
UCLA
UCLA Previously Published Works

Title
Mask images on Twitter increase during COVID-19 mandates, especially in Republican 
counties

Permalink
https://escholarship.org/uc/item/1zd0w6jd

Journal
Scientific Reports, 12(1)

ISSN
2045-2322

Authors
Lin, Xiaofeng
Kernell, Georgia
Groeling, Tim
et al.

Publication Date
2022

DOI
10.1038/s41598-022-23368-6
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1zd0w6jd
https://escholarship.org/uc/item/1zd0w6jd#author
https://escholarship.org
http://www.cdlib.org/


1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21331  | https://doi.org/10.1038/s41598-022-23368-6

www.nature.com/scientificreports

Mask images on Twitter increase 
during COVID‑19 mandates, 
especially in Republican counties
Xiaofeng Lin 1, Georgia Kernell 2,3*, Tim Groeling 2, Jungseock Joo 2, Jun Luo 2 & 
Zachary C. Steinert‑Threlkeld 3,4

Wearing masks reduces the spread of COVID‑19, but compliance with mask mandates varies across 
individuals, time, and space. Accurate and continuous measures of mask wearing, as well as other 
health‑related behaviors, are important for public health policies. This article presents a novel 
approach to estimate mask wearing using geotagged Twitter image data from March through 
September, 2020 in the United States. We validate our measure using public opinion survey data 
and extend the analysis to investigate county‑level differences in mask wearing. We find a strong 
association between mask mandates and mask wearing—an average increase of 20%. Moreover, this 
association is greatest in Republican‑leaning counties. The findings have important implications for 
understanding how governmental policies shape and monitor citizen responses to public health crises.

Widespread mask wearing greatly reduces COVID-19  transmission1–6. Accurate and continuous measures of 
mask use are therefore necessary for public health agencies to understand and predict outbreaks, identify sus-
ceptible populations, and formulate timely policy responses. Throughout the COVID-19 pandemic, health and 
government officials, as well as the general public, received real-time access to important information such as hos-
pitalizations, deaths, and vaccination rates. Yet, data on preventative behavior is largely retrospective or unknown.

Our study addresses these shortcomings by presenting a novel way to measure individual-level behaviors in 
real time using geotagged social media images. The contribution is threefold. First, we develop an automated 
image classifier using a convolutional neural network (CNN) to detect images of people wearing masks and apply 
this classifier to geotagged Twitter data from March 1 through September 11, 2020. Twitter data were collected 
in real time and represent all publicly available (and approximately one-third of actual) geotagged tweets from 
the United States at this time. Second, we demonstrate that social media behavior closely tracks survey data 
using YouGov’s COVID-19 Public Monitor and Democracy Fund + UCLA  Nationscape7,8. In doing so, we find 
that several individual-level correlates of mask wearing documented in observational research—age, gender, 
and partisanship—are also predictive of mask wearing on Twitter. Third, we investigate county-level factors 
that may impact widespread mask wearing. With 18,968,038 total geotagged tweets with images from 1,451,591 
unique users, 73,489 of which posted mask wearing images, Twitter data are vast and allow us to examine less 
populated areas commonly underrepresented in surveys. We combine information on local mask wearing with 
county-level data on mask mandate policies, COVID-19 death rates, election returns, and individual mobility, 
as well as national media attention. While we find that a county’s 2016 GOP presidential vote share is negatively 
associated with mask wearing overall, the introduction of mask mandates in Republican-leaning counties is 
associated with larger increases in mask-wearing images than in counties that lean Democratic. National media 
attention and urbanization are also predictive of mask wearing, though local measures of population density 
and mobility are not.

