Lawrence Berkeley National Laboratory
LBL Publications

Title
Just Write Fortran: Experiences with a Language-Based Alternative to MPI+X

Permalink

bttgs:ggescholarshiQ.orgéucgitemglzf6h82\=/|

Authors

Rouson, Damian
Dibba, Baboucarr
Rasmussen, Katherine

Publication Date
2024-11-17

DOI
10.25344/S4H88D

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/1zf6h82v
https://escholarship.org/uc/item/1zf6h82v#author
https://escholarship.org
http://www.cdlib.org/

Just Write Fortran: Experiences with a
Language-Based Alternative to MPI+X

Baboucarr Dibba, Katherine Rasmussen, Brad Richardson, Damian Rouson, David Torres, and Yunhao Zhang
Computer Languages and Systems Software (CLaSS) Group,
Lawrence Berkeley National Laboratory, Berkeley, California, USA
{bdibba,krasmussen,brad.richardson,rouson,davytorres,yzhang22 } @1bl.gov

Ethan Gutmann
Research Applications Laboratory

National Center for Atmospheric Research, Boulder, Colorado, USA

gutmann @ucar.edu

Kareem Ergawy and Michael Klemm
Advanced Microdevices, Inc.
Munich, Germany
{michael klemm,kareem.ergawy } @amd.com

Sameer Shende
Performance Research Laboratory, OACISS
University of Oregon, Eugene, Oregon
sameer @cs.uoregon.edu

Index Terms—Coarray Fortran, parallel programming, deep
learning, high-performance computing, climate modeling.

In a 2008 paper entitled “Parallel programming: can we
PLEASE get it right this time?”’, Mattson et al. [1] wrote,
“With few exceptions, only graduate students and other strange
people write parallel software.” Parallel programming had
already started becoming more widespread in the research
community with the 1995 publication on the first distributed-
memory Beowulf clusters comprised of networked commodity
personal computers [2]. Shared-memory parallelism prolifer-
ated in the mid-2000s when the multicore processors first
proposed a decade prior [3] reached commodity status contem-
poraneously with the advent of general-purpose computation
on graphics processing units (GPGPUs) [4]. With these hard-
ware trends democratizing parallel computing, the timeliness
of the 1996 Message Passing Interface (MPI) specification [5]
and the 1997 OpenMP specification explain the widespread
use of programming models defined outside of programming
languages. But it no longer has to be this way!

Mattson et al. called for a simpler parallelization paradigm:
“An ideal solution would automatically exploit concur-
rency through techniques such as...automatic paralleliza-
tion of loops.” Fortran 2008 [6] answered this call with
do concurrent and also supported distributed-memory
parallelism by incorporating aspects of the Co-Array Fortran
language developed in 1996 by Numrich and Reid [7], who
stated, “The underlying philosophy of our design is to make
the smallest number of changes to the language required
to obtain a robust and efficient parallel language without
requiring the programmer to learn very many new rules.”

This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Research.

Fortran 2023 greatly expands the parallel feature set. The
Cray®, Intel®, LFortran, LLVM®, and NVIDIA® compilers
automatically parallelize do concurrent. The Cray, Intel,
GNU, and NAG compilers support coarrays. Thus, language-
based parallelism is emerging as a portable alternative to extra-
language programming models.

This talk will present experiences with the automatic par-
allelization of do concurrent in the Fortran 2023 deep
learning library Fiats' and coarray communication in the In-
termediate Complexity Atmospheric Research (ICAR) model?,
respectively.

REFERENCES

[1] T. Mattson and M. Wrinn, “Parallel programming: can we please get it
right this time?” in Proceedings of the 45th annual design automation
conference, 2008, pp. 7-11.

[2] D. J. Becker, T. Sterling, D. Savarese, J. E. Dorband, U. A. Ranawak,
and C. V. Packer, “Beowulf: A parallel workstation for scientific compu-
tation,” in Proceedings, international conference on parallel processing,
vol. 95, 1995, pp. 11-14.

[3] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang, “The
case for a single-chip multiprocessor,” ACM Sigplan Notices, vol. 31,
no. 9, pp. 2-11, 1996.

