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To solve current environmental challenges such as biodiversity loss, climate change, and rapid conversion of nat-
ural areas due to urbanization and agricultural expansion, researchers are increasingly leveraging large, multi-
scale, multi-temporal, and multi-dimensional geospatial data. In response, a rapidly expanding array of collabo-
rative geospatial tools is being developed to help collaborators share data, code, and results. Successful navigation
of these tools requires users to understand their strengths, synergies, and weaknesses. In this paper, we identify
the key components of a collaborative Spatial Data Science workflow to develop a framework for evaluating the
various functional aspects of collaborative geospatial tools. Using this framework, we then score thirty-one
existing collaborative geospatial tools and apply a cluster analysis to create a typology of these tools. We present
this typology as a map of the emergent ecosystem and functional niches of collaborative geospatial tools. We
identify three primary clusters of tools composed of eight secondary clusters across which divergence is driven
by required infrastructure and user involvement. Overall, our results highlight how environmental collaborations
have benefitted from the use of these tools and propose key areas of future tool development for continued sup-
port of collaborative geospatial efforts.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Environmental challenges such as biodiversity loss, wildfire man-
agement, climate change, and rapid conversion of natural areas due to
urbanization and agricultural expansion are recognized as “wicked
problems” (Allen & Gould, 1986; Balint, Stewart, & Desai, 2011;
Carroll, Blatner, Cohn, & Morgan, 2007; Temby, Sandall, Cooksey, &
Hickey, 2016), or “complex social-ecological systems” (Akamani,
Holzmueller, & Groninger, 2016). Many of these challenges can be de-
scribed as global in scale, at the nexus of interdisciplinary approaches,
and/or part of coupled processes. Research teams have also become
larger, more distributed, and multi-disciplinary (Elwood, Goodchild, &
Sui, 2012; MacEachren & Brewer, 2004). To address these challenges,
researchers have called for collaboration not only in the environmental
management and decision-making processes (Daniels & Walker, 2001;
Frame, Gunton, & Day, 2004; Selin & Chevez, 1995), but also in the
knowledge production process, including the sharing of data, methods
and tools (Cravens, 2014;Head&Alford, 2015; Temby et al., 2016). Con-
sequently, understanding how various technologies, including
geospatial tools, can support collaborative efforts for environmental
problem-solving is a critical area of ongoing research (Cravens, 2014;
Cravens, 2016; MacEachren & Brewer, 2004; Wright, Duncan, & Lach,
2009).

Contemporaneous to the emergence of these complex and large-
scale research challenges has been a rapid expansion in the sources of
geospatial data from mobile devices, environmental sensors, and Un-
manned Aerial Vehicles (Miller & Goodchild, 2015) as well as from in-
creased public access to administrative data through cloud/web-based
Application Programming Interfaces (APIs; Anselin, 2015). In addition,
Volunteered Geographic Information (VGI; Goodchild, 2007) as well
as data captured by citizen scientists continue to increase in volume
(Dickinson, Zuckerberg, & Bonter, 2010; Dickinson et al., 2012), both
complementing and challenging the anonymity and centralized nature
of traditional geospatial data produced by large organizations (i.e. gov-
ernments and proprietary companies). Available data are nowmore de-
tailed, with changes in scale from local to global extents, from coarse
spatial resolutions in 2D planimetric to fine grain sizes with 3D and
4D options, and from seasonal/monthly temporal scales to daily or
real-time capture. As such, researchersworking on environmental chal-
lenges are increasingly leveraging large, multi-scale, multi-temporal,
and multi-dimensional geospatial data in search of solutions
(Goodman, Parker, Edmonds, & Zeglin, 2014;Miller & Goodchild, 2015).

Complementing this explosion in data has been the development of
diverse array of geospatial analytical tools (i.e., scripting libraries, open
source and cloud/web-basedmapping options) and increased function-
ality to support multi-user workflows (i.e. standardized working envi-
ronments, code-sharing, data exchange, status updates). Through
advances in Web 2.0 technologies (Haklay, Singleton, & Parker, 2008)
and Free and Open Source Software for Geospatial (FOSS4G; Steiniger
& Hunter, 2013), the primary use of geospatial data is evolving from
proprietary desktop software and data formats used to create static car-
tographic products toward the leveraging of open source and cloud/
web-based tools, open data format and standards, and APIs to create dy-
namic web visualizations shared by collaborative teams across technol-
ogy, science, and the public.

These intertwined evolutions in available geospatial data and tools
also highlight the ongoing discussion regarding the role of technology
within collaborative projects and how to best leverage technology to
support collaborative tasks. Successful collaboration is dependent on
many things including dynamics of negotiation, equity in knowledge
and power, inclusion and access, and trust, which have been explored
by various researchers (Elwood, 2006; Sieber, 2000; Wright et al.,
2009). In addition to these social dimensions, collaboration is also de-
pendent on the technology used to complete and achieve the desired
tasks and outcomes (Cravens, 2014; Cravens, 2016). In their seminal
work on “geocollaboration”, MacEachren and Brewer (2004) identify
four “stages of group work” as “explore, analyze, synthesize, present”
(pg. 7) and explain that these stages represent “collaborative tasks for
knowledge construction” (pg. 19) that can be accomplished using tech-
nology, especially those for geovisualization.

MacEachren and Brewer (2004) also offer a definition of collabora-
tion that applies well to the context of leveraging geospatial data and
technology for environmental problem-solving: “a committed effort …
of two ormore people to use geospatial information technologies to col-
lectively frame and address a task involving geospatial information”
(pg. 2).MacEachren and Brewer (2004) categorize thesemulti-user col-
laborations into four types: same place-same time, same place-different
time, different place-same time, and different place-different time, stat-
ing that these last two (different place)were still primarily in the proto-
type phase at the time of their publication and were being driven by
advances in database and web technology.

Since then, as these technological advances have progressed further,
there has been a rise in technologies that support all of these collabora-
tions, most notably for different place-different time collaborations. In
particular, the logistics and mechanisms provided for collective work
by technology in general, and geospatial ones in particular, have been
identified by other researchers in varying descriptions of collaborations
between scientists, non-scientists, and the general public:
“collaboratories” (or collaboration laboratories; Pedersen, Kearns, &
Kelly, 2007; Wulf, 1993) and “geocollaboratories” (specifically “work
by geographically distributed scientists about geographic problems”
MacEachren et al., 2006, pg. 201), participatory planning and manage-
ment (Jankowski, 2009; Kelly, Ferranto, Lei, Ueda, & Huntsinger, 2012;
Voss et al., 2004; Wright et al., 2009), citizen science efforts (Connors,
Lei, & Kelly, 2012; Dickinson et al., 2010; Dickinson et al., 2012), obser-
vatory networks such as National Ecological Observatory Network
(NEON; Goodman et al., 2014), virtual networks for collaboration such
as Geosciences Network (GEON; Gahegan, Luo, Weaver, Pike, &
Banchuen, 2009) and Human-Environment Regional Observatory
(HERO; MacEachren et al., 2006) and “action ecology” (White et al.,
2015). Through these collaborative efforts, researchers highlight how
advances in geospatial data and tools provide technical support for col-
laborations through facilitation of: (i) group use and development of
technology (i.e. field data collection at broad and long scales; dispersed
responsibility of tasks); (ii) sharing and peer reviewing of data and re-
sults (i.e. crowdsourcing of data validation; data editing by multiple
users); (iii) communication between stakeholders (i.e. ability for stake-
holders to share their different representations of space and project out-
comes); and (iv) integration of complementary tools (i.e. combining
geospatial and communication-oriented tools; integration of big data
tools and open data formats). Hence, the technical capabilities of
geospatial tools can provide the practical mechanisms and infrastruc-
ture that allow people to successfully work together on tasks and
goals, despite their distributions across time and space.

While it is evident that geospatial tools can support collaboration
through providing the technological infrastructure needed for collabo-
rative tasks, existing literature does not yet provide a clear framework
for evaluating geospatial tools based on howwell they support comple-
tion of these collaborative tasks. Furthermore, as projects can differ
greatly in their requirements, there is no single tool that fulfills all
needs and often, multiple tools must be integrated into workflows. As
such, in addition to features that support workflows across multiple
users, geospatial tools also need to support interoperability between
tools (i.e. transfer of data, methods and results between tools). Conse-
quently, successful navigation of the ever-expanding list of collaborative
(i.e. multi-user) geospatial tools requires an understanding of their
strengths, synergies, and weaknesses, specifically regarding functional-
ity for collaborative tasks and capabilities for tool interoperability.

