
Lawrence Berkeley National Laboratory
LBL Publications

Title
Just Write Fortran: Experiences with a Language-Based Alternative to MPI+X

Permalink
https://escholarship.org/uc/item/1zf6h82v

Authors
Rouson, Damian
Dibba, Baboucarr
Rasmussen, Katherine
et al.

Publication Date
2024-11-17

DOI
10.25344/S4H88D

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1zf6h82v
https://escholarship.org/uc/item/1zf6h82v#author
https://escholarship.org
http://www.cdlib.org/

Just Write Fortran: Experiences with a
Language-Based Alternative to MPI+X

Baboucarr Dibba, Katherine Rasmussen, Brad Richardson, Damian Rouson, David Torres, and Yunhao Zhang
Computer Languages and Systems Software (CLaSS) Group,

Lawrence Berkeley National Laboratory, Berkeley, California, USA
{bdibba,krasmussen,brad.richardson,rouson,davytorres,yzhang22}@lbl.gov

Ethan Gutmann
Research Applications Laboratory

National Center for Atmospheric Research, Boulder, Colorado, USA
gutmann@ucar.edu

Kareem Ergawy and Michael Klemm
Advanced Microdevices, Inc.

Munich, Germany
{michael.klemm,kareem.ergawy}@amd.com

Sameer Shende
Performance Research Laboratory, OACISS

University of Oregon, Eugene, Oregon
sameer@cs.uoregon.edu

Index Terms—Coarray Fortran, parallel programming, deep
learning, high-performance computing, climate modeling.

In a 2008 paper entitled “Parallel programming: can we
PLEASE get it right this time?”, Mattson et al. [1] wrote,
“With few exceptions, only graduate students and other strange
people write parallel software.” Parallel programming had
already started becoming more widespread in the research
community with the 1995 publication on the first distributed-
memory Beowulf clusters comprised of networked commodity
personal computers [2]. Shared-memory parallelism prolifer-
ated in the mid-2000s when the multicore processors first
proposed a decade prior [3] reached commodity status contem-
poraneously with the advent of general-purpose computation
on graphics processing units (GPGPUs) [4]. With these hard-
ware trends democratizing parallel computing, the timeliness
of the 1996 Message Passing Interface (MPI) specification [5]
and the 1997 OpenMP specification explain the widespread
use of programming models defined outside of programming
languages. But it no longer has to be this way!

Mattson et al. called for a simpler parallelization paradigm:
“An ideal solution would automatically exploit concur-
rency through techniques such as. . . automatic paralleliza-
tion of loops.” Fortran 2008 [6] answered this call with
do concurrent and also supported distributed-memory
parallelism by incorporating aspects of the Co-Array Fortran
language developed in 1996 by Numrich and Reid [7], who
stated, “The underlying philosophy of our design is to make
the smallest number of changes to the language required
to obtain a robust and efficient parallel language without
requiring the programmer to learn very many new rules.”

This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Research.

Fortran 2023 greatly expands the parallel feature set. The
Cray®, Intel®, LFortran, LLVM®, and NVIDIA® compilers
automatically parallelize do concurrent. The Cray, Intel,
GNU, and NAG compilers support coarrays. Thus, language-
based parallelism is emerging as a portable alternative to extra-
language programming models.

This talk will present experiences with the automatic par-
allelization of do concurrent in the Fortran 2023 deep
learning library Fiats1 and coarray communication in the In-
termediate Complexity Atmospheric Research (ICAR) model2,
respectively.

REFERENCES

[1] T. Mattson and M. Wrinn, “Parallel programming: can we please get it
right this time?” in Proceedings of the 45th annual design automation
conference, 2008, pp. 7–11.

[2] D. J. Becker, T. Sterling, D. Savarese, J. E. Dorband, U. A. Ranawak,
and C. V. Packer, “Beowulf: A parallel workstation for scientific compu-
tation,” in Proceedings, international conference on parallel processing,
vol. 95, 1995, pp. 11–14.