Benefits and drawbacks to using Twitter
This study highlights myriad advantages of using Twitter to measure the effect of political interventions on public 
health. First, since Twitter data are collected passively, they often lend themselves to long-term temporal estimates 
better than survey data. This feature is especially important for surprising events because it takes time to generate, 
test, and administer a survey. Twitter is able to generate estimates of mask wearing much earlier than surveys, 
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even ones conducted online such as the U.S. COVID-19 Trends and Impact Survey (CTIS)9. Second, Twitter 
data enables the measurement of precise geographic areas. In this case, we focus on the county-level, where the 
majority of mask mandates took place. Third, survey respondents may misrepresent their true behaviors due to 
social desirability bias, a problem especially concerning for politically-sensitive behaviors. Since Twitter users do 
not think of themselves as survey respondents, measurements using the social media platform are less likely to 
exhibit bias. Last, surveys may not ask about mask wearing: CTIS, for example, did not start asking about masks 
until September 8, at which point mask mandates were already pervasive. The large, passively monitored, and 
less strategic behavior on Twitter compared to surveys has proved fruitful for a wide range of social and political 
studies, such as of crime, natural disasters, mass gatherings, and international  conflict10–16.

At the same time, Twitter data have disadvantages stemming from non-representativeness and non-probability 
sampling. Surveys and academic studies show that Twitter users are not representative samples of the offline 
 population17–19. Users must geotag a tweet in order for it to appear in this paper’s sample, introducing concerns 
about bias in users who employ this feature compared with those who do not. While these concerns are valid, 
it is worth noting that previous research finds Twitter users who share images without location information are 
not measurably different than those who share geotagged  images20, suggesting that relying on users who geotag 
face mask images may not bias results compared to the larger Twitter population.

Because Twitter requires no identifying information for accounts, probability sampling is not feasible. This 
paper’s use of non-probability sampling is therefore problematic if the goal is to produce population estimates 
(Note: CTIS also collected data online via non-probability sampling using Facebook surveys.) We acknowledge 
and accept this limitation, given the fact that surveys do not provide sufficient geographic detail to measure the 
impacts of mask mandates. By applying computer vision techniques to a novel type of data, we have chosen a 
sampling design fit for this  purpose21. However, the point estimates in this paper are most important for the 
trends they reveal and not as estimates of true rates of mask adherence.

Materials and Methods
Geotagged Twitter database. We compiled a dataset of geotagged publicly-available tweets from March 
1 through September 11, 2020, collected in real time from the Twitter Application Programming Interface (API), 
using Twitter’s POST statuses/filter streaming endpoint. Approximately 3% of tweets in English are geocoded, 
and Twitter’s API (v1.1) returns approximately 1/3 of all geotagged  tweets22,23, resulting in 170,014,835 tweets 
from 2,603,654 U.S. users. Of these, 18,968,038 tweets contained an image, and 1,451,591 unique users posted 
at least one image.

Each geotagged tweet contains a global bounding box of coordinates identifying the tweet’s location. How-
ever, the size of the bounding box varies because users can specify one of five levels to geotag: country, state, 
city, neighborhood, or point of interest. We dropped all tweets with boxes above the city level (7% of tweets), 
because they were too large to provide county-level information. For cities that span multiple counties (14% of 
tweets that specify the city level), we assign the tweet to the county that covers the greatest share of the citys’ 
 population24. All Twitter images analyzed in this study are publicly available and considered part of the public 
domain. (The use of public geotagged Twitter data was authorized by the University of California, Los Angeles 
Institutional Review Board, approval number #18-001354. All methods were performed in accordance with the 
UCLA IRB regulations and guidelines as well as the Declaration of Helsinki.)

Mask detection. To automatically detect mask-wearing images, we developed an image classifier using a 
convolutional neural network (CNN) with the ResNet-50  architecture25. CNNs have been widely used for auto-
mated visual content analysis including facial mask  detection25–28. We took a supervised learning approach to 
collect and annotate images with mask-wearing labels to train and evaluate our model. The quality of training 
data is critical to ensure the model’s performance. Therefore, we used an iterative approach to collect diverse and 
challenging data to make the final model robust.

To this end, we first collected 8000 images using Google’s image search API for three mask-related keyword 
phrases (‘wearing masks,’ ‘face covering,’ and ‘mask selfie’), as well as three keyword phrases not related to mask 
wearing (‘selfie,’ ‘hangout,’ and ‘stay at home’). Approximately 1300 images were collected for each phrase.

