Title
CONSEQUENCES OF INVARIANCES UNDER C, P AND T IN REACTIONS INVOLVING ANTI-PARTICLES

Permalink
https://escholarship.org/uc/item/1zc7z63d

Author
Stapp, Henry P.

Publication Date
1959-08-11
UNIVERSITY OF CALIFORNIA
Ernest O. Lawrence
Radiation Laboratory

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
CONSEQUENCES OF INVARIANCES UNDER C, P AND T IN REACTIONS INVOLVING ANTI-PARTICLES

Henry P. Stapp

August 11, 1959

Printed for the U. S. Atomic Energy Commission
CONSEQUENCES OF INVARIANCES UNDER C, P AND T

IN REACTIONS INVOLVING ANTI-PARTICLES

Henry P. Stapp

Lawrence Radiation Laboratory
University of California
Berkeley, California

August 11, 1959

ABSTRACT

The operations of charge conjugation, time reversal, and spatial inversion are discussed and reduced convenient forms. The consequences of the possible invariances with respect to these operations are examined for the reaction $p + \bar{p} \rightarrow \Lambda + \bar{\Lambda}$.

This work was performed under the auspices of the U. S. Atomic Energy Commission.

This report will not be published.
CONSEQUENCES OF INVARIANCES UNDER C, P AND T

IN REACTIONS INVOLVING ANTI-PARTICLES

Henry P. Stapp

Lawrence Radiation Laboratory
University of California
Berkeley, California

August 11, 1959

SECTION 1 INVARIANCE CONDITIONS

This section contains a general discussion of the operations of
time reversal, charge conjugation and spatial reflection.

1. Time Reversal—First Quantized

Let the state vector \(\mid \psi(t) \rangle \) represent a possible physical system. A corresponding "time-inverse" system will be represented by a state vector denoted by \(\mid \psi^\Theta(t) \rangle \).

In order that two states be termed "time-inverses" it is necessary that positions, momenta and spins in the two states be related in the manner implicit in the term "time-inverse". That is, if measurements on the two systems are made at times \(t \) and \(-t \) respectively then position expectations must be equal but momentum and spin expectations must be opposite. Specifically, if we make the definition

\[
\langle P(x, t) \rangle \equiv \langle \psi(t) \mid P(x) \mid \psi(t) \rangle \\
\langle P(x, t) \rangle^\Theta \equiv \langle \psi^\Theta(t) \mid P(x) \mid \psi^\Theta(t) \rangle,
\]

where \(P(x) \) is a projection operator for an eigenvectors of \(x \), then the physical meaning implicit in the term time reversal implies

\[
\langle P(x, t) \rangle^\Theta = \langle P(x, -t) \rangle
\]
Similarly, we have the requirements
\[\langle M^k, t) \rangle^\Theta = \langle P (-k, -t) \rangle \]
\[\langle \Omega^0 (t) \rangle^\Theta = \Omega^0 (t) \]

The required relationships may be satisfied by taking
\[|\psi^\Theta (t) | = | T \psi (t) | = | \mathcal{N} T_0 \psi (t) | , \]
where \(T_0 \) is defined by \(T_0 f(t) = f(-t) \), \(\mathcal{N} \) is a unitary transformation in spin space, and \(K \) is a Wigner complex conjugation operator, which satisfies by definition the conditions
\[\langle K \psi | K \phi \rangle = \langle \psi | \phi \rangle^* = \langle \phi | \psi \rangle , \]
\[K | \alpha \psi + \beta \phi \rangle = \alpha^* | K \psi \rangle + \beta | K \phi \rangle \quad (\alpha, \beta \text{ scalars}), \]
\[K^2 = 1 . \]

For spinless particles \(\mathcal{N} = 1 \) and the requirements are satisfied by specifying that the eigenvectors of \(x \) are real. That is, the definition of \(K \) is completed by the specification \(| K x \rangle = | x \rangle \). With this definition of \(K \) the coordinate space wave function for the time-reversed system is
\[\psi^\Theta (x, t) = \langle x | \psi^\Theta (t) \rangle \equiv \langle x | K \psi (-t) \rangle \]
\[= \langle K x | \psi (-t) \rangle^* = \langle x | \psi (-t) \rangle^* \]
\[= \psi^* (x, -t) . \]

Notice that the eigenvectors \(| k \rangle \) defined by \(\langle x | k \rangle = e^{ikx} \)
are not real.
For particles with spin the requirement that spins be reversed under time reversal implies that for all vectors $|\Psi\rangle$

$$\langle k \bar{\Psi} | \Gamma^* \bar{\sigma}^2 \Gamma k \Psi \rangle = - \langle \bar{\Psi} | \bar{\sigma}^2 | \Psi \rangle.$$
Here $\bar{\Gamma}$ is the Hermitian conjugate of Γ. Taking $\bar{\Psi} = \alpha \Psi + \beta \bar{\phi}$, with arbitrary α and β, one obtains, for arbitrary ϕ and ψ, the more incisive form

$$\langle k \phi | \bar{\Gamma}^* \bar{\sigma}^2 \Gamma k \psi \rangle = - \langle \psi | \bar{\sigma}^2 | \phi \rangle.$$
Here the properties of K have been used. Taking the eigenvectors of $\bar{\sigma}^2 \Gamma$ to be real, which completes the definition of K, one obtains in this real representation the condition

$$\bar{\Gamma}^* \bar{\sigma}^2 \Gamma = - \bar{\sigma}^T,$$
where the superscript T denotes transpose.

In the Dirac-particle case, the physical requirements implicit in the term *time reversal* are $\langle j_0 (x, t) \rangle^\Theta = \langle j_0 (x - t) \rangle$

$$\langle j_0 (x t) \rangle^\Theta = - \langle j_0 (x, -t) \rangle; \langle \bar{\sigma}^2 (x, t) \rangle^\Theta = - \langle \bar{\sigma}^2 (x, -t) \rangle$$

These requirements, together with Lorentz invariance, imply

$$\bar{\alpha}_i \bar{\Gamma} = - \bar{\alpha}_i^T \Gamma$$

$$\bar{\Gamma}^* \bar{\sigma}^2 \Gamma = - \bar{\sigma}^T,$$
where α_i and β are the (Hermitian) Dirac matrices.

Having thus defined the operation of time reversal by the physical requirements implicit in the terminology, one may inquire whether the time-inverse of a system that exists in nature system will also exist in nature. The necessary and sufficient condition for this is that
\[
\frac{1}{\hbar} \frac{\partial}{\partial t} \Psi^\oplus(t) = H \Psi^\oplus(t).
\]

This is equivalent to the (given) equation
\[
\frac{1}{\hbar} \frac{\partial}{\partial t} \Psi(t) = H \Psi(t),
\]
provided
\[
T^{-1} HT = H_0.
\]

Another form of the requirement of invariance under time-reversal invariance is
\[
\Psi^\oplus(t) = S(t, t_0) \Psi^\oplus(t_0),
\]
where \(S(t, t_0) \) is defined by
\[
\Psi(t) = S(t, t_0) \Psi^\oplus(t_0).
\]
This may be expressed as
\[
T^{-1} S(t, t_0) T = S(t, t_0).
\]

Writing \(S(t, -t) = S \) and using the unitarity of \(S \), one obtains
\[
K \oint L^* S \oint L K = S_0,
\]
where the star denotes hermitian conjugate. Hence for arbitrary time-independent states \(\varphi \) and \(\psi^\oplus \) one has
In the second quantized theory the wave function \(\psi (x, t) \) of the first quantized theory becomes an operator and the state is represented by a new state vector \(|\psi \rangle \). In the Schrödinger representation, where the state vector is time-dependent and the operators time-independent, a typical expectation value will have the form

\[
\langle \psi | \mathcal{F} | \psi \rangle = \langle \psi | \mathcal{F} | \psi \rangle ,
\]

where \(\mathcal{F} (x) \) is some function of the operators \(\psi (x) \). For instance, we may have

\[
\mathcal{F}(x) = j_{\mu \lambda} (x) = \psi^* (x) \alpha^\mu \psi (x) \equiv F [\psi (x)] .
\]

The operators for various physical quantities are in fact just the corresponding expectation values of the first quantized theory but with the \(\psi (x) \) and \(\psi^* (x) \) now Hermitian conjugate operators and with some specification of the order of these operators.