[4] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kriiger, A. E.
Lefohn, and T. J. Purcell, “A survey of general-purpose computation on
graphics hardware,” in Computer graphics forum, vol. 26, no. 1. Wiley
Online Library, 2007, pp. 80-113.

[5S] D. W. Walker and J. J. Dongarra, “Mpi: a standard message passing
interface,” Supercomputer, vol. 12, pp. 56-68, 1996.

[6] Fortran Standards Committee JTC1/SC22/WGS, Information technol-
ogy — Programming languages — Fortran, ISO/IEC 1539-1:2010.
International Organization for Standardization (ISO), Oct 2010,
https://www.iso.org/standard/50459.html.

[71 R. W. Numrich and J. Reid, “Co-array fortran for parallel programming,”
in ACM Sigplan Fortran Forum, vol. 17, no. 2. ACM New York, NY,
USA, 1998, pp. 1-31.

Thttps://go.Ibl.gov/fiats
Zhttps://github.com/berkeleylab/icar

mailto:fortran@lbl.gov
https://fortran.lbl.gov/
https://go.lbl.gov/fiats
https://github.com/berkeleylab/icar

BERKELEY LAB Office of Science

Bringing Science Solutions to the World

Just Write Fortran:

Experiences with a Language-Based Alternative to MPI+X

Damian Rouson, Baboucarr Dibba, Katherine Rasmussen, Brad Richardson, David Torres, Yunhao Zhang
Berkeley Lab

Ethan Gutmann Kareem Ergawy, Michael Klemm Sameer Shende
NCAR Advanced Micro Devices, Inc. University of Oregon

Parallel Applications Workshop — Alternatives to MPI+X (PAW-ATM), 17 November 2024

S Y RS

https://fortran.lbl.gov/
https://go.lbl.gov/paw-atm24

Overview

Just Write Fortran:

01 02 03

Motivation Background: User Experience:

Parallelism in Fun with Compilers
Fortran 2023

04 05

Discussion of Results Conclusions and Future Work

Just Write Fortran | BERKELEY LAB

Background

Parallel Programming: Can we PLEASE get it right this
time?

Tim Mattson
Intel Corporation
Dupont, WA

timothy.g.mattson @intel.com

ABSTRACT

The computer industry has a problem. As Moore’s law marches
on, it will be exploited to double cores, not frequencies. But all
those cores, growing to 8, 16 and beyond over the next several

Michael Wrinn
Intel Corporation
Hillsboro, OR

michael.wrinn@intel.com

1. INTRODUCTION

‘The computer industry has enjoyed a 30-year “value ramp”, where
Moore’s law drove processor improvements, which in tum drove
unerade eveles of ever-increasing e lities. Moore’s law

“With few exceptions, only graduate students and
other strange people write parallel software.”

“ATCOmMOn-theme-1s thar

just about every mistake we could make has already been made by

someone. So rather than reinvent these mistakes, let’s learn from
the past and “do it right this time”

approach, fo one which incorporatcs coneurrency?

2. PARALLEL PROGRAMMING:
LESSONS FROM HISTORY

“An ideal solution would automatically exploit concurrency through
techniques such as...automatic parallelization of loops.”

T. Mattson and M. Wrinn (2008)
Proceedings of the 45th annual design
automation conference, pp. 7—11.

Systems give more opportunity Tor development, Thus Creatng
demand for better tools, making the task more manageable, in tum
drawing in more developers, all in a virtuous feedback cycle,
While this may happen, it rests on the interesting premise that 25
years of PhD-level work on parallel systems was ins

diligent. We propose to understand this preceding “mas
parallel " era as one of exploration, trial-and-error,
replete with insights as to what works, and especially, what does
not. Following are some lessons from history, to guide work as
the industry shift to the “manycore parallel” era.