We then manually annotated each of the 8000 images as mask-wearing or non-mask-wearing. To be coded 
as mask-wearing, an image must show at least one human face occupying at least 5% of the image’s area wearing 
a medical or cloth mask over the mouth and nose. The rest of the images are negative samples that contain, for 
example, no face, faces without masks, faces occupying less than 5% of the image’s area, or faces in advertisements 
for masks. Such “hard” negatives samples present visuals similar to mask-wearing scenes and thus train a more 
robust classifier (See the work of Shrivastava et al.29, for example).

We use an active learning approach for robust model training that takes advantage of iterative model train-
ing and hard-data mining. Specifically, we first trained an initial model using the above dataset and applied it 
to a large set of unlabeled images, sourced from geotagged Twitter images from March 1–5, April 1–5, and May 
20–25. Among these, 9391 images were classified positive. We manually verified their correctness and added the 
images and labels to the original set, resulting in 17,391 images. The optimal model parameters in the ResNet-50 
classifier were obtained by stochastic gradient descent (SGD) with a binary cross entropy loss function, 500 
training epochs, learning rate = 0.005, weight decay = 0.0004, and momentum = 0.9, as well as initial weights 
pre-trained on Imagenet  data30. We did not include Twitter images predicted as negative by the initial classifier 
because there were so many of them, and the recall was very low. Finally, we randomly divided the annotated 
images in a training set (80%, 13,913 images) and a validation set (20%, 3478 images). These labeled images 
further fine tune the initial classifier. All manual labeling mentioned above was completed by one human coder. 
Since these annotations are not used for measurements in actual analysis, it is acceptable to have only one coder, 
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as long as the model performance is satisfactory. Two other coders verified the main coder’s work by annotating 
a 1000-image random subset of the training set. The Krippendorff ’s alphas between the primary coder and the 
two additional coders were 0.865 and 0.870, showing strong inter-rater reliability.

Last, we chose an optimal decision threshold. Naively choosing 0.5 as the threshold may still yield an undesir-
able result (e.g., a too high false positive rate). Table 1 displays the classifier performance when using different 
decision thresholds on the same set. Since thresholds 0.7, 0.8, and 0.9 produce similarly high F1 scores (0.85, 
0.86, and 0.85, respectively), we use a threshold of 0.9 in order to maximize precision (0.93). (Among all Twitter 
images, the proportion showing a mask is low. We manually verified a random subset of 1000 geotagged Twitter 
images posted on Aug 1, 2020 and found only 11 positive cases. To maximize our model precision in the face of 
potentially high false positives, we used the 0.9 threshold). With this threshold, the model has high classification 
accuracy. The model still demonstrates strong predictive power across other thresholds, as shown in the Receiver 
Operating Characteristic graph in Fig. 1.

Mask mandate coding. For the county-level analysis, the unit of observation is the county-week dyad, 
which covers a Monday-Sunday week. Each observation is coded as having a mask mandate in place if a mandate 
started on or before the Thursday in that week.

Case‑control sampling. For the individual-level analyses, we perform a case-controlled sampling design 
by collecting all tweets with mask-wearing images, as well as a random sample of 1000 tweets per day from the 
set of non-mask  images31. Then we extract demographic features of users who posted these tweets to calculate 
odds ratios.

Table 1.  Validation accuracy of mask prediction model from images with different decision thresholds. 
Precision is calculated as the proportion of predicted mask images that actually show a mask. Recall is the 
proportion of actual mask images predicted as a mask image. F1 score = 2 × (Precision × Recall)/(Precision + 
Recall).