[3] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang, “The
case for a single-chip multiprocessor,” ACM Sigplan Notices, vol. 31,
no. 9, pp. 2–11, 1996.

[4] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E.
Lefohn, and T. J. Purcell, “A survey of general-purpose computation on
graphics hardware,” in Computer graphics forum, vol. 26, no. 1. Wiley
Online Library, 2007, pp. 80–113.

[5] D. W. Walker and J. J. Dongarra, “Mpi: a standard message passing
interface,” Supercomputer, vol. 12, pp. 56–68, 1996.

[6] Fortran Standards Committee JTC1/SC22/WG5, Information technol-
ogy — Programming languages — Fortran, ISO/IEC 1539-1:2010.
International Organization for Standardization (ISO), Oct 2010,
https://www.iso.org/standard/50459.html.

[7] R. W. Numrich and J. Reid, “Co-array fortran for parallel programming,”
in ACM Sigplan Fortran Forum, vol. 17, no. 2. ACM New York, NY,
USA, 1998, pp. 1–31.

1https://go.lbl.gov/fiats
2https://github.com/berkeleylab/icar

mailto:fortran@lbl.gov
https://fortran.lbl.gov/
https://go.lbl.gov/fiats
https://github.com/berkeleylab/icar

Just Write Fortran:
Experiences with a Language-Based Alternative to MPI+X

Damian Rouson, Baboucarr Dibba, Katherine Rasmussen, Brad Richardson, David Torres, Yunhao Zhang
Berkeley Lab

Parallel Applications Workshop — Alternatives to MPI+X (PAW-ATM), 17 November 2024

Ethan Gutmann
NCAR

Kareem Ergawy, Michael Klemm
Advanced Micro Devices, Inc.

Sameer Shende
University of Oregon

https://fortran.lbl.gov/
https://go.lbl.gov/paw-atm24

Just Write Fortran | BERKELEY LAB

02
Background:
Parallelism in
Fortran 2023

03
User Experience:
Fun with Compilers

04
Discussion of Results

Overview

2

Just Write Fortran:

01
Motivation

05
Conclusions and Future Work

Parallel Programming: Can we PLEASE get it right this
time?

Tim Mattson

Intel Corporation
Dupont, WA

timothy.g.mattson@intel.com

Michael Wrinn
Intel Corporation

Hillsboro, OR

michael.wrinn@intel.com

ABSTRACT
The computer industry has a problem. As Moore’s law marches
on, it will be exploited to double cores, not frequencies. But all
those cores, growing to 8, 16 and beyond over the next several
years, are of little value without parallel software. Where will this
come from? With few exceptions, only graduate students and
other strange people write parallel software. Even for numerically
intensive applications, where parallel algorithms are well
understood, professional software engineers almost never write
parallel software.
Somehow we need to (1) design many core systems programmers
can actually use and (2) provide programmers with parallel
programming environments that work. The good news is we have
25+ years of history in the HPC space to guide us. The bad news
is that few people are paying attention to this experience.
This talk looks at the history of parallel computing to develop a
set of anecdotal rules to follow as we create manycore systems
and their programming environments. A common theme is that
just about every mistake we could make has already been made by
someone. So rather than reinvent these mistakes, let’s learn from
the past and “do it right this time”.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming –
parallel programming

General Terms
Algorithms, Performance, Design, Experimentation, Human
Factors, Languages

Keywords
Parallel computing, Design patterns

1. INTRODUCTION
The computer industry has enjoyed a 30-year “value ramp”, where
Moore’s law drove processor improvements, which in turn drove
upgrade cycles of ever-increasing capabilities. Moore’s law
continues, with several generations of transistor doubling
anticipated. However, single-thread performance, as measured by
SPECint 2000, has begun to level off, and no longer tracks the
increase in transistor count; this is at least partially attributable to
design elements (out of order execution, prefetching etc) reaching
points of diminishing return. Also, power consumption limitations
have curbed further increases in processor frequency. In response
to this situation, the industry is shifting to multi-core designs,
where – in principle – greater performance can be realized at
lower power levels. Achieving this performance, however,
requires concurrent software, until now relegated to a small niche
requiring specialist, even heroic efforts. The challenge, then: how
best to shift software design from its historic, inherently-serial
approach, to one which incorporates concurrency?

