output of the model to fit, but

it is not as wide as their initial response on Figure 7.2. Figure 7.3 illustrates the shaped

input computed for the extreme models and the response. It can be appreciated in Figure

7.3 the extreme models fit within the new constraints.
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Figure 7.3: Input shaping computed for the extreme models G1, G2, G3 and G4. Desired
output ydes (solid blue line), bounds (dashed blue line), input shaping signals (solid red
lines).

In order to test the shaped input signal for the extreme models, an evaluation of

100 randomly variations of δ, (within |δ| ≤ 1) reflected on the perturbation matrix P is

performed and utilized to create the equivalent θ for 100 models within the range. In Figure

7.4, the output from the 100 linearly spaced variations of δ and the respective perturbed

models is illustrated. It can be seen on the plot that the output for each perturbed model

fit within the constraints.

The results in Figure 7.4 prove the conjecture defined at the beginning of this section
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Figure 7.4: Input shaping response to 100 linearly spaced variations of |δ| ≤ 1 from (7.4).
Desired output ydes (solid blue line), bounds (dashed blue line), input shaping signals (solid
red line).

as correct; defining the extreme models G1, G2, G3 and G4 from the extreme values of the

δ for ωn and ζ. That might not be the case for all models. If the results were different, e.g.

a model Gx has a value out of the constraint bounds, then robust input shaping would be

computed one more time with a new extreme. The new definition for the extreme models

would be including the new extreme as G = [G1 G2 G3 G4 Gx]. It is possible that an

initial conjecture of extreme values might not be the best approach, so based on the results,

the extreme models can be replaced. For the new computation, the linear input/output

constraints and desired output remains the same, with a new transfer function.

To explore further the results and to make a more accurate evaluation of the results,

an evaluation of the distance from the output of each model to the upper and lower

constraint bounds is computed, (7.20).

x̄d = (y(k)− ȳ(k)), k = 1, 2, . . . 100

¯
xd = (

¯
y(k)− y(k)), k = 1, 2, . . . 100

(7.20)

where x̄ and
¯
x represent the distance of each model to the top and bottom constraint bounds.
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Being y(k) the response of a model, the distance to the (upper and lower) constraint bound

shall be x̄d ≤ 0 and
¯
xd ≤ 0 , where 0 indicates the response is at the boundaries (this is

still valid), but a distance > 0, indicates the response y(k) is out of the constraints bounds,

thus is not valid. All cases where x̄d > 0 and
¯
xd > 0 indicate the models are out of bounds

constraints. Finding the maximum distance

X̄d = maxk(x̄d),
¯
Xd = maxk(

¯
xd),

X = max (X̄d,
¯
Xd) ,

(7.21)

X̄d and and
¯
Xd indicate the extreme models with respect to the upper bound and lower

bound, respectively, and X indicates the overall extreme model.

Figure 7.5 shows that the distance of all the models is within the constraint bounds.

For this example, the extreme models x̄d and x̄d is for the extreme models, which match

the extreme values of δ1 = ±1 and δ2 = ±1.

Figure 7.5: Distance to upper and lower bounds for each model as illustrated on (7.20).
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7.6 Conclusions

The notion of input shaping for a linear dynamic discrete-time model can be

formulated as an open-loop input design that can be solved via a linear or quadratic

program problem with linear constraints on the input and output signals. Although input

design is powerful for motion planning, the design of the shaped input and its input/output

constraints may not be robust to parametric uncertainties in the model. This paper shows

how the tools of input design can be extended to robust input design by application of the

same convex optimization tools to a multi-model input design, in which the models represent

the extreme cases of the variations in the dynamics due to the parametric uncertainties.

Under the conjecture that extreme models represent the worst-case scenario for input

shaping, constraints on the single robust input shaping and the multiple outputs of the

extreme models can be enforced to find a robust input shape that can handle parametric

uncertainties. The example illustrates the development of a non-intuitive robust input

shape that can handle the possible dynamic variations in the oscillatory dynamics of the

model. Future work may approach the analysis of uncertainties in the input-shaping

problem, by restructuring the problem as a close-loop system.
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Chapter 8

Robust Input Shaping for

Second-order Dynamic Systems with

Parameters Variations

8.1 Chapter Abstract

Models of dynamic systems computed from physical equations or system identi-

fication include parametric variability on the numerical values of the parameters. For

second-order systems, damping and natural frequency are often parameters with a nominal

value and a variability range. These models are referred to as parametric uncertain models.

Input shaping (IS) is commonly computed as an open-loop exercise for a nominal model,

where the possible variations in the parameters are neglected. Parametric uncertain systems

require a computation of a robust input signal to work for the set of models derived from

the range of the variable parameters. This paper proposes an approach to robust input

shaping based on the extreme models, which are derived from the extreme values of the

variable parameters via a finite impulse response and a perturbation matrix. The robust
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input signal is designed with constraints on both input and output signals and solved as

a quadratic program (QP) problem. To verify if the input signal is robust, the outputs

for the set of models within the parameter variability are evaluated to find any output

signal that violates the constraints; this is proposed as a linear program (LP) problem. A

numerical example for the computation of a robust input signal for a second-order system

with parametric variability in the natural frequency and damping illustrates the ability of

the design.

8.2 Introduction

A model can be described as the mathematical representation, from inputs to

outputs, of a system. Models are not an exact match with real systems, and their quality

depends on how close their responses are to those of the true plants; a set of models

is required to compensate for the deficiencies. To sum up, a model that duplicates the

true physical plant behavior can never be computed. It is at this point where the term

uncertainty appears, referring to the differences between the models and the real system

[10].

Uncertainty can be described in the form of parameter variations and neglected

dynamics. Parametric uncertainty in dynamical systems occurs when the parameters

describing the systems are known only up to certain extent [81]; a typical example is

the variation of a mechanical component, such as a spring where the initial constant

value wears out over time. The effects of parametric variability in the system can be

evaluated based on a range for the parameters; these calculations reveal the effects of the

parametric variability on the system. Approaches for uncertainty go from analysis based

in an state-space model and the relationship between the parameter perturbation range

and the associated eigenvalue/eigenvector [79] to analysis through the parameters in the
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transfer function of the model [82].

In general terms, a variability margin on a model is required for assessing the quality

of the description of the dynamic system, aiming to the design of a robust response [83].

Common problems in model representation include: limited data, data containing a degree

of uncertainty, unmodeled dynamics (since any dynamical model will neglect some physical

phenomena), noise, and unknown initial conditions [75, 76].

In linear time-invariant (LTI) systems, the concept of input shaping (IS) is a

technique originally implemented for defining a shaped command input to eliminate or

reduce unwanted system vibration [1]. New tools have emerged to solve the input shaping

problem [7, 8]. As a common approach, input shaping is utilized in open-loop for multiple-

input multiple-output (MIMO) systems in continuous time and discrete time [2, 3, 4].

With the input shaping proposal being inherently open-loop, uncertainties in the open-loop

model can lead to system performance degradation [12].

For the most popular methods of input shaping, e.g. zero vibration (ZV), zero

vibration derivative (ZVD) and extra insensitive (EI), the evaluation of performance is

the residual vibration. The fact that input shaping does not take into account paramet-

ric variability has been approached by different methods where further constraints are

implemented, such as: weighting the ranges of system parameter values according to the

expected modeling errors [13, 14]; allowing the shaper to contain negative impulses [15]; a

probabilistic approach of the uncertain model parameters with a polynomial chaos approach

[16]; design of closed loop input shapers [17]; just to mention a few approaches. These

methods show great improvement, however, most of them are sill based on the ZV, ZVD

and EI methods.

Robustness in a system is defined as its qualification to generate the desired output

over disturbances and uncertainties. The approach to robust input shaping in this paper

differs from most traditional ones. The robust input shaping is formulated as a convex
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optimization problem by imposing simultaneous linear constraints on the input and output

signals of multiple models that represent the extreme cases of the parametric variability.

By approaching the robust input shaping design as a general convex optimization problem,

the desired response can be further optimized by defining constraint functions and limits

or bounds for these constraints [20, 29]. All constraints are combined in a linear matrix

inequality (LMI) [72] which can be solved as either a linear program (LP) problem or as a

quadratic program (QP) problem.

Since this input shaping problem is approached as an open-loop problem, the classic

robust control solutions are not suitable for this method. Input shaping has proved effective

on different types of systems, however, input shaping design methods neglect the modeling

errors and parameter variability. In models of real systems, there is some knowledge of

the model uncertainties; taking this knowledge into consideration leads to a better shaped

input signal [13], since the variability of the model parameters might affect the performance

of the output to the input shaping design.

8.2.1 Problem formulation

In this paper, the approach to uncertainty is through parametric variability, that

is, the variation of the nominal parameters in the model within a range. The modeling

of uncertainty on a linear parametric approach is assumed. The parametric variability is

reflected in the form of an impulse response and modeled as a normalized variation weighted

by a perturbation matrix. The perturbation matrix allows the normalized parametric

variability to be distributed over the different parameters in a discrete-time model that is

used for the robust input shaping design.

Robust input shaping is formulated as an open-loop problem with linear constraints

on input and output signals; and then solved as a convex optimization problem via QP.

The robust input shaping design illustrated consists of the application of the input shaping
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problem to obtain a shaped input signal, not only for the nominal model, but also for a

number of extreme models. The robustness in the uncertain model is solved by iterating

between the definition of extreme models and the computation of outputs outside the

bounds. As a first approach, the following conjecture of the extreme models is made: the

extreme values in the normalized variation of the parametric variability are used to define

the extreme models for which the input signal must be designed; and the robust input

signal is computed for these models. As a second step, validation of the robust input signal

is solved as an LP problem designed to find if an output that lays outside of the bounds

exists. If any output is outside the defined bounds, then the model for that output is

considered an extreme model.

The contribution of this paper is a method to analyze the model uncertainty through

the impulse response of the variation of the parameters in the transfer function of the

discrete-time model, and to compute a single robust input signal that is able to satisfy

constraints on both the open-loop input and the desired open-loop output throughout the

range of the parametric variability. The input shaping process solved via a QP problem

and verified for robustness as an LP problem.

The paper is structured as follows: the model with variable parameters is defined in

Section 8.3, along with the representation of the parametric variation and perturbation

matrix. Section 8.4 and Section 8.5 elaborate on the robust input shaping process, the

linear constraints and the computation and validation of the robust input signal. Section 8.6

illustrates the steps to the robust input signal with a numerical example of a second-order

model with two parameters variation.

8.2.2 Notation

The notation defined in Table 8.1 is valid for all sections, considering a multi-input

multi-output (MIMO) system. Additional variables are introduced and defined in some
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sections.

Table 8.1: Notation.

Symbol Description
m number of outputs
p number of inputs
Q number of uncertainties
N number of points
G model
u ∈ RpN×1 inputs
y ∈ RmN×1 outputs

¯
y ∈ RmN×1 output lower bounds
ȳ ∈ RmN×1 output upper bounds

¯
u ∈ RpN×1 input lower bounds
ū ∈ RpN×1 input upper bounds
u ∈ RpN×1 input signal

P̂ ∈ RmN×pQ perturbation matrix
θ ∈ RmN×pN impulse response coefficients

θ̂ ∈ RmN×pN nominal model
δ ∈ R1×Q uncertainty vector

8.3 Defining the parametric variability

8.3.1 The Markov parameters

Consider a linear time-invariant continuous-time (CT) causal model G(s), with

parametric uncertainty modeled by a finite numberQ of independent perturbations. Suppose

for each variable parameter δ1, δ2, . . . , δQ there is a range described by δk ∈ [δ−k , δ
+
k ]. It is

assumed that the parametric variability is represented by a set of models G with a nominal

model G(θ̂), where the nominal parameter is defined as θ̂.

