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In a 2008 paper entitled “Parallel programming: can we
PLEASE get it right this time?”, Mattson et al. [1] wrote,
“With few exceptions, only graduate students and other strange
people write parallel software.” Parallel programming had
already started becoming more widespread in the research
community with the 1995 publication on the first distributed-
memory Beowulf clusters comprised of networked commodity
personal computers [2]. Shared-memory parallelism prolifer-
ated in the mid-2000s when the multicore processors first
proposed a decade prior [3] reached commodity status contem-
poraneously with the advent of general-purpose computation
on graphics processing units (GPGPUs) [4]. With these hard-
ware trends democratizing parallel computing, the timeliness
of the 1996 Message Passing Interface (MPI) specification [5]
and the 1997 OpenMP specification explain the widespread
use of programming models defined outside of programming
languages. But it no longer has to be this way!

Mattson et al. called for a simpler parallelization paradigm:
“An ideal solution would automatically exploit concur-
rency through techniques such as. . . automatic paralleliza-
tion of loops.” Fortran 2008 [6] answered this call with
do concurrent and also supported distributed-memory
parallelism by incorporating aspects of the Co-Array Fortran
language developed in 1996 by Numrich and Reid [7], who
stated, “The underlying philosophy of our design is to make
the smallest number of changes to the language required
to obtain a robust and efficient parallel language without
requiring the programmer to learn very many new rules.”

This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Research.

Fortran 2023 greatly expands the parallel feature set. The
Cray®, Intel®, LFortran, LLVM®, and NVIDIA® compilers
automatically parallelize do concurrent. The Cray, Intel,
GNU, and NAG compilers support coarrays. Thus, language-
based parallelism is emerging as a portable alternative to extra-
language programming models.

This talk will present experiences with the automatic par-
allelization of do concurrent in the Fortran 2023 deep
learning library Fiats1 and coarray communication in the In-
termediate Complexity Atmospheric Research (ICAR) model2,
respectively.
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ABSTRACT 
The computer industry has a problem. As Moore’s law marches 
on, it will be exploited to double cores, not frequencies. But all 
those cores, growing to 8, 16 and beyond over the next several 
years, are of little value without parallel software. Where will this 
come from? With few exceptions, only graduate students and 
other strange people write parallel software. Even for numerically 
intensive applications, where parallel algorithms are well 
understood, professional software engineers almost never write 
parallel software.  
Somehow we need to (1) design many core systems programmers 
can actually use and (2) provide programmers with parallel 
programming environments that work.  The good news is we have 
25+ years of history in the HPC space to guide us.  The bad news 
is that few people are paying attention to this experience. 
This talk looks at the history of parallel computing to develop a 
set of anecdotal rules to follow as we create manycore systems 
and their programming environments.   A common theme is that 
just about every mistake we could make has already been made by 
someone. So rather than reinvent these mistakes, let’s learn from 
the past and “do it right this time”. 

Categories and Subject Descriptors 
D.1.3 [Programming Techniques]: Concurrent Programming – 
parallel programming 

General Terms 
Algorithms, Performance, Design, Experimentation, Human 
Factors, Languages 

Keywords 
Parallel computing, Design patterns 

 

 
 

1. INTRODUCTION 
The computer industry has enjoyed a 30-year “value ramp”, where 
Moore’s law drove processor improvements, which in turn drove 
upgrade cycles of ever-increasing capabilities. Moore’s law 
continues, with several generations of transistor doubling 
anticipated.  However, single-thread performance, as measured by 
SPECint 2000, has begun to level off, and no longer tracks the 
increase in transistor count; this is at least partially attributable to 
design elements (out of order execution, prefetching etc) reaching 
points of diminishing return. Also, power consumption limitations 
have curbed further increases in processor frequency. In response 
to this situation, the industry is shifting to multi-core designs, 
where – in principle – greater performance can be realized at 
lower power levels. Achieving this performance, however, 
requires concurrent software, until now relegated to a small niche 
requiring specialist, even heroic efforts. The challenge, then: how 
best to shift software design from its historic, inherently-serial 
approach, to one which incorporates concurrency? 

2. PARALLEL PROGRAMMING: 
LESSONS FROM HISTORY 
An ideal solution would automatically exploit concurrency 
through techniques such as speculative multithreading, or 
automatic parallelization of loops. As yet, such “implicit” 
approaches have not proved encouraging; a study [1] of the 
SPECint benchmarks found gains in the range of 8-15% for a dual 
core system. Research continues, but does not suggest a near-term 
solution. Thus, the job of realizing concurrency falls to software 
developers. 

