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Abstract—Breakpoint graph analysis is a key algorithmic technique in studies of genome rearrangements. However, breakpoint

graphs are defined only for genomes without duplicated genes, thus limiting their applications in rearrangement analysis. We discuss a

connection between the breakpoint graphs and de Bruijn graphs that leads to a generalization of the notion of breakpoint graph for

genomes with duplicated genes. We further use the generalized breakpoint graphs to study the Genome Halving Problem (first

introduced and solved by Nadia El-Mabrouk and David Sankoff). The El-Mabrouk-Sankoff algorithm is rather complex, and, in this

paper, we present an alternative approach that is based on generalized breakpoint graphs. The generalized breakpoint graphs make

the El-Mabrouk-Sankoff result more transparent and promise to be useful in future studies of genome rearrangements.

Index Terms—Genome duplication, genome halving, genome rearrangement, reversal, breakpoint graph, de Bruijn graph.
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1 INTRODUCTION

THE Genome Halving Problem is motivated by the whole
genome duplication events in molecular evolution [18],

[25], [20], [17], [9]. These dramatic evolutionary events
double the gene content of a genome R and result in a
perfect duplicated genome R�R that contains two identical
copies of each chromosome. The genome then becomes
subject to rearrangements that shuffle the genes in R�R
resulting in some rearranged duplicated genome P . The
Genome Halving Problem is to reconstruct the ancestral
preduplicated genome R from the rearranged duplicated
genome P (Fig. 1a).

From an algorithmic perspective, the genome is a

collection of chromosomes, and each chromosome is a

sequence over a finite alphabet (depending on the scale, the

alphabet may vary from genes to synteny blocks). DNA has

two strands, and genes on a chromosome have direction-

ality that reflects the strand of the genes. We represent the

order and directions of the genes on each chromosome as a

sequence of signed elements, i.e., elements with signs “+”

and “-”.
For the sake of simplicity, we focus on the unichromoso-

mal case, where the genomes consist of just one chromo-

some, and assume that the genomes are circular. A

unichromosomal genome where each gene appears in a

single copy sometimes is referred to as a signed permutation.
For unichromosomal genomes, the rearrangements are

limited to reversals (also known as invertions). The reversal

ði; jÞ over genome x1x2 . . .xn “flips” genes xi . . .xj as

follows:

x1 . . .xi�1 xi xiþ1 . . .xjxjþ1 . . .xn
�������������!

#
x1 . . .xi�1 � xj � xj�1 . . .� xixjþ1 . . .xn:

 ���������������

The reversal distance between two genomes is defined as
the minimal number of reversals required to transform one
genome into another.

There are two natural ways to represent duplication of
the circular genome R resulting in a unichromosomal
genome R�R (Fig. 1b, left) and a multichromosomal
genome 2R (Fig. 1b, right) but only the former is applicable
to unichromosomal genomes.

For unichromosomal genomes, the whole genome duplica-
tion is a concatenation of the genome R with itself resulting
in a perfect duplicated genome R�R (Fig. 1b, left). The
genome R�R becomes a subject to reversals that change
the order and signs of the genes and transforms R�R into
a duplicated genome P . The Genome Halving Problem is
formulated as follows:

Genome Halving Problem. Given a duplicated genome P ,
recover an ancestral preduplicated genome R minimizing the
reversal distance from the perfect duplicated genome R�R to
the duplicated genome P .

The Genome Halving Problem was solved in a series of
papers by El-Mabrouk and Sankoff [10], [11], [12] culminat-
ing in a rather complex algorithm in [14]. The El-Mabrouk-
Sankoff algorithm is one of the most technically challenging
results in bioinformatics and its proof spans a few dozen
pages in [14] (covering both unichromosomal and multi-
chromosomal genomes). In this paper, we revisit the El-
Mabrouk-Sankoff work and present an alternative approach
for the case of unichromosomal genomes.1

The crux of our approach is a new construction that
generalizes the notion of breakpoint graph for any set of
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1. A generalization of our results to multichromosomal and linear genomes
will be discussed elsewhere.
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genomes with duplicated genes (any gene may be present
in an arbitrary number of copies). This construction is
related to well-known de Bruijn graphs and proved to be
useful in studies of the Genome Halving Problem.

The paper is organized as follows: Section 2 reviews
the Hannenhalli-Pevzner theory and formulates the
duality theorem for genomes without duplicated genes.
Section 3 discusses the problem of finding rearrangement
distance between duplicated genomes and extension of the
Hannenhalli-Pevzner theory to this case. Section 4 intro-
duces the concept of the contracted breakpoint graph for
duplicated genomes. In Section 5, we study cycle decom-
positions of contracted breakpoint graphs in the case
when one of the genomes is perfect duplicated. We
present our Genome Halving Algorithm in Section 6.

2 HANNENHALLI-PEVZNER THEORY

A duality theorem and a polynomial algorithm for
computing reversal distance between two signed permuta-
tions was first proposed by Hannenhalli and Pevzner [15].
The algorithm was further simplified and improved in a
series of papers [4], [16], [2], [21] using the breakpoint graph
construction introduced in [3]. Recently, Bergeron et al. [5]
proposed yet another simplification of the Hannenhalli-
Pevzner proof that does not use the breakpoint graph
construction.