A Zero-Order-Hold discrete-time equivalent of the model G(s)→ G(q) reflects the

uncertainty from the original model in the parameters of the polynomial G(q) = B(q)
A(q)

.

Applying an impulse signal as the input, the output signal is a characterization of the
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system [84], thus the output of a system can be computed with the impulse response

representation. The outputs to impulse signal is the impulse response and are the Markov

parameters used to describe the system.

G(q) =
∞∑
k=0

g(k)q−k, assuming g(k) ≈ 0 for k ≥ N,

G(q) ≈
N−1∑
k=0

g(k)q−k. (8.1)

The parametric variability reflected as the Markov parameters in θ, denotes the

Markov parameter vector

θ =

[
θ(0) θ(1) θ(2) . . . θ(N − 1)

]
. (8.2)

With a sequence of the impulse response coefficients θ, the output for the system

can be computed as a finite convolution sum by [85]

y(τ) =
N−1∑
k=0

θ(k)u(τ − k), (8.3)

where u is the input and y the output. This system might be represented by a matrix

formulation as an alternative to the summation notation. Writing out this equation, a

linear system of equations y = Φ(θ)u is obtained, where Φ is a Toeplitz matrix with the

Markov parameters vector. If the input sequence u is of length Nu and the operator signal

θ is of length N , the output y is of length L = N +Nu − 1 and ∈ RL−1×Nu .
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The matrix formulation of the system in (8.3) is

y =Φ(θ)u, where

Φ(θ) =



θ(0) 0 . . . 0 0

θ(1) θ(0) . . . 0 0

θ(2) θ(1) . . . 0 0

...
...

. . .
...

...

0 0 . . . θ(1) θ(0)


,

y =



y(0)

y(1)

y(2)

...

y(L− 1)


, u =



u(0)

u(1)

u(2)

...

u(Nu − 1)


.

(8.4)

8.3.2 Linear parametric variation

The set of models G can be represented by the nominal model G(q, θ̂), with the first

N terms of Markov parameters for θ̂. The variability on the N elements in θ constitutes

the set of models for which the robust input signal must comply.

The variability on the Q parameters of the model are captured by a linear parametric

variation defined by

θ = θ̂ + P̂ δ, (8.5)

where θ̂ denotes the N×1 nominal Markov parameter vector, and P̂ is the N×Q perturbation

sensitivity matrix to model the effect of Q bounded scalar perturbations |δ(m)| ≤ 1 for
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k = 1, 2, . . . , Q organized in the Q× 1 perturbation vector



δ(1)

δ(2)

...

δ(Q)


, (8.6)

with the assumption of the DC gain remaining constant during the parameters variations,∑N−1
k=0 θ(k) = c where c is a constant value.

The perturbation matrix P̂ in the linear parametric variation (8.5) can be computed

via a least squares (LS) solution, if case values θk are given for different parameters

variations δk. Two elements are required: a combinations of variations of δ and the

resulting parameters θ for each variation. Each θ is computed via the impulse response in

(8.1), with combinations of n different values for each δ, ∆ = [δ1, δ2, . . . , δn], where n is the

defined number of variations on δ to evaluate.

Defining a new set of θ derived from θ̂ and the set of variations for the Q independent

perturbations, the values of the P̂ matrix can be computed as

[θ1 θ2 . . . θn] = θ̂ + P∆T + ε(P ),

[θ1 − θ̂ θ2 − θ̂ . . . θn − θ̂] = P∆T + ε(P ),

Defining Θ = [θ1 − θ̂ θ2 − θ̂ . . . θn − θ̂] , we have

Θ = P∆T + ε(P ) .

Minimizing the LS error Tr {ε(P )T ε(P )} leads to the solution

P̂ = Θ∆[∆T∆]−1 ∈ RN×Q, (8.7)
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where P̂ is the P that minimizes the error. With the P̂ matrix computed, the variation of

the model can be estimated directly with the parameters of the impulse response.

8.3.3 Output with Markov parameter perturbations

The matrix Φ(θ) is a (linear) matrix operation on the Markov parameters given by

Φ(θ) =
N−1∑
k=0

Dkθ(k) (8.8)

in which Dk denotes a N ×N (diagonal) matrix with only 1 elements on the −kth diagonal

of the matrix. For example,

D1 =



1 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1


, D2 =



0 0 · · · 0

1 0 · · · 0

...
...

. . .
...

0 · · · 1 0


,

· · · DN−1 =



0 0 · · · 0

0 0 · · · 0

...
...

. . .
...

1 0 · · · 0


.

The model perturbations modeled by θ = θ̂ + P̂ δ allow each perturbed Markov

parameter θ(k), k = 1, 2, . . . , N to be written as

θ(k) = θ̂(k) +

Q∑
m=1

P̂ (k,m)δ(m), m = 1, 2, . . . , Q

where P̂ is the N ×Q perturbation sensitivity matrix in (8.7).

Combining both results allows the output vector y in the presence of parameter
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perturbations to be written as

y = Φ(θ) · u

=
N−1∑
k=0

Dkθ(k) · u

=
N−1∑
k=0

Dk

(
θ̂(k) +

Q∑
m=1

P̂ (k,m)δ(m)

)
· u

=

(
N−1∑
k=0

Dkθ̂(k) +
N−1∑
k=0

Dk

Q∑
m=1

P̂ (k,m)δ(m)

)
· u .

With this equation (equality constraint) the robust open-loop input shaping problem can

be formulated.

8.4 Robust open-loop input shaping problem

Designing an input u(k) for a desired output y(k) of model is the considered an

open-loop input design problem and coined as an input shaping problem. In the input

shaping process, a shaped input signal is applied to the model with the purpose to obtain

the desired output of the system within constraints. The process for the robust input

shaping design does not differ from from the input shaping process, but does have a

strong addition. The robust input shaping design considers parametric variability for a

set G of discrete-time models with parameter variability modeled by a finite number Q of

independent perturbations. The variability of each of the parameters in the model needs

to be addressed. Even one parameter varying within a known range represents a challenge

to evaluate.

As an initial conjecture, it is considered that by evaluating the extreme models the

whole range of variability for the set G will be included. Typically the extremes are not

known, so part of this conjecture is defining these extreme models. The extreme models are
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defined by evaluating the extreme values of the variable parameters following the design

of the normalized and weighted variation represented by (8.5) and the extreme models in

(8.14). The extreme models conjecture is based on the fact that the variation is captured as

a linear parametric variation, therefore the extreme models represent the greater distance

from the desired response.

A robust performance for a shaped input signal of an uncertain discrete-time model

is achieved by designing a single shaped input signal u(k) for the discrete-time models ∈ G.

Utilizing the same shaped input signal for the computation of the outputs y(k) of each

model generates outputs within the imposed constraints. The purpose of this process is to

obtain one signal for all the different models ∈ G that is robust.

The detailed input and output constraints and the feasibility and optimal input

design, follow the structure proposed in [82]. As an overview, the following restrictions will

be imposed on the control (input) signal u(k) and system outputs y(k).

Consider

• the equality constraint previously defined

y =

(
N−1∑
k=0

Dkθ̂(k) +
N−1∑
k=0

Dk

Q∑
m=1

P̂ (k,m)δ(m)

)
· u, (8.9)

with a given N × 1 nominal Markov parameter vector θ̂ and N × Q perturbation

sensitivity matrix P̂ .

• linear (time varying) inequality constraints on the output vector

¯
y ≤ y ≤ ȳ (8.10)
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• linear (time varying) inequality constraints on the input vector

u ≤ u ≤ ū (8.11)

• and possible linear (time varying) inequality constraints on the rate of change ∆u on

the input

u∆ ≤ ∆u ≤ ū∆. (8.12)

Given the constraints above, the robust open-loop input shaping problem can now

be formulated as finding a feasible input u such that all equality and inequality constraints

above are satisfied over all possible |δ(m)| ≤ 1 for m = 1, 2 . . . , Q.

8.5 Robust open-loop input shaping solution

The product of u and δ(m) in the equality constraint

y =

(
N−1∑
k=0

Dkθ̂(k) +
N−1∑
k=0

Dk

Q∑
m=1

P̂ (k,m)δ(m)

)
· u, (8.13)

makes the robust open-loop input shaping problem bi-linear in the N variables of the input

vector u(k), k = 1, 2, . . . , N and the Q variables δ(m), m = 1, 2, . . . , Q of the allowable

perturbation. To address this problem, the robust open-loop input shaping problem is

solved by iterating between the following two steps:

1. Compute a feasible N × 1 solution for the input vector u for a set of fixed extreme

values of δ(m) with |δ(m)| ≤ 1 for m = 1, 2 . . . , Q.

2. Compute extreme values of δ(m) with |δ(m)| ≤ 1 for m = 1, 2 . . . , Q for a fixed N × 1
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solution of the input vector u.

The main reason to alternate between both steps is that each step can be written as

a linear program problem. In addition, a unique and smooth solution for the input vector

u of Step 1. can be enforced by minimizing the finite-time variance of the rate-of-change of

the input and solve via a QP problem. For initialization of the iteration between the two

steps, the values of δ(m) are defined as δ(m) = ±1, for m = 1, . . . , Q.

8.5.1 Step 1: robust input shaping design for extreme perturba-

tion values

An extreme model is defined as a model G(θx), for θx resulting of extreme values

for δ. For Q variable parameters there are to 2Q extreme models. For initialization of the

robust input shaping problem, consider a set of 2Q extreme Markov parameter vectors

θx = θ̂ + P̂ δx, x = 1, 2, . . . , 2Q (8.14)

where the 2Q uniquely different perturbation vectors δx for x = 1, 2, . . . , 2Q are chosen via

the extreme values δ(m)x = ±1 of the Q bounded scalar perturbations |δ(m)| ≤ 1, m =

1, 2, . . . , Q.

The solution to the design of single robust input vector

ur =



ur(1)

ur(2)

. . .

ur(N)


(8.15)

based on extreme perturbation values can be summarized as follows. With the 2Q extreme
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values of δx, consider the outputs yx are given by the equality constraints from (8.10)–(8.12)

yx = Φ(θx) · ur, or written out as (8.16)

yx =

(
N−1∑
k=1

Dkθ̂(k) +
N−1∑
k=0

Dk

Q∑
m=1

P̂ (k,m)δx(m)

)
· ur,

for x = 1, 2, . . . , 2Q

with a given N × 1 nominal Markov parameter vector θ̂, a given N × Q perturbation

sensitivity matrix P̂ and the fixed extreme values for δx(m) = ±1 for m = 1, 2, . . . , Q.

The linear (time varying) inequality constraints on the output vectors remain

y ≤ yx ≤ ȳ, x = 1, 2, . . . , 2Q (8.17)

and linear (time varying) inequality constraints on the input vector remains

¯
u ≤ ur ≤ ū (8.18)

and possible linear (time varying) inequality constraints on the rate of change on the input

¯
u∆ ≤ ∆ur ≤ ū∆. (8.19)

The robust input shaping problem based on extreme perturbation values can now

be formulated as finding a feasible input ur such that all equality and inequality constraints

above are satisfied for all dynamic models given in (8.16). This can be referred as a

single-input, multi-output model formulation for which all outputs must satisfy (8.17)

for a single robust input shape ur constrained by (8.18) and (8.19). The linearity of the

constraints shown above indicates that the feasibility and design of the robust input shape
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ur can be written as a convex optimization problem. A smooth solution for ur can be

enforced by including a quadratic objective on the rate of change on ur and compute the

solution via a QP problem.