Threshold Precision Recall F1 Score

0.50 0.77 0.87 0.82

0.60 0.81 0.85 0.83

0.70 0.86 0.83 0.85

0.80 0.92 0.81 0.86

0.90 0.93 0.77 0.85

Mask AUC(Validation Set):0.9694
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Figure 1.  Receiver Operating Characteristics (ROC) curve for mask classifier on the validation set. Sensitivity is 
the fraction of actual positive data points that the model correctly classifies as positive. Specificity is the fraction 
of actual negative data points that the model correctly classifies as negative. Higher Area Under the Curve 
(AUC) values are associated with a greater ability to distinguish positive from negative examples.
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Sample size determination. The Twitter data is imbalanced across geographical regions. Table 2 displays 
key summary statistics for the weekly number of Twitter images and users who posted images in the geotagged 
Twitter dataset. In some less populated counties, the sample size become too small for our analysis to have suf-
ficient statistical power. To determine the number of tweets with images needed per county, the following calcu-
lation is performed. The null and alternative hypothesis proportions are pµ = 0.005 and pα = 0.02 , respectively, 
which are equal to the approximate minimum ( pµ ) and maximum ( pα ) values of the nationally aggregated mask 
wearing on Twitter. Let the level of significance α = 0.05 and the desired power = 1− β = 0.9, where β = 0.1 is 
the probability of committing a Type II error. Using Cohen’s arcsine  transformation32, the effect size is 
h = 2 ∗ (arcsin

√

pα − arcsin
√

pµ) = 0.142 . Under the null hypothesis, µ0 , the decision boundary p̂ should 
have z-score Z0 , where P(Z < Z0) = 1− α ÷ 2 = 0.975 for Z ∼ N(0, 1) , so Z0 = 1.959. Under the alternative 
hypothesis, µa , X̄ should have a z-score Za , where P(Z < Za) = β = 0.1 , so Za = − 1.281. Thus the required 
sample size n =

(

Z0−Za
h

)2

= 519 . In our sample, 463 of 3006 counties have at least 519 unique Twitter users 
with images in the entire collected geotagged dataset. These counties account for 77% of the U.S. population.

Results
Validating Twitter image data using national surveys. To assess how well Twitter image data cap-
tures mask-wearing trends across the nation, we compare aggregate levels of mask wearing in our sample with 
self-reports from two nationally-representative surveys run during this period: YouGov’s COVID-19 Public 
 Monitor7 and UCLA  Nationscape8. These online surveys asked the public whether or not they wore a mask in 
public spaces during the past week. (YouGov’s survey stated: “Thinking about the last 7 days, how often have you: 
worn a face mask outside your home to protect yourself or others from coronavirus (COVID-19)?” Response 
options included “always,” “frequently,” “sometimes,” “rarely,” and “not at all.” The UCLA Nationscape survey 
asked respondents “Have you done any of the following in the past week?” with “Worn a mask when going out 
in public” as one of the possible categories and a binary response option of “Yes” or “No.”) The Twitter measure 
is the fraction of users posting any image that also posted a mask image over a given week.

Figure 2 reveals a strong association between the estimates using Twitter images and both surveys. (Note 
the dual verticle axes to accommodate different magnitudes from surveys and Twitter.) Both Twitter and YouGov 
reveal similar increases in public mask wearing from April to May. (Nationscape did not ask about mask wearing 
for the first half of the data.) All estimates increased at a similar level from June to September. High correlations 
between mask usage on Twitter and self-reports from YouGov ( r = 0.61, p < 0.01,N = 18 ) and Nationscape 
( r = 0.79, p < 0.01,N = 10 ) suggest that social media images are highly predictive of similar behaviors offline. 
(In addition, the Twitter data correlate with a different YouGov study running from March through Septem-
ber 2020 at r = 0.84 . We do not include this study in Fig. 2 because the individual-level data is not publicly 
 available33.) We also took the first differences of time series to address non-stationarity. The resulting stationary 

Table 2.  Weekly number of users who posted images/mask-wearing images by county.

Min Median Mean Q3 95% percentile Max Std

Image users 1 16 110.19 60 443 16,410 450.8

Mask users 0 0 1.98 1 8 343 9.2
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Figure 2.  Mask wearing from March through September, 2020. The left vertical axis shows percentage of survey 
respondents who reported wearing a mask in public. The right vertical axis shows the percentage of Twitter 
users who posted a mask image (among those who posted at least one image in a geotagged tweet).
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Twitter time series is still significantly correlated with YouGov ( r = 0.63, p < 0.01,N = 17 ) and Nationscape 
( r = 0.80, p < 0.01,N = 9 ). (We present correlations in the time-series by state in Supplementary Information 
Section 6.) County-level data allows for more precise estimates of how mask mandates and partisanship interact. 
(The only survey we know of that identifies mask wearing metrics at the county level is one conducted by The 
New York Times in July of  202034. That survey, however, only lasted for a 12-day period (July 2–July 14) and thus 
did not facilitate the same observational study overtime.)