A typology of geospatial tools can provide a roadmap for these ex-
plorations by focusing on technical infrastructure for collaborative
tasks such as setting up common working environments and shared
data exploration, analysis, and visualization. This typology would also
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illustrate connections between collaborative geospatial tools as an eco-
system with identifiable niches of functionality. In this paper, we pro-
vide such a typology of the emergent ecosystem of collaborative
geospatial tools by evaluating how key multi-user tools address techni-
cal barriers to collaboration through their varying capabilities and
functionality.

The three objectives of this paper are to:

1. Select representative case studies (i.e. collaborative geospatial tools)
that have been developed to support multi-user geospatial
workflows;

2. Develop a quantitative and reproducible framework to evaluate the
tools based on the key components of a collaborative Spatial Data Sci-
ence workflow; and

3. Apply a cluster analysis to develop a typology of collaborative
geospatial tools.
To provide a conceptual understanding of our evaluation frame-

work, we first review the key factors that have led to the evolution of
a collaborative Spatial Data Science workflow. Next, we describe how
others have previously outlined typologies of geospatial and collabora-
tion tools. Last, we apply our quantitative framework to score and
cluster multi-user geospatial tools based on their functionality for col-
laborative tasks. Overall, we use this typology to present a map of the
emergent ecosystem and niches of tools, highlight how environmental
research collaborations have benefitted from the strengths of these
tools, and propose key areas of future tool development for continued
support of collaborative geospatial workflows. We believe that under-
standing the current ecosystem of collaborative geospatial tools can
highlight opportunities for expanded or new functionality, promote
stronger interoperability between existing tools, and help stakeholders
to leverage the best tools for their needs.

2. The evolution of a collaborative Spatial Data Science workflow

In their fundamental work on geocollaboration, MacEachren and
Brewer (2004) identify thatwhilemany geospatial projects are pursued
as group efforts, most geospatial technologies at the time of their writ-
ing were developed and evaluated for individual use. To address this
discrepancy, the authors propose “geocollaborative environments”
that are focused on providing a shared working environment, whether
or not the users are in the same physical environment or collaborating
in real time. In addition to technical barriers to collaboration in working
environments, Steiniger and Hunter (2013) identify barriers to open
science stemming from the lack of transparency in analysis methods
and programming code. These authors highlight various publications
(e.g. Ince, Hatton, & Graham-Cumming, 2012; Morin et al., 2012;
Rocchini & Neteler, 2012) arguing against “proprietary- ‘black box’ -
programs that hinder scientific advancement and testing” (p. 147). Spe-
cifically, Rocchini and Neteler (2012) urge ecologists to embrace
Stallman's (1985) “four freedoms” paradigm of FOSS to freely execute,
modify, and share programs, while also identifying the need for better
mechanisms (i.e. tools) for scientists to share “the backbone of ecologi-
cal software: its code” (p. 311). Seemingly responding to the call by
MacEachren and Brewer (2004) for better “multi-user system inter-
faces” aswell as calls for increased application of FOSS and open science
ideas to geospatial research, there are now more multi-user options to
share data and code than ever before. As such, new concerns have arisen
about how to choose the right tool, especially when evaluating newer
FOSS4G and cloud/web-based tools (Steiniger & Hunter, 2013).

The proliferation of cloud/web-based and FOSS4G tools also high-
lights the progression from the traditional desktopmodel of Geographic
Information Science (Goodchild, 1992; abbreviated to GI Science per
Hall, 2014) to an advancing geospatial cyberinfrastructure, or CyberGIS
(Anselin, 2012; Wang et al., 2013; Wright & Wang, 2011; Yang, Raskin,
Goodchild, & Gahegan, 2010). In particular, the CyberGIS community
has promoted the integration of existing GI Science and spatial analysis
tools with cyberinfrastructure tools that harness cloud and high perfor-
mance computing technologies (i.e. distributed, parallel, clustered) for
scalable geospatial data research. Another strong focus of CyberGIS
has been on tool interoperability in order to promote the sharing of
data and methods as well as reduce the plethora of narrowly custom-
ized tools and “non-sharable stove-piped data systems” (Yang et al.,
2010, pg. 272). In the quest to transform the technological infrastruc-
ture available for geospatial research, CyberGIS has also recognized
the importance of support for shared problem-solving, distribution of
geospatial data in flexible and secure ways, and community-driven so-
lutions for wrangling and analyzing large and complex datasets
(Wang et al., 2013; Wright & Wang, 2011; Yang et al., 2010).

Supported by CyberGIS technical frameworks for tool integration and
interoperability, a complementary field of Spatial Data Science is emerg-
ing as an interdisciplinary approach to leveraging the spatial data explo-
sion provided by sensor networks, VGI and mobile technologies, and by
the open data and science movements (Anselin, 2015; Jiang & Thill,
2015; Wang, 2016; Yuan, 2016). Identifying Spatial Data Science as a
branch of the broader Data Science field, Anselin (2015) describes it as
“a combination of… exploratory spatial data analysis, spatial statistics,
and spatial econometrics from a statistical disciplinary perspective, with
spatial data mining, spatial databasemanipulation, andmachine learning
from a computer science disciplinary perspective” (p. 1). Maintaining the
connection toGI Science, Yuan (2016) similarly describes Spatial Data Sci-
ence as the domain of “Geography, Statistics, Computer Science” commu-
nities that focus on “Spatial Statistics, Spatial Big Data, Machine learning”
(p. 5). While exploring synergies between CyberGIS and Spatial Data Sci-
ence,Wang (2016) identifies key aims of Spatial Data Science as “scalable
spatial data access, analysis and synthesis” (p. 3), with key challenges to
these goals being data aggregation and data integration. Similarly,
Anselin (2015) identifies related challenges as issues of “scale …
endogeneity… [and] computational efficiency todealwith large amounts
of very fine grained geographical data in near real-time” (p. 2).

While not explicitly mentioned in these definitions of Spatial Data
Science, data wrangling (i.e. harnessing, cleaning, transforming) “often
constitutes the most tedious and time-consuming aspect of analysis”
(Kandel et al., 2011, pg. 271). As such, effective data wrangling plays a
key role within modern geospatial workflows and is integral for over-
coming the identified challenges of data aggregation, integration and
scalability. Similarly, in these descriptions of Spatial Data Science, little
emphasis is placed on data representation and visualization, as com-
pared to analysis and synthesis. In particular, cartographic principles re-
main central to the display and representation of geospatial data,
especially for the web. This is evident through the focus on color pal-
ettes (i.e. tools like ColorBrewer), vector line simplification (i.e. algo-
rithm-based tools like MapShaper and Simplify), typological
representations (i.e. data formats like TopoJSON), and efficient render-
ing of basemaps and large datasets (i.e. data formats like Vector Tiles).
Similarly, visualization has also been identified as a key component of
data analysis, as it is “particularly essential for analysing phenomena
and processes unfolding in geographical space” (Andrienko &
Andrienko, 2013, pg. 3). For example, visual analytics providesmethods
and tools for analyses of large spatial datasets through interactive visu-
alization of iteratively mined data and has proven particularly impor-
tant for movement data such as mobile and VGI (Andrienko &
Andrienko, 2013; Beecham, Wood, & Bowerman, 2014; Stange, Liebig,
Hecker, Andrienko, & Andrienko, 2011).

In light of these descriptions, Spatial Data Science can be seen as
standing at the intersection of the threefields of GI Science, Data Science
and CyberGIS (Fig. 1). Through this intersection, Spatial Data Science
unites the statistical, data mining, and web-enabled data visualization
techniques of Data Science with fundamental GI Science methods and
principles of spatial analysis, geoprocessing, and cartography within
the computational infrastructure and interoperability potential provid-
ed by CyberGIS. With an emphasis on standardized and repeatable
workflows, Spatial Data Science promotes the compilation and



Fig. 1. Spatial Data Science at the intersection of GI Science, Data Science and CyberGIS.
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integration of disparate data from multiple sources, the use of open
source and cloud/web-based technologies for robust data analysis, and
the leveraging of an expanding suite of data visualization and publica-
tion tools to support communication between project collaborators,
the public, and other stakeholders. Due to the increasing overload of
geospatial data available, the harnessing of tools that assist users in
data wrangling, management, analysis, visualization, and publication
is critical for collaborative geospatial research. To this end, Spatial Data
Science provides a path (i.e. workflow) for navigating the rapidly
expanding field of data, methods, and multi-user tools for working
with and analyzing large and complex geospatial data.