8.5.2 Step 2: computation of extreme perturbations for a robust

input design

The availability of a single robust input vector ur, based on an input design using

extreme perturbation values initialized as δx(m) = ±1, can be used to verify for the actual

scalar extreme values of δ(m) with |δ(m)| ≤ 1 for m = 1, 2, . . . , Q. To address this problem,

consider

• the single equality constraint

y =

N−1∑
k=1

Dkθ̂(k) · ur +
N−1∑
k=0

Dk

Q∑
m=1

P̂ (k,m) · ur · δ(m),

with a given N × 1 nominal Markov parameter vector θ̂, a given N ×Q perturbation

sensitivity matrix P and the given (robust) input vector ur obtained from Step 1.

• inequality constraints on the minimal perturbation

δ(m) ≤ z(m)

−δ(m) ≤ z(m)

z(m) ≥ 0

, m = 1, 2, . . . , Q

bounded by the positive slack variables z(m).
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• Linear (time varying) inequality constraints

ȳ ≤ y ≤ y (8.20)

that now indicate a violation of the original constraints on the output for robust

input shaping.

To find the extreme values |δ(m)| ≤ 1, an LP problem can be formulated in the

variables δ(m) and z(m), that minimizes the sum of the positive slack variables

Q∑
m=1

z(m) (8.21)

subjected to the linear constraints in (8.20).

Minimization of the linear objective function in (8.21) will make each z(m) as small

as possible (but bounded from below by 0) in order for the output to violate the original

constraints for robust input shaping. If solutions for z(m) ≥ 1 are found, then the input

shape ur from Step 1 is robust, as it was designed for a set of extreme values for which

|δ(m)| ≤ 1. If, however, any solution for which δ(m) < 1 is found, the corresponding value

for δ(m) should be added to the set of extreme values and Step 1 has to be revisited for

the next iteration in the computation of the robust input shape ur.

The problem is rewritten with standard LMIs. The defined equality constraint

bounded as ȳ ≤ y ≤
¯
y can be rewritten as an LMI of the form A1δ ≤ b1, where

A1 =

 ∑N−1
k=0 Dk

∑Q
m=1 P̂ (k,m) · ur

−
∑N−1

k=0 Dk

∑Q
m=1 P̂ (k,m) · ur

 ,∈ R2N×Q

b1 =

 ¯
y −

∑N−1
k=1 Dkθ̂(k) · ur

−ȳ +
∑N−1

k=1 Dkθ̂(k) · ur

 ,∈ R2N×1.

(8.22)
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The search for δ shall match the range [−1, 1] defined for the robust input shaping

design computation. The second condition on the bounds rewritten as an LMI of the form

A2δ ≤ b2, where

A2 =

 IQ

−IQ

 , b2 =

 1

−1

 .
∈ R2Q×Q ∈ R2Q×1

(8.23)

With the conditions covered as LMIs in the form Aδ ≤ b, the feasibility for a value

of δ can be formulated as the question of

∃δ ∈ RQ×1, subject to Aδ ≤ b, with

A =

 A1

A2

 , b =

 b1

b2

 .
∈ R2N+2Q×Q ∈ R2N+2Q×1

(8.24)

The existence of δ is verified via the slack variable z ≥ 0 for all the linear constraints

and solve the optimization

min
z,δ

∑
z subject to Aδ + z ≤ b and z ≥ 0. (8.25)

With the definition of the full variable x =

[
δT zT

]T
the above optimization is written

as an LP problem

min
x
fTx, subject to A −I2N+2Q

02N+2Q×Q −I2N+2Q

x ≤

 b

02N+2Q×1

 with

fT =

[
01×Q 11×2N+2Q

]
.

(8.26)
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8.6 Simulation study

In the previous sections, the process to compute robust input shaping is defined.

Those steps will be exemplified with an LTI CT second-order system. The algorithm can

be summarized as follows.

Algorithm 1 Computation of robust input signal

Apply impulse signal to Ĝ to compute θ̂
Design input signal un for Ĝ . For illustration purposes
Compute P̂
Fix δ at extreme values . Conjecture: δx = ±1
while ur 6= robust do

Compute ur for the extreme models . via QP
With ur, compute the extreme δ values . via LP
if |δ| < 1 then

Add new δ values as extreme
else if |δ| ≥ 1 then

ur ← robust
end if

end while

8.6.1 Input Shaping for the nominal model

For illustration purposes, a second-order model is used for the simplified dynamic

analysis and the capability of an oscillatory response to a step input while generating

results that are easier to interpret. Consider the linear time-invariant continuous-time

causal second-order system given by

G(s) =
−Kω2

n( 1
10
s+ s)

s2 + 2ζωns+ ω2
n

, (8.27)

modeling a mass-spring-damper mechanical system, with a force u(k) as an input and a

position y(k) as an output, for which a 10% variability in the natural frequency ωn and a

10% variability in damping ζ are present. The variability of the natural frequency ωn and
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damping ζ is an example of parametric variability.

For illustration purposes, consider the model G(s) with K = 1/100, ωn = 10 and

ζ = 0.2 to find a nominal discrete-time model G(q, θ̂) with a sampling time ∆T = 0.05. A

Zero-Order-Hold discrete-time equivalent G(q, θ̂) of the system in (8.27) with zero initial

conditions is assumed. The system G(q, θ̂) is represented with the the impulse response

system in (8.4).

y(k) = θ̂(k)u(k). (8.28)

For the input shaping design is considered a normalized ydes(k) of an even number

of N samples. The ydes(k) is created by the filtering of a constant and equal acceleration

and deceleration over Ns < N samples in the middle of the interval of the N samples,

where Ns is the number of samples where the transitions of desired values are defined. The

filtering to obtain the desired position ydes(k) is a discrete-time ZOH equivalent of a double

integrator. Output ydes(k) can be characterized by

ydes(k) = ∆2
T

q+1
(q−1)(q−1)

ades(k),

ades(k) =



0, k = 0, . . . , N/2−Ns

c, k = N/2−Ns + 1, . . . , N/2

−c, k = N/2 + 1, . . . , N/2 +Ns

0, k = N/2 +Ns + 1, · · · , N − 1

where c is chosen such that ydes(k) is normalized to ydes(0) = 0 and ydes(N − 1) = 1. In

the numerical study included here, the values of N = 100 and Ns = 4 are chosen for a

relatively short transition of ydes(k) from 0 to 1 in just 2Ns = 10 samples to illustrate the

dynamic effects of G(q) in the input planning.

The property of steady-state output tracking is used to create a quasi-static input
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given by uq(k) = ydes(k) that would ignore the dynamics of G(q, θ̂) and serves as a baseline

comparison for the input shaping design. For input shaping design, the time-invariant

causality is enforced by imposing time-variant amplitude bounds ū(k) and
¯
u(k). Results for

the nominal input signal un(k) are summarized in Figure 8.1 where it can be observed that

un(k) guarantees that the output remains within the narrow bounds after the transition

period.
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Figure 8.1: Comparison between the quasi-static input and input shaping for the nominal
model G. Desired output ydes (solid blue line), bounds (dashed blue line), quasi-static
signals (solid black line), shaped input signal (solid red line).

8.6.2 Computation of the perturbation matrix

Given the N points selected for this model the nominal parameter θ̂ ∈ RN×N . δ1

represents the changes for natural frequency ωn and δ2 represents the changes for damping

ratio ζ. Selecting 50 linearly spaced values for δ1(k) and δ2(k) in the range from −0.1 to
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0.1 to perturb ωn = 10 · (1 + δ1(k)) and ζ = 0.2 · (1 + δ2(k)), respectively, ∆ is given by

∆ =



δ1(1) δ2(1)

...
...

δ1(1) δ2(50)

δ1(2) δ2(1)

...
...

δ1(2) δ2(50)

...
...

...
...

δ1(50) δ1(1)

...
...

δ1(50) δ2(50)



,∈ R2500×2. (8.29)

Computing the N impulse response parameters θ(k) organized in the matrix

Θ =

[
θ1 − θ̂ θ2 − θ̂ · · · θ100 − θ̂

]
∈ R100×2500 , (8.30)

can be illustrated that the parameter perturbations in θ can be computed with (8.5) with

|δ1| ≤ 1, |δ2| ≤ 1 and a perturbation matrix P̂ . A least squares approximation is utilized

to compute P̂ ∈ R100×2 as shown in (8.7).

P̂ indicates all parameters in θ are perturbed with the proper scaling to capture the

perturbation of the frequency ωn and damping ζ. It is worthwhile to note that the values

δ1 = ±1 and δ2 = ±1 in (8.5) will indicate the extreme values of the 10% frequency and

10% damping variations.
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8.6.3 Robust input shaping for the extreme models

It is not defined what the extreme models are, so as an initial conjecture, the extreme

models θ1, θ2, θ3 and θ4 are defined from the extreme values of the natural frequency ωn

and damping ζ. This is reflected as the extreme values of P̂ , computed with δ1 = ±1 and

δ2 = ±1, in order to define the extreme models, as per (8.14)

θ1 = θ̂ + P̂

1

1

 , θ2 = θ̂ + P̂

 1

−1

 ,

θ3 = θ̂ + P̂

−1

1

 , θ4 = θ̂ + P̂

−1

−1

 .
(8.31)

Figure 8.2 illustrates the θ coefficients for each of the extreme values.
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Figure 8.2: Comparison between the extreme values of θ.

Following with the model on (8.31), with Q = 2 variable parameters, the extreme

models have different impulse response coefficients each represented by the values of θ̂, θx

and the P̂ matrix. Following Step 1 summarized in Section 8.5.1, a total of 2Q = 4 extreme
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input/output maps are then defined by

y1 = Φ(θ1)u , y2 = Φ(θ2)u ,

y3 = Φ(θ3)u , y4 = Φ(θ4)u.

(8.32)

similar to (8.16). The variation of the output of the extreme models while applying the

shaped input signal computed for the nominal model, un, is illustrated in Figure 8.3. The

response of the extreme models to un, is not within the constraints (ȳ,
¯
y) defined for the

output.
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Figure 8.3: Comparison between input signal un for the nominal values of θ̂ applied to the
extremes models y1, y2, y3 and y4. Desired output ydes (solid blue line), bounds (dashed
blue line), shaped input/output signals (solid red line), extreme models (dashed red line).

The input shaping process is computed a second time considering the extreme models.

The new input shaping design signal is computed for a new model yr = [y1 y2 y3 y4], this

illustrates that the process for robust input shaping is the same as the regular process for

input shaping, in this case for two or more (extreme) models. The linear input constraints

and desired output remain the same, while having a different number of transfer functions.

To estimate the shaped input signal for the extreme models the constraints on the output

are wider in order to allow the output of the model to fit, but it is not as wide as their
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initial oscillation on Figure 8.3. The shaped input signal computed for the extremes models

and the response is illustrated in Figure 8.4, where it can be appreciated how the extreme

models fit within the new constraints.
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Figure 8.4: Shaped input signal computed for the extremes models y1, y2, y3 and y4.
Desired output ydes (solid blue line), bounds (dashed blue line), shaped input/output
signals (solid red lines).

As an example, to test the shaped robust input signal for a set of models within the

range, an evaluation of 25 linearly spaced variations of δ1 and δ2, (with |δ| ≤ 1) reflected

on the perturbation matrix P̂ is performed and utilized to create the equivalent θ for 625

models within the range. In Figure 8.5, the output from the linearly spaced variations of δ

and the respective perturbed models is illustrated.

8.6.4 Output verification

To verify the results beyond the plots, the method described in Section 8.5 is utilized

to find if exists value for |δ1| < 1 and |δ2| < 1 where the constraints are violated.

Solving (8.26) via linprog in MATLAB®, the give solution is for (-1, -1). Which

means all the outputs are within the constraints. These results prove the conjecture defined

at the beginning as correct: defining the extreme models from θ1, θ2, θ3 and θ4 from the
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Figure 8.5: Robust input signal outputs for 25x25 linearly spaced variations of |δ1| ≤ 1
and |δ2| ≤ 1 from (8.5). Desired output ydes (solid blue line), bounds (dashed blue line),
shaped input/output signals (solid red line).

extreme values of the δ1 and δ2 for ωn and ζ. That might not be the case for all models.