Individual‑level determinants. Previous research examining individual-level factors finds that older 
individuals are more likely to wear masks than their younger  counterparts8,34–37 (although see the work of Mac-
Intyre et al.38 and  Howard39). Females are also more likely than males to wear a  mask36,39–42, and Democrats are 
consistently more likely than Republicans to not only to wear a mask, but to support mask  mandates39–42. To test 
the validity of our data, we compare mask wearing across age, gender, and political ideology for Twitter users. 
A user’s age and gender are estimated by applying a deep neural network facial classifier trained by  FairFace43 
on the user’s profile image. Conservative Leaning measures a user’s ideology based on the number of influential 
partisan-leaning Twitter accounts that individual follows. Users with a Conservative Leaning score greater than 
0 are generally considered  Republicans44. Previous research identifies partisanship as the strongest predictor of 
mask  use45.

Table S4 reports odds ratios for each demographic group in relation to the specified reference group. In line 
with previous research, we find that seniors, females, and Democrats demonstrate significantly higher likelihoods 
of mask wearing. (FairFace is also capable of classifying race, but the accuracy on Twitter profiles is unsatisfac-
tory—64% on a random sample of 1000 profiles. The odds ratios between race groups classified by FairFace are 
not significant in our data.)

Similar to previous studies which reported yield rates when analyzing Twitter  users44,46, we are able to infer 
gender and age from 20.4% of users and partisan leaning from 39.4% of users. Accuracy rates for the algo-
rithms we use that assign socio-demographic and political-leaning characteristics are extremely high. Previous 
work finds that the average classification accuracy for the algorithms we use is 94.4% for gender and 60.2% for 
 age43. Scholars have validated the Twitter partisanship measure employed here by matching it with campaign 
contribution records using name and zip code. The correlation between campaign contributions and political 
leaning is also very high (r = 0.80)44. To provide further evidence that our partisanship estimates match the 
actual population, we correlated Republican vote share in the 2016 election with the share of Twitter users we 
infer to be Republicans—among those for whom we can infer political leaning—and found they are highly 
correlated. Across all weeks, they correlate at 0.63(N = 100, p < 0.01) . Across all counties, the correlation is 
0.29,N = 3009, p < 0.01.

Many studies find that the inferred socio-demographic and political leaning variables are supported in survey 
data. The canonical article about Twitter and  ideology44 shows that the latter is recoverable from follower relation-
ships on Twitter, and that this measure sorts accounts  accurately47. Comparing survey respondents’ self-described 
Twitter behaviors with their actual Twitter behavior reveals that the two are positively  correlated47. Other  work48 
connects Twitter users with voter files and shows that the demographics and ideology of Twitter users match 
voting administrative data. And, scholars have successfully estimated protesters’ age and gender using Twitter 
images with surveys of actual  protesters15.

Contextual determinants: mask mandates, mobility, death rates, and county partisan‑
ship. To examine contextual factors that shape mask wearing, we calculate the percent of users who post at 
least one mask image (among those who post any image) for each week in the data. By only including users who 
post at least one image of any kind, we control for unobserved heterogeneity that may reflect differences between 
users who share images and those who do not.

Mask mandate data come from Wright et al.49. This database includes the earliest effective dates of local and 
state mask mandates for every U.S county and runs through August 4, 2020. Figure 3 shows the share and dis-
tribution of counties, as well as the corresponding share of the U.S. population, under an active county or state 
mandate (or both) from May 1 through August 1, 2020. As of August 1, 2020, 66.3% of U.S counties, and 87.4% 
of the U.S. population were under active mask-wearing mandates.

Table 3 presents summary statistics for each of the continuous explanatory variables of interest. Subscript i 
denotes different counties, t denotes different weeks, and t − 1 indicates a lag of one week. In selecting our control 
variables, we have attempted to address many of the factors that might plausibly be associated with variations 
in the incidence or severity of COVID-19, or with the likely local or personal response to the pandemic. For 
example, greater news coverage of the pandemic or a spike in the number of deaths might reasonably increase the 
probability an individual would choose to wear a mask, regardless of whether there is a governmental require-
ment to do so. Close proximity to others due to geography or the activity of individuals might also be expected 
to increase the precautions one might take against contracting COVID-19. Finally, there have been clear and 
ongoing partisan differences related to mask-wearing throughout the pandemic, as illustrated in various prior 
studies and  surveys8,42,45.