The second quantized form for the expectation value of this same physical quantity in the time-reversed system is
\[\langle F(x,t) \rangle^0 = \langle \Psi^\theta(t) \mid F(x) \mid \Psi^\phi(t) \rangle \]

\[\equiv \langle T \Psi(t) \mid F(x) \mid T \Psi(t) \rangle. \]

The physical requirements implicit in the term "time reversal" will again be contained in equations of the form

\[\langle F(x,t) \rangle^0 = \langle F^\theta(x,-t) \rangle, \]

where \(F^\theta(x) \) is generally \(\neq F(x) \). Inserting the ansatz \(T \equiv \text{UKT}_0 \)
on one obtains, for arbitrary \(\Psi \),

\[\langle K \Psi \ U^* F(x) U \mid K \Psi \rangle = \langle \Psi F^\theta(x) \Psi \rangle, \]

and hence, as before,

\[K U^* F^\theta(x) U \ K = F^\theta(x). \]

The relationship between \(F(x) \) and \(F^\theta(x) \) is determined by the physical meaning of time reversal. Equivalently, one can take \(F^\theta(x) \) to be \(F^\theta(x) \), the operator obtained from \(F(x) \) by the time-reversal transformation of the first quantized treatment but with \(\Psi(x) \) and \(\Psi^* (x) \) now considered as Hermitian conjugate operators and with the order of these operators reversed. \[\text{[With this rule one obtains, for instance, the physically required relationship } F^\theta(x) = -F(x). \]

Inserting the relation \(F^\theta(x) = F^\theta(x) \) into the above equation one obtains, for a general form \(F(x) = \psi_{\alpha}^*(x) \int_\beta \beta \phi_\beta(x) \),

\[K U^* \phi^\theta(x) \ U \ K \] \[= (\int \phi^\theta(x) \beta \int_\beta \beta \phi_\beta(x) \ U \ K \] \[= (\int \phi^\theta(x) \beta \int_\beta \beta \phi_\beta(x) \ U \ K \]
\[S^K \] is the complex conjugate of \(S \). Use has been made here of the fact that the unitary operator \(U \) operates in the space in which \(\Psi \) is a vector and \(\psi \) is an operator; that is, \(U \) commutes with the spin-space operator \(J \).

The condition expressed above may be satisfied by taking

\[U^* \psi(x) U = (S \psi(x)) \alpha, \]

\[\Psi(x) K = \Psi(x). \]

This last condition, which defines the operator \(K \), by specifying the reality of \(\Psi(x) \), is analogous to the condition in the first quantized treatment that \(P(x) \) be real. It implies that the coordinate-space wave function, defined by

\[\psi_c(x, t) \equiv \langle 0 | \psi(x) | \Psi(t) \rangle, \]

where \(| 0 \rangle \) is the vacuum state, becomes complex conjugated under the complex conjugation of the state vector;

\[\langle 0 | \Psi(x) K \bar{\Psi}(t) \rangle = \langle 0 | K \Psi(x) \bar{\Psi}(t) \rangle \]

\[= \langle K 0 | \psi(x) \bar{\Psi}(t) \rangle^* \]

\[= \psi_c^*(x, t). \]

Here the reality of the vacuum has been assumed. Similarly,

\[\psi_c^\Theta(x, t) \equiv \langle 0 | \psi(x) | \bar{\Psi}^\Theta(t) \rangle \]

\[= \sum \psi_{c}^* (x, t). \]

Collecting the above results, one has the basic equations for time reversal:

\[\langle \bar{\Psi}^\Theta(t) \psi(x) \bar{\Psi}(t) \rangle \]
\[= \langle \Phi \mid F^\ominus \left[\psi(x, t) \right] \mid \Phi \rangle, \]
\[F^\ominus \left[\psi(x, t) \right] \equiv F^{tr} \left[\bigcap \psi^\dagger(x, -t) \right] \equiv F^{tr} \left[\psi^\dagger(x, t) \right], \]
\[K \psi(x) K = \psi(x), \quad U^* \psi(x) U = \bigcap \psi(x), \]
\[\bigcap^* \beta \bigcap = \beta^T, \quad \bigcap^* \alpha_1 \bigcap = - \alpha_1^T. \]

The superscripts \(T \) and \(tr \) stand for transpose and transposition of order respectively.

A necessary and sufficient condition for invariance under time reversal is, for all \(\Phi(t) \),
\[\langle \Phi^\ominus(-t) \mid H \left[\psi(x), -t \right] \mid \Phi^\ominus(-t) \rangle = \langle \Phi(t) \mid H \left[\psi(x), t \right] \mid \Phi(t) \rangle. \]

This is equivalent to
\[H^\ominus \left[\psi(x, t), t \right] = H \left[\psi(x, t), t \right], \]

a condition used by Pauli. Hermiticity of \(H \) is implicit in this characterization.

As in the first quantized case, one obtains, as a form of the condition of time reversal invariance, the requirement
\[\langle \Phi^\dagger \mid s \left[\psi(x) \right] \mid \Phi \rangle = \langle \psi^\dagger \mid s \left[\psi(x) \right] \mid \psi^\dagger \rangle, \]
where \(\Phi^\dagger \) and \(\psi^\dagger \) are time-independent states. This is equivalent to

* For Boson fields the transformations are as given here but with no spinor factor. This will be true also for \(C \) and \(P \). The phase factors are chosen so the Hamiltonian is invariant, if this is possible. For a discussion of the phase factors see the references at the end of this section.
This gives the requirement of time-reversal invariance as a condition on S rather than on its matrix elements.

Notice that the question of the commutation relations does not arise in the discussion of time reversal.

Notice also that one may change the definition of K by taking a new field $\Psi^0(x) \equiv e^{i\varphi} \Psi(x)$ to be the real operator without affecting the above arguments. Generally one will incorporate phase factors into the definition of $\Psi(x)$ so that H_{int} is simplified.

3. **Charge Conjugation - Second Quantized**

Physical requirements implicit in the term "charge conjugation" are:

$$\langle j_{\mu}(x, t) \rangle^c = -\langle j_{\mu}(x, t) \rangle, \quad \langle \sigma^j(x, t) \rangle^c = \langle \sigma^j(x, t) \rangle,$$

the charge and current densities are reversed but spin is unchanged. The operators are defined by

$$j_{\mu}(x, t) = \frac{1}{2} \left[\Psi^* (x, t), \alpha_{\mu} \Psi(x, t) \right], \quad \sigma^j_1(x, t) = \frac{1}{2} \left[\Psi^* (x, t), \alpha_j \alpha_k \Psi(x, t) \right] \varepsilon_{ijk}$$

The antisymmetrized form is used in order that the vacuum expectation values be zero. The charge conjugate state is defined to be

$$\Psi^c = C^c \Psi,$$

where

$$C^* \Psi(x) C = \mathbb{R} \Psi^s(x).$$

The matrix E is defined by
Except for phase factors, \(E = \int \mathcal{F} \beta \). The conditions

\[C \psi = - i \mu \] and \(C \mathcal{O}(x,t)^{\mu} = \mathcal{O}^{\mu}(x,t) \) are satisfied by virtue of the antisymmetrized form of \(\mu \). These forms are nonzero only in the second quantized theory, and they would be constants (zero or infinity) if the fields were assumed to obey commutation relations, rather than anticommutation relations.