If the results were different, e.g. a model θ∗ has a value out of the constraint bounds,

then the input shaping process is computed one more time with a new extreme model.

The definition for the extreme models would be including the model out of the bounds as

yr = [y1 y2 y3 y4 y∗]. For the new computation, the linear input/output constraints and

desired output remains the same, with a new number of transfer functions.

Figure 8.6 illustrates a graphical evaluation of the outputs. The distance from the

output of each model to the upper and lower constraint bounds is computed, (8.33).

x̄d = (y(k)− ȳ), k = 1, 2, . . . 625

¯
xd = (

¯
y − y(k)), k = 1, 2, . . . 625

(8.33)

where x̄ and
¯
x represent the distance of each model to the top and bottom constraint bounds.

Being y(k) the response of a model, the distance to the (upper and lower) constraint bound

shall be x̄d ≤ 0 and
¯
xd ≤ 0 , where 0 indicates the response is at the boundaries (this is

still valid), but a distance > 0, indicates the response y(k) is out of the constraints bounds,
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thus is not valid. All cases where x̄d > 0 and
¯
xd > 0 indicate the models are out of bounds

constraints.

Figure 8.6: Distance to upper and lower bounds for each model as illustrated on (8.33).

8.7 2DOF Example with 3 variable parameters

Similar to the first exercise the with the ECP, two carts with mass m1, m2, stiffness

k1, k2 and damping d1, d2. Considered parametric variability on m1, m2 and k2, Figure

8.7 and Figure 8.8.

Figure 8.7: ECP Model 210 two-degree of freedom mechanical system.

The input shaping is computed for the nominal model of the 2dof system.

For this example there are Q = 3 uncertainties, thus 2Q = 8 extreme models.
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Figure 8.8: Two mass-spring-damper diagram for the ECP 210.
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Figure 8.9: Comparison between the quasi-static input and input shaping for the nominal
model G. Desired output ydes (solid blue line), bounds (dashed blue line), quasi-static
signals (solid black line), shaped input signal (solid red line).

First, the perturbation matrix is computed as in (8.7). For illustration purposes, the

impulse response, Figure 8.10, and the step response in Figure 8.11, are modeled via the

perturbation matrix.

The input shaping for the nominal model is appliedo to the extreme models, for

illustration purposes.

The input shaping process is computed a second time including the extreme models.

This illustrates that the process for robust input shaping is the same as the regular process

for input shaping, in this case for eight (extreme) models.

To illustrate the results with the shaped robust input signal, a set of models within
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Figure 8.10: Impulse response of the extremes modeled via perturbation matrix.

the range of δ1, δ2 and δ3is evaluated with the reflection on the perturbation matrix P̂ .

Figure 8.14 illustrates the output from the variations of δ and the respective perturbed

models.
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0 1 2 3 4 5 6 7 8 9

0

0.5

1

o
u

tp
u

t

y
des

bounds

Extreme models outputs

0 1 2 3 4 5 6 7 8 9

time [sec]

0

0.5

1

1.5

2

2.5

in
p

u
t

10
-4

shaped input

Figure 8.12: Comparison between input signal un for the nominal values of θ̂ applied to
the extremes models y1, y2, . . . , y8. Desired output ydes (solid blue line), bounds (dashed
blue line), shaped input/output signals (solid red line), extreme models (dashed red line).

135



0 1 2 3 4 5 6 7 8 9

0

0.5

1

o
u

tp
u

t

y
des

bounds

Extreme models outputs

0 1 2 3 4 5 6 7 8 9

time [sec]

0

0.5

1

1.5

2

2.5

in
p

u
t

10
-4

robust shaped input u
r
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Figure 8.14: Robust input signal ur applied to linearly spaced variations of |δ1| ≤ 1 and
|δ2| ≤ 1 and |δ3| ≤ 1. Desired output ydes (solid blue line), bounds (dashed blue line),
shaped input/output signals (solid red line).
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8.8 Conclusions

Input design is a powerful control technique for motion planning. However, the

design of a shaped input signal in compliance with the input/output constraints may not

be robust in the presence of parametric variability in the model. This paper proves how

the tools of input shaping design can be extended to robust input shaping during the

design process by adhering the extreme values of the parametric variability as extreme

models. Model uncertainty is represented via the impulse response, which provides a

direct approach to the parametric variability of the model. The uncertainty captured in

the impulse response allow a linear parametric distribution model, where the parametric

variability can be weighted within the full range. The robust input shaping design follows

the conjecture that extreme models represent the worst output from a model, but this

can be reevaluated. The defined constraints for a nominal model are relaxed and the

extreme models are adhered to the single input shaping design. With the shaped input

signal computed, the validation process verifies that the outputs are within the bounds. If

this is not the case, the model out of the bounds is added as an extreme model, and the

computation is performed again. Following these two steps, a robust input signal is derived.

The two-steps process allows the tracking of the parametric variability and evaluation of

the extreme in the model, however, this iterative process could be approached as a problem

with bi-linear constraints or perhaps as a robust programming for future approaches. In

the same way the notion of input shaping can be formulated as an input design that can

be solved via a QP problem with linear constraints on the input and output signals, the

robust input shaping design is able to find one input signal for multiple models, utilizing

the same convex optimization tools for a multi-model input design.
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Chapter 9

Conclusions

Input shaping is a powerful tool for solving open-loop control problems, however, it

is an often overlooked alternative. This could be because IS traditional techniques solve the

problem with complicated methods that produce an input signal with a significant margin

for improvement. Attempting to improve the input signal with the traditional techniques

results in more complicated problems.

This research initially aimed to solve the input shaping problem in an optimal way.

Computing the input signal via convex optimization with linear constraints on the input and

output signals, provides a better response compared to the responses obtained from most

of the traditional techniques. However, with the input shaping schemes being inherently

open-loop, the process in this research evolved to compensate for the uncertainties in the

model, to avoid system performance degradation.

The aim of this research then focused on robustness in the open-loop input shaping

problem, considering a set of discrete-time models derived from parametric uncertainty. A

robust input shaping design provides an input signal that is guaranteed to hold the output

signal for the nominal model as well as for all the uncertain models within the set G; thus

the input signal is said to be robust. The key for the robust input shaping design is a
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conjecture for approaching all the models within the range by defining the extreme cases.

The perturbations on the models are covered via the extreme models and the input signal

computed for the extremes is verified for robustness. Robustness for input shaping results

in the performance holding for all G, while applying the computed input for the extreme

models.

The first task on the uncertainty problem is defining the best way to approach it.

Two approaches are provided here for the uncertainty analysis. One is directly working

over the variation of the coefficients of the transfer function. The second one is analyzing

the variation of the parameters reflected on the impulse response. Then in both cases the

analysis is defined based on the range of the family of models G.

The significance of this research is the solution to the input shaping problem for a

model with parametric uncertainties with a robust response. Throughout each step of this

research new challenges were found that defined the final results.

As a starting point, different input shaping techniques were analyzed for this research,

going from inverse modeling and zero vibration to FIR filters. As a first result we found that

the convex optimization approach, via LP and MILP methods, provided a superior input

shaping signal with better settling time and less overshoot. Different simulation models were

approached to evaluate the results with LP method: a laser system, a mass-spring-damper

system, and a single-mirror system.

The results proved great response and reduction of the RMS of the tracking error.

However, the input-shaping approach could not compensate for errors derived from model

uncertainties. One exercise in particular, the dual-mirror system, showed how the plant

uncertainties could be compensated via hardware. While the dual-mirror system is a

common practice in optical systems, the hardware compensation is not viable most of the

time.

A new approach to reduce the negative impact of uncertainties consisted of a closed-
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loop system. The problem did create a more robust solution, however, the solution was not

causal. It was found that when working the input shaping problem in closed-loop, causality

has to be reinforced via a time-dependent input bound signal.

Moving forward, a new improvement was found for the input shaping process. While

the LP solution was valid and within the constraints, the input signal was not smooth, and

this is not the best approach for a real system. Considering the rate-of-change of the input

signal and working the convex optimization problem via QP solved this drawback. The

shaped input was still bounded and within the range, but the new input signal now with a

smooth transition.

Although input design is powerful for motion planning, the lack of robustness of

input shaping facing parametric uncertainties in the model was still present. A first way

to directly address uncertainties was based on the coefficients of the transfer function of

the model. Robust input shaping was approached as a multi-model input design. The

multiple models represented the extreme cases of the variations in the dynamics due to the

parametric uncertainties. This under the conjecture that extreme models represent the

extreme values for the uncertainties. The improvement on the result against uncertainties

was clear. One single shaped input signal holds valid for all the variations of the model

due to the parametric uncertainty.

One more representation of the model uncertainty was analyzed via the impulse

response. The uncertainties captured in the impulse response allow a linear parametric

distribution model, where the uncertainties can be weighted within the full range. The

robust input shaping design follows the conjecture that extreme models represent all the

variations in G. The extreme models adhere to the single input shaping design.

With the shaped input signal computed, a validation process was designed to verify

the robustness (the output signal within the bounds) for a set of models within G. If the

verification fails, an extreme model is missing; thus the computation is performed again
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considering this model. If the verification passes, then the shaped input signal is robust.

The robust input shaping problem is solved by iterating between the definition of extreme

models and the verification of outputs outside the bounds.

The input shaping design problem can be formulated and solved via a QP problem

with linear constraints on the input and output signals. In the same way, the robust input

shaping design is able to find one input signal for multiple models, utilizing the same convex

optimization tools for a multi-model input design.

9.1 Future work

There are still plenty of possibilities for future research on the robust input shaping

problem. The are more uncertainty factors to be considered, from the order of the model

given for the system to the constraints being uncertain. The two-steps method used to

find and verify the extreme models problem could be analyzed as a robust programming

problem, given that if fits the criteria, e.g. the robust counterpart of the original LP

problem is defined with a set of confidence Ui, which should be computationally tractable.

An option to consider for the same two-steps method, is defining the problem as bilinear

matrix inequalities (BMI) and solve as a semidefinite program (SDP).
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Appendix A

Optimal Input Shaping with Finite

Resolution Computed from

Step-Response Experimental Data

A.1 Appendix Abstract

The purpose of this work is the computation of optimal input signals for output

tracking of a dynamic system, where knowledge of the dynamic system is only given in the

form of step response-data. The starting point is a (non-optimal) input signal given in the

form of a simple step input and the measurement of the resulting output. The computation

of infinite precision optimal input signals are based on linear programming (LP) solutions

that can be specialized to mixed integer linear programming (MILP) solutions with an

integer parametrization to enforce possible finite resolution solutions for the input shaping

signals. The approach of input shaping based on step-response data is illustrated on

experimental data obtained from a class IV laser system with varying pulse length and

a laboratory experiment of a mechanical vibration system. In the latter case, computed
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optimal input signals were tested experimentally to verify the effectiveness of the input

shaping to reduce residual vibrations.

A.2 Introduction

The evolving demands of modern technologies require the development and use

of smaller, cheaper semiconductors which are both high speed and energy efficient. The

modeling and analysis of novel techniques for high speed manufacturing of these new devices

is motivated by an increase in yield and economical benefits. As many of the lithographic

manufacturing processes for integrated circuits require repetitive signals for pulsed lasers

and mechanical movement, it is worthwhile to compute optimal driving signals to improve

accuracy and speed for these processes.

Obtaining accurate models that can be used for the corresponding analysis of accu-

racy and speed of the production process is often achieved by experimentation. Systematic

dynamic analysis of input-output relationships can be analyzed via popular dynamic model

estimation techniques, commonly known as system identification [84]. System identification

techniques can produce dynamic models that capture the relevant dynamics of the system

and experiments are usually designed that utilize the process input experimental variables.