Deaths per 10k is the number of reported COVID-19 deaths in the county during the prior week per 10,000 
 residents50. GOP Vote 2016 is the share of the two-party vote that went to Donald Trump in the 2016 presidential 
 election51. Urban Population Percentage52 is the percent of a county’s population living in a Census-defined urban 
area. Population Density53 is the county’s population (using 2010 Census data) divided by its area in square miles. 
Media coverage of the pandemic may drive public attention to COVID-19 and increase mask wearing. COVID 
News measures the average number of times the word “COVID” is used per national morning or evening news 
show on ABC, CBS, and  NBC54. Last, images of mask wearing may decrease as people venture outside their 
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homes. We use Safegraph’s Places of Interest dataset to measure changes in  activity55. Specifically, Retail Visit per 
Hundred measures the number of visits to a grocery store, as defined by those with NAICS business codes 44 
or 45, in a county during the current week per 100 residents. In addition, the following models include a Week 
Counter, which ranges from 1 to 22 and controls for unobserved time trends. See Table S7 for models with dif-
ferent subsets of control variables.

Like the population, tweets are imbalanced across counties. Although Twitter data generally produces samples 
larger than surveys in less populated areas, the sample sizes in the majority of the country’s 3,006 counties are 
still too small to use for a powerful statistical test (See Table S5 and S6 for sample sizes and numbers of Twitter 
users/survey respondents wearing masks). As a result, the main regression is run for the 300 most populous coun-
ties, which together account for approximately 64% of the United States population. All of the top 300 counties 
have more than 519 unique image-posting users, thus satisfying the sample size calculated in the Sample Size 
Determination section. There are no substantive differences found when we run the regression on the top 100, 
top 500, or all counties, as shown in Table S1.

Table 4 presents results from two multilevel generalized linear  models56 in the binomial family with random 
effects for week, county, and state. (A generalized linear model with a binomial family is ideal for modeling pro-
portions that are otherwise prone to heteroskedasticity while accommodating lower and upper bounds at 0 and 
1.) The first model examines the effect of Mask Mandate and GOP Vote 2016 without an interaction effect. As we 
can see the mandate is is positive and significant; overall, people are more likely to wear a mask when there is a 
mandate in place. Republican support is, as expected, negative and significant. More conservative counties on 
the whole see fewer individuals posting Twitter images with masks.

May 1, 2020; 29.7 % June 1, 2020; 38.4 %

July 1, 2020; 58 % August 1, 2020; 87.4 %

Figure 3.  Counties under a mask mandate. Percentages indicate the share of the U.S. population under a mask 
mandate on the corresponding date. Mandate data are acquired from Wright et al.49.

Table 3.  Explanatory Variables 95% Intervals for the 300 most populous counties and all U.S. counties.

Top 300 counties All counties

Deaths per 10ki,t−1 0, 1.6 0, 1.0

GOP vote 2016i 15.3, 70.1 23.7, 85.1

Population Density
i

81.7, 11,379.5 5.2, 2630.0

COVID Newst 0.9, 11 0.9, 11

Retail visit per Hundredi,t 0.67, 4.24 0.61, 5.58
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Now let us turn to the interaction model. (Because we include an interaction between Mask Mandate and GOP 
Vote 2016, we must interpret the effects of the two variables jointly. For example, the negative coefficient on Mask 
Mandate in the interaction model can only be interpreted for a county with zero percent GOP vote, which is never 
the case.) Under no mask mandate, county-level Republican leaning shows a negative, significant association 
with mask wearing: for a one standard deviation increase (12.8 percentage points) in GOP vote share in the 2016 
presidential election, the expected level of mask wearing decreases 7.4 percent. Not surprisingly, mask wearing is 
lower in Republican strongholds, all else equal. This negative association is consistent with previous  findings45.