2. PARALLEL PROGRAMMING:
LESSONS FROM HISTORY
An ideal solution would automatically exploit concurrency
through techniques such as speculative multithreading, or
automatic parallelization of loops. As yet, such “implicit”
approaches have not proved encouraging; a study [1] of the
SPECint benchmarks found gains in the range of 8-15% for a dual
core system. Research continues, but does not suggest a near-term
solution. Thus, the job of realizing concurrency falls to software
developers.

The “parallel programming problem” has been addressed, in
high performance computing, for at least 25 years, with the result
that – still - only a small number of specialized developers write
parallel code. With multicore systems becoming ubiquitous, there
is some hope that the “if you build it, they will come”: more
systems give more opportunity for development, thus creating a
demand for better tools, making the task more manageable, in turn
drawing in more developers, all in a virtuous feedback cycle.
While this may happen, it rests on the interesting premise that 25
years of PhD-level work on parallel systems was insufficiently
diligent. We propose to understand this preceding “massively
parallel programming” era as one of exploration, trial-and-error,
replete with insights as to what works, and especially, what does
not. Following are some lessons from history, to guide work as
the industry shift to the “manycore parallel” era.

7

2.2

“With few exceptions, only graduate students and
other strange people write parallel software.”

“An ideal solution would automatically exploit concurrency through
techniques such as...automatic parallelization of loops.”

T. Mattson and M. Wrinn (2008)
Proceedings of the 45th annual design

automation conference, pp. 7–11.

Background

Fortran 2023 Parallelism
Multi-Image Execution (“Coarray Fortran”):

Coarrays

Synchronization

Events

Notifications

Locks

Failed images

Teams

Critical sections
5

Intrinsic functions

Collective subroutines

Atomic subroutines

Types

Values

Atomic kind type
parameters

Application:

Berkeley Lab fork (neural-net branch): go.lbl.gov/icar

Gutmann, E. D., I. Barstad, M. P. Clark, J.
R. Arnold, and R. M. Rasmussen (2016),

The Intermediate Complexity Atmospheric
Research Model, J. Hydrometeor,

doi:10.1175/JHM-D-15-0155.1.

http://go.lbl.gov/icar
http://dx.doi.org/10.1175/JHM-D-15-0155.1

Fortran 2023 Parallelism
Multi-Image Execution (“Coarray Fortran”):

Coarrays

Synchronization

Events

Notifications

Locks

Failed images

Teams

Critical sections
5

Intrinsic functions

Collective subroutines

Atomic subroutines

Types

Values

Atomic kind type
parameters

Application:

Berkeley Lab fork (neural-net branch): go.lbl.gov/icar

Gutmann, E. D., I. Barstad, M. P. Clark, J.
R. Arnold, and R. M. Rasmussen (2016),

The Intermediate Complexity Atmospheric
Research Model, J. Hydrometeor,

doi:10.1175/JHM-D-15-0155.1.