At the heart of Spatial Data Science is a common workflow (Fig. 2)
that leverages cloud/web-based and open source geospatial tools to ad-
dress technical impediments to collaboration such as non-standardized
working environments, siloing of data, unreproducible analyses, and
static map visuals. While there are many possible routes available
when navigating a collaborative Spatial Data Science workflow, these
routes generally consist of four key primary tasks through which
Fig. 2. Collaborative Spatial
collaboration can not only be fostered, but are actually fundamental to
geospatial problem-solving in the 21st century: (1) setting up thework-
ing environment; (2) data wrangling (i.e. harnessing, cleaning,
transforming); (3) data analysis; (4) data visualization and publication.
Both data management and visualization are deeply embedded within
all tasks, particularly data wrangling and analysis. Data visualization is
highlighted specificallywith publication (Fig. 2) to emphasize its impor-
tant role in facilitating the dissemination of results and knowledge
gained. Facilitating this workflow are (5) the integration and support
of FOSS4G and (6) user involvement by the public, scientists, technolo-
gists, practitioners, and governments. Given the iterative nature of col-
laboration, this Spatial Data Science workflow is adaptive; the tools
chosen for each task can bemodified or replaced as the needs of the pro-
jects are further refined or new tools become available. By addressing
technical challenges at each step, this collaborative Spatial Data Science
workflow allows researchers and stakeholders to more easily share re-
search ideas, analyses, code, results, and conclusions to work toward
the integration and synthesis of knowledge.

3. Typologies of geospatial tools and collaboration

Existing typologies (or classifications based on general type) of
geospatial tools have been created through qualitative categorization
and comparison of tool capabilities. To date, reviews of tool applications
have been conducted to identify technical approaches to building tools,
domain-specific evolutions in tools, and capabilities of tools for specific
applications (Table 1). Although these qualitative typologies provide
fundamental understanding of the evolution and landscape of
geospatial tools, none provide a framework for evaluating how tools ad-
dress technical barriers to collaborative tasks.

Though specifically highlighting only FOSS4G options, Steiniger and
Hunter (2013) have provided the most comprehensive qualitative typol-
ogy of GI Systems (GIS) software to date, expanding to nine categories of
software from the seven original types identified in Steiniger andWeibel
(2009): (1) desktop GIS; (2) spatial database management systems; (3)
server GIS; (4) mobile GIS; (5) exploratory spatial data analysis tools;
(6) remote sensing software; (7) GIS libraries (i.e. projection and geome-
try libraries); (8) GIS extensions, plug-ins, and APIs; and (9) Web Map-
ping Servers and Development Frameworks (p. 136 and 139). In
Data Science workflow.



Table 1
Existing typologies of geospatial tools.

Technologies reviewed Publication

Web-based spatial decision support tools Rinner (2003)
“Trends and developments in GIS-based
multi-criteria decision analysis” tools

Malczewski (2006), p. 1

“Visually-enabled geocollaboration” tools MacEachren and Brewer
(2004), p. 1

GI Systems for public participation Sieber (2006)
Historical evolution in web tools for geospatial
applications

Haklay et al. (2008)

Historical evolution of participatory GIS Jankowski (2009)
FOSS4G tools for landscape ecology Steiniger and Hay (2009)
Marine geospatial ecology tools Roberts, Best, Dunn, Treml,

and Halpin (2010)
“Enabling technologies” for CyberGIS Yang et al. (2010), p. 266
Evolution of software for spatial analysis Anselin (2012)
“Domains of VGI” Elwood et al. (2012), p. 573
“Capabilities and interfaces of existing tools” for
GIS and spatial analysis tools integrated within
CyberGIS

Wang et al. (2013), p. 2026

FOSS4G landscape in 2012 Steiniger and Hunter (2013)
“Major classes of technology tools and needs they
might meet”, among them being GI Systems,
decision support tools, visualization tools, and
“distance collaboration” tools

Cravens (2014), p. 23

“Map-based web tools supporting climate change
adaptation”

Neset, Opach, Lion, Lilja, and
Johansson (2016), p. 1
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addition to this fundamental qualitative typology, the authors also identi-
fy benefits of FOSS4G, key factors to consider for evaluations of options,
and the primary barriers to FOSS4G adoption (referencing others such
as Cruz, Wieland & Ziegler, 2006 and Nagy, Yassin & Bhattacherjee,
2010). Not identified as key functionality, thepotential to support collab-
oration is not addressed in the criteria for evaluation or adoption.

The literature focusing on categorizations of tools with an explicit
focus on collaborative work have been broader in scope and not specific
to geospatial options. In support of geocollaboration tools, MacEachren
andBrewer (2004) provided a summary of Computer-SupportedCooper-
ative Work tools, or “CSCW technologies, often called groupware…char-
acterized as information technology that allows people to work
together… with an emphasis on sharing tasks and decision-making” (p.
10). In the listed categories of CSCW tools, multi-criteria evaluation
tools integrated with GIS are the only geospatially enabled options. Sim-
ilarly, in discussing the evolution of web mapping technologies, Haklay
et al. (2008) presented a general “series of ‘technologies of collaboration’”
from Saveri, Rheingold, and Vian (2005), including “Self-organisingmesh
networks… Community computing grids… Peer production networks…
Social mobile computing…Group-forming networks… Social software…
Social accounting tools… Knowledge collectives” (p. 2025–2026).

While some geospatial tools can be embedded within these broader
typologies of collaborative technologies (i.e. OpenStreetMap and other
FOSS4G tools are products of peer production networks), we expand
on these works by providing a new typology of geospatial tools that is
specifically centered on collaboration. We ask the following specific
questions: what are the common types of collaborative geospatial
tools, and what functional niches do they fill? To answer these ques-
tions, we develop a quantitative and reproducible framework to evalu-
ate multi-user geospatial tools based on their functionality for
supporting common tasks in collaborative projects (i.e. wrangling, ana-
lyzing, visualizing, and publishing geospatial data) and present a typo-
logical map of the emergent ecosystem of collaborative geospatial tools.

4. Methods

4.1. Selection of tools

We evaluated thirty-one multi-user geospatial tools based on their
functionality to support collaborative tasks (Table 2). The tools
represent a variety of platform types: cloud-based (i.e. hosted on the
cloud by the tool provider), web-based (i.e. hosted by user on a web
server), local installation (i.e. installed locally on an individual computer
or cluster of computers), andmobile (i.e. application installed onmobile
device). The tools also vary in their FOSS status and in the industry type
of their primary creators and contributors. Specifically, the included
tools express a mission of supporting collaboration and/or offer func-
tionality for supporting collaboration (e.g. sharing of data and code,
asynchronous tasks, status updates). This requirement excludes tools
focused on big data processing such as distributed computation engines
(e.g. Spark) or scenariomodeling such as ecosystem valuation tools (e.g.
Integrated Valuation of Ecosystem Services and Tradeoff, or InVEST).
The included tools also provide a set of analytical and/or data collection
functionality within amulti-user environment (e.g. beyond basic online
data providers or interactive web maps such as Cal-Adapt, WorldMap,
etc). This requirement also excludes tools focused primarily on
workflows by individuals (e.g. desktop GIS tools such as GeoDa). In ad-
dition, included tools provide an out-of-the-box user interface and do
not require the creation of a custom user interface or the use of a third
party user interface. This definition excludes tool extensions such as
widgets and plug-ins, which are not considered to be distinct from the
platform onto which they are installed. This requirement also excludes
geostack components whether open source or not (e.g. ArcGIS Server,
OpenLayers, PostGIS, Leaflet). Tools currently in Beta mode were also
excluded (e.g. GeoGig, a promising versioning tool). Finally, multi-user
tools not exclusively limited to geospatial tasks were also included, if
the stated criteriaweremet and the toolwas able to integrate geospatial
tasks (e.g. Jupyter Hub, RShiny). Though not an exhaustive list, the thir-
ty-one tools evaluated in this paper are representative of thewide range
of available platforms that support multi-user workflows for geospatial
data.