The identification of the transformation defined above as charge conjugation is confirmed also by a study of the equations of motion of a Dirac particle in an external electromagnetic field. If \(\psi(x, t) \) is assumed to satisfy the equation

\[
\left(i \frac{\partial}{\partial t} - e \mathcal{A}_0 \right) \psi(x, t) = \left[-i \frac{\partial}{\partial x_1} - e \mathcal{A}_1 \right] \alpha_i + \beta \mathcal{m} \psi(x, t),
\]
multiplication by \((-E \mathcal{K}) \) gives

\[
\left(i \frac{\partial}{\partial t} - e \mathcal{A}_0 \right) \psi^c(x, t) = \left[-i \frac{\partial}{\partial x_1} - e \mathcal{A}_1 \right] \alpha_i + \beta \mathcal{m} \psi^c(x, t),
\]
where \(\mathcal{A}_0^c = - \mathcal{A}_0 \), \(\psi^c = E \psi^* \), and the Hermiticity of the \(\alpha_i \) and \(\beta \) is used. Thus \(\psi^c(x, t) \) is a solution of the equations of motion in a reversed external field.

If a free field \(\psi_0(x, t) \) is expanded in the form

\[
\psi_0(x, t) = \int \frac{d^4p}{(2\pi)^4} N(p) \sum_{\alpha} \left[U(p, \alpha) a(p, \alpha) e^{ipx} + \right. \\
\left. \sqrt{(p, \alpha)} b^* (p, \alpha) e^{-ipx} \right],
\]
where \(\sqrt{(p, \alpha)} = E^* U(p, \alpha) \),

\[U(p, \alpha) = E^* \sqrt{(p, \alpha)} \]
and $N(p)$ is a real normalization factor, then $\psi^* C \psi_0 = E \psi_0^*$

$\psi^* \psi_0^*$ is obtained from ψ_0 by the substitution $a \leftrightarrow b$ ($a^* \leftrightarrow b^*$),

which is the interchange of the annihilation (creation) operators for particles and antiparticles.

4. Invariance Under Spatial Reflection

Given a system represented by $|\Psi(t)\rangle$, the reflected system is represented by

$|\Psi^P(t)\rangle \equiv P |\Psi(t)\rangle$,

where

$P^* \psi(x) P = \beta \psi(-x)$.

Invariance under spatial reflection may be expressed by the equivalent conditions

$P^* H P = H$,

$\langle \Psi^P | S | \Psi^P \rangle = \langle \Psi | S | \Psi \rangle$,

$P^* S P = S$.

5. Proper Spinor S-Matrix.

A typical term in the field theoretical S-matrix for the scattering of a Dirac particle by a spin-zero boson is

$\int \psi^* (x') G(x', y'; x, y) \psi (x) \varphi^* (y') \varphi (y)$,

or, in momentum space,
\[\psi_0^\dagger (k) \, G (k^0 q^+; q k) \psi_0 (k) \, \varphi^* (q^+) \, \varphi (q). \]

We make the definitions \(f = \pm k = k | k_0 / k_0 \), \(p = \pm q = q | q_0 / q_0 \).

Then
\[\psi_0 (k) = \begin{cases} N(f) \sum_{\alpha} a(f_\alpha) \, U(f_\alpha) & (\text{for } k_0 > 0) \\ N(f) \sum_{\alpha} b^* (f_\alpha) \, V(f_\alpha) & (\text{for } k_0 < 0) \end{cases} \]
\[\psi_0^\dagger (k^0) = \begin{cases} N(f^0) \sum_{\alpha} a^* (f^0_\alpha, \alpha^0) \, \bar{U}(f^0_\alpha, \alpha^0) & (\text{for } -k^0_0 < 0) \\ N(f^0) \sum_{\alpha} b (f^0_\alpha, \alpha^0) \, \bar{V}(f^0_\alpha, \alpha^0) & (\text{for } -k^0_0 > 0) \end{cases} \]
\[\varphi_0 (q) = \begin{cases} \bar{N}(p) \, a_m (p) & (\text{for } q_0 > 0) \\ \bar{N}(p) \, b^*_m (p) & (\text{for } q_0 < 0) \end{cases} \]
\[\varphi_0^* (q^+)= \begin{cases} \bar{N}(p^+) \, a^*_m (p^+) & (\text{for } -q_0^+ < 0) \\ \bar{N}(p^+) \, b_m (p^+) & (\text{for } -q_0^+ > 0) \end{cases} \]

Introducing the free-particle momentum eigenstates,
\[| f \alpha, p \rangle \equiv a^* (f \alpha) \, a^*_m (p) | 0 \rangle \gamma_l (f, p), \]
where
\[\gamma_l (f, p) \equiv \left[N(f) \, \bar{N}(p) \langle 0 | a^* (f \alpha) \, a^* (f \alpha_1) | 0 \rangle < 0 | a_m (p) \, a^*_m (p) | 0 \rangle \right]. \]

et al., we define the proper spinor scattering matrix \(S_n (k^0 q^+; k q) \) by

the equations
\[
\left\langle f^9 \alpha^9 \, p^9 \right| S \right| f \alpha(p) \right
angle = \overline{U}(f^9 \alpha^9) \, G(f^9 \, p^9; \, p \nu f) \, U(f \alpha)
\]

\[
= \varnothing (\alpha^9) \, S_n \, f^9 \, p^9; \, p \nu f \right\rangle \varnothing (\alpha^9)
\]

\[
\left\langle f^9 \alpha^9 \right| \, S \right| \overline{(p^9)^9} \right\rangle = \overline{U}(f^9 \alpha^9) \, G(f^9 = p^9; \, p = f) \, V(f \alpha)
\]

\[
= \varnothing (\alpha^9) \, S_n \, (f^9 \mp p^9; \, p = f) \, \varnothing (\alpha^9)
\]

\[
\left\langle (f^9 \alpha^9)^9 \right| \, S \right| \overline{(p^9)^9} \right\rangle = -\overline{V}(f^9 \alpha^9) \, G(-f^9 \, p^9; \, -p \nu f) \, V(f \alpha)
\]

\[
= \varnothing (\alpha^9) \, S_n \, (-f^9 \mp p^9; \, -p = f) \, \varnothing (\alpha^9)
\]

The minus sign in the middle term of the last two equations comes from an anticommutation of the creation and annihilation operators. Notice that the states on the right of \(S_n \) refer to the "incoming" states in the spinor or proper time sense. The states \(\varnothing (\alpha) \) and \(\varnothing (\alpha^9) \) represent the states of the positive-energy particle in its rest frame. In terms of these states the \(U(f \alpha) \) and \(V(f \alpha) \) are given by

\[
U(f \alpha) = (\gamma(f) \beta + 1) \, \varnothing (\alpha) \left[1 + 1/f_0/m \right]^{-1/2}
\]

\[
V(f \alpha) = (\gamma(f) \beta + 1) \, \varnothing (\alpha) \left[1 + 1/f_0/m \right]^{-1/2}
\]

where \(\gamma(f) = -i \gamma_0 f/m \) and \(m \) is the mass of the Dirac particle.

Noticing that \(\beta \varnothing (\alpha) = \varnothing (\alpha) \), \(\beta \varnothing (\alpha^9) = -\varnothing (\alpha^9) \) and that in \(S_n \) the variable \(k (k^9) \) is \(+f (f^9) \) or \(-f (f^9) \) for particle or antiparticle respectively, one obtains the general relationship
\[S_n(k^i q^j; q k) = (1 + \mathcal{O}(k^i)) \cdot G(k^0, q^0; q k) \ (1 + \mathcal{O}(k)) \]
\[\times \frac{1}{2} \times \left[\left(1 + (f_0/rm) \right) \left(1 + (f_0/mb') \right) \right]^{-1/2}. \]

With the notation \(\wedge_{\nu} = 1/2 \ (1 \pm \beta) = \wedge \sigma \) we see that the single matrix \(S_n(k^i q^j; q k) \) describes four different processes, in accordance with the four choices of the signs \(\sigma, \sigma' \) in

\[\wedge_{\nu} S_n(\sigma^0 \ f^3, \sigma \ p^3; \sigma^3 \ p, \sigma \ f) \wedge \sigma. \]

According to the substitution rule of field theory \(G(k^i, q^i; q k) \) is a single covariant function of its variables. Hence \(S_n \) is also a single covariant function of these variables, aside from the square root factor, which is known. A single essentially covariant matrix \(S_n(k^i q^j; q, k) \) describes four different processes. \(\left[\right. \text{Also, one quadrant } \wedge_{\nu} S_n \wedge_{\sigma}, \text{ given as a function of the four energy momentum vectors, determines the entire } S_n. \right] \]

If we take \(\beta \) to have the usual diagonal form then the four parts of \(S_n \) lie in the four corners. Each process is described by a two-by-two spin matrix of the Pauli form. As this reduced form is somewhat more convenient for calculations we inquire into the consequences of the symmetry principles in regard to \(S_n(k^i q^i; q k) \).