Let P be a circular signed permutation. Bafna and
Pevzner [3] described a transformation of a signed
permutation on n elements into an unsigned permutation
on 2n elements by substituting every element x in the
signed permutation with two elements xt and xh in the
unsigned permutation.2 Each element þx in the permuta-
tion P is replaced with xtxh and each element�x is replaced
with xhxt, resulting in an unsigned permutation �ðP Þ. For
example, a permutation þaþ b� c will be transformed into
atahbtbhchct. Element xt is called an obverse of element xh,
and vice versa.

Let P and Q be two circular signed permutations on the
same set of elements G, and �ðP Þ and �ðQÞ be corresponding
unsigned permutations. The breakpoint graph3 G ¼ GðP;QÞ

is defined on the set of vertices V ¼ fxt; xh j x 2 Gg with
edges of three colors: “obverse,” black, and gray (Fig. 1c).
Edges of each color form a matching4 on V :

. Pairs of obverse elements form an obverse matching.

. Adjacent elements in �ðP Þ, other than obverses, form
a black matching.

. Adjacent elements in �ðQÞ, other than obverses, form
a gray matching.

Every pair of matchings forms a collection of alternating
cycles in G, called black-gray, black-obverse, and gray-obverse
cycles, respectively (a cycle is alternating if colors of its
edges alternate). The permutation �ðP Þ can be read along a
single black-obverse cycle, while the permutation �ðQÞ can
be read along a single gray-obverse cycle in G. The black-
gray cycles in the breakpoint graph G play an important
role in computing the reversal distance between the
permutations P and Q. According to the Hannenhalli-
Pevzner theory, the reversal distance between permutations
P and Q is given by the formula

dðP;QÞ ¼ jP j � cðGÞ þ hðGÞ; ð1Þ

where jP j ¼ jQj is the size of the permutations P and Q,
cðGÞ is the number of black-gray cycles in the breakpoint
graph G, and hðGÞ is an easily computable combinatorial
parameter.

3 REVERSAL DISTANCE BETWEEN DUPLICATED

GENOMES

While the Hannenhalli-Pevzner theory leads to a fast
algorithm for computing reversal distance between two
signed permutations, the problem of computing reversal
distance between two genomes with duplicated genes
remains unsolved.

Let P and Q be duplicated genomes on the same set of
genes G (i.e., each gene appears in two copies). If one labels
copies of each gene x as x1 and x2, then genomes P and Q
become signed permutations and the Hannenhalli-Pevzner
theory applies. As before, we turn the labeled genomes P
and Q into unsigned permutations �ðP Þ and �ðQÞ by
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2. Indices “t” and “h” stand for “tail” and “head,” respectively.
3. Our definition of the breakpoint graph is slightly different from the

original definition from [3] and is more suitable for analysis of duplicated
genomes.

Fig. 1. (a) Whole genome duplication of genome R ¼ þaþ b� c into a perfect duplicated genome R� R ¼ þaþ b� cþ aþ b� c followed by three

reversals. (b) Whole genome duplication of a circular genome R (center) resulting in R� R (left) or 2R (right). (c) Breakpoint graph of genomes

þaþ b� c and þaþ bþ c.

4. In this paper, “matching” always means a perfect matching.



replacing each element xi with a pair of obverses xtix
h
i in

the order defined by the sign of xi. The breakpoint
graph GðP;QÞ of the labeled genomes P and Q has a vertex
set V ¼ fxt1; xh1 ; xt2; xh2 j x 2 Gg and uniquely defines permu-
tations �ðP Þ and �ðQÞ (and, thus, the original genomes P
and Q) as well as an intergenome correspondence between
gene copies.

We remark that different labelings may lead to different
breakpoint graphs for the same genomes P and Q (Fig. 2)
and it is not clear how to choose a labeling that results in the
minimum reversal distance between the labeled copies of P
and Q.

Recently, there were many attempts to generalize the
Hannenhalli-Pevzner theory for genomes with duplicated
and deleted genes [6], [8], [13], [22], [23], [24]. However, the
only known option for solving the reversal distance
problem for duplicated genomes exactly is to consider all
possible labelings, to compute the reversal distance pro-
blem for each labeling, and to choose the labeling with the
minimal reversal distance. For duplicated genomes with
n genes, this leads to 2n invocations of the Hannenhalli-
Pevzner algorithm, rendering this approach impractical.
Moreover, the problem remains open if one of the genomes
is perfectly duplicated (i.e., computing the reversal distance
dðP;R�RÞ). Surprisingly, the problem of computing
minR dðP;R�RÞ that we address in this paper is solvable
in polynomial time.