4.2. A workflow-based evaluation of functionality

The included tools were evaluated on twenty-nine different features
that support multi-user workflows for geospatial data (Appendix A).
Based on a collaborative Spatial Data Science workflow (Fig. 2), these
features represent functionality provided to address traditional techni-
cal impediments to collaboration and are organized into groups that
represent the key components of the workflow: (1) setting up the
working environment; (2) data wrangling; (3) data analysis; (4) data
visualization and publication; (5) the integration and support of
FOSS4G; and (6) user involvement.

A standardized scoring rubric was used to assign a value of 1–3 for
each feature, with 1 indicating little to no application of that feature
within the tool to 3 indicating that the feature is critical to the function-
ality of the tool (Appendix A). As no single tool can provide functionality
for all features, we chose to treat the features as categorical variables re-
ferred to as factors, instead of as continuous variables. As such, tools
with scores of 1 for particular features are not automatically clustered
more closely with tools scoring 2, than with tools scoring 3; each
score is simply considered to represent a different level of functionality.
For example, all toolswere scored on their reliance on cloud/web-based
functionality. Tools that rely primarily on local installations (i.e. Desk-
top, Server, and Mobile) were given a score of 1, while tools that are
completely cloud/web-based (i.e. no local installations of any kind)
were given a score of 3. Tools that have both local and cloud/web-
based components were given a score of 2. As factor variables, this scor-
ing does not promote a score of 3 as more desirable for collaboration
than a score of 1 or 2; these scores simply indicate different functionality
based on the level of cloud/web-based integration. Last, the scores for all
featureswere based on themission statement or stated capacity provid-
ed on the tool website aswell as professional experience by the authors.
All of the included tools that are available for download or online access
were tested by the authors; the exceptions being Seasketch, NASA NEX,
and ExchangeCore, as these tools require granted permissions to



Table 2
List of multi-user geospatial tools included in analysis.

Label Name Platform type Creators/contributors FOSS statusa

T1 CARTO Cloud-based CARTO (private sector) Limited free, not open source
T2 MapGuide Web-based OSGeo (non-profit) FOSS
T3 XchangeCore Web-based National Institute for Hometown Security (non-profit) Free (restricted access), not open

source
T4 Jupyter Hub Web-based NumFOCUS Foundation (non-profit) FOSS
T5 NASA NEX Local install NASA (public sector) Free (restricted access), not open

source
T6 OS Geo Live Local install OSGeo (non-profit) FOSS
T7 ROpenSci Local install Project of the NumFOCUS Foundation (non-profit) FOSS
T8 Rshiny Local install or cloud-based RStudio (private sector) Limited free, limited open source
T9 Global Forest Watch Cloud-based World Resources Institute (non-profit) FOSS
T10 NextGIS Local installation or

cloud-based
NextGIS (private sector) Limited free, limited open source

T11 QGIS Cloud Local installation or
cloud-based

Sourcepole (private sector) Limited free, limited open source

T12 FME Local installation or
web-based

Safe Software (private sector) Neither free nor open source

T13 Google Earth Engine Cloud-based Google (private sector) Free, not open source
T14 Madrona Local installation or

web-based
Ecotrust (non-profit) FOSS

T15 MapBox Studio Cloud-based MapBox (private sector) Limited free, limited open source
T16 Field Papers Cloud-based Stamen Design (private sector) FOSS
T17 iNaturalist Mobile California Academy of Sciences (non-profit) FOSS
T18 OpenDataKit_GeoODK Mobile University of Washington, Seattle (academia) FOSS
T19 OpenStreetMap Cloud-based OpenStreetMap Foundation (non-profit) FOSS
T20 eBird Cloud-based Partnership between Audubon (non-profit) and Cornell University

(academia)
Free, not open source

T21 GeoLocate Local installation or
cloud-based

Tulane University (academia) Free, not open source

T22 HOLOS Local installation or
cloud-based

University of California, Berkeley (academia) FOSS

T23 Data Basin Cloud-based Conservation Biology Institute (non-profit) Free, not open source
T24 ESRI Collector for

ArcGIS
Mobile ESRI (private sector) Limited free, not open source

T25 Geopaparazzi Mobile HydroloGIS (private sector) FOSS
T26 Locus Map Mobile Asamm Software (private sector) Limited free, not open source
T27 Orux Maps Mobile OruxMaps (private individuals) Free, not open source
T28 ArcGIS Online Cloud-based ESRI (private sector) Limited free, not open source
T29 Seasketch Web-based University of California, Santa Barbara (academia) Neither free nor open source
T30 AmigoCloud Cloud-based AmigoCloud (private sector) Limited free, not open source
T31 ArcGIS Open Data Cloud-based ESRI (private sector) Limited free, not open source

a See Appendix A for more information on FOSS status.
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download or access.When a feature could not easily be scored using on-
line references or professional experience, questions regarding those
features were sent to the tool provider, with a 100% response rate. The
individual tool scores were also used to calculate an average score
across all tools (i.e. an average tool score) for each of the twenty-nine
features (Appendix B).

4.3. Cluster analysis

Next, we applied a statistical clustering method on the individual
tool scores to determine the common typologies among tools and iden-
tify existing niches. Our clustering method uses a custom R package
called Threshold Smoothing Ensemble Clustering (TSEC or
TSEClustering, developed byOliver C.Muellerklein),which incorporates
the Weighted K-Means Clustering method from the R package wskm
(Zhao, Salloum, Cai, & Huang, 2015). The TSECmodel clusters the obser-
vations (i.e. tools) and variables (i.e. features) based on an ensemble of
co-occurrences across pre-defined subsets of the features using a
smoothing threshold function. Conceptually, the final cluster member-
ships are the result of a threshold approximated ensemble of similarities
between the tools across subsets of the features (see Appendix A for list
of features and subsets). This method is targeted at datasets with low
sample size yet a high number of variables, building an ensemble of sim-
ilarity measurements used to assess intra-cluster and inter-cluster var-
iance for optimized information gain. Further, cluster membership
weights are generated for observations at local (i.e. for subsets of
features) and global (i.e. complete list of features) levels of variable im-
portance. In sum, this unsupervised approach generates similarities
among the observations based on various subsets of the features (i.e.
subsets of predictor space) to assign clusters, concludingwith a final en-
semble of all cluster assignments.

The cluster analysis workflow is shown in Fig. 3. The workflow
begins with (a) input data of n × p (i.e. number of observations x
number of features, or predictors). From the input data, six subsets
of predictor space (i.e. gi, predefined subsets of the twenty-nine fea-
tures) are created manually by splitting the features into groups that
represent one of the six components of the collaborative Spatial Data
Science workflow (i.e. from the first subgroup describing the work-
ing environment to the sixth subgroup outlining user involvement,
see Appendix A). Six additional subsets of predictor space are created
by iteratively grouping all subsets except the initial gi subset (i.e. for
all gx not gi, the leave one-out method). A final subset of predictor
space is created by grouping all gi subsets (i.e. the complete list of
twenty-nine features).

Intra-observational similarity matrices (b) are generated through
correlation matrices for each of the thirteen subsets of predictor space
(i.e. gi). Then, using entropy-weighted K-means clustering (c), cluster
assignments are produced for each of the thirteen similarity matrices.
The Elbow Method is used to obtain the optimal number of clusters by
calculating the relative percentage of variance captured by the clusters
versus the total number of clusters (Tibshirani, Walther, & Hastie,
2001). Next, observational co-occurrences (d) are generated for each



Fig. 3. Cluster analysis workflow. Steps a-c generate a similarity matrix and K-means cluster assignment for thirteen subsets of features (i.e. each of the six gi, iterative grouping of all gx
except the initial gi, and for all gi as a complete dataset). The resulting thirteen similaritymatrices and K-means cluster assignments are aggregated in steps d-f with a threshold smoothing
function to produce a final ensemble K-means cluster assignment.
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of the thirteen K-means cluster memberships to obtain an ensemble of
probabilistic assignments (e) (i.e. a correlational matrix of co-assign-
ment among observations). These co-assignments are displayed as a
dendrogram, a visualization of the partitions from hierarchical cluster-
ing (Fig. 4). Threshold approximation is used to dropout low pairwise
observational assignments (i.e. force to zero). Finally, a last K-means
clustering (f) is run on the resulting Smooth Ensemble, an n× n correla-
tional matrix of observational assignments, to generate the final cluster
memberships. These final clustermemberships are visualized in a bivar-
iate cluster plot, which uses Principal Components to make a two-
Fig. 4. Dendrogram of collaborative geospatial tools. Primary clusters
dimensional representation of the clusters (Fig. 5). The final cluster as-
signment for each of the thirty-one tools is listed in Table 3.