6. Time - Reversal Invariance Applied to \(S_n \).

We may take the representation

\[\beta = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad \sigma_i = \begin{pmatrix} 0 & \sigma_i \\ \sigma_i & 0 \end{pmatrix}, \quad \gamma_5 = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} \]
\[\lambda = \begin{pmatrix} \omega & 0 \\ 0 & \omega \end{pmatrix}, \quad E = \begin{pmatrix} 0 & -\omega \\ \omega & 0 \end{pmatrix}, \quad \omega \sigma \omega = -\sigma^T. \]
Then the condition

\[\langle f' \alpha^i \ p^0 \mid S \mid f\alpha(p) \rangle = \langle (f\alpha(p))^\Theta \mid S \mid (f^i \alpha^i \ p^i)^\Theta \rangle \]

becomes

\[\not\! \rho(\alpha') \ S_n(f^i \ p^i; \ p \to f) \not\! \rho(\alpha') = \not\! \rho(\alpha') \ S_n(f^\Theta \ p^\Theta; \ f^i \ p^i)^\Theta \not\! \rho(\alpha') \]

where \(f^\Theta = (f_C, -r) \).

This says \(\not\! \rho(\alpha') \ S_n \not\! \rho(\alpha') \) is invariant under \((f, p) \leftrightarrow (-f, -p) \),

\((f_0 \ p_0) \leftrightarrow (f_0^\Theta \ p_0^\Theta) \), \(\sigma \to -\sigma \), and a transposition of orders of all \(\not\! \rho \)'s. The same condition applies for \(\not\! \rho(\alpha') \ S_n \not\! \rho(\alpha') \). For these two quadrants the initial and final states consist of the same particles and thus the time-reversal condition is a condition on the single quadrant, not a relationship between the matrices for different processes.

For the off-diagonal elements we have, from time-reversal invariance, the relation

\[\langle (f^i \alpha^i) (f\alpha)^c \mid S \mid p \ (p^i)^c \rangle \]

\[= \langle p^\Theta \ (p^i)^\Theta \mid S \mid (f^i \alpha^i)^\Theta \ (f\alpha)^c \rangle. \]

Introducing the definition of the \(S_n \) and using the fact that

\[\langle (f^i \alpha^i)^\Theta (f\alpha)^c \rangle = -\langle (f\alpha)^c (f^i \alpha^i)^\Theta \rangle \]

one obtains,

\[\not\! \rho(\alpha') \ S_n(f^i - p^i; \ p - f) \not\! \rho(\alpha') \]

\[= -\not\! \rho(\alpha') \ S_n(-f^\Theta, p^\Theta; \ -p^i \ p^i)^\Theta \not\! \rho(\alpha') \]

or

\[\hat{\not\! \rho} \ S_n(f^i - p^i; \ p - f) \not\! \rho(\alpha') \]

\[\not\! \rho(\alpha') \ S_n(-f^\Theta, p^\Theta; \ -p^i \ p^i)^\Theta \not\! \rho(\alpha') \]

\[\not\! \rho(\alpha') \ S_n (f^i - p^i; \ p - f) \not\! \rho(\alpha') \]

\[\not\! \rho(\alpha') \ S_n (-f^\Theta, p^\Theta; \ -p^i \ p^i)^\Theta \not\! \rho(\alpha') \]

\[\not\! \rho(\alpha') \ S_n (f^i - p^i; \ p - f) \not\! \rho(\alpha') \]

\[\not\! \rho(\alpha') \ S_n (-f^\Theta, p^\Theta; \ -p^i \ p^i)^\Theta \not\! \rho(\alpha') \]

\[\not\! \rho(\alpha') \ S_n (f^i - p^i; \ p - f) \not\! \rho(\alpha') \]

\[\not\! \rho(\alpha') \ S_n (-f^\Theta, p^\Theta; \ -p^i \ p^i)^\Theta \not\! \rho(\alpha') \]

\[\not\! \rho(\alpha') \ S_n (f^i - p^i; \ p - f) \not\! \rho(\alpha') \]

\[\not\! \rho(\alpha') \ S_n (-f^\Theta, p^\Theta; \ -p^i \ p^i)^\Theta \not\! \rho(\alpha') \]
\[
\Lambda^+ S_n \left(f^\ast - p^\ast; p = f \right) \Lambda^-
\]
\[
= - \omega \left[\Lambda^+ S \left(-f^\ast, p^\ast; -p^\ast f^\ast \right) \Lambda^+ \right]^T \cdot
\]

and finally

\[
\Lambda^+ S_n \left(f^\ast - p^\ast; p = f \right) \Lambda^-
\]
\[
= - \omega \left[\Lambda^+ S \left(-f^\ast, p^\ast; -p^\ast f^\ast \right) \Lambda^+ \right]^T \cdot
\]

This equation relates one off-diagonal quadrant of \(S_n \) to the opposite quadrant and therefore imposes no restriction on either quadrant alone.

7. **Charge-Conjugation Invariance Applied to \(S_n \).**

Charge-conjugation invariance gives conditions on the off-diagonal parts of \(S_n \). It implies

\[
\langle (f^\ast \alpha^i) (f \alpha)^c | S | (p^\ast)^c p \rangle
\]
\[
= \langle (f^\ast \alpha^i)^c (f \alpha) | S | p^\ast p^c \rangle.
\]

Inserting the definition of \(S_n \), one obtains

\[
\emptyset \left(\alpha^i \right) S_n \left(f^\ast - p^i; p^\ast = f \right) \emptyset^c \left(\alpha \right)
\]
\[
= \emptyset \left(\alpha \right) S_n \left(f^\ast = p; p^\ast = f^\ast \right) \emptyset^c \left(\alpha^i \right),
\]

or

\[
\Lambda^+ S_n \left(f^\ast - p^i; p^\ast = f \right) \Lambda^+ \omega
\]
\[
= \left[\Lambda^+ S_n \left(f^\ast - p; p^\ast = f^\ast \right) \Lambda^+ \omega \right]^T
\]
or
\[\bigwedge_+ S_n (f^i_2 - f^0_2; p^i_2 = f) \bigwedge_- \]
\[= \omega \left[\bigwedge_+ S_n (f^i_2; p^i_2 = f^i_2) \bigwedge_- \right]^T \omega^* . \]

This says \(\bigwedge_+ S_n \bigwedge_- \) is invariant under the substitution \((f^i; p^i) \rightarrow (f^i, p^j)\)
\(\sigma \rightarrow -\sigma\) provided the order to the \(\sigma^0\)'s is reversed.

Applied to the diagonal quadrant, the requirement of charge-conjugation
invariance says,
\[\langle f^i \alpha \mid S \mid f^0 \alpha \rangle = \langle (f^i \alpha^* \mid p^0) \rangle \]

or
\[\mathbb{S} (\alpha^*) S_n (f^i_2, p^0_2; p_2 f) \mathbb{S} (\alpha^*) = \mathbb{S}_n (f^i_2, p^0_2; p_2 f) \]

or
\[\bigwedge_+ S_n (f^i_2; p_2 f) \bigwedge_- = \left[\omega^* \bigwedge_- S_n (f^i_2; p_2 f) \bigwedge_- \right]^T \omega^* . \]

This is again a relationship between two different quadrants and does not
impose a restriction on a single diagonal quadrant.