Using the concept of the breakpoint graph and (1), the
Genome Halving Problem can be posed as follows: For a

given duplicated genome P , find a perfect duplicated
genome R�R and a labeling of gene copies such that the
breakpoint graph GðP;R�RÞ of the labeled genomes P
and R�R attains the minimum value of jP j � cðGÞ þ hðGÞ.
Since jP j is constant and the existing results [7] suggests
that hðGÞ is typically small, the value of dðP;QÞ depends
mostly on cðGÞ. El-Mabrouk and Sankoff [14] established
that the problems of maximizing cðGÞ and minimizing hðGÞ
can be solved separately in a consecutive manner. In this
paper, we focus on the former and harder problem:

Weak Genome Halving Problem. For a given duplicated
genome P , find a perfect duplicated genome R�R and a
labeling of gene copies that maximizes the number of black-
gray cycles cðGÞ in the breakpoint graph GðP;R�RÞ of the
labeled genomes P and R�R.

4 CONTRACTED BREAKPOINT GRAPH

To introduce breakpoint graphs of genomes with dupli-
cated genes, we first revisit the notion of breakpoint graph
and discuss the relationships between breakpoint graphs
and de Bruijn graphs. We find it convenient to represent a
circular signed permutation as an alternating cycle formed
by edges of two colors with one color reserved for directed
obverse edges. For example, Fig. 3 shows a black-obverse
cycle representation of permutation P ¼ þa� a� bþ b
(Fig. 3a) and a gray-obverse cycle representation of
permutation Q ¼ þa� bþ aþ b (Fig. 3b; the obverse edges
in these cycles are labeled). Given a set of edge-labeled
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Fig. 2. Breakpoint graphs corresponding to four different labelings of P ¼ þa� a� bþ b and Q ¼ þa� bþ aþ b (without loss of generality, we

assume that labeling of P ¼ þa1 � a2 � b1 þ b2 is fixed). Two out of four breakpoint graphs have cðGÞ ¼ 1, while two others have cðGÞ ¼ 2.

Fig. 3. (a) Genome P ¼ þa� a� bþ b as a black-obverse cycle and its transformation into P̂ by gluing identically labeled edges. (b) Genome

Q ¼ þa� bþ aþ b as a gray-obverse cycle and its transformation into Q̂ by gluing identically labeled edges. (c) Two-chromosomal genome

Q0 ¼ ðþa� bÞðþaþ bÞ that is equivalent to the genome Q (Q̂0 ¼ Q̂). (d) de Bruijn graph for P and Q. (e) Contracted breakpoint graph G0ðP;QÞ.



graphs, the de Bruijn graph of this set is defined as the result
of “gluing”5 edges with the same label in all graphs in the
set (compare with Pevzner et al. [19]). The de Bruijn graph
for the two cycles in Figs. 3a and 3b is shown in Fig. 3d.

For any genome P (represented as a cycle), we define P̂

as the graph obtained from P by gluing identically labeled

edges. Obviously, the de Bruijn graph of P and Q coincides

with the de Bruijn graph of P̂ and Q̂ (Fig. 3).
While our definition of the de Bruijn graphs is some-

what different from the usual definition, one can see that
it produces the same graphs. For example, the classical
de Bruijn graph Glðx1 . . .xnÞ of a circular sequence x1 . . .xn
parameterized with an integer l � 2 is defined as a graph
with vertices corresponding to all ðl� 1Þ-tuples and edges
corresponding to all l-tuples that occur in x1 . . .xn (edge
xi . . .xiþl�1 connects vertices xi . . .xiþl�2 and xiþ1 . . .xiþl�1).
One can see that Glðx1 . . .xnÞ is identical to our construction
if the circular sequence x1 . . .xn is first represented as a
cycle passing through all l-tuples in the sequence with
further gluing of identically labeled edges of this cycle
(Fig. 4).

While our de Bruijn graph construction is merely an
equivalent definition of the breakpoint graph, it provides an
important new insight. While it was not clear how to
generalize the classical notion of breakpoint graph for
genomes with duplicated genes, the de Bruijn graphs
automatically provide such a generalization. In fact, the
de Bruijn graphs are defined as a gluing operation on an
arbitrary set of graphs and, therefore, are applicable to any
set of genomes, including multichromosomal ones (each
genome is represented as a set of cycles). The contracted
breakpoint graph defined below is simply the de Bruijn
graph of duplicated genomes.

The conventional breakpoint graph (Bafna and Pevzner
[3]) of signed permutations P and Q on n elements can be
defined as the gluing of n pairs of obverse edges in the
corresponding permutations �ðP Þ and �ðQÞ represented as
black-obverse and gray-obverse alternating cycles. The
contracted breakpoint graph of duplicated genomes P and Q
on n elements is simply the gluing of n quartets of obverse
edges. Below, we give an equivalent and a somewhat more
formal definition of the contracted breakpoint graph.

Let P and Q be duplicated genomes on the same set of
genes G and G be a breakpoint graph defined by some
labeling of P and Q. The contracted breakpoint graph G0ðP;QÞ
is the result of contracting every pair of vertices xj1; x

j
2

(where x 2 G; j 2 ft; hg) in the breakpoint graph G into a
single vertex xj. So the contracted breakpoint graph G0 ¼
G0ðP;QÞ is a graph on the set of vertices V 0 ¼ fxt; xh j x 2 Gg

with each vertex incident to two black, two gray, and a
pair of parallel obverse edges (Fig. 3e). The contracted
breakpoint graph G0ðP;QÞ is uniquely defined by P and Q
and does not depend on a particular labeling. The following
theorem gives a characterization of the contracted break-
point graphs.