5. Results

Three primary clusters composed of eight secondary clusters were
revealed from the cluster analysis (Table 3). The divergences between
the clusters are visualized in complementary ways in a dendrogram
(Fig. 4) and a map of the K-means Two-Dimensional Space (Fig. 5).
The first primary cluster A, composed of subclusters 1–3, contains
are designated as A–C, with secondary clusters labeled as 1–8.



Fig. 5. Typological map of collaborative geospatial tools, based on the K-means Two-Dimensional Space. Bifurcation driven by required infrastructure is reflected along Component 1, from
low (left) to high (right). Divergence driven by user involvement (i.e. optimal number of users and public accessibility) is reflected along Component 2, from project-based content
managers (bottom) to participatory data aggregators (top). The identified clusters account for 76.3% of the total variance.
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tools that are highly scalable and customizable, allowing for the highest
integration of advanced spatial analysis and visualization techniques as
well as interoperability with other tools. The second primary cluster B,
composed of subclusters 4–5, demarcates participatory data
aggregators that have inherently large project scopes (i.e. functionality
is optimally leveragedwith high numbers of public users). The third pri-
mary cluster C, composed of subclusters 6–8, identifies content man-
agers, or project-based tools focused on managing access to data and
tasks for a predefined set of users.

5.1. Primary drivers of divergence

The first bifurcation between the clusters emerges from the required
level of infrastructure needed to best leverage the tool (i.e. required user
setup, use of high performance computing and cloud services, support
for multi-tier users, user knowledge needed to extend functionality).
This bifurcation is reflected along Component 1 of the K-means Two-Di-
mensional Space (Fig. 5), wherein tools with the heaviest infrastructure
needs are clustered on the right-hand side (primary cluster A of highly
scalable and customizable tools), while tools with lighter infrastructure
requirements are clustered on the left-hand side (primary cluster B of
the participatory data aggregators and primary cluster C of the content
managers).
A second key divergence between the clusters is driven by user in-
volvement, a key determinant of project scope (i.e. optimal number of
users and public accessibility). The K-means TwoDimensional Space re-
flects this divergence along Component 2 (Fig. 5). Tools with inherently
larger scopes are clustered toward the top (i.e. primary cluster B of the
participatory data aggregators). The functionality of these tools is best
leveraged with high number of public users engaging in data collection.
Tools with smaller scopes due to a focus on managing user access to
data and tasks are clustered toward the bottom (i.e. primary cluster C
of the content managers). The functionality of these tools does not
vary with a change in the number of users, and access to these data is
controlled by a project manager. Along the center of Component 2 are
the highly scalable and customizable tools of primary cluster A. For
these tools, an increase in the number of users leads to a leveraging of
expandable functionality that is not necessary for small user groups,
such as differential access to datasets and workflows facilitated by cus-
tom web visualizations and APIs (i.e. multi-tier versions of the tools
with differing functionality and access based on the user type).

5.2. Highly scalable and customizable tools

Primary cluster A (subclusters 1–3) is characterized by tools that are
the most extendable for integrating advanced analysis and data



Table 3
Summary of cluster results.

Label Name Primary cluster Secondary cluster

T1 CARTO A 1
T2 MapGuide A 1
T3 XchangeCore A 1
T4 Jupyter Hub A 2
T5 NASA NEX A 2
T6 OS Geo Live A 2
T7 ROpenSci A 2
T8 Rshiny A 2
T9 Global Forest Watch A 3
T10 NextGIS A 3
T11 QGIS Cloud A 3
T12 FME A 3
T13 Google Earth Engine A 3
T14 Madrona A 3
T15 MapBox Studio A 3
T16 Field Papers B 4
T17 iNaturalist B 4
T18 OpenDataKit_GeoODK B 4
T19 OpenStreetMap B 4
T20 eBird B 5
T21 GeoLocate B 5
T22 HOLOS B 5
T23 Data Basin C 6
T24 ESRI Collector for ArcGIS C 6
T25 Geopaparazzi C 7
T26 Locus Map C 7
T27 Orux Maps C 7
T28 ArcGIS Online C 8
T29 Seasketch C 8
T30 AmigoCloud C 8
T31 ArcGIS Open Data C 8
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visualization and for supporting reproducible code and interoperability
through APIs and tool integration. Due to this flexibility, these highly
scalable and customizable tools also require the most infrastructure to
best leverage the full range of functionality offered. The primary prod-
ucts of these tools are datasets and workflows resulting from advanced
analytical, data visualization, or querying methods. As the user base in-
creases, the functionality provided (particularly by APIs and tool inte-
gration) can be leveraged to create multiple versions of the tools
based on user needs (i.e. from low to high interactivity and privileges).
The divergences between subclusters 1–3 are driven by differences in
out-of-the-box functionality. Subcluster 1 highlights cloud/web-based
tools (with APIs available) that have more built-in functionality for
data exploration, visualization, and publication than for spatial analysis
and querying (CARTO,MapGuide, XchangeCore). Subcluster 2 identifies
tools with a stronger focus on facilitating reproducible workflows or
standardized working environments (Jupyter Hub, NASA NEX, OS Geo
Live, ROpenSci, RShiny). These tools require either server or desktop
installed components and are best leveraged by integration with addi-
tional tools and packages for spatial data analysis and visualization. Sub-
cluster 3 differentiates tools with the highest built-in functionality for
geoprocessing or spatial analysis (Global Forest Watch, NextGIS, QGIS
Cloud, FME, Google Earth Engine, Madrona, MapBox Studio). These
tools provide APIs or expose open source capabilities to users, and
thus, easily integrate custom scripting or can be expanded to build
new tools in a multi-tier user environment.

5.3. Participatory data aggregators

Primary cluster B (subclusters 4 and 5) represents crowdsourcing
tools that have inherently large and public scopes. The functionality of
these tools is optimally leveraged with a high number of users. Often
with a specifically defined focus (i.e. crowdsourcing data for a particular
ecological phenomenon), the primary products of these tools are aggre-
gated datasets compiled frommany public contributors. The divergence
between subclusters 4 and 5 is primarily driven by the differing roles of
citizen scientists. Subcluster 4 delineates FOSS4G tools focused on
crowdsourced data collection by the public either in real-time or asyn-
chronously from the field or based on lived experience (Field Papers,
iNaturalist, OpenDataKit/GeoODK, OpenStreetMap). Subcluster 5 repre-
sents research-driven participatory tools that are more focused on ex-
pert data curation by scientists (i.e. no mobile applications or syncing
of field data) and provide APIs to engage and exchange data with the
public (eBird, GeoLocate, HOLOS).

5.4. Content managers

Primary cluster C (subclusters 6–8) delineates project-based tools
that focus on the management of users and their access to data and
tasks. The primary products of these tools are contentmanagement sys-
tems (somewith supporting APIs) controlled by a projectmanager. The
divergences between subclusters 6–8 are driven by differences in data
management functionality and infrastructure. Subcluster 6 character-
izes toolswith functionality formanaging projects and tasks (i.e. organi-
zation of workspaces, group communication tools, assignment of tasks),
in addition to managing user access to data (Data Basin, ESRI Collector
for ArcGIS). Subcluster 7 designates Android-based mobile data collec-
tors that provide functionality for navigation and surveying
(Geopaparazzi, Locus Map, Orux Maps). These tools allow a predefined
set of users to collect geospatial data asynchronously and are not re-
stricted to cloud-based databases. Finally, subcluster 8 identifies tools
with light spatial analysis or querying capabilities that rely on “live” da-
tabases (i.e. cloud/web-based database services) for managing the ex-
change of data (ArcGIS Online, Seasketch, ArcGIS OpenData,
AmigoCloud).