8. Parity Invariance Applied to \(S_n \).

Invariance under parity implies that under the substitution
\((f^0, p^0, f^0, p^0) \rightarrow (-f^0, -p^0, -f^0, -p^0) \) the diagonal quadrants are invariant
and the off-diagonal quadrants change sign. This sign change comes from
the \(\beta \) in the equation \(\psi'(x, t) = \beta \psi' (-x, t) \).
9. General Forms of Invariance Conditions.

\[S_n(k^i, q^i; q, f) \] is, aside from the square-root factor

\[\left(\frac{1}{m} \right)^{\frac{1}{2}} \left(\frac{1}{m} \right)^{\frac{1}{2}} \] a covariant matrix. In the Dirac representation, where \(\beta \) is diagonal, four related processes are described by the four quadrants of \(S_n(k^i, q^i; q, f) \), provided the appropriate signs in \(k = \pm f, \) etc., are used. For the quadrants at opposite corners the physical matrix elements are obtained by using opposite signs of all the momenta. But for any covariant matrix a reversal of all vectors followed by a switch to the opposite quadrant leaves a matrix unchanged, as is easily seen. Thus Lorentz invariance implies

\[\Lambda \left(f^i, p^i; p, f \right) \Lambda = \Lambda \left(-f^i, -p^i; -p, -f \right) \Lambda \]

\[\Lambda \left(f^i, -p^i; p, f \right) \Lambda = \Lambda \left(-f^i, p^i; -p, f \right) \Lambda \]

These relations allow one to obtain restrictions on the diagonal quadrants from \(C \) invariance and restrictions on the off-diagonal quadrants from \(T \) invariance.

The previously obtained consequences of time-reversal invariance combined with the above consequences of Lorentz invariance imply that under the transformation

\[\left\{ \begin{array}{l}
(f^i_p, p) \leftrightarrow (-f^i_p, -p) \\
(f_0^i, P_0) \leftrightarrow (f_C^i, P_0)
\end{array} \right. \]

\(T \) trans. \(T \) of \(0 \)

the diagonal quadrants of \(S_n(k^i, q^i; q, k) \) are unchanged and the off-diagonal elements change sign. Here "\(T \) of \(0 \)" represents a transposition of the order of the \(\sigma \) matrices.
Similarly charge-conjugation invariance, together with Lorentz invariance, implies that under the transformation

\[
(f, p) \leftrightarrow (f', p') \quad \sigma \leftrightarrow -\sigma \quad T \text{ of } 0
\]

certain transformations

\[
\begin{align*}
(f, p) & \leftrightarrow (f', p') \\
\sigma & \leftrightarrow -\sigma \\
T \text{ of } 0
\end{align*}
\]
all quadrants be invariant.

The requirement of reflection invariance (parity) says that under

\[
(f, p, f', p') \leftrightarrow (-f, -p, -f', -p')
\]
the diagonal quadrants are invariant, and the off-diagonal quadrants change sign.

It will be observed that the product of the three transformations (C, P, and T) is the identity transformation. Hence the combined CPT invariance is always maintained. Stated differently, our equations

\[
\begin{align*}
\bigwedge_+ S_n(f^0, p^0; p, f) \bigwedge_+ & = \bigwedge_+ S_n(-f^0, -p^0; -p, -f) \bigwedge_+ , \\
\bigwedge_+ S_n(f^0, -p^0; p, f) \bigwedge_+ & = \bigwedge_+ S_n(-f^0, p^0; -p, f) \bigwedge_+ ,
\end{align*}
\]
which were obtained from the substitution rule and Lorentz invariance, imply CPT invariance.

The principal results of this section are contained in the above-stated forms of the separate invariances under C, P, and T as applied to the matrix \(S_n \left(k^0, q^0; k, q \right) \). These results apply in unaltered form to a system of several Dirac particles provided the generalized \(S_n \) is defined by the obvious generalization of the one Dirac-particle form given above.

Relationships between various observables implied by the invariance conditions may be obtained by an examination of the expressions for these observables in terms of the scalar parameters of the proper spinor scattering
matrix, \(S \). The restrictions imposed on these scalar parameters by the invariance conditions leads to corresponding connections between the observables. In general one obtains various relations among the observables over and beyond those that follow directly from the postulated physical significance of the symmetry operations. As an example, the reaction \(p + \bar{p} \rightarrow \Lambda + \bar{\Lambda} \) is considered in section two.

REFERENCES REGARDING PHASE FACTORS

1. W. Pauli's article in Niels Bohr and the Development of Physics (McGraw-Hill Book Company, New York, 1955);
3. Pauli Lectures at the University of California (1958), (Footnote to lecture 10);
4. R. Spitzer and H. P. Stapp, UCRL-3796 Rev., Appendix D;
SECTION II: THE REACTION $p + \bar{p} \rightarrow \Lambda + \bar{\Lambda}$

The reaction $p + \bar{p} \rightarrow \Lambda + \bar{\Lambda}$ can be described by a matrix in the product spin spaces of the two Dirac particles. Expressed in terms of the two proper spinor scattering matrices, S_n and S_n^*, the reaction is related to one two by two quadrant of each. Thus the reaction is represented by a matrix of the form

$$M = a + b_1 \sigma_1 + c_1 \gamma_1 + \sigma_1 d_{ij} \gamma_j = a + b \cdot \vec{\sigma} + c \cdot \vec{\gamma} + d \cdot \vec{\sigma} \cdot \vec{\gamma}.$$

The σ_1 and γ_1 are Pauli spin matrices in the proper spinor spaces of the two Dirac particles of the reaction. In accordance with the theory given above we let the indices on the right-hand side of these matrices refer to the "incoming" particle in the Feynman or proper time or spinor sense. That is, for an antiparticle the final spin state multiplies γ_1 from the right and the (complex conjugate of the) initial spin state stands on the left.

There are two ways of associating the matrices γ_1 and σ_1 with the particles. In the first (Form One) one set of matrices, say the γ_1, is associated with the proton and antiproton and the other set, σ_1, is associated with the Λ and $\bar{\Lambda}$. In the second form one set, say σ_1, is associated with the particle (i.e., Λ, p) and the other set, γ_1, is associated with the anti-particle (\bar{p}, $\bar{\Lambda}$). For these alternative forms the consequences of the various symmetries are as follows:

1 See section one. The operators corresponding to the spins of anti-particles are $(-\vec{\sigma})$ and $(-\vec{\gamma})$ in this formalism. The formulas are specialized to the reaction center-of-mass frame.
\[
\begin{align*}
\textbf{T} : & \quad \vec{b} = \vec{c} = 0 \\
\textbf{C} : & \quad \begin{cases}
\vec{b} \cdot \vec{N} = \vec{c} \cdot \vec{N} = 0 \\
\vec{t} \cdot \vec{d} \cdot \vec{N} = \vec{N} \cdot \vec{d} \cdot \vec{t} = 0
\end{cases} \\
\textbf{P} : & \quad \begin{cases}
\vec{b} \cdot \vec{t} = \vec{c} \cdot \vec{t} = 0 \\
\vec{t} \cdot \vec{d} \cdot \vec{N} = \vec{N} \cdot \vec{d} \cdot \vec{t} = 0
\end{cases}
\end{align*}
\]

In these equations, and in what follows, \(\vec{N} \equiv \vec{\hat{n}} \) will be the unit vector perpendicular to the production plane and \(\vec{\tau} \) and \(\vec{\tau}' \) are vectors in this plane.

The general forms of the various observables, expressed in terms of the parameters \(a, b, c, \) and \(d, \) are given in Table A.