Theorem 1. A graph H with black, gray, and obverse edges is a
contracted breakpoint graph for some duplicated genomes if
and only if

. each vertex in H is incident to two black edges, two
gray edges, and a pair of parallel obverse edges,

. H is connected with respect to the union of black and
obverse edges (black-obverse connected), and

. H is connected with respect to the union of gray and
obverse edges (gray-obverse connected).

Proof. Suppose that graph H is a contracted breakpoint
graph of the genomes P and Q (represented as black-
obverse P -cycle and gray-obverse Q-cycle). The graph H
is simply the result of gluing these P -cycle and Q-cycle.
Since gluing cycles cannot disconnect them, the graph H
is both black-obverse and gray-obverse connected.

Consider a black-obverse and gray-obverse con-
nected graph H where each vertex is incident to two
black edges, two gray edges, and a pair of parallel
obverse edges. Label endpoints of each obverse edge x
in H by xt and xh. Since the graph H is black-obverse
connected, there exists an alternating Eulerian black-
obverse cycle traversing all black and obverse edges in
this graph. The order of vertices in this cycle defines
some duplicated genome P . Similarly, since the graph
H is gray-obverse connected, there exists an alternating
Eulerian gray-obverse cycle traversing all gray and
obverse edges that defines some duplicated genome Q.
Then, the graph H is a contracted breakpoint graph for
the genomes P and Q. tu

In the case when Q is a perfect duplicated genome (i.e.,
Q ¼ R�R), the gray edges in the contracted breakpoint
graph G0ðP;QÞ form pairs of parallel gray edges that we
refer to as double gray edges. Similarly to the pairs of
parallel obverse edges, the double gray edges form a
matching in G0 (Fig. 5a).

Let GðP;QÞ be a breakpoint graph for some labeling of P
and Q. A set of black-gray cycles in GðP;QÞ is contracted
into a set of black-gray cycles in the contracted breakpoint
graph G0ðP;QÞ, thus forming a black-gray cycle decom-
position of G0ðP;QÞ. Therefore, each labeling induces a
black-gray cycle decomposition of the contracted break-
point graph. We are interested in the reverse problem:

Labeling Problem. Given a black-gray cycle decomposition of
the contracted breakpoint graph G0ðP;QÞ of duplicated
genomes P and Q, find labeling of P and Q that induces
this cycle decomposition.

This problem does not always have a solution (Fig. 6).
Below, we show how to address the Labeling Problem by
considering multichromosomal rather than unichromosomal
genomes. A multichromosomal duplicated genome is a set
of circular chromosomes with every gene present in two
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5. Gluing takes into account the directions of edges, i.e., tails (or heads) of
all edges with a given label are glued into a single vertex.

Fig. 4. de Bruijn graph G2ð01101Þ of the circular sequence 01101.



copies. For example, Fig. 3c presents a multichromosomal
duplicated genome Q0 consisting of two chromosomes
þa� b and þaþ b, each of which forms a gray-obverse
cycle. We remark that the de Bruijn graph of the genome Q0

coincides with the de Bruijn graph of a unichromosomal
genome Q ¼ þa� bþ aþ b (Fig. 3b) and, hence, the
contracted breakpoint graphs G0ðP;QÞ and G0ðP;Q0Þ are
the same for any genome P (Fig. 3d). We call genomes Q
and Q0 equivalent if their de Bruijn graphs are equal, i.e.,
Q̂ ¼ Q̂0.
Theorem 2. Let P and Q be unichromosomal duplicated genomes

and C be a black-gray cycle decomposition of the contracted
breakpoint graph G0ðP;QÞ. Then, there exists a multi-
chromosomal genome Q0 such that 1) Q0 is equivalent to Q

and 2) there exists some labeling of P and Q0 that induces the
cycle decomposition C.

Proof. Consider a contracted breakpoint graph G0 ¼
G0ðP;QÞ of the genomes P and Q and its black-gray
cycle decomposition C (Fig. 7a gives an example of a
contracted breakpoint graph while Fig. 7c gives an
example of its black-gray cycle decomposition). In order
to prove the theorem, it is enough to construct a
breakpoint graph GðP;Q0Þ of the genome P and some
genome Q0 equivalent to Q such that the black-gray cycle
decomposition of G is contracted into C. Then, any
labeling of the vertices of GðP;Q0Þ imposes a labeling of
the genomes P and Q0 that induces C.

We find it convenient to represent the cycle decom-
position of G0 as a graph H where every cycle from C

forms its own connected component (Fig. 7c) and assume
that every vertex of the graph G0 has two copies in H
with identical labels (i.e., graph H has twice the number
of vertices as compared to G0). To transform the graph H
into a breakpoint graph GðP;Q0Þ, we will add obverse
edges to H as described below.