Fortran 2023 Parallelism BERKELEY LAB

Bringing Science Solutions to the World

Multi-Image Execution (“Coarray Fortran”): Application:
S S . . . L BN > B @ github.com/Berkeleyl (¢ ©O O + O
w Coarrays w Intrinsic functions

[IJ README &[5 License 2 =

b b

w Synchronization w Collective subroutines
The Intermediate Complexity Atmospheric

b\ b\ . .

o Events . Atomic subroutines ” Research Model (ICAR)

5 4 (6 main Jpasing]) devlop Ipassing] docs lpasig)

w Notifications w lypes o . _ o , ,
ICAR is a simplified atmospheric model designed primarily for climate downscaling,
atmospheric sensitivity tests, and hopefully educational uses. ICAR combines an

N LOCkS) ValueS analytical solution. ff)r flow over mounj(ains (Iin.ear mountEin wEve t.heory) with the large

~_— - scale flow for a driving model to predict the high resolution wind field. It then advects
and heat and moisture through the domain while computing cloud microphysical

) H H) ' . effects. ICAR has includes a land surface model as well for land atmosphere

- Falled |mageS - At0m|C klnd type interactions; ICAR can simulate open water fluxes, PBL mixing, surface radiation, and
even parameterized convection.

i parameters P

w TeamS In ICAR 2.0 (currently early alpha), ICAR supports parallelization across hundreds of

Gutmann, E. D., I. Barstad, M. P. Clark, J. computing nodes (the basic physics have been shown to scale up to nearly 100,000
& R. Arnold, and R. M. Rasmussen (2016), processors) using coarray fortran. This version of the code has a significant overhaul of
Crltlcal sections The Intermediate Complexity Atmospheric the original code base, and as a result not all functionality has been restored yet.
— Research Model, J. Hydrometeor,

doi:10.1175/JHM-D-15-0155.1.

Berkeley Lab fork (neural-net brancﬁ): go.lbl.gov/icar

http://go.lbl.gov/icar
http://dx.doi.org/10.1175/JHM-D-15-0155.1

Fortran 2023 Parallelism BERKELEY LAB

Multi-Image Execution (“Coarray Fortran”):

4w Coarrays
Synchronization
Events
Notifications
Locks

Failed images
- Teams

o Critical sections

4 Collective subroutines
4w Atomic subroutines
w Types
w Values

w Atomic kind type

Bringing Science Solutions to the World

Application:

(& 2] & D B github.com/Berkeleyl ¢ ® [i] -

w Intrinsic functions

[IJ README &[3 License V4

The Intermediate Complexity Atmospheric
Research Model (ICAR)

“To run ICAR on more than one compute node requires..
coarrays... ifort >= ~18, gfortran >= ~6.3 (with
opencoarrays),... cray's fortran compiler. Note that ifort has
often been extremely slow, cray's implementation is excellent
but ICAR is not well tested with it, gfortran works very well, but
some combinations of gfortran and opencoarrays may not work.”

L L T

parameters
In ICAR 2.0 (currently early alpha), ICAR supports parallelization across hundreds of
computing nodes (the basic physics have been shown to scale up to nearly 100,000
processors) using coarray fortran. This version of the code has a significant overhaul of
the original code base, and as a result not all functionality has been restored yet.

Gutmann, E. D., |. Barstad, M. P. Clark, J.
R. Arnold, and R. M. Rasmussen (2016),
The Intermediate Complexity Atmospheric
Research Model, J. Hydrometeor,
doi:10.1175/JHM-D-15-0155.1.

Berkeley Lab fork (neural-net brancﬁ): go.lbl.gov/icar

http://go.lbl.gov/icar
http://dx.doi.org/10.1175/JHM-D-15-0155.1

~

Fortran 2023 Parallelism @il GERKELEY LAB

Bringing Science Solutions to the World

Statement-/Construct Parallelism: Library:

‘ eve < &) & github.com/berkeleylab/fiats ¢ ® b +

rauvnayes

04
4 do concurrent

Y
iii

(1] README #[3 License

No pack

©

= pllPe prOcedureS \I ___;_/:,_l:__\i/»]_\/ ----- 7 Contributors 10
S 00a--a°¢
\/ \/ \/ ‘

Fiats: Functional inference and training for Deployments 161

- Surrogates @ github-pages last week
elemental procedures

Alternatively, Fortran inference and training for science.