For the special case in which \(C, P, \) and \(T \) are individually conserved and the (possible) polarization of the incident antiproton is perpendicular to its direction of motion, the general formulas reduce to the forms given in Tables B1 and B2. For this special case there are 24 scalar observables for each polar production angle. These are defined by the scalar parameters on the right hand side of the equations.
\[I(\theta, \psi) = \frac{1}{4} \text{Tr} \left(1 - \vec{v} \cdot \vec{P} \right) \hat{N} \equiv I_0 \cdot F_0 \left(\cos \psi \right) \hat{O}, \]

\[I(\theta, \psi) = \frac{1}{4} \text{Tr} \left(1 - \vec{v} \cdot \vec{P} \right) \hat{M}_I \equiv I_0 \cdot F_0 \left(\cos \psi \right) \hat{O}, \]

\[\hat{N}^2 \hat{M}_I \left(1 - \vec{v} \cdot \vec{P} \right) \hat{M}_I \equiv \frac{1}{4} \text{Tr} \left(1 - \vec{v} \cdot \vec{P} \right) \hat{M}_I \]

\[\hat{N}^2 \hat{M}_I \left(1 - \vec{v} \cdot \vec{P} \right) \hat{M}_I \equiv \frac{1}{4} \text{Tr} \left(1 - \vec{v} \cdot \vec{P} \right) \hat{M}_I \]

\[\hat{N}^2 \left(1 - \vec{v} \cdot \vec{P} \right) \hat{M}_I \equiv \frac{1}{4} \text{Tr} \left(1 - \vec{v} \cdot \vec{P} \right) \hat{M}_I \]

\[\equiv \hat{N} (C_{NNO} + C_{NNC} \left(\cos \psi \right) \hat{O}) \hat{N} \]

\[+ \hat{K} (C_{KKO} + C_{KKC} \left(\cos \psi \right) \hat{O}) \hat{K} \]

\[+ \hat{P} (C_{PPO} + C_{PPC} \left(\cos \psi \right) \hat{O}) \hat{P} \]

\[+ \hat{P} (C_{PKO} + C_{PKC} \left(\cos \psi \right) \hat{O}) \hat{K} \]

\[+ \hat{N} (C_{NKS} \left(\sin \psi \right) \hat{O}) \hat{K} \]

\[+ \hat{N} (C_{NPS} \left(\sin \psi \right) \hat{O}) \hat{P} \]

Here, \(\psi \) is the angle between \(\hat{N} \), the normal to the production plane, and \(\hat{O} \), the incident polarization vector. The orthonormal vectors \(\hat{P} \) and \(\hat{K} \) are in the plane of production and the subscripts I and II on \(M \) refer to the first and second forms of \(M \).

The differential cross section for a production reaction at angles \((\theta, \psi) \) followed by a decay specified by the unit vectors \(\hat{V} \) and \(\hat{W} \) is given

in terms of the quantities appearing above by
\[I(\theta, \varphi, v, \hat{v}) = \frac{1}{(4\pi)^2} I(\theta, \varphi) \left[1 + \alpha \frac{\hat{\lambda}}{\lambda} \cdot \hat{v} + \alpha \frac{\hat{\lambda}}{\lambda} \cdot \hat{v} \right] \]

The vectors \(\hat{v} \) and \(\hat{\lambda} \) refer to the directions of the decay products of the \(\Lambda \) and \(\Lambda' \) particles as measured in their rest frames.\(^2\) The 24 observable scalar quantities \(A_1(\theta) = (I\lambda, \beta, \hat{\alpha} \beta, \gamma \alpha \beta \hat{\gamma}) \) may be obtained by appropriate averages of \(I(\theta, \varphi, v, \hat{v}) \) over weighting factors \(\omega_1(\varphi, v, \hat{v}) \).

By virtue of the assumed invariance under parity (spatial reflection) 24 other analogous quantities must vanish. If the obvious extension of the notation introduced above is used, these elementary consequences of conservation of parity are

\[I = P_0 \Rightarrow P_0 = P_{\text{KO}} = \bar{P}_{\text{KO}} = \bar{P}_{\text{PO}} = P_{\text{PC}} = \bar{P}_{\text{PC}} = \bar{P}_{\text{NS}} = \bar{P}_{\text{NS}} = \]
\[= C_{\text{NKO}} = C_{\text{KNO}} = C_{\text{PNO}} = C_{\text{NPO}} = C_{\text{KNC}} = C_{\text{NKC}} = C_{\text{PNC}} = C_{\text{NPC}} = \]
\[= C_{\text{NNS}} = C_{\text{KKS}} = C_{\text{PPS}} = C_{\text{PKS}} = C_{\text{KPS}} = 0. \]

The elementary consequences of charge-conjugation invariance alone are

\[P_0 = \bar{P}_0 = P_{\text{KO}} = \bar{P}_{\text{KO}} = \bar{P}_{\text{KO}} = \bar{P}_{\text{PO}} = P_{\text{KPO}} = C_{\text{KPO}} = C_{\text{NPO}} = \bar{C}_{\text{NPO}} = \bar{C}_{\text{NPO}} = \]
\[C_{\text{NKO}} = -C_{\text{KNO}}. \]

The elementary consequences of time-reversal invariance (CP) alone are

\(^2\) See for instance H. P. Stapp, Relativistic Transformations of Spin Directions, UCRL-8096.
A violation of parity is demonstrated if any of the 24 pseudoscalar quantities listed above fails to vanish. If all these do vanish then a violation of C (and hence $T \equiv CP$) is shown by a breakdown of either of the equalities

$$P_{NO} = P_{NO}, \quad C_{KPO} = C_{PKO}.$$

The remaining elementary consequences of C and T invariance are implied by P invariance.

The elementary consequences of invariances listed above follow directly from their definitions, without recourse to any formalism. However, since with C, P, and I conserved the M matrix is described by six complex parameters, of which one is an arbitrary phase, and there are 24 nonvanishing observables, there must be 11 relationships between the observables implied by C, P (and T) in addition to the two given above. These relationships are implicit in the expressions for the observables given in Table B2 or B3. Expressed as relations between the observables the constraints are rather complicated in general. However, three simple relations can be obtained. These are

$$C_{PP} = C_{KPC},$$

$$C_{NN} = \delta C,$$

$$(T_{0} - C_{NN})^{2} = (C_{PP} - C_{KK})^{2} = (C_{KPC} - C_{PKC})^{2} + (P - \bar{P})^{2}.$$

The first of these gives an interesting test for C invariance.

The second provides for the evaluation of the product \mathcal{K}, where
This method of determining \(\alpha \bar{\alpha} \) arises from the fact that the observed quantities are essentially \(\alpha \bar{\alpha} (\mathcal{O}_{\text{RNC}}) \) and \((\mathcal{O}_C) \), hence the quotient is \(\alpha \bar{\alpha} \). Also, since the same assumption of \(P \) and \(C \) invariance (in the production) implies \(\overline{P} = P \), the ratio of the asymmetries for \(\Lambda \) and \(\overline{\Lambda} \) decay gives the ratio of \(\alpha \) and \(\bar{\alpha} \). This ratio, together with the above determination of the product \(\alpha \bar{\alpha} \), allows the parameters \(\alpha \) and \(\bar{\alpha} \) to be found.

The ratio of \(\alpha \) and \(\bar{\alpha} \) is of course fixed to be minus one is \(CP \) invariance is maintained in the weak interaction. A difference in the asymmetries of \(\Lambda \) and \(\overline{\Lambda} \) would indicate a breakdown of \(CP \) in either the strong interaction or in the weak interaction, or both.

The third consequence of invariance under \(C, P \) (and hence \(\mathcal{I} \)) listed above is more complicated and the remaining eight do not appear expressible as simple combinations of a few observables.
TABLE A

Explicit forms for the traces representing the various observables.