A common input for the analysis of dynamics systems in lithographic manufacturing

processes such as lasers and servo systems is a step-wise driving input. The resulting

step-response provided valuable information on the system dynamics and can be used to

obtain a dynamic model with a finite order using a realization algorithm [86, 38]. The

knowledge obtained on the dynamics in the form of a finite order model can then be used

to alter the step input in a favorable way as to minimize residual dynamic effects (e.g.

vibrations or under/overshoot) during the manufacturing process [5].

To tune optimal input signals to track a desired output, approaches have been
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developed for both “model free” tracking using a form of iterative learning control (ILC)

[87] and “model-based” tracking based on various methods of input shaping and model

predictive control [1, 88, 89]. Although these approaches provide powerful techniques

for robustly learning or computing optimal input signals (iteratively) even for non-linear

systems [90], this paper is exploring the possibility to develop input signals with limited

resolution without the necessary iterations. In addition, the dynamic model is not used to

simply compute an approximate inverse model to formulate the input shaping problem, as

the input and its resulting output signal will be subjected to constraints during the input

shaping process.

In this paper, the dynamic model obtained from step-response experiments will be

combined with convex optimization techniques [20] to enforce both input/output constraints

during the input shaping computations. Furthermore, mixed integer linear programming

(MILP), in which at least one of the optimization variables is restricted to integers [21, 22],

can be used to parametrize and enforce the input shaping signal to be represented in a finite

resolution. Such finite resolution is important when input signals have to be implemented

via a high speed digital-to-analog converter with a limited bit resolution.

The process and computations to go from step-response data to a dynamic model

and its optimal input shaping signal subjected to constraints and/or finite resolution is

summarized in this paper. Section A.3 provides motivation for this process based on

experimental data from both a laser system with varying pulse length and a laboratory

experiment of a mechanical vibration system. The realization algorithm to obtain a

linear model is summarized in Section A.4, followed by the input shaping calculations in

Section A.5 with (experimental) verification in Sections A.6 and A.7.

A.3 Experimental data
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A.3.1 Two-mass system experiment

A two-mass system is used for verification and interpretation of the input shaping

results presented in this paper. Since the dynamics of a two-degree of freedom mechanical

system are well understood, the input shaping results can be interpreted and verified in

light of the need to move a mechanical system with two inherent vibration modes as fast a

possible from an initial to a final position.

The mechanical system in Figure A.1 can be moved and positioned by a time

dependent control force, denoted by u(k) where k refer to the discrete-time index tk = k∆t

in which the sampling time ∆t is assumed to be constant. The control force u(k) is applied

to the first mass m1 and the objective is to change the position y1(k) and y2(k) respectively

of both masses m1 and m2 to a desired end position y1 and y2 as fast as possible via the

computation of an optimal input force u(k).
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pu
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Figure A.1: Step-response position data y(k) = y1(k) of the mass m1 in encoder units
(top figure) for the ECP model 210 two-degree of freedom mechanical system with mass
m1 in center of bottom figure.

For the dynamic analysis, a step input force u(k) is first applied to the mechanical

system and measurements are taken of y1(k). The experimental data y1(k) is also shown in

Figure A.1. It can be observed that the mechanical system indeed exhibits an undesirable
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oscillation when a simple step-based input is applied. Without explicit knowledge on

mass, spring or damping coefficients of the two-degree of freedom mechanical system, the

experimental data in Figure A.1 will be used as a starting point for the computation of an

optimal input force signal u(k) with or without finite resolution.

A.3.2 Laser pulse length experiment

In the semiconductor industry, to expose good wafers it is necessary to control

the amount of extreme ultraviolet (EUV) light y(k) generated by a laser as a function

of the time index k. The amount of EUV y(k) generated is typically proportional to the

energy y(k) delivered by the laser, but may exhibit undesirable dynamic behavior. The

experimental data provided here was aimed to identify a means to control the amount of

EUV y(k) using the laser excitation signal u(k) dynamically.

Again, step-response experiments are used to characterize the dynamic response of

the laser. Due to the noisy measurements of laser energy content, repeated step-response

experiments are performed and the data is averaged to produce one set of step-response

data. Furthermore, there may be a significant difference in laser energy dynamics when

the energy is increased (step up) compared to decreased (step down) and a distinction is

made between step up and step down operation. The final averaged step up yup(k) and

step down ydown(k) step-response data points are summarized in Figure A.2.

The overshoot and undershoot in the step-response data depicted in Figure A.2

are undesirable energy spiking/dipping during the operation of the laser. The goal is

to characterize the dynamical properties of the laser pulse at the output of a laser and

compute an optimal laser excitation u(k) amplification chain as a function of the input

pulse u(k). Without explicit knowledge on laser energy dynamics, the experimental data in

Figure A.2 is our starting point for the computation of an optimal and direction dependent

input excitation signal u(k) to eliminate energy spiking/dipping.
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Figure A.2: Step up yup(k) (dashed line) and step down ydown(k) (solid line) response
data of the laser pulse energy.

A.4 Step-response model estimation

A.4.1 Realization algorithm

The process from step-response data to a linear dynamical model in the form of a

state space model

x̄(k + 1) = Ax̄(k) +Bu(k)

y(k) = Cx̄(k)
, x̄(k) ∈ Rn×1 (A.1)

is accomplished with a realization algorithm for step input experiments as presented in

[38]. The same process is applied to obtain a dynamic model for both the mechanical and

laser data, making a distinction between step up and step down step-response data. A

quick summary of the realization algorithm follows to show the albraic results needed to

compute a dynamic model (A.1), whereas details can be found in [38].

First, step-response measurements y(k) are stored in a Hankel matrix R starting at

y(1). It can be shown [86, 38] that R = HY − TGHU , where HY is a Hankel matrix with

the Markov parameters, HU is a full rank Hankel matrix with the (unit size) step-response
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data and TG is a lower Toeplitz matrix again with the Markov parameters of the dynamic

system. The importance of creating the Hankel matrix R with step-response data y(k) is

as follows. In case of noise free step-response data, the rank of R is fully determined by the

Hankel matrix HY of Markov parameters which equals the order n of the dynamic system.

Therefore, a low rank n approximation and decomposition of R can be used to determine

an nth order model that approximates the measured step-response data.

A low rank n approximation and decomposition of R can be computed using a

singular value decomposition (SVD) to obtain

R =

[
Un Us

] Σn 0

0 Σs

[ V T
n V T

s

]
(A.2)

The SVD can be used to find a low rank approximation Rn = UnΣnV
T
n of the matrix R

and a decomposition Rn = R1R2, where R1 = UnΣ
1/2
n and R2 = Σ

1/2
n V T

n . The diagonal

values of Σ can be used to determine the low rank n approximation and the resulting order

n of the model.

A so-called shifted Hankel matrix
−→
R again with (noise free) step-response data,

but now starting at y(2) [38] allows us to write
−→
R = R1AR2 where the left inverse of R1

and the right inverse of R2 can be computed respectively due to the full column and row

rank of the matrices R1 and R2. The low rank decomposition Rn = R1R2, where R1 =

UnΣ
1/2
n and R2 = Σ

1/2
n V T

n in (A.2) can be used to find the state matrix A, but also find the

input matrix B = R2(:, 1) and C = R1(1, :) in (A.1). From the state-space representations,

discrete-time transfer functions can also be calculated.
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A.4.2 Realization algorithm for two-mass system experiment

The two-mass model is defined as 4th order model. The transfer function for the

model is given by

Gm1(q) =
13.44q3 − 25.86q2 + 12.45q + 0.20

q4 − 3.87q3 + 5.68q2 − 3.73q + 0.93
. (A.3)

The general realization algorithm (GRA) model response is simulated with a step input

to compare its response with the measured step-response data from the experiment in

Figure A.3.
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Figure A.3: Measured response vs simulated response. Data from the two-mass system
experiment (green solid line), and simulated response from the GRA model obtained (black
dashed line).

The comparison in Figure A.3 verifies that the identified model is a reasonably good

estimate.
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A.4.3 Realization algorithm for laser experiment

Both the step up and step down models are defined as 3rd order models. The transfer

function for the two models are:

Gup(q) =
0.31q2 − 0.58q + 0.26

q3 − 1.73q2 + 0.72q + 0.01
, (A.4)

Gdown(q) =
−6.51q2 + 12.25q − 5.75

q3 − 1.73q2 + 0.72q + 0.01
. (A.5)

The obtained models of the systems are simulated with a step input to compare their

response with the measured step-response data from the experiment. The comparison in

Figure A.4 verifies that the identified models are a good estimate.
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Figure A.4: Measured response vs simulated response. Top: Step up model. Bottom:
Step down model. In each plot: data from the laser experiment (green solid line), and
simulated response from the GRA models obtained (black dashed line).

It is worth noticing that the models in (A.4) and (A.5) have at least one step time

delay, but are stably invertible since the numerators’ roots are within the unit circle. Such

a property may not hold in general for a model obtained by step response realization. If

the model is stably invertible, input shaping can be done by computing input signals u(k)

via direct model inversion, e.g. uup(k) = G−1
up (q)yup(k + 1) and these input shaping signals
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will be used as a comparison to the optimal input signals found by linear programming

solutions provided in this paper.

A.5 Input shaping techniques

A.5.1 Inverse model approach

Since the models in (A.4) and (A.5) are stably invertible, a straightforward approach

for input shaping is to compute a solution via model inversion. Assuming the desired

output y(k) is an ideal step signal, we may apply a step input signal with the desired size

to the inverse of the model to compute an input u(k) to obtain the fastest possible desired

output. This approach can be applied to the dynamic models of the laser data and is

provided here as a reference.

A simulation with the models Gup(q) and Gdown(q) confirms the computed input

and we are able to get the “ideal” response as shown in Figure A.5.

10 20 30 40 50 60
samples [k]

Figure A.5: Inverse model approach. Top: Step up model. Bottom: Step down model. In
each plot: data from the laser experiment (blue solid line), ideal response (red dotted line),
and computed input with G−1 (red dashed line).

Although we can perform a simple inversion on the obtained model to compute an
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“ideal” input u(k), the computed input u(k) may not be feasible due to input constraints in

size. Modifications of the computed input u(k) = G(q)−1y(k) via model inversion would

require iterations on the desired output y(k) to ensure u(k) is feasible.

A.5.2 Convex optimization

Instead of assuming model invertibility or perform iterations to find a desired input

u(k), a different approach is to formulate the input shaping as an optimization problem.

We look to minimize the maximum error E = max|y(k) − ydes(k)| over an optimization

horizon of length M , based on a desired trajectory ydes. The constraint used is a range for

both the input Ulow ≤ u(t) ≤ Uhigh and the output Ylow ≤ y(t) ≤ Yhigh. The optimization

problem is now expressed as:

minimize E = maxk=1,...,M |y(k)− ydes(k)|

subject to Ulow ≤ u(k) ≤ Uhigh, k = 1, . . . , N

Ylow ≤ y(k) ≤ Yhigh, k = 1, . . . , N

(A.6)

where M is a defined optimization horizon and u(k), k = 1, . . . , N is the optimization

variable with M ≥ N to ensure end conditions will be met.

With the optimization variable y(k) linear in E and the linear constraints in (A.6),

the optimization can be formulated as a linear programming (LP) problem. The general

formulation for this is [20]:

minimize cTx

subject to aTi x ≤ bi, i = 1, ...,m,

(A.7)

where x is the vector of optimization variables and ai, bi and c are parameters and constraint

functions.
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With knowledge of the numerator coefficients bj and denominator coefficients aj of

the transfer functions in (A.4), (A.5) for the laser system and (A.3) for the mechanical

system, the output y(k) is written in a linear regression form

y(k) = b0u(k − 1) + b1u(k − 2) + ...+ bnu(k − n− 1)

− a1y(k − 1)− ...− any(k − n).

