
Lawrence Berkeley National Laboratory
LBL Publications

Title
Just Write Fortran: Experiences with a Language-Based Alternative to MPI+X

Permalink
https://escholarship.org/uc/item/1zf6h82v

Authors
Rouson, Damian
Rasmussen, Katherine
Dibba, Baboucarr
et al.

Publication Date
2024-11-17

DOI
10.25344/S4H88D
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1zf6h82v
https://escholarship.org/uc/item/1zf6h82v#author
https://escholarship.org
http://www.cdlib.org/


Just Write Fortran: Experiences with a
Language-Based Alternative to MPI+X

Baboucarr Dibba, Katherine Rasmussen, Brad Richardson, Damian Rouson, David Torres, and Yunhao Zhang
Computer Languages and Systems Software (CLaSS) Group,

Lawrence Berkeley National Laboratory, Berkeley, California, USA
{bdibba,krasmussen,brad.richardson,rouson,davytorres,yzhang22}@lbl.gov

Ethan Gutmann
Research Applications Laboratory

National Center for Atmospheric Research, Boulder, Colorado, USA
gutmann@ucar.edu

Kareem Ergawy and Michael Klemm
Advanced Microdevices, Inc.

Munich, Germany
{michael.klemm,kareem.ergawy}@amd.com

Sameer Shende
Performance Research Laboratory, OACISS

University of Oregon, Eugene, Oregon
sameer@cs.uoregon.edu

Index Terms—Coarray Fortran, parallel programming, deep
learning, high-performance computing, climate modeling.

In a 2008 paper entitled “Parallel programming: can we
PLEASE get it right this time?”, Mattson et al. [1] wrote,
“With few exceptions, only graduate students and other strange
people write parallel software.” Parallel programming had
already started becoming more widespread in the research
community with the 1995 publication on the first distributed-
memory Beowulf clusters comprised of networked commodity
personal computers [2]. Shared-memory parallelism prolifer-
ated in the mid-2000s when the multicore processors first
proposed a decade prior [3] reached commodity status contem-
poraneously with the advent of general-purpose computation
on graphics processing units (GPGPUs) [4]. With these hard-
ware trends democratizing parallel computing, the timeliness
of the 1996 Message Passing Interface (MPI) specification [5]
and the 1997 OpenMP specification explain the widespread
use of programming models defined outside of programming
languages. But it no longer has to be this way!

Mattson et al. called for a simpler parallelization paradigm:
“An ideal solution would automatically exploit concur-
rency through techniques such as. . . automatic paralleliza-
tion of loops.” Fortran 2008 [6] answered this call with
do concurrent and also supported distributed-memory
parallelism by incorporating aspects of the Co-Array Fortran
language developed in 1996 by Numrich and Reid [7], who
stated, “The underlying philosophy of our design is to make
the smallest number of changes to the language required
to obtain a robust and efficient parallel language without
requiring the programmer to learn very many new rules.”

This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Research.

Fortran 2023 greatly expands the parallel feature set. The
Cray, Intel, LFortran, LLVM, and NVIDIA compilers automat-
ically parallelize do concurrent. The Cray, Intel, GNU,
and NAG compilers support coarrays. Thus, language-based
parallelism is emerging as a portable alternative to extra-
language programming models.

This talk will present experiences with the automatic par-
allelization of do concurrent in the Fortran 2023 deep
learning library Inference-Engine1 and coarray communication
in the Intermediate Complexity Atmospheric Research (ICAR)
model2, respectively.

REFERENCES

[1] T. Mattson and M. Wrinn, “Parallel programming: can we please get it
right this time?” in Proceedings of the 45th annual design automation
conference, 2008, pp. 7–11.

[2] D. J. Becker, T. Sterling, D. Savarese, J. E. Dorband, U. A. Ranawak,
and C. V. Packer, “Beowulf: A parallel workstation for scientific compu-
tation,” in Proceedings, international conference on parallel processing,
vol. 95, 1995, pp. 11–14.

[3] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang, “The
case for a single-chip multiprocessor,” ACM Sigplan Notices, vol. 31,
no. 9, pp. 2–11, 1996.

[4] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E.
Lefohn, and T. J. Purcell, “A survey of general-purpose computation on
graphics hardware,” in Computer graphics forum, vol. 26, no. 1. Wiley
Online Library, 2007, pp. 80–113.

[5] D. W. Walker and J. J. Dongarra, “Mpi: a standard message passing
interface,” Supercomputer, vol. 12, pp. 56–68, 1996.

[6] Fortran Standards Committee JTC1/SC22/WG5, Information technol-
ogy — Programming languages — Fortran, ISO/IEC 1539-1:2010.
International Organization for Standardization (ISO), Oct 2010,
https://www.iso.org/standard/50459.html.

[7] R. W. Numrich and J. Reid, “Co-array fortran for parallel programming,”
in ACM Sigplan Fortran Forum, vol. 17, no. 2. ACM New York, NY,
USA, 1998, pp. 1–31.

1https://go.lbl.gov/inference-engine
2https://github.com/berkeleylab/icar