DEFINITIONS:

\[M = a + b \cdot \sigma + c \cdot \tau + d \cdot \tau^* \quad \tau = \frac{1}{2} \sigma \cdot \tau^* \quad \tau_1 = ij \cdot \tau \quad \tau_2 = \frac{1}{2} \sigma \cdot \tau^* \frac{1}{2} \sigma \cdot \tau^* \]

NOTE: The initial particle spin matrices appear on the right of \(M \) and initial antiparticle matrices appear on the left of \(M \). The operator representing spin is given by \(-\sigma \) or \(-\tau \) for antiparticles.

\[
\begin{align*}
1/4 \text{Tr} \, \overline{M} \, \bar{M} &= |a|^2 + b^* \cdot b + c^* \cdot c + Sp \, d \cdot d \\
1/4 \text{Tr} \, \overline{M} \, \bar{M} &= a^* \cdot a + \overline{\tau}^2 \cdot a + \overline{\tau} \cdot a + \overline{\tau} \cdot \overline{\tau} - i (a^* \cdot \tau - \tau^* \cdot a) - i \left[\overline{\tau} \cdot \overline{\tau} \right] \\
1/4 \text{Tr} \, \overline{M} \,\overline{M} &= a^* b + b^* a + d c^* + \overline{\tau} \cdot \overline{\tau} - i (b^* \cdot \overline{\tau} + i \left[\overline{\tau} \cdot \overline{\tau} \right] \\
1/4 \text{Tr} \, \overline{M} \,\overline{M} &= a^* b + b^* a + d c^* + \overline{\tau} \cdot \overline{\tau} + i (b^* \cdot \overline{\tau} + i \left[\overline{\tau} \cdot \overline{\tau} \right] \\
1/4 \text{Tr} \, \overline{M} \,\overline{M} &= a^* \bar{b} + \bar{b} a + d \cdot \overline{\tau} + \overline{\tau} \cdot \overline{\tau} + i (\overline{\tau} \cdot b^* + i \left[\overline{\tau} \cdot \overline{\tau} \right] \\
1/4 \text{Tr} \, \overline{M} \,\overline{M} &= a^* \bar{b} + \bar{b} a + d \cdot \overline{\tau} + \overline{\tau} \cdot \overline{\tau} + i (\overline{\tau} \cdot b^* + i \left[\overline{\tau} \cdot \overline{\tau} \right]
\end{align*}
\]
Explicit expressions for the observables in terms of the scalar parameters for the special case where C and P are conserved and $\vec{a} \cdot \hat{P} = 0$, where \hat{P} is along anti-proton motion. $d_{NN} \equiv d_N$ etc.

\[I_C = \frac{1}{4} \text{Tr} \begin{pmatrix} \bar{M} M \end{pmatrix} = |a|^2 + |d_N|^2 + |d_P|^2 + |d_K|^2 + |d_{PK}|^2 \]

\[I_{\bar{C}} = \frac{1}{4} \text{Tr} \begin{pmatrix} \bar{M} (\sigma^2 \cdot \hat{N}) M \end{pmatrix} = -2 \text{Im} d_P d_{PK} + 2 \text{Im} d_K d_{KP} \]

\[P_{NO} = \frac{1}{4} \text{Tr} \begin{pmatrix} \bar{M} (\sigma^2 \cdot \hat{N}) M \end{pmatrix} = 2 \text{Im} d_{KP} d_P - 2 \text{Im} d_{PK} d_K \]

\[P_{NC} = \frac{1}{4} \text{Tr} \begin{pmatrix} \bar{M} (\sigma^2 \cdot \hat{N}) M \end{pmatrix} = 2 \text{Im} d_{KP} d_P^* - 2 \text{Im} d_{PK} d_K^* \]

\[P_{PS} = \frac{1}{4} \text{Tr} \begin{pmatrix} \bar{M} (\sigma^2 \cdot \hat{P}) M \end{pmatrix} = 2 \text{Re} d_K a^* + 2 \text{Re} d_P d_K^* \]

\[P_{PS} = \frac{1}{4} \text{Tr} \begin{pmatrix} \bar{M} (\sigma^2 \cdot \hat{P}) M \end{pmatrix} = 2 \text{Re} d_K a + 2 \text{Re} d_P d_K^* \]

\[P_{PS} = \frac{1}{4} \text{Tr} \begin{pmatrix} \bar{M} (\sigma^2 \cdot \hat{P}) M \end{pmatrix} = 2 \text{Re} d_K a + 2 \text{Re} d_P d_K^* \]

\[C_{NO} = \frac{1}{4} \text{Tr} \begin{pmatrix} \bar{M} (\sigma^2 \cdot \hat{N}) M \end{pmatrix} \approx \left[|a|^2 + |d_N|^2 + |d_K|^2 + |d_{PK}|^2 \right] \]

\[C_{NO} = \frac{1}{4} \text{Tr} \begin{pmatrix} \bar{M} (\sigma^2 \cdot \hat{P}) M \end{pmatrix} \approx \left[|a|^2 + |d_P|^2 + |d_N|^2 + |d_K|^2 + |d_{PK}|^2 \right] \]
\[C_{KCO} = \frac{1}{4} \text{Tr} \left(\hat{\sigma} \cdot \hat{\chi} \right) \bar{M} \left(\hat{\sigma} \cdot \hat{\chi} \right) M = \left| a \right|^2 + \left| d \right|^2 + \left| d_{KP} \right|^2 - \left| d_N \right|^2 \]

\[C_{PKO} = \frac{1}{4} \text{Tr} \left(\hat{\sigma} \cdot \hat{\chi} \right) \bar{M} \left(\hat{\sigma} \cdot \hat{\chi} \right) M = -2 \text{Re} d_{PK} d_{K}^* - 2 \text{Re} d_{P} d_{KP}^* \]

\[C_{KPO} = \frac{1}{4} \text{Tr} \left(\hat{\sigma} \cdot \hat{\chi} \right) \bar{M} \left(\hat{\sigma} \cdot \hat{\chi} \right) M = -2 \text{Re} d_{PK} d_{K}^* - 2 \text{Re} d_{P} d_{KP}^* \]

\[C_{NKC} = \frac{1}{4} \text{Tr} \left(\hat{\sigma} \cdot \hat{\chi} \right) \bar{M} \left(\hat{\sigma} \cdot \hat{\chi} \right) \left(\hat{\sigma} \cdot \hat{\chi} \right) M = -2 \text{Im} d_{P} d_{PK}^* + 2 \text{Im} d_{K} d_{KP}^* \]

\[C_{PPC} = \frac{1}{4} \text{Tr} \left(\hat{\sigma} \cdot \hat{\chi} \right) \bar{M} \left(\hat{\sigma} \cdot \hat{\chi} \right) \left(\hat{\sigma} \cdot \hat{\chi} \right) M = 2 \text{Im} d_{P} d_{PK}^* + 2 \text{Im} d_{K} d_{KP}^* \]

\[C_{KKC} = \frac{1}{4} \text{Tr} \left(\hat{\sigma} \cdot \hat{\chi} \right) \bar{M} \left(\hat{\sigma} \cdot \hat{\chi} \right) \left(\hat{\sigma} \cdot \hat{\chi} \right) M = -2 \text{Im} d_{P} d_{PK}^* + 2 \text{Im} d_{K} d_{KP}^* \]

\[C_{KPC} = \frac{1}{4} \text{Tr} \left(\hat{\sigma} \cdot \hat{\chi} \right) \bar{M} \left(\hat{\sigma} \cdot \hat{\chi} \right) \left(\hat{\sigma} \cdot \hat{\chi} \right) M = 2 \text{Im} d_{P} d_{PK}^* + 2 \text{Im} d_{K} d_{KP}^* - \]

\[-2 \text{Im} a^* d_N \]

\[C_{PKC} = \frac{1}{4} \text{Tr} \left(\hat{\sigma} \cdot \hat{\chi} \right) \bar{M} \left(\hat{\sigma} \cdot \hat{\chi} \right) \left(\hat{\sigma} \cdot \hat{\chi} \right) M = -2 \text{Im} d_{P} d_{K}^* + 2 \text{Im} d_{KP}^* d_{PK}^* - \]