(A.8)

Similarly as in the realization algorithm, we can define y = Φu, where Φ is a Toeplitz

matrix with impulse response coefficients

Aij =


hi−j if 0 ≤ i− j ≤ k,

0 otherwise

With the linear relationship we can now solve the optimal control problem using standard

LP software, such as the Matlab implementation in the form of the function linprog [30].

The use of a time varying output constraints Ylow(k), Yhigh(k) has also been illustrated

in [26] to enforce a particular settling time k? for the input shaping. Although finding a

minimal value k∗min is not an LP problem, an LP problem can be used to check the existence

and computation of a solution for the input shape u(k) for a given k∗. Subsequently, finding

a minimal value k∗min to find a minimum-time input shape u(k) that satisfies all constraints

can be found via a bisection method [20] on k∗.

A.5.3 Mixed integer linear programming

The LP problem will provide a solution for the input shape u(k) under linear

constraints where each value of u(k) ∈ R for k = 1, . . . , N . In many practical applications

the input u(k) may not be specified with infinite resolution and a common example is the

case where u(k) is generated via an Digital-to-Analog (DA) converter with a limited number
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n of bits to allow 2n values (including 0) in u(k). Simply rounding (a scaled version of)

u(k) to the nearest integer value may negatively affect the optimal input shaping solution

and re-introduce undesirable dynamic effects on the desired output y(k).

Following the example of a n-bit DA converter, it is beneficial to parametrize u(k)

via

u(k) = Umax/2
nx(k)

using integer values x(k) = 0, 1, . . . , 2n − 1, e.g. 0 ≤ x(k) ≤ 2n − 1. Optimal input shaping

would then have to be formulated as a Mixed Integer Linear Programming (MILP) problem

in which at least one of the variables is restricted to integers [21, 22]. The input shaping

formulated in this paper, where the input u(k) is re-parametrized in integer values, is now

solved by formulating a solution to [27].

minimize cTx

subject to aTi x ≤ bi, i = 1, ...,m,

where x ∈ Z.

(A.9)

The same constraints on input u(k) and output y(k) can be used, but optimization is done

over the integer values x. Solutions to the MILP problem is again computed with Matlab

using the Gurobi Optimizer [91].

A.6 Input shaping for laser experiment

To provide a comparison with existing input shaping methods, first input shaping

based on zero vibration (ZV) [1, 18] and finite impulse response filtering (FIR) [19, 4] are

applied to the data and models of the laser experiment. Figure A.6 shows the comparison of

the results for each method. We can still see room for improvement and in FIR applications
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there may be a large delay due to the filtering. The ZV and FIR methods are specifically

designed for systems with (multiple) vibrations, but the laser experiment as indicated in

Figure A.4 only exhibits fast dynamics with an overshoot with a exponential decay.
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Figure A.6: Step up model. Top: System responses. Bottom: System inputs. In each
plot: data from laser experiment (solid blue line), data from G−1 (solid green line), data
from ZV (magenta dotted line), 10th order FIR filter (red dashed line), and 20th order FIR
filter (black dashed line).

Following an approach where we do not have a desired output trajectory vector

(as in model inversion), we exercise the LP problem approach with a set of constraints on

the output and the input. There are two important parameters to consider when defining

output constraints: the output constraint y1 and the time k∗ when switching from “large”

to “small” constraints on the ouput y(t) as a way to enforce a (minimum) settling time.

This is clearly reflected in the results depicted in Figure A.7, exemplifying the step up

model with an minimal k∗ found by bisection and a k∗ longer than required for a minimum

settling time.

Following the same approach as in convex optimization, we exercise a MILP problem

approach to find an input shape u(k) with a finite resolution. A comparison results is

shown in Figure A.8 and it can be observed that the results are very similar to those found

from the inverse model solution, but now with limited resolution on the input u(k).

156



pu
ls

e 
en

er
gy

10 20 30 40 50 60
samples [k]

pu
ls

e 
w

id
th

Figure A.7: Optimization for step up model varying k∗. Top: System responses. Bottom:
System inputs. In each plot: desired data from inverse model (green solid line), optimization
with optimal k∗ (blue solid line), and optimization with long k∗ (red dashed line).
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Figure A.8: Computed MILP input and simulated response for step up model. Top:
System responses. Bottom: System inputs. In each plot: desired data from inverse model
(blue solid line), and MILP (green solid line)

A.7 Input shaping for mechanical system

To show the power of both the LP and MILP approach for input shaping for the

mechanical system example, no desired output trajectory vector (i.e. ydes) is used. Instead,

only constraint on the output and input are used to compute a input shape u(k) by varying
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the value of k? to influence the settling time. In the LP approach the input u(k) ∈ R,

whereas in the MILP the input u(k) is restricted to 256 levels to resemble an n = 8 bit DA

converter.
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Figure A.9: Optimization for Two-Mass system. Top left: output response for LP
optimized input, bottom left: LP optimized input. Top right: output response for MILP
optimized input, bottom right: MILP optimized input where original step response is
shown in dashed lines in the figures.

Figure A.9 shows the LP and MILP optimization results for the Two-mass system,

compared with the original step response data. The overshoot also observed earlier in

the step-response of Figure A.1 is completely removed and the response settles at (less

than) half of the original number of output samples. Furthermore, in order to verify the

validity of the input shaping signals experimentally, the computed input signal is re-applied

to the ECP mechanical system from which the step-response data was obtained. The

resulting experimental results are shown in Figure A.10 and it can be verified that the

output response accurately tracks the predicted optimized output.
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Figure A.10: Comparison of ECP experimental results and computed optimized input
shaping results (outputs in top figure, inputs in bottom figure). In each plot: calculated
optimization data (green solid line), and ECP experimental data (blue dashed line).

A.8 Conclusions

Starting from a measurement of a step-response data, the input shaping methodology

presented in this paper formulates an optimal input to minimize settling times in a dynamic

system via a two-step procedure. The first step is the formulation of a linear dynamic

model on the basis of the step-response data via a realization algorithm. The second step

computes an infinite precision optimal input signal on the basis of a linear programming

(LP) problem that can be specialized to mixed integer linear programming (MILP) solutions

to enforce a finite resolution on the input shaping signal. The approach is demonstrated on

both laser pulse data and the motion of a mechanical system to illustrate the improvements

in settling time for typical lithographic manufacturing processes for integrated circuits that

require repetitive signals.
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Appendix B

Application of Dynamic Input

Shaping for a Dual-Mirror System

B.1 Appendix Abstract

The task of trajectory planning for a dual-mirror optical pointing system greatly ben-

efits from carefully designed dynamic input signals. This paper summarizes the application

of multivariable input shaping (IS) for a dual-mirror system, starting from initial open-loop

step-response data. The optical pointing system presented consists of two Fast Steering

Mirrors (FSM) for which dynamically coupled input signals are designed, while adhering

to mechanical and input signal constraints. For the solution, the planned trajectories for

the dual-mirrors are determined via (inverse) kinematic analysis. A linear program (LP)

problem is used to compute the dynamic input signal for each of the FSMs, with one of

the mirrors acting as an image motion compensation device that guarantees tracking of a

planned trajectory within a specified accuracy and the operating constraints of the FSMs.
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B.2 Introduction

A fast steering mirror (FSM) is especially useful in image motion stabilization as it

can be used to alter the optical pathway for beam controls [47, 48]. The resulting challenge

of dynamic pathway planning becomes compounded when two FSMs are used in sequence

to increase motion range in a so-called dual-mirror configuration [49, 50]. The motivation

of the study in this paper is based upon a two voice coil motor (VCM) actuated FSM

with a flexure suspension, organized in the dual-mirror configuration of Figure B.1. It

is worthwhile to mention the mechanical vibrations and (dynamic/static) cross coupling

between the rotational axes of the FSM. The application of a step-wise voltage input signal

on one of the VCMs in the FSM results not only in mechanical vibrations of the angular

rotation of the FSM around one of its main orthogonal axis; it also creates a dynamic

coupling in the form of vibrations around the other orthogonal axis.

Figure B.1: Mechanical layout of a dual fast steering mirror system with FSM1, FSM2

and a beam source.

The purpose of this technical brief is to illustrate the application of a method
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for dynamic trajectory planning of a dual-mirror optical pointing system (as illustrated

in Figure B.1) that guarantees that optical signals are projected within a pre-specified

accuracy on a target plane. The proposed solution to address the task of dual-mirror

trajectory planning is a combination of dynamic modeling and multivariable optimal input

shaping (IS) that takes into account both the dynamics and the kinematic coupling between

the FSMs, as well as constraints on the input signal that can be applied to the FSMs.

The IS is applied to both multivariable mirrors in the system, where the second mirror

compensates for the error in the target. The definition of constraints of the input signals

and bounds on the desired response are written as linear matrix inequalities (LMI), which

can be solved as a linear program (LP) problem.

For this application, input shaping is formulated as an open-loop problem, with linear

constraints on input and output signals imposed to formulate a LP problem to find optimal

input profiles. Although a precise decoupled mechanical design of the FSMs provides

the opportunity of performing two independent IS problems, realistically a multi-input,

multi-output approach is required [47]. The proposed procedure covers from multivariable

step-response to feasible multivariable input shape, while working with convex optimization

to compute the dynamic input signal that guarantees tracking of a planned trajectory

within a specified accuracy and the operating constraints.

The method of data-based IS for a dual-mirror system proposed in this paper

consists of three steps. First, step-response data is used to estimate a dynamic model

of each FSM via a realization algorithm [38, 54] that captures the coupled dynamics of

the two-axis actuation based on the realization algorithm described in [38]. Second, via

(inverse) kinematic analysis the planned trajectories for the dual-mirrors are determined.

Third, the problem of dynamic IS based on the planned trajectories for the dual-mirrors is

solved as a LP problem similar to [42], but extended to the multivariable dynamic model

of the FSMs, under constraints on size and rate-of-change on the input signal to find a
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feasible solution. The LP result for one FSM [55] shows room for improvement if a second

mirror is to be used as an image motion compensation (IMC) device.

B.3 Mirror rotation dynamics

B.3.1 Step-response realization

The process of estimating a multivariable discrete-time model from step-response

data is accomplished with a step-response realization algorithm [38, 54]. In particular for a

FSM that exhibits (dynamic) coupling between the mirror axes rotation, a multivariable

model can be used to model this coupling. For each FSM, the realization algorithm produces

a fourth order multivariable discrete-time state-space model

x(k + 1) = Ax(k) +B

Vα(k)

Vβ(k)

 ,
α(k)

β(k)

 = Cx(k). (B.1)

Figure B.2 and Figure B.3 are the bode plots produced by the fourth order state

space model computed for each FSM. The model has 2 inputs and 2 outputs with the

following modes in Table B.1 for each mirror (B.1).

Table B.1: Natural frequency fn [Hz] and damping ratio ζ.

fn ζ
FSM1 19.64 6.97e−2, 6.45e−2

FSM2 13.21 1.50e−2, 1.21e−2
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Figure B.2: Bode plot of the fourth order state space model in (B.1) for FSM1.
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Figure B.3: Bode plot of the fourth order state space model in (B.1) for FSM2.
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B.4 Mirror input shaping

B.4.1 Target parametrization

To illustrate the effectiveness of dynamic input shaping for FSMs, a target trajectory

with fast dynamic transitions in the motion is chosen, in form of a square trajectory. The

trajectory is parametrized by φ following the square shape according to

(xp(φ), yp(φ))1 = (xp, yp − φ)

(xp(φ), yp(φ))2 = (xp + φ, y
p
)

(xp(φ), yp(φ))3 = (xp, yp + φ)

(xp(φ), yp(φ))4 = (xp − φ, yp)

(B.2)

for φ ≤ L, where L = 4 inches.