The introduction of a mandate, however, is strongly associated with an increase in mask wearing. Moreover, 
this association is especially large in counties that favored Donald Trump in 2016. To illustrate these interactive 
effects, Fig. 4 shows the predicted marginal effect of a mandate for varying levels of GOP vote share. Moving 
from the county with the lowest percentage vote for the GOP to the county with the highest vote increases the 
expected effect of mandates by 25 percentage points. Although mask mandates have a greater predicted effect in 
Republican counties, the overall level of mask wearing remains slightly higher in Democratic counties. Indeed, 
Republican counties with mask mandates display similar levels of mask wearing to Democratic counties without 
mandates. These results suggest that in majority-Democratic counties individuals are more likely to wear a mask 
regardless of whether there is a legal mandate requiring them to do so or not, whereas in majority-Republican 
counties mandates may prompt people to put on a mask, thus narrowing the gap caused by partisanship. (Using 
a binned  estimator57 to evaluate flexible marginal effects produces similar results.)

News coverage is positively associated with mask wearing images: when the average occurrence of the word 
“COVID” increases by one standard deviation (2.9 times), mask wearing is predicted to increase by 20.7%–21.4% 
across the models. To a large extent, the news variable mirrors what people are tweeting about. In particular, 
COVID-19 news decreased by approximately 60% from week 13 to week 16 during the protests following George 
Floyd‘s death, and mask wearing images decreased during this time as well. (Table S2 shows the same regression 
models using cable rather than network news coverage and finds the same positive and significant association 
with mask wearing.)

Mask wearing also increases with urbanization: A one standard deviation rise in urbanization (25 percent-
age points) corresponds to a 10.5% increase in mask images. The remaining population variables - deaths and 
density - are not statistically significant in most models. Mask-wearing images also do not decrease with higher 
rates of grocery store visits. Not surprisingly, the positive coefficient on the linear week counter demonstrates 

Table 4.  Contextual predictors of mask-wearing images. The dependent variable is the proportion of Twitter 
users who posted mask-wearing images among users that posted any tweets with images. ∗ ∗ ∗p < 0.001 ; 
∗∗p < 0.01 ; ∗p < 0.05

Variable

No interaction With interaction

Estimate(SE) Estimate(SE)

Intercept −5.129∗ ∗ ∗
(0.257)

−5.065∗ ∗ ∗
(0.256)

Mask mandate 0.058∗ ∗ ∗
(0.014)

−0.055∗
(0.028)

GOP vote 2016 −0.005∗ ∗ ∗
(0.001)

−0.006∗ ∗ ∗
(0.001)

Mask mandate * GOP vote 2016 0.003∗ ∗ ∗
(0.001)

Deaths per 10k 0.014
(0.007)

0.011
(0.007)

Urban population percentage 0.004∗
(0.002)

0.004∗
(0.002)

Population density 0.000
(0.000)

0.000
(0.000)

COVID News 0.066∗ ∗ ∗
(0.014)

0.064∗ ∗ ∗
(0.014)

Retail visit per hundred 0.021
(0.016)

0.008
(0.016)

Week counter 0.028∗ ∗ ∗
(0.006)

0.029∗ ∗ ∗
(0.006)

AIC 31989.304 31967.327

BIC 32070.837 32055.653

Log likelihood −15982.652 −15970.663

County weeks 6600 6600

States (Including D.C) 45 45

Num. groups: week 22 22

County intercept 0.038 0.037

State intercept 0.014 0.014

Week intercept 0.027 0.027
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an overall increasing trend in public mask wearing. As time goes by, mask wearing becomes a habit for many 
individuals. Table S3 shows the estimation with a logged week counter and demonstrates the same effect of time.