The “parallel programming problem” has been addressed, in 
high performance computing, for at least 25 years, with the result 
that – still - only a small number of specialized developers write 
parallel code. With multicore systems becoming ubiquitous, there 
is some hope that the “if you build it, they will come”: more 
systems give more opportunity for development, thus creating a 
demand for better tools, making the task more manageable, in turn 
drawing in more developers, all in a virtuous feedback cycle. 
While this may happen, it rests on the interesting premise that 25 
years of PhD-level work on parallel systems was insufficiently 
diligent. We propose to understand this preceding “massively 
parallel programming” era as one of exploration, trial-and-error, 
replete with insights as to what works, and especially, what does 
not. Following are some lessons from history, to guide work as 
the industry shift to the “manycore parallel” era. 
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2.2

“With few exceptions, only graduate students and 
other strange people write parallel software.”

“An ideal solution would automatically exploit concurrency through 
techniques such as...automatic parallelization of loops.”

T. Mattson and M. Wrinn (2008) 
Proceedings of the 45th annual design 

automation conference, pp. 7–11.

Background



Fortran 2023 Parallelism
Multi-Image Execution (“Coarray Fortran”):

Coarrays

Synchronization

Events

Notifications

Locks

Failed images

Teams

Critical sections
5

Intrinsic functions

Collective subroutines

Atomic subroutines

Types 

Values

Atomic kind type 
parameters

Application:

Berkeley Lab fork (neural-net branch): go.lbl.gov/icar

Gutmann, E. D., I. Barstad, M. P. Clark, J. 
R. Arnold, and R. M. Rasmussen (2016), 

The Intermediate Complexity Atmospheric 
Research Model, J. Hydrometeor, 

doi:10.1175/JHM-D-15-0155.1.

http://go.lbl.gov/icar
http://dx.doi.org/10.1175/JHM-D-15-0155.1
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R. Arnold, and R. M. Rasmussen (2016), 

The Intermediate Complexity Atmospheric 
Research Model, J. Hydrometeor, 

doi:10.1175/JHM-D-15-0155.1.

“To run ICAR on more than one compute node requires… 
coarrays… ifort >= ~18, gfortran >= ~6.3 (with 

opencoarrays),… cray's fortran compiler. Note that ifort has 
often been extremely slow, cray's implementation is excellent 

but ICAR is not well tested with it, gfortran works very well, but 
some combinations of gfortran and opencoarrays may not work.”

http://go.lbl.gov/icar
http://dx.doi.org/10.1175/JHM-D-15-0155.1


Statement-/Construct Parallelism:

do concurrent 

- pure procedures

Array statements

- elemental procedures

- Intrinsic functions: 
matmul, pack, …

6

Library:

go.lbl.gov/fiats

Fortran 2023 Parallelism

http://go.lbl.gov/fiats
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Compiler Status

Multi-Image Execution:

Cray

Intel

GNU + OpenCoarrays

NAG

LLVM Flang:

- Complete: Parses parallel syntax
- Recently launched: Lowering to PRIF calls
- In review: PRIF 0.4 Design Document
- Under development: Caffeine parallel runtime library 
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Automatic Parallelization of do concurrent:

NVIDIA: CPU, GPU

Intel: CPU, GPU

Cray: CPU, GPU

LFortran: CPU

LLVM Flang: CPU (GPU under development)
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The World’s Shortest Bug Reproducer
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end



Fiats: 
Inference
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CPU Parallelism on Perlmutter

Example Command:  
OMP_NUM_THREADS = 128  fpm run --example concurrent-inferences \ 
    --runner "srun --cpu_bind=cores -c 128 -n 1" -- --network model.json

Neural network: 
• Activation function: GELU
• Numbers of inputs: 80
• Number of outputs: 31
• Nodes per hidden layer: 256, 384, 256

Source: Z. Bai

Compiler:  
Berkeley Lab llvm-project fork 
git tag paw-atm24-fiats 
Commits pulled from ROCm fork

Platform: 
Dedicated interactive node 
2x 64-core AMD EPYC 7663 processors
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p 
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1.00

10.00

100.00

OMP_NUM_THREADS
1 2 4 8 16 32 64 128

Ideal do concurrent omp parallel

https://github.com/BerkeleyLab/flang-testing-project


Fiats: 
Training
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Conclusions and Future Work 
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Conclusions

Fortran 2023 provides a language-based alternative to MPI+x in the form of multi-image 
execution + statement/construct-level parallelism.

Non-overlapping sets of compilers support either or both forms of parallelism.

Compiler implementations still vary in maturity and robustness, but the LLVM Flang CPU 
parallelization results are encouraging.

Future Work

Inference and training on GPUs: offloading vs embedded

Multi-image training

Ongoing development of AMD Next-Gen Fortran compiler: blog.

https://rocm.blogs.amd.com/ecosystems-and-partners/fortran-journey/README.html
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