l Array statements

Overview | Getting Started | Documentation Languages

® Fortran 99.3% Shell 0.7%

-
Intrinsic functions: —
m&tmu:l., paCk, nan Fiats supports research on the training and deployment of neural-network surrogate models for

computational science. Fiats also provides a platform for exploring and advancing the native parallel
programming features of Fortran 2023 in the context of deep learning. The design of Fiats centers
around functional programming patterns that facilitate concurrency, including loop-level parallelism via
the do concurrent construct and Single-Program, Multiple Data (SMPD) parallelism via "multi-image”
(e.g., multithreaded or multiprocess) execution. Towards these ends,

Most Fiats procedures are pure and thus satisfy a language requirement for invocation inside do
concurrent ,

The network training procedure use do concurrent to expose automatic parallelization
opportunities to compilers, and

Exploiting multi-image execution to speedup training is under investigation.

go.lbl.gov/fiats

http://go.lbl.gov/fiats

Fortran 2023 Parallelism BERKELEY LAB

Bringing Science Solutions to the World

Statement-/Construct Parallelism: Library:
‘ﬁ\ ‘ [] @ < & github.com/berkeleylab/fiats
4 do concurrent ‘ e r
%]
o000 < B @ github.com/berkeleyla: ¢ @© + »
[0 README &3 License /g =
Supported Compilers
LLVM (flang—new)
|s for
With LLVM flang 20 installed in your PATH , build and test Fiats with the |
installed flang-new symlink in order for fpm to correctly identify the B e
compiler: E .
W . :’:::e"t\:::k.training procedure use do concurrent to expose automatic parallelization
opportunities to compilers, and
« Exploiting multi-image execution to speedup training is under investigation.

go.lbl.gov/fiats

1

Contributors 10

000--®° ¢
&

Deployments 161
@ github-pages last week

+ 160 deployments

Languages

® Fortran 99.3% Shell 0.7%

http://go.lbl.gov/fiats

Fortran 2023 Parallelism BERKELEY LAB

Bringing Science Solutions to the World

Statement-/Construct Parallelism: Library:
Vﬁ\ / 'K) < @ & github.com/berkeleylab/fiats ¢ ®© b + O ‘
l do Concurrent (] README #[3 License /7 = '::::j; b
eo®oe® < > B ‘ eoe® < > B @ github.com/berkeleyla: ¢ Q@ + >
[0J README &3 License [0 README &3 License ZF =
Supported Compilers Partially Supported Compilers
LLVM (flang-new) Fiats release 0.14.0 and earlier support the use of the NAG, GNU, and Intel

Fortran compilers. We are corresponding with these compilers' developers
about addressing the compiler issues preventing building newer Fiats
releases.

With LLVM flang 20 installe
installed flang-new symlink
compiler:

opportunities to compilers, and

. 1
8
« Exploiting multi-image ion to di ining is under i igati
6

go.lbl.gov/fiats

http://go.lbl.gov/fiats

COmpiler Status BERKELEY LAB

Bringing Science Solutions to the World

Multi-Image Execution: Automatic Parallelization of do concurrent:

s Cray . NVIDIA: CPU, GPU

w Intel . Intel: CPU, GPU

4w GNU + OpenCoarrays 4 Cray: CPU, GPU

w NAG o LFortran: CPU

s LLVM Flang: o LLVM Flang: CPU (GPU under development)

= Complete: Parses parallel syntax

= Recently launched: Lowering to PRIF calls

= In review: PRIF 0.4 Design Document

= Under development: Caffeine parallel runtime library

The World’s Shortest Bug Reproducer

end

ust Write Fortran | BERKELEY LAB

n
example — vim concurrent-inferences.f90 — 65x5 F I a tS .

do concurrent(i=1:lat, k=1:1lev, j=1:1on)
outputs(i,k,j) = neural_network%infer(inputs(i,k,3j)) Inference

end do

@ ® example — vim concurrent-inferences.f90 — 70x10

59 I I$omp parallel do shared(inputs,outputs)

60 do j=1,1lon

61 do k=1, 1lev

62 do i=1,1lat

63 outputs(i,k,j) = neural_network%infer(inputs(i,k,j))
64 end do

65 end do

66 end do

67 !$omp end parallel do

() @ example — vim concurrent-inferences.f90 — 50x5

73 | I$omp workshare

74 outputs = neural_network%infer(inputs)
75 I$omp end workshare

76

7844 64%

CPU Parallelism on Perimutter

Compiler: O Ideal do concurrent O omp parallel

Berkeley Lab llvm-project fork
git tag paw-atma4-fiats
Commits pulled from ROCm fork

Neural network: 100.00 1.