Respondents in Nationscape are identified at both the state and the congressional district level, while respond-
ents in YouGov are only identified at the state level. Thus, we performed another check of the hypotheses at the 
individual level focusing only on Nationscape respondents. The dependent variable indicates whether or not the 
person stated that they wore a mask in the previous week. The key independent variables are respondent Party 
ID (ranging from 1 = “strong Democrat” to 7 = “strong Republican”), Mask Mandate (indicating if there was 
a mandate in that congressional district in the week prior to the survey), and their interaction. We controlled 
for individual demographic variables including age, gender, ethnicity, household income, and education level. 
We also controlled for district-level features including population density and urban population proportion. As 
in the county-level analysis, we included a week counter to control for a general time trend, and national level 
COVID News variables. The regression output is reported in Table S8 in the Supplementary Information. We 
found the same trend as indicated on the county-level analyses: while higher GOP partisanship itself is correlated 
with lower mask wearing, the interaction of GOP partisanship and mask mandate is positive and significant, 
indicating that Republicans may be more likely to change their behavior during mask mandates than Democrats.

Discussion
Using Twitter, and digital trace data more broadly, confers a number of benefits. In contrast with surveys, Twit-
ter data do not rely on retrospective responses, which often suffer due to memory loss and social desirability 
biases. Twitter data provide a measure that is free and can be collected and stored on demand in real time. The 
new Academic Search Product provides any published tweet that is still public, facilitating post hoc studies. 
In addition, the sheer volume of Twitter data allows researchers to estimate effects across groups that would 
otherwise be prohibitively costly. Though Twitter is not a representative sample of  Americans19, it can serve as a 
meaningful thermometer for public opinion and health behavior, despite sometimes drastically different levels 
of  measurement14.

Moreover, social media image data provide an invaluable and unobtrusive way to measure public health 
behaviors and  trends58,59. To our knowledge, this is among the earliest work to collect COVID-19 Twitter image 
data and apply deep learning based image  classification60, and the first to measure public health behaviors related 
to COVID-19 with such methods. Future research may employ social media images to identify other behaviors 
or attributes, such as smoking, alcohol or drug use, obesity, and seat-belt compliance.

Despite the advantages of using geotagged tweets to study public health behavior, there are drawbacks. One 
difficulty is class imbalance across outcomes (there are many more images without facemasks than with them), 
which could cause a classifier to fit out of sample data  poorly61. We avoid this problem by constructing training 
datasets with an equal number of facemask and non-facemask images and later choose a classification threshold 
high enough to generate a precision of 0.93. A second drawback concerns the potential bias in user behavior 
during this time period. Given that people likely stay home more during mask mandates, they may also tweet less 
or remove masks when taking photos. Either behavior could cause us to underestimate changes in mask wear-
ing. Future research may incorporate the content of tweets to better identify a person’s location or to ascertain 
information about other user characteristics of interest, such as education or income. Because most geotagged 
tweets are only located at the level of neighborhoods or larger geographical regions, our research was unable to 
identify whether or not photos are taken in public settings. “Selfie” images taken indoors do not provide suffi-
cient information to distinguish between public and private locations. (We also considered surveillance camera 
video data as an alternative indicator of mask-wearing behavior. Unfortunately, these data simply do not exist 
in a way that provides the coverage necessary for this study. Publicly-available surveillance data rely on footage 
from security cameras that use non-password-protected internet connections. Putting the ethical issues aside, 
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these feeds tend to not be taken in environments that are conducive to the study, such as residential buildings 
rather than commercial settings.)

The principle finding that mandates are more closely associated with mask wearing in areas with more 
Republican voters suggests that governmental policies have the ability to equalize health behaviors, and poten-
tially health outcomes. We know that conservative voters are less likely to vaccinate against COVID-1962, and 
early research suggests that vaccine mandates are effective at increasing  compliance63,64. Although systematic 
experimental analyses have yet to be conducted, our study suggests that vaccine mandates may have had the 
greatest effect in GOP strongholds.

Last, it is worth noting that Twitter postings are not simply a random slice of life, but might also reflect 
individuals’ strategic choices aimed at influencing friends or public opinion. These decisions likely change over 
time in response to the prevalence and politicization of mask wearing, and future research would benefit from 
exploring a dynamic relationship between mask images, mandates, and the political climate.

Data availability
All aggregate-level data, deidentified individual-level data, and replication files are available on Dataverse 
doi:10.7910/DVN/1ZBK71. The image classifier code and trained model are available through the Github reposi-
tory https:// github. com/ Berna rdo19 98/ Mask- Weari ng- in- Geolo catted- Twitt er.
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