B.4.2 Inverse kinematics

Given the target trajectory (xp(φ), yp(φ)) parametrized by (B.2), the values for the

desired mirror rotation pairs (α1, β1) and (α2, β2) can be computed as a function of φ by

inverse kinematic analysis of the dual-mirror system. The inverse kinematics will lead to

trapezoidal input signals for both α2 and β2, [55]. In this analysis, a number N of points

along the parametrized trajectory is chosen to be N = 200.

B.4.3 Application of quasi-static input

The angle pairs (α2(φ), β2(φ)) are computed as discrete-time dependent angles

(α2(k), β2(k)) via φ = φ(k) over a time interval tk = k∆t, k = 1, 2, . . . , N . Tracking the time-

dependent angles presents a challenge for the FSM when ∆t is small and the time interval

N∆t is short. This challenge is apparent in Figure B.4, where ∆t = 2 msec, N∆t = 400 msec
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and voltage signals are applied to FSM2 that are simply scaled proportionally to the quasi-

static values of (α2(k), β2(k)). It is clear that the vibration dynamics of FSM2 requires

carefully designed voltage input signals.

Figure B.4: Dynamic response of FSM2 with quasi-static inputs. Top figure: comparison
of discrete-time dynamic angle pair (α2(k), β2(k)) (solid lines) and desired inverse kinematic
angle pair (α2(φ), β2(φ)) (dashed lines). Bottom figure: comparison of beam projection on
the target plane for (α2(k), β2(k)) (solid lines) and kinematic angles (α2(φ), β2(φ)) (dashed
line).

B.4.4 Dynamic input shaping

For dynamic input shaping, knowledge of the state space model in (B.1) can be

used to constrain the dynamic motion of FSM2. An approach as the one described in [55]
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is followed to define the (linear) motion constraints and formulate the input design as a LP

problem [20, 29]. A brief overview is described in this section.

The first constraint is to enforce the resulting output to be close to the desired

output via the requirement |y(k)− y(φ)| ≤ ε(k). The first constraint is formulated as,

Φu ≤ y + ε

−Φu ≤ −y + ε
, ε =



ε(1)

ε(2)

...

ε(N)


, y =



y(1)

y(2)

...

y(N)


. (B.3)

The second constraint is a limit on the rate-of-change |u(k)−u(k− 1)| ≤ d(k)∆t, to reduce

volatility in the voltage input signals u(k). Such a rate-of-change constraint is implemented

via Eu ≤ d where E and d are given by

E =



1 0 −1 0 · · · 0

0 1 0 −1 · · · 0

...
. . . . . . . . .

0 0 · · · 1 0 −1


, d = ∆t



d(1)

d(2)

...

d(N)


. (B.4)

The last constraint limits the size of the input signal via

u ≤ ū

u ≥
¯
u
, ū =



ū(1)

ū(2)

...

ū(N)


,

¯
u =


¯
u(1)

¯
u(2)

...

¯
u(N)


. (B.5)

With all constraints defined as LMIs, the feasibility of a multivariable input signal
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u that satisfies the constraints (B.3)–(B.5) can be written as a LP problem

min fTx, subject to

z ≥ 0[
L −1

]
x ≤ b ,

u ≤ ū

u ≥
¯
u

L =



Φ

−Φ

E

−E


, b =



y + ε

−y + ε

d

d


(B.6)

where x =

[
uT zT

]T
. The variable ε is generally related to the obtainable angle tracking

error due to possible limited resolution of the FSM or tolerances on the angles. Finding a

feasible solution to the LP problem (B.6) using the desired angle pair (α2(k), β2(k)) now

leads to the dynamic response of FSM2 in Figure B.5, top figure.

B.5 Image motion compensation

A basic IMC concept illustrated in [56] consists of a fine device working with a coarse

device. FSM2 is considered the coarse device while the fine device is considered the IMC

device, represented by FSM1 in this exercise. The residual FSM2 error signal is used to define

the motion of the IMC device. The definition of a new trajectory for FSM1, (x1(φ), y1(φ)),

is the difference of the desired target and the obtained result. These computations lead to

the dynamic response of the combination of FSM1 and FSM2 summarized in Figure B.5.

The IMC implemented by FSM1, following the limitations of the position accuracy

of FSM2, is capable of a fast change in the direction of the beam due to its high angular

resolution and bandwidth. Keeping FSM1 initially centered, e.g. (α1, β1) = (0, 0) and

computing the position angles of FSM2 first, provides FSM1 with the capability to rotate

to its full capacity on its two axis for error correcting purposes.
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Figure B.5: Combined response of FSM2 with dynamic IS and FSM1 with dynamic IS
for target error correction. Top figure: comparison of discrete-time dynamic angle pair
(α2(k), β2(k)) (solid lines) and desired inverse kinematic angle pair (α2(φ), β2(φ)) (dashed
lines). Middle figure: comparison of discrete-time dynamic angle pair (α1(k), β1(k)) (solid
lines) and initial zero angle pair (0, 0) (dashed lines). Bottom figure: comparison of beam
projection on the target plane with FSM1 (α1(k), β(k)) and FSM2 (α2(k), β2(k)) (solid
line) and kinematic angles (α2(φ), β2(φ)) (dashed line).
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B.6 CONCLUSIONS

Tracking performance of a target in a dual-mirror system is significantly improved by

an open-loop approach in which kinematic analysis and modeling of dynamics is combined

with dynamic input shaping. Using (inverse) kinematic analysis, the desired rotation angles

of the main FSM can be computed while the state-space model can be used to formulate the

dynamic input signal design via a LP problem. It is worthwhile to notice the LP problem

offers the advantage to compute IS while satisfying several constraints. The constraints

are given by the mechanical specifications of the FSM and the desired result for a specific

application; the rate of change d and the size of the input signal ū and
¯
u are attached to

the mechanical specs of the mirror, while the margin of error ε is defined by the desired

response of the application. Any remaining target tracking errors can be picked up by the

second FSM acting as an IMC device. The end result is a reduction of the tracking error,

while maintaining constraints on rate-of-change and size of the voltage signals applied to

the FSMs in the dual-mirror system.
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Appendix C

Steering Mirror Kinematics

C.1 Steering Mirror Beam-Pointing Kinematics

Considering the general reflection problem: a beam in an arbitrary plane being

reflected by a mirror and the mirror normal, this problem can be expressed as a matrix

multiplication.

p1 = Tp0, (C.1)

where p0 and p1 represent unit vectors in the directions of the incident beam and reflected

beam, respectively; and T is the reflection matrix in terms of the mirror normal components,

nx, ny and nz. We talk in the further sections about the full development of the reflection

matrix T, [41].

C.1.1 Normal of the mirror

Consider the steering mirror in Figure C.1, whose rotation axes are located at the

center of the mirror. The x and y axes are in the plane of the mirror and z axis is the

normal n0 to the surface and considered the local mirror frame. The mirror can be rotated

172



Figure C.1: Steering mirror rotation axes and normal.

about both its x and y axes independently by the angles α and β. The process to obtain

the new normal vector n of the mirror in the local mirror frame is through the following

steps.

We first define the unit vectors µx0 and µy0, for axes x and y respectively,

µx0 =


1

0

0

 µy0 =


0

1

0

 . (C.2)

Knowing the rotation angles α and β we utilize the Euler transform matrices (also known

as rotation matrices),

Rx(α) =


1 0 0

0 cosα − sinα

0 sinα cosα

 Ry(β) =


cos β 0 sin β

0 1 0

− sin β 0 cos β

 . (C.3)

Rotating the mirror on both axes modifies the unit vectors. The new unit vectors are

derived by multiplying the Euler transform matrix by the original unit vectors,
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µx(β) = Ry(β)µx0 =


cos β

0

− sin β

 , µy(α) = Rx(α)µy0 =


0

cosα

sinα

 . (C.4)

The normal of the mirror in local mirror frame, n`, is obtained with the cross product

of both new unit vectors,

n` = n`(α, β) = µx(β)× µy(α) =


cosα sin β

− cos β sinα

cos β cosα

 , (C.5)

.

Working on a global frame coordinate system, we need to reference the normal

n`(α, β) of the mirror in the local mirror frame, relative to the global frame (e.g. the

mounting angle of the mirror). The angle of rotation of the mirror relative to the global

frame can be described by a rotation around the x axis Rx(φ), the y axis Ry(θ) and the z

axis Rz(ψ),

Rx(φ) =


1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 , Ry(θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 ,
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Figure C.2: Incident and reflected beam decomposition.

Rz(ψ) =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (C.6)

The normal n in global frame can be described as

n(φ, θ, ψ, n`(α, β)) = Rx(φ)Ry(θ)Rz(ψ)n`(α, β), (C.7)

where the normal n(·) in Eq.(C.7) is now a function of the rotation angles (φ, θ, ψ) and the

local normal nl in Eq.(C.5).

Keep in mind the mounting angles (φ, θ, ψ) are fixed, so Rx(φ), Ry(θ) and Rz(ψ) can be

referred as a constant R = Rx(φ)Ry(θ)Rz(ψ), so that

n(α, β) = Rn`(α, β). (C.8)

C.1.2 Beam reflection

With the rotated normal n(α, β) given in Eq.(C.8) the reflection of a beam can be

computed as follows.

Figure C.2 shows an incident beam p0 and the reflected beam p1; p0 and n(α, β) span the
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beam plane and the reflected beam lies in the same beam plane, due to the assumption of

a flat mirror. Figure C.2 shows the beams’ vectors decomposed into perpendicular and

parallel components to the normal vector [50]. With the definition of p1⊥ and p1‖ it is clear

that

p1 = p1⊥ + p1‖ = p0⊥ − p0‖

p1 = p0 − 2p0n(α, β)nT (α, β),

(C.9)

rewritten in matrix form, the expression for the vector p1 is given by

p1 =




1 0 0

0 1 0

0 1 1

− 2n(α, β)nT (α, β)

 p0, (C.10)

where T(n(α, β)) is the reflection matrix in terms of the normal vector n(α, β) of the

mirror,

T (n(α, β)) = I3 − 2n(α, β)nT (α, β), (C.11)

abbreviated to p1 = Tp0.

If we keep a mirror in a fixed position, the normal n(α, β) is constant, thus we can

see the reflection matrix T(n(α, β)) is constant as well; and the reflected beam p1 is only

a function of the incident beam p0. Given a point m1, of intersection of the beam with

the mirror, all the reflected beams will be in function of the incident beams as shown on

Figure C.3a.

A similar approach is keeping the incident beam constant, and varying the (α, β)

angles of the mirror. In this case, the reflection matrix T(n(α, β)) varies in function of the

mirror position. Since p0 is constant, the reflected beam is in function of the reflection

matrix T(n(α, β)), Figure C.3b.
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(a) Reflected beams in function of inci-
dent beams

(b) Reflected beams in function of mirror rota-
tion

Figure C.3: Reflected beams.

Figure C.4: Reflected beam intersection.

C.1.3 Beam intersection point

As the reflected beam p1 leaves the mirror it is required to compute the location

of the beam on a subsequent plane. This plane could be an imaging surface or another

secondary mirror, Figure C.4.

Consider the reflected beam with a direction vector p1, start point m1, and a final

point P1 which is derived from the previous values. We have the segment m1P1 [43].

P1(m1, p1) = m1 + kdpT1 , (C.12)
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where k is a scale factor to assure the segment will be longer than the distance d to the

plane. The distance d is a constant value known based on the opto-mechanical layout.