The genome P defines a black-obverse cycle
(Fig. 7d). Traversing black edges in graph H in the
order given by this cycle defines a set of obverse edges
in H (Fig. 7e). These obverse edges form a matching in
H and define a gray-obverse cycle decomposition. We
define the genome Q0 as a collection of chromosomes
corresponding to these gray-obverse cycles so that the
graph H, together with the set of obverse edges,
represents the breakpoint graph GðP;Q0Þ. By the
construction, we have G0ðP;Q0Þ ¼ G0ðP;QÞ, meaning
that the genomes Q0 and Q are equivalent. tu

Lemma 1. The perfect duplicated (unichromosomal) genome

R�R is equivalent to the two-chromosomal genome 2R.

Moreover, 2R is the only genome equivalent to R�R.

Proof. It is easy to see that the gluing of both R�R and 2R,

represented as gray-obverse cycles, results in a single

gray-obverse cycle c that traverses R in order (every edge

in this cycle has multiplicity 2) (Fig. 8). Any other

genome that is glued into c cannot have a cycle shorter

than c since such a short cycle would remain short after

gluing. This implies that every genome that is glued into

c either traverses c twice (R�R) or is formed by two

cycles each of which traverses c once (2R). tu
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Fig. 5. (a) Contracted breakpoint graph G0ðP;R�RÞ of genomes P ¼ �a� bþ gþ dþ f þ gþ e� aþ c� f � c� b� d� e and

R ¼ þa� g� b� cþ d� f þ e. (b) BG-graph corresponding to G0ðP;R�RÞ.

Fig. 6. (a) Contracted breakpoint graph G0ðP;R�RÞ for P ¼ þaþ b� a� b and R ¼ þaþ b. (b) Black-gray cycle decomposition C of G0, which is

not induced by any labeling of P and R�R. (c) Breakpoint graph GðP; 2RÞ inducing C. (d) Breakpoint graph GðP;R� RÞ (unique up to relabeling of

vertices with cðGÞ ¼ 2 < jCj ¼ 3.



Theorem 2 and Lemma 1 imply:

Theorem 3. Let P and R�R be unichromosomal duplicated

genomes and C be a black-gray cycle decomposition of the

contracted breakpoint graph G0ðP;R�RÞ. Then, there exists

some labeling of either R�R or 2R that induces the cycle

decomposition C.

Theorem 3 reveals the connection between the Weak

Genome Halving Problem and maximal cycle decomposi-

tion and breaks the analysis of the Weak Genome Halving

Problem into two cases depending on whether the maximal

cycle decomposition is induced by R�R or 2R. In this

paper, we focus on the R�R case while the 2R case is

analyzed in [1].
Let cmaxðG0Þ be the number of cycles in a maximal black-

gray cycle decomposition of the contracted breakpoint

graph G0 ¼ G0ðP;R�RÞ. The R�R case of Theorem 3

motivates the following reformulation of the Weak Genome

Halving Problem.

Cycle Decomposition Problem. For a given duplicated

genome P , find a perfect duplicated genome R�R maximiz-

ing cmaxðG0ðP;R�RÞÞ.

Black and gray edges of the contracted breakpoint graph
G0ðP;R�RÞ form a bicolored graph that we study in the
next section.

5 CYCLE DECOMPOSITION oF BG-GRAPHS

A BG-graph G is a graph with black and gray edges such
that the black edges form black cycles and the gray edges
form gray matching in G (Fig. 5b). We refer to gray edges in
G as double gray edges and assume that every double gray
edge is a pair of parallel gray edges. This assumption
implies that every BG-graph can be decomposed into edge-
disjoint black-gray alternating cycles.

Below, we prove an upper bound on the maximal
number of black-gray cycles cmaxðGÞ in a cycle decomposi-
tion of the BG-graph G, and we formulate necessary and
sufficient conditions for achieving this bound.

A BG-graph is connected if it is connected with respect to
the union of black and gray edges. A double gray edge in the
BG-graph connecting vertices of distinct black cycles is called
interedge. A double gray edge connecting vertices of the same
black cycle is called intraedge. Note that a connected BG-
graph with m black cycles has at least m� 1 interedges.

Let G be a BG-graph on 2n vertices with m > 1 black
cycles, C be a black-gray cycle decomposition of G, and
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Fig. 7. For genomes P ¼ �a� bþ gþ dþ f þ gþ e� aþ c� f � c� b� d� e and R ¼ �a� b� d� gþ f � c� e, (a) contracted breakpoint graph

G0ðP;R�RÞ. (b) BG-graph corresponding to G0. (c) Maximal black-gray cycle decomposition C of G0 forming graph H. (d) Genome P as a black-

obverse cycle. (e) Breakpoint graph inducing the cycle decomposition C. Note that this figure can be viewed as a superimposition of (c) and (d).