6. Discussion

Based on previously cited calls for more collaboration in geospatial
research and technologies, it is clear that evaluation of geospatial tools
must also include how they facilitate collaboration in the wrangling,
analysis, visualization, and publication of geospatial data. Previous ty-
pologies have qualitatively categorized and compared geospatial tools
without explicit consideration of the functionality provided to support
collaborative tasks (see Table 1). By providing an essential assessment
of geospatial tools specifically centered on functionality for collabora-
tion, this typology can help geospatial researchers and stakeholders of
collaborative geospatial projects evaluate and choose the best tools for
their needs. By following the Spatial Data Science tenet of standardized
and reproducible workflows, this typological map can evolve and ex-
pand over time, as more collaborative geospatial tools continue to be
developed and adopted. In this paper, we use this typology to highlight
the strengths of existing collaborative tools, identify key areas of future
technical development, and elucidate ongoing challenges for collabora-
tive geospatial tool development.

6.1. Strengths of collaborative geospatial tools

Even as the ecosystem of collaborative geospatial tools continues to
expand, research focused on global environmental change are already
benefiting from the existing technical strengths of these tools. Key ben-
efits stem from increased integration of open source technologies as
well as from an increased focus on interoperability through APIs and in-
tegration across tools. Users benefit not only from the cost-effectiveness
of additional functionality from open source integration and interoper-
ability with other tools, but also from being able modify and expand on
these built-in open source capabilities and APIs.

Overall, the scored tools range from amoderate to high level of open
source integration on the backend, whether a mix of open and closed
source technologies to completely built on open source technologies
(average tool score=2.61, along a gradient inwhich1.0 indicates no in-
tegration of open source technology and 3.0 indicates completely open
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source). Similarly, the scored tools support a range of moderate to high
level of interoperability, from being able to push or pull data from other
tools to providing a fully open API (average tool score = 2.68).

These high scores for open source integration and interoperability
(as compared to all other scored features) provide a clear understanding
of the role of cost and accessibility, as the resulting clusters do not rep-
resent groupings based on the price of the tools. Each cluster is a mix of
free and/or completely open access tools to “freemium” (i.e. cost applied
to access higher levels of functionality) and/or restricted access tools
(i.e. domain specific applications that are free once access is granted,
such as XChangeCore and NASA NEX from primary cluster A). Focusing
solely on the cost of the tools as the key barrier to collaborative projects
would result in a very different typology of collaborative geospatial
tools, one that would not fully account for the niches of technical func-
tionality that tools provide for collaborative tasks.

In our analysis, the individual clusters reflect differences in the level
of open source integration, the level of modification allowed by users,
and overall interoperability (see Appendix B for individual tool scores).
Primary cluster A of the highly scalable and customizable tools demar-
cate tools that are primarily built on open source technologies, provide
strong support for users to modify built-in open source capabilities, and
generally, are highly interoperable either through the ability to inte-
grate with other tools or through APIs. On the other hand, primary clus-
ter C composed of contentmanagers represent tools that are primarily a
mix of open and closed source technologies, provide less support for
users to modify the built-in open source capabilities, and as such, are
generally less interoperable (with a few exceptions of tools that provide
API access such as AmigoCloud, ArcOpenData and Locus Map). This is
perhaps unsurprising as the strength of content managers are built-in
functionalities that do not require much modification or technical
knowledge by users (i.e. support for asynchronous tasks - such as off-
line capture of data, task assignment, and status updates - and user/con-
tent management - such as access/workspace control and group defini-
tions). Primary cluster B of the participatory data aggregators is more
evenly split; about half of the tools are mixed open and closed source
that provide less support for modification by users (similar to primary
cluster C), while the other half are primarily built on open source tech-
nologies and providemechanisms for users tomodify open source func-
tionality (similar to primary cluster A). As compared to primary clusters
A and C, the distinguishing characteristic of primary cluster B is that all
of its tools scored the highest value (3.0) for interoperability (i.e. prima-
ry clusters A and B had wider ranges of scores). In fact, all participatory
data aggregators included in this analysis provide access to APIs and/or
Software Development Kits (SDKs).

For research centered on global environmental change, increased
open source integration and support for interoperability in collaborative
geospatial tools are allowing for unprecedented cross-disciplinary inte-
gration of data and methods, beyond simply powerful data processing
or spatial analysis capabilities. Citizenswith varying levels of technolog-
ical skillsets (from non-scientists to practitioners) are commonly
leveraging these strengths through access to source code on Github
and public API access to data and analytical methods. On the data side,
citizen science projects that leverage participatory data collection tools
are becoming more cost effective due to the availability of low-to-no-
cost, easy-to-launch tools that require little infrastructure investment
or technical knowledge by users. Through these citizen science efforts,
researchers are granted a mechanism for “dovetailing research with
conservation and management” (Dickinson et al., 2012, p. 294). On
the methods side, repeatability of complex workflows is facilitated by
increased availability of APIs that allow for seamless exchange of
geospatial data and by the ability to integrate functionality from other
specialized tools.

A key example of open source integration benefitting citizen science
efforts is the application of the mobile geospatial data collector
iNaturalist from primary cluster B of the participatory data aggregators.
This lightweight mobile application is increasingly being used in
BioBlitzes, which are short-duration field collection efforts to inventory
biodiversity or to monitor a particular species within a specified area,
typically parks and protected areas (Dickinson et al., 2012; Francis,
Easterday, Scheckel, & Beissinger, 2017). Citizen scientists simply down-
load the free mobile application and capture photos and notes that au-
tomatically sync to the iNaturalist database. All data collected with
iNaturalist are available for public exploration and use through their
web mapping application and API and are also shared with free and
open access scientific databases such as the Global Biodiversity Informa-
tion Facility. In a unique global collaboration, National Geographic, the
iNaturalist team, and citizens in 100 countries participated in The
Great Nature Project between 2013 and 2015 to collect “over half a mil-
lion images of over 20,000 different species of plants, animals, and
fungi” (Francis et al., 2017; National Geographic, 2016).

Key examples of the benefits from increased interoperability are
Global ForestWatch (of primary cluster A of the highly scalable and cus-
tomizable tools) and Seasketch (of primary cluster C of the content
managers). Global Forest Watch leverages the Google Earth Engine API
and the CARTO platform (both tools also in primary cluster A of the
highly scalable and customizable tools) to create interactive web maps
that can analyze forest change on-the-fly for an area of interest. Building
off of the Google Earth Engine API, Global Forest Watch freely provides
its own customized APIs as well as templates for ArcGIS Online (in pri-
mary cluster C of the content managers) to facilitate additional tool
building and data sharing by others. Leveraging the benefits of tool inte-
gration, Seasketch is a key example of a collaborative environmental
planning tool that has benefited from integrationwithwidely used spa-
tial decision support tools such as Marxan and InVEST, as well as from
integration with ArcGIS Online for content management. Focused on
marine area protection, Seasketch is currently being used “around the
globe by 4441 users in 229 active projects” to provide stakeholders
with the capability to explore scenarios and propose their own plans
for new marine protected areas (Seasketch, 2016). For example,
through collaboration between Parque Nacional Galapagos, Conserva-
tion International, and World Wildlife fund, user-sketched plans from
Seasketch are being integrated with the InVEST toolkit to allow public
stakeholders to evaluate habitat risk and explore outcomes of proposed
zoning scenarios for marine protection around the Galapagos Islands
(Seasketch, 2016).

6.2. Key areas of future technical development

In addition to highlighting the strengths of collaborative geospatial
tools, our typology can help identify key areas of future technical devel-
opment. One such area of needed development is the continued integra-
tion of cloud and high performance computing (average tool score =
1.7, along a gradient in which 1.0 indicates no integration of cloud and
high performance computing and 3.0 indicates full integration). For col-
laborations centered around global environmental change, the leverag-
ing of cloud and high performance computing can shift the cost-benefit
structure, such that research questions that previouslywould have been
very difficult or even possible to answer (due to computing time and re-
sources) can now be addressed. Ongoing support of CyberGIS research
as well as collaborations between scientists and technologists are key
for continued integration of cloud and high performance computing
into geospatial tools.