The intersection with the plane It is derived with the parametric equation represen-

tation for lines,

It(m1, P1(m1, p1), n2) = m1 + s× (P1 −m1), (C.13)

where n2 is the normal of the subsequent plane and s is the intersection parameter scalar

obtained as

s =
n2 · (m1 − p)
n2 · (P1 −m1)

, (C.14)

the plane is given by any point p on the plane and its normal vector n2. The opto-mechanical

layout gives us this information.

C.2 One mirror system

Figure C.5: Beam and steering mirror.

Consider a beam source and a mirror as in Figure C.5. Mirror 1 is rotated 45° with

respect to y in the global frame and the incident beam intersects mirror 1 in point m1.

Following the process from Section C.1, the derivation of the target based on the angles is

as follows.
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Obtain the x and y components for the normal n1 of the mirror based on the rotation

angles and the the original vectors,

µx1(β1) = Ry1(β1) · µx0, µy1(α1) = Rx1(α1) · µy0, (C.15)

with these components calculate the normal of the mirror in the local mirror frame and

then the normal of the mirror in the global frame,

n`1(α1, β1) = µx1 × µy1, n1(α1, β1) = Ry(45°)n`1(α1, β1). (C.16)

With the normal n1, the reflection matrix and the outgoing beam direction can be calculated,

T1 = T1(n1(α1, β1)) = I3 − 2n1(α1, β1)nT1 (α1, β1), p1 = T1p0. (C.17)

The last step is finding the intersection of the reflected beam with the target.

P1(m1, p1) = m1 + kdpT1 (C.18)

The intersection with the plane It is derived with the parametric equation representation

for lines,

It(m1, P1, nt) =


x

y

z

 = m1 +
nt · (m1 − p)
nt · (P1 −m1)

× (P1 −m1), (C.19)

where p is a point in the subsequent plane and nt is its normal.

Figure C.6 shows a simulation of the full mirror rotation in both axes and the

intersections in a plane at a distance d = 25.
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Figure C.6: Full mirror 1 rotation on both axes.

C.3 Forward kinematics of the two mirrors system

Consider a system of two mirrors with the opto-mechanical layout shown in Figure

C.7. With the forward kinematics definitions on Section C.1 and the exercise on Section

C.2, we can derive [x, y, z ] starting from p0. The process for both optical devices is as the

one followed in Section C.2, though some changes are considered based on the mounting of

the devices. Mirror 1 is rotated 45° with respect to y axis in the global frame; mirror 2 is

rotated -135° also with respect to y axis in the global frame.

The process to find the target is as follows:

1. Derive the reflected beam coming from mirror 1 based on the angles and normal of

the mirror

p1 = T1(n1(α1, β1))p0 (C.20)

2. Derive the reflected beam coming from mirror 2 based on the angles and normal of

the mirror

p2 = T2(n2(α2, β2))p1 (C.21)
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Figure C.7: Steering mirror rotation axes and normal.

3. Derive the final point of a segment from the origin of the beam in mirror 1 passing

through the plane in mirror 2

P1 = P (m1, p1) (C.22)

4. Derive the point of intersection of the beam with mirror 2

m2 = I(m1, P1, n2) (C.23)

5. Derive the final point of a segment from the origin of the beam in mirror 2 passing

through the plane of the target

P2 = P (m2, p2) (C.24)
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6. Derive the point of intersection of the beam with the target

t =


x

y

z

 = I(m2, P2, nt) (C.25)

We follow these steps in detail in the next sections.

C.3.1 Mirror 1 to mirror 2

Following the process explained in the previous sections we show the relation from

(α1, β1) of the reflected beam p1 to the point of intersection m2 with mirror 2.

We have Euler rotation matrices Rx1(α1) and Ry1(β1). We obtain the normal vector of the

mirror n`1 and the normal in global frame n1.

n`1(α1, β1) = µx1(β1)× µy1(α1), n1(α1, β1) = Ry(45°)n`(α1, β1). (C.26)

The reflection vector p1 is obtained from the reflection matrix T1 based on the normal of

the mirror n1 and the incident beam p0,

T1 = T1(n1(α1, β1)) = I3 − 2n1(α1, β1)nT1 (α1, β1), (C.27)

p1 = T1p0.

The point of intersection m2 of the beam p1 with mirror 2, is derived by creating a segment

starting in m1 and ending in point P1 in the direction of the beam.

P1 = m1 + kdpT1 . (C.28)
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Before finding m2, we need to derive the normal of mirror 2.

C.3.2 Mirror 2 to target

Following the same process, we show the relation from (α2, β2) of the reflected beam

p2 to the point of intersection t = [x,y,z]’ with the target.

We have Euler rotation matrices Rx2(α2) and Ry2(β2). We obtain the normal vector of the

mirror n`2 and the normal in global frame n2.

n`2(α2, β2) = µx2(β2)× µy2(α2), n2(α2, β2) = Ry(−135°)n`2(α2, β2). (C.29)

The reflection vector p2 is obtained from the reflection matrix T2 based on the normal of

the mirror n2 and the incident beam p1,

T2 = T2(n2(α2, β2)) = I3 − 2n2(α2, β2)nT2 (α2, β2), (C.30)

p2 = T2p1.

Following with the point of intersection of p1 with mirror 2,

m2 = m1 −
n2 · (p2 −m1)

n2 · (P1 −m1)
× (P1 −m1). (C.31)

P2 = m2 + kdtp
T
2 ,

Now we have the segment starting in m2 and ending in point P2. In the same way, we

derive the intersection with the target t,
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(a) Full rotation in y axis of mirror 1 (b) Full rotation in y axis of mirror 1

Figure C.8: Mirror 1 rotation.

t =


x

y

z

 = m2 −
nt · (m2 − pt)
nt · (P2 −m2)

× (P2 −m2), (C.32)

where pt is a point in the target plane and nt is the normal of the plane. In this case we

assume the plane is flat, nt= [0,0,1]’.

C.3.3 Mirrors system simulation

Figure C.8a and Figure C.8b show the beam rays that result of rotating mirror 1 in

the x and y axis, respectively, through the full α range.

Figure C.9 shows the result of both mirrors, moved in their full range in both angles.

This illustrates the target area that could be reached with this opto-mechanical layout; the

area resembles a trapezoidal shape.
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Figure C.9: Full range of both mirrors on both axes.

C.4 Mathematical relation between angles and target

C.4.1 Angles to intersection point

Consider a beam source and a mirror as in Figure C.5. First we get a target m2 as

a function of (α1, β1).

n1(α1, β1) = Rn`1(α1, β1) (C.33)

With the normal n1, the reflection matrix and the outgoing beam direction can be calculated,

T1 = T1(n1(α1, β1)) = I3 − 2n1(α1, β1)nT1 (α1, β1) (C.34)

p1 = T1p0. (C.35)
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The next step is finding the intersection of the reflected beam with the target,

P1(m1, p1) = m1 + kdpT1 (C.36)

= m1 + kd(T1p0)T .. (C.37)

The intersection with the plane m2 is derived with the parametric equation representation

for lines, and substituting P1 from Eq. (C.37),

m2(m1, P1, nt) = m1 + s× (P1 −m1), (C.38)

m2(m1, T1, nt) = m1 + s× (kd(T1p0)T ). (C.39)

Assuming our only variables are (α1, β1), let’s use m2 as a function of T1(n1(α1, β1)).

A function f : A → B is said to be injective (or one-to-one) if, for all x1, x2 ∈ A,

f (x1) = f (x2) implies x1 = x2.

Let α1, α2, β1 and β2 ∈ R and suppose that f (α1, β1) = f (α2, β2), then

m1 + s× kd[T1(n1(α1, β1))p0]T = m1 + s× kd[T2(n2(α2, β2))p0]T , (C.40)

Simplify Eq.(C.40),

m1 + s× kd[T1(n1(α1, β1))p0]T = m1 + s× kd[T2(n2(α2, β2))p0]T , (C.41)

s× kd[T1(n1(α1, β1))p0]T = s× kd[T2(n2(α2, β2))p0]T , (C.42)

s, k and d are constant scalar values, and p0 is a constant vector, so we can simplify further

[T1(n1(α1, β1))p0]T = [T2(n2(α2, β2))p0]T , (C.43)

T1(n1(α1, β1)) = T2(n2(α2, β2)). (C.44)
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Going further on the derivation, use the definition for T,

T1(n1(α1, β1)) = T2(n2(α2, β2)) (C.45)

I − 2n1(α1, β1)nT1 (α1, β1) = I − 2n2(α2, β2)nT2 (α2, β2) (C.46)

n1(α1, β1)nT1 (α1, β1) = n2(α2, β2)nT2 (α2, β2) (C.47)

n1(α1, β1) = n2(α2, β2). (C.48)

Using the derivation for n,

n1(α1, β1) = n2(α2, β2) (C.49)

Rn`1(α1, β1) = Rn`2(α2, β2) (C.50)

n`1(α1, β1) = n`2(α2, β2). (C.51)

The normal of the mirror in the local mirror frame, n`, is obtained with the cross

product of the unit vectors, Eq. (C.5). If we linearize it we obtain

n`1(α1, β1) = n`2(α2, β2) (C.52)
cosα1 sin β1

− cos β1 sinα1

cosα1 cos β1

 =


cosα2 sin β2

− cos β2 sinα2

cosα2 cos β2

 (C.53)


β1

α1

1

 =


β2

α2

1

 (C.54)

Since f(x,y) is an injective functions, it is possible to solve the task inversely: given

a point of intersection m2, we can compute (α1, β1).
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C.5 Steering Mirror Inverse Kinematics

In the first approach we give angles (α1, β1) and (α2, β2) for each mirror and compute

the target [x, y, z ].

A more realistic approach is the opposite. You have a defined target [x, y, z ] for which we

find a set of ¡α1, β1, α2, β2¿ that matches the target.

C.5.1 Inverse Kinematics with mirror 2 in a fixed position

In this first approach let’s define (α2, β2) = (0,0) as the restriction. We can consider any

value, but the main point is to keep mirror 2 fixed.

To start the inverse kinematics process, we normalize and invert the target It to obtain the

inverse direction vector p2 towards mirror 2. Having (α2, β2) defined as (0,0) we can obtain

p1, the incoming beam direction from mirror 1. Having the beam direction p1 and p0 we

can obtain n1, the normal of mirror 1, and the values of angles (α1, β1) with arctangent

function.

The new equations we bring over for this process are the following.

p2 =
It
‖It‖

, (C.55)

p1 = T2p2, (C.56)

n1 =
p1 − p0

‖p1 − p0‖
, (C.57)

n`1 = R−1
y (45°)n1 (C.58)

With the [x, y , z ] coordinates from the normal n`1 we can then obtain the angles in
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(α1, β1).

α1 = atan(
−n`1(y)

n`1(z)
), (C.59)

β1 = atan(
n`1(x)

n`1(z)
). (C.60)

C.5.2 Inverse Kinematics with mirror 1 in a fixed position

In this approach let’s define (α1, β1) = (0,0) as the restriction. Again, We cam consider

any value, but the main point is to keep mirror 1 fixed.

To start the inverse kinematics process, we normalize and invert the target It to obtain the

inverse direction vector p2 towards mirror 2. Having (α1, β1) defined as (0,0) we can obtain

p1, the incoming beam direction from mirror 1. Having the beam direction p1 and p2 we

can obtain n2, the normal of mirror 2, and the values of angles (α2, β2) with arctangent

function.

The new equations we bring over for this process are the following.

p2 =
It
‖It‖

, (C.61)

p1 = T1p0, (C.62)

n2 =
p2 − p1

‖p2 − p1‖
, (C.63)

n`2 = R−1
y (−135°)n2 (C.64)

With the [x, y , z ] coordinates from the normal n`2 we can then obtain the angles in
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(α2, β2).

α2 = atan(
−n`2(y)

n`2(z)
), (C.65)

β2 = atan(
n`2(x)

n`2(z)
). (C.66)
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