Fig. 8. For genome R ¼ þa� b (a) perfect duplicated genome Q ¼ R�R as a gray-obverse cycle. (b) Two-chromosomal genome Q0 ¼ 2R as gray-

obverse cycles. (c) de Bruijn graph Q̂ ¼ Q̂0, where every edge has multiplicity 2.



e ¼ ðx; yÞ be an interedge in G. We define an e-transformation
ðG;CÞ!e ðG?;C?Þ of the graph G and its black-gray cycle
decomposition C into a new BG-graph G? on 2ðn� 1Þ
vertices with m� 1 black cycles and a black-gray cycle
decomposition C? of G? of the same size as C (Fig. 9). In the
cycle decomposition C, there are two black-gray cycles c1

and c2 passing through edge e (it may happen that c1 ¼ c2

when the same cycle passes through e two times). Suppose
that c1 traverses edges ðu; xÞ; ðx; yÞ; ðy; vÞ, while c2 traverses
edges ðz; xÞ; ðx; yÞ; ðy; tÞ. To obtain graph G? from G, we
replace these triples of edges with single black edges ðu; vÞ
and ðz; tÞ, respectively, and delete vertices x and y. This
operation transforms the cycles c1 and c2 in G into cycles c?1
and c?2 in G?. We define the black-gray cycle decomposition
C? as C with the cycles c1 and c2 replaced with c?1 and c?2.

Lemma 2. Let C be a maximal black-gray cycle decomposition of a
BG-graph G and ðG;CÞ!e ðG?;C?Þ be the e-transformation for
some interedge e ¼ ðx; yÞ in G. Then, cmaxðGÞ ¼ cmaxðG?Þ.

Proof. It follows from the definition of e-transformation
that cmaxðGÞ ¼ jCj ¼ jC?j � cmaxðG?Þ. On the other
hand, every black-gray cycle decomposition D? of
the graph G? can be transformed into a black-gray
cycle decomposition D of G of the same size (by
simply substituting the black edges ðu; vÞ and ðz; tÞ in
some black-gray cycles in D? by black-gray-black
triples ðu; xÞ; ðx; yÞ; ðy; vÞ and ðz; xÞ; ðx; yÞ; ðy; tÞ). There-
fore, cmaxðG?Þ � cmaxðGÞ. tu

Theorem 4. If G is a connected BG-graph with 2n vertices and
m black cycles, then

cmaxðGÞ � nþ 2�m ¼ jP j=2þ 2�m:

Proof. Suppose that cmaxðGÞ ¼ k, i.e., a maximal cycle
decomposition of G contains k black-gray cycles. We
find it convenient to view these cycles as k disconnected
cycles (i.e., every cycle forms its own connected
component) that are later contracted in the BG-graph G

by a series of n gluings of pairs of gray edges into double
gray edges. Since one needs at least k� 1 such gluings to
contract k disconnected black-gray cycles into a con-
nected BG-graph, n � k� 1. It implies the theorem for
m ¼ 1.

Assumem > 1. Since the BG-graphG is connected and
contains m black cycles, there exists an interedge e in G.
For a maximal cycle decomposition C of the BG-graph G,

consider an e-transformation ðG;CÞ!e ðG?;C?Þ. Lemma 2
implies cmaxðGÞ ¼ cmaxðG?Þ. Note that G? is a connected
BG-graph on 2ðn� 1Þ vertices with m� 1 black cycles.
Iteratively applying similar e-transformations m� 1
times, we will end up with a BG-graph Gþ of size 2ðn�
ðm� 1ÞÞ that contains a single black cycle. Hence,
cmaxðGÞ ¼ cmaxðGþÞ � nþ 2�m. tu

Note that for a BG-graph G, cmaxðGÞ equals the sum of

cmaxðHÞ over all connected components H of G. Since the

total size of all connected components equals jP j, Theorem 4

implies

cmaxðGÞ ¼
X

H

cmaxðHÞ �
X

H

jHj=2þ 2�mH

¼ jP j=2þ
X1

m¼1
ð2�mÞ � sm � jP j=2þ s1;

where sm is the number of connected components with

m black cycles. Let beðGÞ be the number of even black cycles

(i.e., black cycles of even size) in G. Note that since gray

edges form a matching in BG-graph, a single odd cycle

cannot form a connected component. Therefore, s1 does not

exceed beðGÞ:

cmaxðGÞ � jP j=2þ beðGÞ: ð2Þ

To achieve the upper bound (2), each connected

component of G must contain either a single even black

cycle (a simple BG-graph) or a pair of odd black cycles (a

paired BG-graph). Fig. 7b shows a BG-graph containing an

even black cycle forming a simple BG-graph, and a pair of

odd black cycles forming a paired BG-graph.
We represent each black cycle of a BG-graph as points on

a circle such that the arcs between adjacent points represent

the black edges, and intraedges are drawn as straight

chords within these circles. A BG-graph is noncrossing if its

intraedges (as chords within each black circle) do not cross.

The BG-graph in Fig. 7b is noncrossing, while the BG-graph

in Fig. 5b is not.

Theorem 5. For a simple BG-graph G on 2n vertices, cmaxðGÞ ¼
nþ 1 if and only if G is noncrossing.