Our analysis indicates that primary cluster A of the highly scalable
and customizable tools has the highest overall application or potential
for cloud and high performance computing (i.e. all tools scored at least
2.0, with themajority scoring 3.0). An exemplar of this cluster is Google
Earth Engine, which was successfully leveraged to create the Hansen
Global Forest Change dataset by a team consisting of fifteen collabora-
tors, including technologists from Google, scientists from the USGS
and Woods Hole Research Center, and researchers from the University
of Maryland-College Park, SUNY-Syracuse, and South Dakota State Uni-
versity. Hansen et al. (2013) applied the distributed computing power
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of Google Earth Engine tomap global forest loss and gain for 2000–2014
at the finest combined spatial and temporal resolution of any global
product to date (yearly data at a 30m pixel resolution). A BBC News ar-
ticle quoted lead author Matt Hansen: “This is the first map of forest
change that is globally consistent and locally relevant. What would
have taken a single computer 15 years to perform was completed in a
matter of days using Google Earth Engine computing” (BBC,
November 14, 2013).

Another key area of future development is increased support for
non-traditional raster and vector data formats (i.e. open data options,
cloud-based tile services). Although these non-traditional data formats
are becoming critical for environmental collaborations investigating
questions of larger extents and finer resolutions, existing functionality
to support these formats varies greatly depending on the data type
and the task. For example, across all features scored, the highest average
tool score is for data download of non-traditional vector formats (aver-
age tool score = 2.81), while the lowest average tool score is for data
editing of non-traditional raster formats (average tool score = 1.39).
Overall, average tool scores for non-traditional vector formats are
higher than for non-traditional raster formats across all data tasks (i.e.
creation, editing, upload, download), and for both non-traditional vec-
tor and raster formats, average tool scores for data uploads and down-
loads are higher than for data creation and editing.

Regarding discrepancies between non-traditional vector and raster
formats, there are two primary contributing factors. First, increased in-
tegration of open source technologies and development of APIs have
both lead to and been reinforced by stronger support and wider use of
non-traditional vector formats such as GeoJSON, Vector Tiles, and
MBTiles (average tool score = 2.55 for data uploads to 2.81 for data
downloads). This dual reinforcement is not as strongly reflected within
collaborative geospatial tools for non-traditional raster formats such as
HDF5 and TileMapping Services or for older raster formats that are see-
ing a resurgence such as NetCDF (average tool score= 2.32 for data up-
loads and 1.68 for data downloads). This could be driven by the fact that
non-traditional raster formats are increasingly being used to cover larg-
er extents and/or finer resolutions, resulting in larger datasets and stor-
age needs, which are ongoing challenges for geospatial tools in general.

Second, the typical process for creating and editing raster data often
differs greatly from that of vector data. Most raster data are still expert-
curated in single user environments, and unlike editing of individual
features in vector data, editing of raster data typically involves global
re-calculations of pixels for which GUI-based editing tools are not as
useful. These differences in the curation of vector and raster data are
reflected in the average tool scores. For both editing and creation, the
average tool scores for non-traditional vector data are higher than for
non-traditional raster (for editing, average tool score = 2.13 for vector
compared to 1.39 for raster; for creation, average tool score = 2.42 for
vector compared to 1.52 for raster).

Regarding the higher average tool scores for data uploads and down-
loads of both non-traditional vector and raster formats (as compared to
editing and creation), these scores are reflective of the unique strengths
of each primary cluster which focus on a different aspect of data man-
agement. For example, the highly scalable and customizable tools of pri-
mary cluster A provide flexibility and expandability for data integration,
while the participatory data aggregators of primary cluster B provide in-
frastructure for data aggregation. Similarly, the contentmanagers of pri-
mary cluster C provide strong built-in functionality for managing access
by users to data, projects, and workflows.

Other key areas of needed tool development include thewider adop-
tion of functionality to support reproducibility ofworkflows (i.e. sharing
of code or steps ofworkflow, average tool score=1.9), custom scripting
for analysis (average tool score = 2.03) and for data visualizations (av-
erage tool score = 1.9), and the integration of time (average tool score
= 2.16). For tools that best support these options at present (i.e. prima-
ry cluster A of the highly scalable and customizable tools), users are able
to modify open source capabilities or harness APIs to create tailored
analyses and applications for a second tier of users. However, an inter-
mediate to high level skillset in programming is often needed for
leveraging these functionalities. In addition, stronger support for inte-
grating time into analyses is an outstanding need in Spatial Data Science
beyond that of collaborative geospatial tools, particularly for visualiza-
tion and analysis across continuous timelines (i.e. dynamic modeling
approaches). While of all geospatial technologies, remote sensing ana-
lytical tools have most successfully addressed time, these same tools
are not structured to provide multi-user support (with few exceptions
such as Google Earth Engine), and typically function within discrete
timelines. Similarly, support for reproducibility of workflows and re-
sults is a key component not only for collaborative geospatial
workflows, but for Spatial Data Science as a field of study focused on re-
peatability and transparency of workflows.

A final key area of needed functionality is user controlled versioning
of data and workflows; this feature was not scored in our evaluation, as
so few of the representative tools offer this functionality. While many
collaborative geospatial tools provide some light versioning capabilities
(i.e. revision history of code in Google Earth Engine, the ability to create
and compare different runs of a model in Seasketch, user contribution
history for participatory data aggregators), what is not yet available is
true distributed versioning of data, workflows and code that allows
users to track changes at the object level (i.e. a data attribute or func-
tion), to reconcile conflicts that arise in competing edits (i.e. multi-
user versioning), and to roll back changes as needed (i.e. adaptive
management of data and workflows). In a fully versioned environ-
ment, all of these tasks are documented and available for review.
For environmental planning and management projects, these kinds
of native versioning capabilities would provide stakeholders with a
structured and transparent mechanism for examining the trajectory
of data and models and for actively contributing to their construc-
tion. Stakeholders could move from being primarily users of scenario
exploration tools to active developers of them, as constructors of al-
ternative stories and models beyond just offering their version of a
controlled output map.

Of the key areas of future tool development presented in this paper,
support for distributed versioning in collaborative geospatial tools is
clearly in the earliest phase of its evolution. In general, collaborative
geospatial tools have focused on other asynchronous tasks (i.e. off-line
capture of data, task assignment, status updates; average tool score =
2.26) and user and content management (i.e. access and workspace
control, group definitions; average tool score=2.32). As the integration
of “live” databases through web and cloud-based data services con-
tinues to becomemore standard in collaborative geospatial tools, partic-
ularly for multi-user collecting of data (average tool score = 2.39),
versioning capabilities can also continue to be expanded. Mechanisms
for supporting further integration of versioning can be adopted from
existing spatial database engines (i.e. ESRI ArcSDE, PostGIS) which
offer versioning of geospatial data or allow it to be programmed, and
from existing version control frameworks such as Git/Github, which
has played a key role in the FOSS4G movement, allowing any user to
contribute to and modify the source code to fix bugs and extend func-
tionality. Tools such as GeoGig, a Git-like versioning tool for geospatial
data (currently in Beta testing), can serve as a preview of collaborative
geospatial tool functionality that will likely become standard in the
near future.