» Activation function: GELU

* Numbers of inputs: 80

* Number of outputs: 31

* Nodes per hidden layer: 256, 384, 256 10.00 -

Source: Z. Bai

Average Speedup (5 runs)

Platform: 1.00
Dedicated interactive node
2x 64-core AMD EPYC 7663 processors OMP_NUM_THREADS

1 2 4 8 16 32 64 128

Example Command:
OMP_NUM_THREADS = 128 fpm run --example concurrent-inferences \
--runner "srun --cpu_bind=cores -¢ 128 -n 1" -- --network model.json

Just Write Fortran | BERKELEY LAB

https://github.com/BerkeleyLab/flang-testing-project

n
]
® L] fiats — vim neural_network_s.F90 — 101x36 -

907 #if F2023_LOCALITY
908

909 do concurrent (pair = 1:mini_batch_size) local(a,z,delta) reduce(+: dcdb, dcdw) . -
911 #elif F2018_LOCALITY I l I I

912

913 reduce_gradients: &

914 block

915 real reduce_dcdb(size(dedb,1),size(dedb,2),mini_batch_size)

916 real reduce_dcdw(size(dcdw,1),size(dcdw,2),size(dcdw,3),mini_batch_size)
917 reduce_dcdb = 0.

918 reduce_dcdw = 0.

919

920 iterate_through_batch: &

921 do concurrent (pair = 1:mini_batch_size) local(a,z,delta)

922

923 #else

924

925 reduce_gradients: &

926 block

927 real reduce_dcdb(size(dcdb,1),size(dedb,2),mini_batch_size)

928 real reduce_dcdw(size(dcdw,1),size(dcdw,2),size(dedw,3),mini_batch_size)
929 reduce_dcdb = 0.

930 reduce_dcdw = 0.

931

932 iterate_through_batch: &

933 do concurrent (pair = 1:mini_batch_size)

934

935 1terat
936 block
937

938 real a(maxval(self%nodes_), input_layer:output_layer) ! Activations
939 real z(size(b,1),size(b,2)), delta(size(b,1),size(b,2))

940 #endif

941

hrough_batch: &

n: &

Conclusions and Future Work

Conclusions

4 Fortran 2023 provides a language-based alternative to MPI+x in the form of multi-image
execution + statement/construct-level parallelism.

4w Non-overlapping sets of compilers support either or both forms of parallelism.

w Compiler implementations still vary in maturity and robustness, but the LLVM Flang CPU
parallelization results are encouraging.

Future Work
w Inference and training on GPUs: offloading vs embedded
o Multi-image training

w Ongoing development of AMD Next-Gen Fortran compiler: blog.

https://rocm.blogs.amd.com/ecosystems-and-partners/fortran-journey/README.html

Acknowledgements

The Berkeley Lab Fortran Team
Dan Bonachea, Hugh Kadhem, Brad Richardson, Kate Rasmussen

Collaborators

Fiats: Zhe Bai, Jeremy Bailey, David Torres, Kareem Jabbar Weaver, Jordan Welsman, Yunhao Zhang

LLVM Flang: Jeff Hammond, Jean-Didier Paillex, Etienne Renault
OpenCoarrays: |zaak Beekman, Tobias Burnus, Alessandro Fanfarillo, Andre Vehreschild
ICAR: Ethan Gutmann
TAU: Sameer Shende

https://fortran.lbl.gov/

	Abstract
	Title
	Overview
	Background
	User Experience: Fun with Compilers
	Discussion of Results
	Conclusions and Future Work
	Acknowledgements