Proof. We prove the theorem in both directions by

induction on n. The statement is trivial for n ¼ 1. Assume

that the statement is true for any simple BG-graph of size

2ðn� 1Þ and prove it for a simple BG-graph G of size 2n.
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Fig. 9. e-transformation of a graph G into a graph G?. Black-gray cycles c1; c2 in G passing through interedge e ¼ ðx; yÞ are transformed into black-

gray cycles c?1; c
?
2 in G?. The black-gray cycle c1 traverses edges ðu; xÞ; ðx; yÞ; ðy; vÞ that are replaced by a single edge ðu; vÞ, while black-gray cycle c2

traverses edges ðz; xÞ; ðx; yÞ; ðy; tÞ that are replaced by a single edge ðz; tÞ. As a result, the black cycles connected by e in G are merged into a single

black cycle in G?.



We first prove (the reasoning depends on the proof
direction) that there exists a double gray edge e in G
parallel to a black edge (i.e., connecting two adjacent
points on a black circle) forming a black-gray cycle c0 of
length 2.

If cmaxðGÞ ¼ nþ 1, then a maximal cycle decomposi-
tion of the BG-graph G consists of nþ 1 black-gray
cycles. Since these cycles contain 2n gray edges in total,
the pigeonhole principle implies that there exists a
cycle c0 with a single gray edge e.

If the BG-graph G is noncrossing, consider a double
gray edge e spanning (as a chord) the minimum number
of black edges. If e spanned more than one black edge,
then there would exist a double gray edge with
endpoints within the span of e, i.e., an edge with an
even smaller span, a contradiction.

For the found edge e ¼ ðx; yÞ, let u and v be vertices
adjacent to x and y on the black cycle. Transform G into a
simple BG-graph G0 on 2ðn� 1Þ vertices by removing the
vertices x and y and all the incident edges and by adding
the black edge ðu; vÞ (Fig. 10). Note that cmaxðG0Þ ¼
cmaxðGÞ � 1 and G0 is noncrossing if and only if G is
noncrossing.

By induction, the graph G0 is noncrossing if and only
if cmaxðG0Þ ¼ n. Therefore, G is noncrossing if and only if
cmaxðG0Þ ¼ nþ 1. tu

Let G be a paired BG-graph G of size 2n (consisting of

two odd black cycles) and e be an interedge in G. For a

maximal black-gray cycle decomposition C of G, let

ðG;CÞ!e ðG?;C?Þ be an e-transformation of G. Note that

the graph G? is a simple BG-graph on 2ðn� 1Þ vertices.

Lemma 2 and Theorem 4 imply cmaxðGÞ ¼ cmaxðG?Þ � n.

Therefore, according to Theorem 5, cmaxðGÞ ¼ n if and only

if the BG-graph G? is noncrossing. We are interested in a

particular case of this statement.

Theorem 6. For a paired BG-graph G of size 2n with a single

interedge, cmaxðGÞ ¼ n if and only if G is noncrossing.

Proof. It is easy to see that for a single interedge e in a

paired BG-graph G, the e-transformation turns G into a

noncrossing BG-graph if and only if G is noncrossing.tu

We call a BG-graph optimal if its connected components

are either simple BG-graphs or paired BG-graphs with

single interedges. Theorems 5 and 6 imply

Theorem 7. For an optimal BG-graph G,

cmaxðGÞ ¼ jP j=2þ beðGÞ:

An optimal BG-graph and its maximal cycle decomposi-
tion are shown in Figs. 7b and 7c.

6 GENOME HALVING ALGORITHM

In order to solve the Cycle Decomposition Problem for a
given genome P , we will construct a contracted breakpoint
graph G0ðP;R�RÞ which achieves the upper bound (2).
The de Bruijn graph P̂ , being a subgraph of G0ðP;R�RÞ
(for any preduplicated genome R), completely defines a
vertex set, an obverse matching, and a set of black cycles in
G0 (Figs. 3a and 3d). We will show how to complete the
graph P̂ with a set of double gray edges to obtain a
contracted breakpoint G0ðP;R�RÞ with the maximum
value of cmaxðG0Þ.

A BO-graph is a connected graph with black and obverse

edges such that the black edges form black cycles and the

obverse edges form an obverse matching (every duplicated

genome P corresponds to a BO-graph P̂ ). A BOG-graph is a

graph with black, obverse, and gray edges where black and

obverse edges form a BO-graph (a BO-subgraph), and black

and gray edges form an optimal BG-graph (a BG-subgraph).

Note that each black-gray connected component of a BOG-

graph is a simple noncrossing BG-graph or a paired

noncrossing BG-graph with a single interedge.
The arguments above suggest that the Cycle Decomposi-

tion Problem for a genome P can be reformulated as
follows: For a given BO-graph G (defined as G ¼ P̂ ), find a
gray-obverse connected BOG-graph G0 having G as a BO-
subgraph. Theorems 1 and 7 imply that such a BOG-graph
graph is a contracted breakpoint graph G0ðP;R�RÞ for
some genome R for which cmaxðG0Þ achieves the upper
bound (2).

We remark that gray-obverse connected components of a
BOG-graph form gray-obverse cycles (alternating double
gray and obverse edges). Hence, a BOG-graph is gray-
obverse connected if and only if it has a single gray-obverse
cycle.