6.3. Challenges and future directions

The technical challenges for continued development of collaborative
geospatial tools parallel existing research areas within Spatial Data Sci-
ence centered around issues inherent to large and complex geospatial
datasets. While data mining techniques integrated from Data Science
have provided ways to turn massive data into usable information, anal-
ysis and visualization of large geospatial datasets remain difficult, as not
all approaches scale appropriately (Anselin, 2012; Li et al., 2016). Visual
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analytics for spatial-temporal data is one area of research that aims to
provide scalable methods for analyzing datasets that are too large to
be contained within working memory (or random access memory,
RAM). For example, Andrienko, Andrienko, Bak, Keim, and Wrobel
(2013) outline a methodology for clustering of large movement
datasets that begins with sub-setting the data and creating an iterative
identification list of each event's neighbors that are “stored in the data-
base, to be later retrieved on demand” (pg. 214). Similarly, Stange et al.
(2011) employ various spatial and temporal filters and aggregations to
prepare largemovement datasets for clustering of trajectories and flows
using data mining methods such as self-organized maps (SOM) and al-
gorithms specific to mobile data. Additional solutions to the challenges
posed by large datasets are being explored through the use of high per-
formance computing environments for data wrangling and analysis
(Leonard & Duffy, 2014; Li et al., 2016) and through geovisualization
techniques integrated from visual analytics, or “geovisual analytics”
(Anselin, 2012). These techniques include the use of multiple-linked
views that allow users to work with multiple visualizations at once
and human “vision-inspired” techniques such as foveation that aim to
reduce information overload by varying detail depending on area of
focus (Li et al., 2016, pg. 124). However, though advances in rendering
have been made with emerging data formats (i.e. Vector Tiles, MBTiles,
Tile Mapping Services), issues of optimizing geospatial data storage and
querying remain. Tiles still require producer-side storage of raw data,
and in general, spatial indexing techniques need to evolve for larger
geospatial datasets, particularly in real-time applications (Li et al.,
2016).

Even as computational techniques to extract and render information
from data are improving, collaborative geospatial tools are limited by
ongoing conceptual challenges to synthesizing information derived
from large amounts of geospatial data. In particular, Miller and
Goodchild (2015) point out that key issues resulting from the progres-
sion from a “data scarce to data-rich environment” are also
longstanding challenges in geographic research: accuracy; uncertainty;
representations of data and features; “populations (not samples),messy
(not clean) data, and correlations (not causality)” (p. 450). While it is
clear that these issues will continue to be ongoing challenges for both
theory and technology, collaborative geospatial tools can serve as ex-
ploratory testing grounds of proposed solutions. For example, participa-
tory data aggregators have already begun to integrate approaches to
addressing issues of quality in VGI data such as biases in geographic cov-
erage, user motivations, and knowledge levels (Quinn, 2015) through
crowdsourced-based approaches (i.e. validation, repetition), social-
based approaches (i.e. trusted users), and geographic knowledge-
based approaches (i.e. spatial dependence and topological rules)
(Goodchild & Li, 2012).

Developers of collaborative geospatial tools should also note ongo-
ing concerns regarding the centralized production of technology and
knowledge. It is clear that while collaborative geospatial tools are in-
deed becomingmore interoperable and sophisticated, the development
of these tools require knowledge that is not equally shared, which
serves as a barrier to including stakeholders in the tool development
process. For example, Wright et al. (2009) explore how geospatial
tools used in collaborative natural resource management projects can
either reinforce the technical knowledge divide between scientists
and the public or provide alternative ways for the citizens to engage in
the storytelling process. In addition, through presenting a “hierarchy
of hacking”, Haklay (2013) identifies a key barrier to democratization
within neogeography as the technical knowledge and skillsets needed
for citizens to be empowered to create their own tools, in light of “the
current corporatisation of the web” (p. 63). The author concludes that
newgeospatial tools have increased the access anduse of geographic in-
formation only at the lower hacking levels; “the higher levels, where
deep democratisation of technology is possible… require skills and ap-
titude that are in short supply and are usually beyond the reach of
marginalised and excluded groups in society” (p. 67). Similarly
concerned about corporate and top-down control of geospatial tool de-
velopment, Miller and Goodchild (2015) argue: “We must be cogni-
zant about where this research is occurring— in the open light of
scholarly research where peer review and reproducibility is possible,
or behind the closed doors of private-sector companies and govern-
ment agencies, as proprietary products without peer review and
without full reproducibility” (p. 460). Consistent with the concerns
expressed in the literature, our analysis also indicates an overall
high level of user knowledge needed to fully leverage the functional-
ity offered by collaborative geospatial tools (average tool score =
2.55, along a gradient in which 1.0 indicates none needed and 3.0 in-
dicates a high level needed). This score reflects the fact that many
tools in primary cluster A of highly scalable and customizable tools
and primary cluster B of participatory data aggregators provide
both basic functionalities as well as capabilities for expansion of
the tools by advanced users.

Looking into the future, continued development of collaborative
geospatial tools requires a sustained focus on the eight dimensions of
Open GIS proposed by Sui (2014): “Open Data, Open Software, Open
Hardware, Open Standards, Open Research, Open Publication, Open
Funding, and Open Education” (p. 4). In particular, Open Software and
Open Standards have been critical for the previously highlighted
strengths of collaborative geospatial tools: integration of open source
technology and support of interoperability through tool integration
and APIs. These aims are supported by ongoing evolution of Open
Geospatial Consortium standards and other open data standards, com-
bined with a renewed focus on standardized and queryable metadata
(Sui, 2014). Similarly, Elwood et al. (2012) highlight that the required
integration of data across differing formats and media can be a major
challenge to data synthesis, which often “can only be achieved if sys-
tems are to a large degree interoperable” (p. 582). Steiniger and
Hunter (2013) further argue for more open source APIs, as many popu-
lar “web-mapping tools work as black boxes and do not give users the
freedom to study and modify them” (p. 145).

Finally, tools are but one component in the collaborative process, an
iterative exercise in communication betweenpeople to “generate (ideas
and options), negotiate, choose, and execute” solutions to community
and global challenges (MacEachren & Brewer, 2004, p. 7). As such, the
process of stakeholders evaluating, implementing, and troubleshooting
tools as a group may be more fundamental to the success of collabora-
tive efforts than the functionality provided by the tools themselves.
One likely reason is that while many environmental management and
planning projects aspire to incorporate collaborative tasks (Cravens,
2016; Wright et al., 2009), tools are often chosen before project needs
are understood, or are not evaluated until after projects are completed
(Cravens, 2014). In addition, group discussion regarding the applicabil-
ity and functionality tools can also serve a strong mechanism of
stakeholder engagement, as the negotiation process can allow indi-
viduals to feel acknowledged and heard. While we have argued
that tool functionality can be leveraged to provide technical support
for collaborative tasks, future research can expand on this collabora-
tive geospatial typology to focus on identifying which technical im-
provements are most critical for strengthening public engagement
of non-scientists, particularly in the contexts of citizen science and
collaborative environmental planning. It remains “a challenge for fu-
ture research… how to combine computer technology with facilita-
tion without stifling the creativity of participants” (Jankowski,
2009, p. 1971). In addition to focusing on expanding functionality,
research can continue to explore additional ways that tools can em-
power stakeholders (i.e. further incorporation of theories of commu-
nication and decision-making, tool design, and user-computer
interactions). As stakeholders become more involved in the applied
process of technology design and creation, they can also highlight
previously unrecognized barriers and impediments to collaboration
(both social and technical) as well as help to redefine both conceptu-
al frameworks and best practices for collaboration.



91J. Palomino et al. / Computers, Environment and Urban Systems 65 (2017) 79–92
7. Conclusions

Spatial Data Science, which combines aspects of GI Science, Data Sci-
ence, and CyberGIS, has emerged as an interdisciplinary field that sup-
ports collaborative geospatial research through an emphasis on
leveraging cloud/web-based and open source geospatial tools that fos-
ter reproducible workflows and address long-standing technical bar-
riers to collaboration. Here, we used a quantitative and repeatable
approach to create an adaptable typology of collaborative geospatial
tools based on their functionality for collaborative tasks. The resulting
typological map reveals three key clusters composed of eight subclus-
ters, across which divergence is driven by required infrastructure and
user involvement. These clusters represent three primary types of col-
laborative geospatial tools: (1) highly scalable and customizable tools
with heavier infrastructure needs, (2) participatory data aggregators
and (3) content managers, the latter two with lighter infrastructure
needs. As the process of collaboration is complex, oneway (i.e. one clus-
ter) is not better than another; these clusters represent discrete types of
functionality that support communication and collaborative tasks for
different needs and purposes. Overall, the development of a typology
of collaborative geospatial tools can suggest key areas of future tool de-
velopment and Spatial Data Science research, as well as help stake-
holders evaluate tools by providing an understanding of the strengths
of existing tools and highlighting areas of needed development. Thus,
our example exploration of the emergent ecosystem of collaborative
geospatial tools is not only about tools per se; this work highlights the
ongoing need to facilitate communication between scientists and stake-
holders in order to support fruitful collaborations that address commu-
nity and global challenges.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.compenvurbsys.2017.05.003.
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