“To run ICAR on more than one compute node requires…
coarrays… ifort >= ~18, gfortran >= ~6.3 (with

opencoarrays),… cray's fortran compiler. Note that ifort has
often been extremely slow, cray's implementation is excellent

but ICAR is not well tested with it, gfortran works very well, but
some combinations of gfortran and opencoarrays may not work.”

http://go.lbl.gov/icar
http://dx.doi.org/10.1175/JHM-D-15-0155.1

Statement-/Construct Parallelism:

do concurrent

- pure procedures

Array statements

- elemental procedures

- Intrinsic functions:
matmul, pack, …

6

Library:

go.lbl.gov/fiats

Fortran 2023 Parallelism

http://go.lbl.gov/fiats

Statement-/Construct Parallelism:

do concurrent

- pure procedures

Array statements

- elemental procedures

- Intrinsic functions:
matmul, pack, …

6

Library:

go.lbl.gov/fiats

Fortran 2023 Parallelism

http://go.lbl.gov/fiats

Statement-/Construct Parallelism:

do concurrent

- pure procedures

Array statements

- elemental procedures

- Intrinsic functions:
matmul, pack, …

6

Library:

go.lbl.gov/fiats

Fortran 2023 Parallelism

http://go.lbl.gov/fiats

Compiler Status

Multi-Image Execution:

Cray

Intel

GNU + OpenCoarrays

NAG

LLVM Flang:

- Complete: Parses parallel syntax
- Recently launched: Lowering to PRIF calls
- In review: PRIF 0.4 Design Document
- Under development: Caffeine parallel runtime library

8

Automatic Parallelization of do concurrent:

NVIDIA: CPU, GPU

Intel: CPU, GPU

Cray: CPU, GPU

LFortran: CPU

LLVM Flang: CPU (GPU under development)

Just Write Fortran | BERKELEY LAB

The World’s Shortest Bug Reproducer

9

end

Fiats:
Inference

Just Write Fortran | BERKELEY LAB 12

CPU Parallelism on Perlmutter

Example Command:
OMP_NUM_THREADS = 128 fpm run --example concurrent-inferences \
 --runner "srun --cpu_bind=cores -c 128 -n 1" -- --network model.json

Neural network:
• Activation function: GELU
• Numbers of inputs: 80
• Number of outputs: 31
• Nodes per hidden layer: 256, 384, 256

Source: Z. Bai

Compiler:
Berkeley Lab llvm-project fork
git tag paw-atm24-fiats
Commits pulled from ROCm fork

Platform:
Dedicated interactive node
2x 64-core AMD EPYC 7663 processors

Av
er

ag
e

Sp
ee

du
p

(5
 ru

ns
)

1.00

10.00

100.00

OMP_NUM_THREADS
1 2 4 8 16 32 64 128

Ideal do concurrent omp parallel

https://github.com/BerkeleyLab/flang-testing-project

Fiats:
Training

Just Write Fortran | BERKELEY LAB

Conclusions and Future Work

14

Conclusions

Fortran 2023 provides a language-based alternative to MPI+x in the form of multi-image
execution + statement/construct-level parallelism.

Non-overlapping sets of compilers support either or both forms of parallelism.

Compiler implementations still vary in maturity and robustness, but the LLVM Flang CPU
parallelization results are encouraging.

Future Work

Inference and training on GPUs: offloading vs embedded

Multi-image training

Ongoing development of AMD Next-Gen Fortran compiler: blog.

https://rocm.blogs.amd.com/ecosystems-and-partners/fortran-journey/README.html

Just Write Fortran | BERKELEY LAB

Acknowledgements

15

The Berkeley Lab Fortran Team
Dan Bonachea, Hugh Kadhem, Brad Richardson, Kate Rasmussen

Collaborators
Fiats: Zhe Bai, Jeremy Bailey, David Torres, Kareem Jabbar Weaver, Jordan Welsman, Yunhao Zhang

LLVM Flang: Jeff Hammond, Jean-Didier Paillex, Etienne Renault
OpenCoarrays: Izaak Beekman, Tobias Burnus, Alessandro Fanfarillo, Andre Vehreschild

ICAR: Ethan Gutmann
TAU: Sameer Shende

https://fortran.lbl.gov/

	Abstract
	Title
	Overview
	Background
	User Experience: Fun with Compilers
	Discussion of Results
	Conclusions and Future Work
	Acknowledgements