\[-2 \text{Im} a^* d_N \]

\[C_{NPS} = \frac{1}{4} \text{Tr} \left(\hat{\sigma} \cdot \hat{\chi} \right) \bar{M} \left(\hat{\sigma} \cdot \hat{\chi} \right) \left(\hat{\sigma} \cdot \hat{\chi} \right) M = -2 \text{Im} a^* d_{P} - 2 \text{Im} d_{N} d_{P}^* \]

\[C_{PNS} = \frac{1}{4} \text{Tr} \left(\hat{\sigma} \cdot \hat{\chi} \right) \bar{M} \left(\hat{\sigma} \cdot \hat{\chi} \right) \left(\hat{\sigma} \cdot \hat{\chi} \right) M = 2 \text{Im} a^* d_{P} d_{P}^* - 2 \text{Im} d_{N} d_{P}^* \]

\[C_{NKS} = \frac{1}{4} \text{Tr} \left(\hat{\sigma} \cdot \hat{\chi} \right) \bar{M} \left(\hat{\sigma} \cdot \hat{\chi} \right) \left(\hat{\sigma} \cdot \hat{\chi} \right) M = 2 \text{Im} a^* d_{PK} + 2 \text{Im} d_{N} d_{KP} \]

\[C_{KNS} = \frac{1}{4} \text{Tr} \left(\hat{\sigma} \cdot \hat{\chi} \right) \bar{M} \left(\hat{\sigma} \cdot \hat{\chi} \right) \left(\hat{\sigma} \cdot \hat{\chi} \right) M = -2 \text{Im} a^* d_{PK} + 2 \text{Im} d_{KP} d_{KNS}^* - \]
Explicit expressions for the observables in terms of the scalar parameters for the special case where \(C \) and \(P \) are conserved and \(\mathbf{\hat{P}} \cdot \mathbf{\hat{P}} = 0 \) where \(\mathbf{\hat{P}} \) is along anti-proton direction of motion, \(d_{NN} \equiv d_N
abla \), etc. \(d_{PK} \equiv d_{KP} \equiv e \)

TABLE B2

\[
\begin{align*}
I_0 &= 1/4 \text{Tr} \tilde{M} \tilde{M} \equiv |a|^2 + 2 |b|^2 + |d_N|^2 + |d_K|^2 + |d_P|^2 + 2 |e|^2 \\
I_C &= 1/4 \text{Tr} \tilde{M} \tilde{M} \equiv 2 \text{Re} a^* b - 2 \text{Re} b^* d_N - 2 \text{Im} d_P^* e + 2 \text{Im} d_K^* e \\
I_{NO} &= 1/4 \text{Tr} \tilde{M} \tilde{M} \equiv 2 \text{Re} a^* b - 2 \text{Re} b^* d_N + 2 \text{Im} d_P^* e - 2 \text{Im} d_K^* e \\
I_{NC} &= 1/4 \text{Tr} \tilde{M} \tilde{M} \equiv 2 \text{Re} a^* d_N + 2 |b|^2 - 2 \text{Re} d_K^* e - 2 |e|^2 \\
I_{PS} &= 1/4 \text{Tr} \tilde{M} \tilde{M} \equiv -2 \text{Re} a^* d_K + 2 \text{Re} d_P^* d_N \\
I_{KS} &= 1/4 \text{Tr} \tilde{M} \tilde{M} \equiv -2 \text{Re} a^* d_K + 2 \text{Re} d_P^* d_N \\
I_{PS} &= 1/4 \text{Tr} \tilde{M} \tilde{M} \equiv -2 \text{Re} a^* d_K + 2 \text{Re} d_P^* d_N \\
I_{KS} &= 1/4 \text{Tr} \tilde{M} \tilde{M} \equiv -2 \text{Re} a^* d_K + 2 \text{Re} d_P^* d_N \\
C_{NNO} &= 1/4 \text{Tr} \tilde{M} \tilde{M} \equiv 2 \text{Re} a^* d_N + 2 |b|^2 \\
&= 2 \text{Re} d_P^* d_K + 2 |e|^2
\end{align*}
\]
\[
C_{\text{FNS}} = \frac{1}{4} \text{Tr} (\nabla \cdot \mathbf{P}) \bar{M} \left(\sigma^2 \cdot \hat{\mathbf{K}} \right) \left(\sigma^2 \cdot \hat{\mathbf{K}} \right) M = 2 \Im \text{d}_N \, a + 2 \Im \text{d}_P \, \bar{d}_K.
\]
\[
C_{\text{NFS}} = \frac{1}{4} \text{Tr} (\nabla \cdot \mathbf{N}) \bar{M} \left(\sigma^2 \cdot \hat{\mathbf{K}} \right) \left(\sigma^2 \cdot \hat{\mathbf{K}} \right) M = 2 \Im \text{e}^a a
\]
\[
- 2 \Re \text{d}_P \, \bar{b} - 2 \Re \text{d}_K \, \bar{b} + 2 \Im \text{d}_N \, \bar{e}.
\]
\[
\bar{C}_{\text{KNOS}} = \frac{1}{4} \text{Tr} (\nabla \cdot \mathbf{K}) \bar{M} \left(\sigma^2 \cdot \hat{\mathbf{K}} \right) \left(\sigma^2 \cdot \hat{\mathbf{K}} \right) M = 2 \Re \text{a} \, \bar{b}
\]
\[
\bar{C}_{\text{KNOS}} = \frac{1}{4} \text{Tr} (\nabla \cdot \mathbf{K}) \bar{M} \left(\sigma^2 \cdot \hat{\mathbf{K}} \right) \left(\sigma^2 \cdot \hat{\mathbf{K}} \right) M = 2 \Re \text{a} \, \bar{b}
\]
\[
\bar{C}_{\text{KNOS}} = \frac{1}{4} \text{Tr} (\nabla \cdot \mathbf{K}) \bar{M} \left(\sigma^2 \cdot \hat{\mathbf{K}} \right) \left(\sigma^2 \cdot \hat{\mathbf{K}} \right) M = 2 \Re \text{a} \, \bar{b}
\]
\[
\bar{C}_{\text{KNOS}} = \frac{1}{4} \text{Tr} (\nabla \cdot \mathbf{K}) \bar{M} \left(\sigma^2 \cdot \hat{\mathbf{K}} \right) \left(\sigma^2 \cdot \hat{\mathbf{K}} \right) M = 2 \Re \text{a} \, \bar{b}
\]
\[
- 2 \Re \text{d}_N \, \bar{b} - 2 \Im \text{e} \, \bar{d}_K - 2 \Im \text{e} \, \bar{d}_P.
\]
TABLE C

Relationship between parameters of first and second forms.

(Barred parameters are those of Form Two. \(\hat{N}_p \), \(\hat{P}_p \), \(\hat{K} \) Form right-handed basis.)

\[
\bar{a} = \frac{1}{2} a + \frac{1}{2} d_N + \frac{1}{2} d_K + \frac{1}{2} d_P
\]

\[
\bar{b} = \frac{1}{2} d_{\hat{P}K} - \frac{1}{2} d_{\hat{K}P}
\]

\[
\bar{d}_N = \frac{1}{2} a + \frac{1}{2} d_N - \frac{1}{2} d_K - \frac{1}{2} d_P
\]

\[
\bar{d}_K = \frac{1}{2} a - \frac{1}{2} d_N + \frac{1}{2} d_K - \frac{1}{2} d_P
\]

\[
\bar{d}_P = \frac{1}{2} a - \frac{1}{2} d_N - \frac{1}{2} d_K + \frac{1}{2} d_P
\]

\[
\bar{e} = \frac{1}{2} d_{\hat{P}K} + \frac{1}{2} d_{\hat{K}P}
\]
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.