Lemma 3. For a BOG-graph with more than one gray-obverse
cycle, there exists a black edge connecting two different gray-
obverse cycles.

Proof. Let H be a BOG-graph with two or more gray-
obverse cycles. Since H is black-obverse connected, there
exists a black-obverse cycle in H traversing all obverse
edges of H. Therefore, there exists a black edge
connecting obverse edges from different gray-obverse
cycles in H. tu

Theorem 8. For a given BO-graph G, there exists a BOG-
graph G0 with a single gray-obverse cycle having G as a
BO-subgraph.

Proof. First, we group odd black cycles in G into pairs
(formed arbitrarily) and introduce an arbitrary interedge
connecting cycles in each pair. Then, we complete each
black cycle with an arbitrary noncrossing gray matching
so that each vertex of G becomes incident to exactly one
double gray edge. Denote the resulting graph by H. Note
that H is a BOG-graph having G as a BO-subgraph.

If H has a single gray-obverse cycle, then the theorem
holds for G0 ¼ H. Otherwise, we show how to modify
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Fig. 10. Transformation of a BG-graph G into a BG-graph G0 by splitting

a black-gray cycle c0 consisting of parallel black and gray edges ðx; yÞ.



the set of double gray edges in H to reduce the number
of gray-obverse cycles.

Assume that there is more than one gray-obverse
cycle in H. By Lemma 3, there is a black edge ðx; yÞ
connecting distinct gray-obverse cycles c1 and c2. Let
ðx; uÞ and ðy; vÞ be double gray edges incident to the
vertices x and y, respectively. We replace the edges ðx; uÞ
and ðy; vÞ in H with double gray edges ðx; yÞ and ðu; vÞ,
resulting in a graph H 0. Fig. 11 illustrates two cases
depending on whether the edge ðy; vÞ is an interedge
(since ðx; uÞ and ðy; vÞ belong to the same black-gray
connected component, at most one of them can be an
interedge).

We will show that the BG-subgraph of H 0 is optimal.
There are two new double gray edges in the BG-
subgraph of H 0 compared to H. Since the introduced
double gray edge ðx; yÞ is parallel to a black edge, it does
not cross any other intraedge (as chords). The introduced
double gray edge ðu; vÞ is either an intraedge or an
interedge. In the former case, any intraedge crossing the
intraedge ðu; vÞ would necessarily cross ðx; uÞ or ðy; vÞ (as
chords), a contradiction of the fact that H has a
noncrossing BG-subgraph. Hence, the BG-subgraph of
H 0 is noncrossing. On the other hand, it is easy to see that
the transformation H ! H 0 turns a simple black-gray
connected component of the graph H into a simple black-
gray connected component of H 0 (Fig. 11a), and a paired
black-gray connected component with a single interedge
into a paired black-gray connected component with a
single interedge (Fig. 11b). Hence, the BG-subgraph of H 0

is optimal and H 0 is a BOG-graph.
Note that the BOG-graph H 0 has G as a BO-subgraph

(since black and obverse edges were not affected by the
transformation). The graph H 0 has the same gray-obverse
cycles as H, except for the gray-obverse cycles c1 and c2

which are joined into a single cycle in H 0. Hence, the
number of gray-obverse cycles in H 0 is reduced as
compared to H.

Iteratively, reducing the number of gray-obverse
cycles, we will eventually come up with a BOG-graph
G0 having G as a BO-subgraph with a single gray-
obverse cycle. tu

We outline the Genome Halving Algorithm for a dupli-
cated genome P as follows (the R�R case):

1. Construct a BO-graph G ¼ P̂ .
2. Find a BOG-graph G0 with a single gray-obverse

cycle having G as a BO-subgraph (Theorem 8).

3. Read a preduplicated genome R along the gray-
obverse cycle in G0.

4. Find a maximal black-gray cycle decomposition of
G0 (Theorems 5 and 6) and a labeling of the genomes
P and Q (Q ¼ R�R or Q ¼ 2R) inducing this cycle
decomposition (Theorem 3).

5. If Q ¼ R�R, then we are done.

The case Q ¼ 2R is addressed in [1].
To estimate the complexity of the Genome Halving

Algorithm, we assume that every graph is implemented as a

collection of sets: a set of vertices, sets of edges of each color,

and an array of sets of incident edges indexed by vertices

and colors. Note that for a given genome P with n genes, all

graphs appearing in the algorithm have vertex and edge

sets of order OðnÞ, while every set of incident edges

contains at most two elements. Therefore, even with a

straightforward data structure, each set operation (such as

an insertion/deletion of an element or a membership query)

takes OðnÞ time.
One can demonstrate that every step of the Genome

Halving Algorithm can be done in OðnÞ set operations.

Therefore, the overall time complexity of the Genome

Halving Algorithm can be estimated as Oðn2Þ. In practice,

our implementation of the Genome Halving Algorithm

takes less than a second to halve a “random” duplicated

genome with 1,000 unique genes with a standard Intel PIII

900 MHz CPU.
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